/* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */ /*- * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting * * This code was written by Angelos D. Keromytis in Athens, Greece, in * February 2000. Network Security Technologies Inc. (NSTI) kindly * supported the development of this code. * * Copyright (c) 2000, 2001 Angelos D. Keromytis * Copyright (c) 2014-2021 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by John-Mark Gurney * under sponsorship of the FreeBSD Foundation and * Rubicon Communications, LLC (Netgate). * * Portions of this software were developed by Ararat River * Consulting, LLC under sponsorship of the FreeBSD Foundation. * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all source code copies of any software which is or includes a copy or * modification of this software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cryptodev_if.h" struct swcr_auth { void *sw_ictx; void *sw_octx; const struct auth_hash *sw_axf; uint16_t sw_mlen; }; struct swcr_encdec { void *sw_kschedule; const struct enc_xform *sw_exf; }; struct swcr_compdec { const struct comp_algo *sw_cxf; }; struct swcr_session { struct mtx swcr_lock; int (*swcr_process)(struct swcr_session *, struct cryptop *); struct swcr_auth swcr_auth; struct swcr_encdec swcr_encdec; struct swcr_compdec swcr_compdec; }; static int32_t swcr_id; static void swcr_freesession(device_t dev, crypto_session_t cses); /* Used for CRYPTO_NULL_CBC. */ static int swcr_null(struct swcr_session *ses, struct cryptop *crp) { return (0); } /* * Apply a symmetric encryption/decryption algorithm. */ static int swcr_encdec(struct swcr_session *ses, struct cryptop *crp) { unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN]; unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN]; const struct crypto_session_params *csp; const struct enc_xform *exf; struct swcr_encdec *sw; size_t inlen, outlen; int i, blks, resid; struct crypto_buffer_cursor cc_in, cc_out; const unsigned char *inblk; unsigned char *outblk; int error; bool encrypting; error = 0; sw = &ses->swcr_encdec; exf = sw->sw_exf; csp = crypto_get_params(crp->crp_session); if (exf->native_blocksize == 0) { /* Check for non-padded data */ if ((crp->crp_payload_length % exf->blocksize) != 0) return (EINVAL); blks = exf->blocksize; } else blks = exf->native_blocksize; if (exf == &enc_xform_aes_icm && (crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0) return (EINVAL); if (crp->crp_cipher_key != NULL) { error = exf->setkey(sw->sw_kschedule, crp->crp_cipher_key, csp->csp_cipher_klen); if (error) return (error); } crypto_read_iv(crp, iv); if (exf->reinit) { /* * xforms that provide a reinit method perform all IV * handling themselves. */ exf->reinit(sw->sw_kschedule, iv, csp->csp_ivlen); } ivp = iv; crypto_cursor_init(&cc_in, &crp->crp_buf); crypto_cursor_advance(&cc_in, crp->crp_payload_start); inblk = crypto_cursor_segment(&cc_in, &inlen); if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) { crypto_cursor_init(&cc_out, &crp->crp_obuf); crypto_cursor_advance(&cc_out, crp->crp_payload_output_start); } else cc_out = cc_in; outblk = crypto_cursor_segment(&cc_out, &outlen); resid = crp->crp_payload_length; encrypting = CRYPTO_OP_IS_ENCRYPT(crp->crp_op); /* * Loop through encrypting blocks. 'inlen' is the remaining * length of the current segment in the input buffer. * 'outlen' is the remaining length of current segment in the * output buffer. */ while (resid >= blks) { /* * If the current block is not contained within the * current input/output segment, use 'blk' as a local * buffer. */ if (inlen < blks) { crypto_cursor_copydata(&cc_in, blks, blk); inblk = blk; } if (outlen < blks) outblk = blk; /* * Ciphers without a 'reinit' hook are assumed to be * used in CBC mode where the chaining is done here. */ if (exf->reinit != NULL) { if (encrypting) exf->encrypt(sw->sw_kschedule, inblk, outblk); else exf->decrypt(sw->sw_kschedule, inblk, outblk); } else if (encrypting) { /* XOR with previous block */ for (i = 0; i < blks; i++) outblk[i] = inblk[i] ^ ivp[i]; exf->encrypt(sw->sw_kschedule, outblk, outblk); /* * Keep encrypted block for XOR'ing * with next block */ memcpy(iv, outblk, blks); ivp = iv; } else { /* decrypt */ /* * Keep encrypted block for XOR'ing * with next block */ nivp = (ivp == iv) ? iv2 : iv; memcpy(nivp, inblk, blks); exf->decrypt(sw->sw_kschedule, inblk, outblk); /* XOR with previous block */ for (i = 0; i < blks; i++) outblk[i] ^= ivp[i]; ivp = nivp; } if (inlen < blks) { inblk = crypto_cursor_segment(&cc_in, &inlen); } else { crypto_cursor_advance(&cc_in, blks); inlen -= blks; inblk += blks; } if (outlen < blks) { crypto_cursor_copyback(&cc_out, blks, blk); outblk = crypto_cursor_segment(&cc_out, &outlen); } else { crypto_cursor_advance(&cc_out, blks); outlen -= blks; outblk += blks; } resid -= blks; } /* Handle trailing partial block for stream ciphers. */ if (resid > 0) { KASSERT(exf->native_blocksize != 0, ("%s: partial block of %d bytes for cipher %s", __func__, i, exf->name)); KASSERT(exf->reinit != NULL, ("%s: partial block cipher %s without reinit hook", __func__, exf->name)); KASSERT(resid < blks, ("%s: partial block too big", __func__)); inblk = crypto_cursor_segment(&cc_in, &inlen); outblk = crypto_cursor_segment(&cc_out, &outlen); if (inlen < resid) { crypto_cursor_copydata(&cc_in, resid, blk); inblk = blk; } if (outlen < resid) outblk = blk; if (encrypting) exf->encrypt_last(sw->sw_kschedule, inblk, outblk, resid); else exf->decrypt_last(sw->sw_kschedule, inblk, outblk, resid); if (outlen < resid) crypto_cursor_copyback(&cc_out, resid, blk); } explicit_bzero(blk, sizeof(blk)); explicit_bzero(iv, sizeof(iv)); explicit_bzero(iv2, sizeof(iv2)); return (0); } static void swcr_authprepare(const struct auth_hash *axf, struct swcr_auth *sw, const uint8_t *key, int klen) { switch (axf->type) { case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_224_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_NULL_HMAC: case CRYPTO_RIPEMD160_HMAC: hmac_init_ipad(axf, key, klen, sw->sw_ictx); hmac_init_opad(axf, key, klen, sw->sw_octx); break; case CRYPTO_POLY1305: case CRYPTO_BLAKE2B: case CRYPTO_BLAKE2S: axf->Setkey(sw->sw_ictx, key, klen); axf->Init(sw->sw_ictx); break; default: panic("%s: algorithm %d doesn't use keys", __func__, axf->type); } } /* * Compute or verify hash. */ static int swcr_authcompute(struct swcr_session *ses, struct cryptop *crp) { u_char aalg[HASH_MAX_LEN]; const struct crypto_session_params *csp; struct swcr_auth *sw; const struct auth_hash *axf; union authctx ctx; int err; sw = &ses->swcr_auth; axf = sw->sw_axf; csp = crypto_get_params(crp->crp_session); if (crp->crp_auth_key != NULL) { swcr_authprepare(axf, sw, crp->crp_auth_key, csp->csp_auth_klen); } bcopy(sw->sw_ictx, &ctx, axf->ctxsize); if (crp->crp_aad != NULL) err = axf->Update(&ctx, crp->crp_aad, crp->crp_aad_length); else err = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length, axf->Update, &ctx); if (err) goto out; if (CRYPTO_HAS_OUTPUT_BUFFER(crp) && CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) err = crypto_apply_buf(&crp->crp_obuf, crp->crp_payload_output_start, crp->crp_payload_length, axf->Update, &ctx); else err = crypto_apply(crp, crp->crp_payload_start, crp->crp_payload_length, axf->Update, &ctx); if (err) goto out; if (csp->csp_flags & CSP_F_ESN) axf->Update(&ctx, crp->crp_esn, 4); axf->Final(aalg, &ctx); if (sw->sw_octx != NULL) { bcopy(sw->sw_octx, &ctx, axf->ctxsize); axf->Update(&ctx, aalg, axf->hashsize); axf->Final(aalg, &ctx); } if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) { u_char uaalg[HASH_MAX_LEN]; crypto_copydata(crp, crp->crp_digest_start, sw->sw_mlen, uaalg); if (timingsafe_bcmp(aalg, uaalg, sw->sw_mlen) != 0) err = EBADMSG; explicit_bzero(uaalg, sizeof(uaalg)); } else { /* Inject the authentication data */ crypto_copyback(crp, crp->crp_digest_start, sw->sw_mlen, aalg); } explicit_bzero(aalg, sizeof(aalg)); out: explicit_bzero(&ctx, sizeof(ctx)); return (err); } CTASSERT(INT_MAX <= (1ll<<39) - 256); /* GCM: plain text < 2^39-256 */ CTASSERT(INT_MAX <= (uint64_t)-1); /* GCM: associated data <= 2^64-1 */ static int swcr_gmac(struct swcr_session *ses, struct cryptop *crp) { uint32_t blkbuf[howmany(AES_BLOCK_LEN, sizeof(uint32_t))]; u_char *blk = (u_char *)blkbuf; u_char tag[GMAC_DIGEST_LEN]; u_char iv[AES_BLOCK_LEN]; struct crypto_buffer_cursor cc; const u_char *inblk; union authctx ctx; struct swcr_auth *swa; const struct auth_hash *axf; uint32_t *blkp; size_t len; int blksz, error, ivlen, resid; swa = &ses->swcr_auth; axf = swa->sw_axf; bcopy(swa->sw_ictx, &ctx, axf->ctxsize); blksz = GMAC_BLOCK_LEN; KASSERT(axf->blocksize == blksz, ("%s: axf block size mismatch", __func__)); /* Initialize the IV */ ivlen = AES_GCM_IV_LEN; crypto_read_iv(crp, iv); axf->Reinit(&ctx, iv, ivlen); crypto_cursor_init(&cc, &crp->crp_buf); crypto_cursor_advance(&cc, crp->crp_payload_start); for (resid = crp->crp_payload_length; resid >= blksz; resid -= len) { inblk = crypto_cursor_segment(&cc, &len); if (len >= blksz) { len = rounddown(MIN(len, resid), blksz); crypto_cursor_advance(&cc, len); } else { len = blksz; crypto_cursor_copydata(&cc, len, blk); inblk = blk; } axf->Update(&ctx, inblk, len); } if (resid > 0) { memset(blk, 0, blksz); crypto_cursor_copydata(&cc, resid, blk); axf->Update(&ctx, blk, blksz); } /* length block */ memset(blk, 0, blksz); blkp = (uint32_t *)blk + 1; *blkp = htobe32(crp->crp_payload_length * 8); axf->Update(&ctx, blk, blksz); /* Finalize MAC */ axf->Final(tag, &ctx); error = 0; if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) { u_char tag2[GMAC_DIGEST_LEN]; crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen, tag2); if (timingsafe_bcmp(tag, tag2, swa->sw_mlen) != 0) error = EBADMSG; explicit_bzero(tag2, sizeof(tag2)); } else { /* Inject the authentication data */ crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen, tag); } explicit_bzero(blkbuf, sizeof(blkbuf)); explicit_bzero(tag, sizeof(tag)); explicit_bzero(iv, sizeof(iv)); return (error); } static int swcr_gcm(struct swcr_session *ses, struct cryptop *crp) { uint32_t blkbuf[howmany(AES_BLOCK_LEN, sizeof(uint32_t))]; u_char *blk = (u_char *)blkbuf; u_char tag[GMAC_DIGEST_LEN]; struct crypto_buffer_cursor cc_in, cc_out; const u_char *inblk; u_char *outblk; union authctx ctx; struct swcr_auth *swa; struct swcr_encdec *swe; const struct auth_hash *axf; const struct enc_xform *exf; uint32_t *blkp; size_t len; int blksz, error, ivlen, r, resid; swa = &ses->swcr_auth; axf = swa->sw_axf; bcopy(swa->sw_ictx, &ctx, axf->ctxsize); blksz = GMAC_BLOCK_LEN; KASSERT(axf->blocksize == blksz, ("%s: axf block size mismatch", __func__)); swe = &ses->swcr_encdec; exf = swe->sw_exf; KASSERT(axf->blocksize == exf->native_blocksize, ("%s: blocksize mismatch", __func__)); if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0) return (EINVAL); ivlen = AES_GCM_IV_LEN; /* Supply MAC with IV */ axf->Reinit(&ctx, crp->crp_iv, ivlen); /* Supply MAC with AAD */ if (crp->crp_aad != NULL) { len = rounddown(crp->crp_aad_length, blksz); if (len != 0) axf->Update(&ctx, crp->crp_aad, len); if (crp->crp_aad_length != len) { memset(blk, 0, blksz); memcpy(blk, (char *)crp->crp_aad + len, crp->crp_aad_length - len); axf->Update(&ctx, blk, blksz); } } else { crypto_cursor_init(&cc_in, &crp->crp_buf); crypto_cursor_advance(&cc_in, crp->crp_aad_start); for (resid = crp->crp_aad_length; resid >= blksz; resid -= len) { inblk = crypto_cursor_segment(&cc_in, &len); if (len >= blksz) { len = rounddown(MIN(len, resid), blksz); crypto_cursor_advance(&cc_in, len); } else { len = blksz; crypto_cursor_copydata(&cc_in, len, blk); inblk = blk; } axf->Update(&ctx, inblk, len); } if (resid > 0) { memset(blk, 0, blksz); crypto_cursor_copydata(&cc_in, resid, blk); axf->Update(&ctx, blk, blksz); } } if (crp->crp_cipher_key != NULL) exf->setkey(swe->sw_kschedule, crp->crp_cipher_key, crypto_get_params(crp->crp_session)->csp_cipher_klen); exf->reinit(swe->sw_kschedule, crp->crp_iv, ivlen); /* Do encryption with MAC */ crypto_cursor_init(&cc_in, &crp->crp_buf); crypto_cursor_advance(&cc_in, crp->crp_payload_start); if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) { crypto_cursor_init(&cc_out, &crp->crp_obuf); crypto_cursor_advance(&cc_out, crp->crp_payload_output_start); } else cc_out = cc_in; for (resid = crp->crp_payload_length; resid >= blksz; resid -= blksz) { inblk = crypto_cursor_segment(&cc_in, &len); if (len < blksz) { crypto_cursor_copydata(&cc_in, blksz, blk); inblk = blk; } else { crypto_cursor_advance(&cc_in, blksz); } if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { outblk = crypto_cursor_segment(&cc_out, &len); if (len < blksz) outblk = blk; exf->encrypt(swe->sw_kschedule, inblk, outblk); axf->Update(&ctx, outblk, blksz); if (outblk == blk) crypto_cursor_copyback(&cc_out, blksz, blk); else crypto_cursor_advance(&cc_out, blksz); } else { axf->Update(&ctx, inblk, blksz); } } if (resid > 0) { crypto_cursor_copydata(&cc_in, resid, blk); if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { exf->encrypt_last(swe->sw_kschedule, blk, blk, resid); crypto_cursor_copyback(&cc_out, resid, blk); } axf->Update(&ctx, blk, resid); } /* length block */ memset(blk, 0, blksz); blkp = (uint32_t *)blk + 1; *blkp = htobe32(crp->crp_aad_length * 8); blkp = (uint32_t *)blk + 3; *blkp = htobe32(crp->crp_payload_length * 8); axf->Update(&ctx, blk, blksz); /* Finalize MAC */ axf->Final(tag, &ctx); /* Validate tag */ error = 0; if (!CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { u_char tag2[GMAC_DIGEST_LEN]; crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen, tag2); r = timingsafe_bcmp(tag, tag2, swa->sw_mlen); explicit_bzero(tag2, sizeof(tag2)); if (r != 0) { error = EBADMSG; goto out; } /* tag matches, decrypt data */ crypto_cursor_init(&cc_in, &crp->crp_buf); crypto_cursor_advance(&cc_in, crp->crp_payload_start); for (resid = crp->crp_payload_length; resid > blksz; resid -= blksz) { inblk = crypto_cursor_segment(&cc_in, &len); if (len < blksz) { crypto_cursor_copydata(&cc_in, blksz, blk); inblk = blk; } else crypto_cursor_advance(&cc_in, blksz); outblk = crypto_cursor_segment(&cc_out, &len); if (len < blksz) outblk = blk; exf->decrypt(swe->sw_kschedule, inblk, outblk); if (outblk == blk) crypto_cursor_copyback(&cc_out, blksz, blk); else crypto_cursor_advance(&cc_out, blksz); } if (resid > 0) { crypto_cursor_copydata(&cc_in, resid, blk); exf->decrypt_last(swe->sw_kschedule, blk, blk, resid); crypto_cursor_copyback(&cc_out, resid, blk); } } else { /* Inject the authentication data */ crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen, tag); } out: explicit_bzero(blkbuf, sizeof(blkbuf)); explicit_bzero(tag, sizeof(tag)); return (error); } static void build_ccm_b0(const char *nonce, u_int nonce_length, u_int aad_length, u_int data_length, u_int tag_length, uint8_t *b0) { uint8_t *bp; uint8_t flags, L; KASSERT(nonce_length >= 7 && nonce_length <= 13, ("nonce_length must be between 7 and 13 bytes")); /* * Need to determine the L field value. This is the number of * bytes needed to specify the length of the message; the length * is whatever is left in the 16 bytes after specifying flags and * the nonce. */ L = 15 - nonce_length; flags = ((aad_length > 0) << 6) + (((tag_length - 2) / 2) << 3) + L - 1; /* * Now we need to set up the first block, which has flags, nonce, * and the message length. */ b0[0] = flags; memcpy(b0 + 1, nonce, nonce_length); bp = b0 + 1 + nonce_length; /* Need to copy L' [aka L-1] bytes of data_length */ for (uint8_t *dst = b0 + CCM_CBC_BLOCK_LEN - 1; dst >= bp; dst--) { *dst = data_length; data_length >>= 8; } } /* NB: OCF only supports AAD lengths < 2^32. */ static int build_ccm_aad_length(u_int aad_length, uint8_t *blk) { if (aad_length < ((1 << 16) - (1 << 8))) { be16enc(blk, aad_length); return (sizeof(uint16_t)); } else { blk[0] = 0xff; blk[1] = 0xfe; be32enc(blk + 2, aad_length); return (2 + sizeof(uint32_t)); } } static int swcr_ccm_cbc_mac(struct swcr_session *ses, struct cryptop *crp) { u_char iv[AES_BLOCK_LEN]; u_char blk[CCM_CBC_BLOCK_LEN]; u_char tag[AES_CBC_MAC_HASH_LEN]; union authctx ctx; const struct crypto_session_params *csp; struct swcr_auth *swa; const struct auth_hash *axf; int error, ivlen, len; csp = crypto_get_params(crp->crp_session); swa = &ses->swcr_auth; axf = swa->sw_axf; bcopy(swa->sw_ictx, &ctx, axf->ctxsize); /* Initialize the IV */ ivlen = csp->csp_ivlen; crypto_read_iv(crp, iv); /* Supply MAC with IV */ axf->Reinit(&ctx, crp->crp_iv, ivlen); /* Supply MAC with b0. */ build_ccm_b0(crp->crp_iv, ivlen, crp->crp_payload_length, 0, swa->sw_mlen, blk); axf->Update(&ctx, blk, CCM_CBC_BLOCK_LEN); len = build_ccm_aad_length(crp->crp_payload_length, blk); axf->Update(&ctx, blk, len); crypto_apply(crp, crp->crp_payload_start, crp->crp_payload_length, axf->Update, &ctx); /* Finalize MAC */ axf->Final(tag, &ctx); error = 0; if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) { u_char tag2[AES_CBC_MAC_HASH_LEN]; crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen, tag2); if (timingsafe_bcmp(tag, tag2, swa->sw_mlen) != 0) error = EBADMSG; explicit_bzero(tag2, sizeof(tag)); } else { /* Inject the authentication data */ crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen, tag); } explicit_bzero(tag, sizeof(tag)); explicit_bzero(blk, sizeof(blk)); explicit_bzero(iv, sizeof(iv)); return (error); } static int swcr_ccm(struct swcr_session *ses, struct cryptop *crp) { const struct crypto_session_params *csp; uint32_t blkbuf[howmany(AES_BLOCK_LEN, sizeof(uint32_t))]; u_char *blk = (u_char *)blkbuf; u_char tag[AES_CBC_MAC_HASH_LEN]; struct crypto_buffer_cursor cc_in, cc_out; const u_char *inblk; u_char *outblk; union authctx ctx; struct swcr_auth *swa; struct swcr_encdec *swe; const struct auth_hash *axf; const struct enc_xform *exf; size_t len; int blksz, error, ivlen, r, resid; csp = crypto_get_params(crp->crp_session); swa = &ses->swcr_auth; axf = swa->sw_axf; bcopy(swa->sw_ictx, &ctx, axf->ctxsize); blksz = AES_BLOCK_LEN; KASSERT(axf->blocksize == blksz, ("%s: axf block size mismatch", __func__)); swe = &ses->swcr_encdec; exf = swe->sw_exf; KASSERT(axf->blocksize == exf->native_blocksize, ("%s: blocksize mismatch", __func__)); if (crp->crp_payload_length > ccm_max_payload_length(csp)) return (EMSGSIZE); if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0) return (EINVAL); ivlen = csp->csp_ivlen; /* Supply MAC with IV */ axf->Reinit(&ctx, crp->crp_iv, ivlen); /* Supply MAC with b0. */ _Static_assert(sizeof(blkbuf) >= CCM_CBC_BLOCK_LEN, "blkbuf too small for b0"); build_ccm_b0(crp->crp_iv, ivlen, crp->crp_aad_length, crp->crp_payload_length, swa->sw_mlen, blk); axf->Update(&ctx, blk, CCM_CBC_BLOCK_LEN); /* Supply MAC with AAD */ if (crp->crp_aad_length != 0) { len = build_ccm_aad_length(crp->crp_aad_length, blk); axf->Update(&ctx, blk, len); if (crp->crp_aad != NULL) axf->Update(&ctx, crp->crp_aad, crp->crp_aad_length); else crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length, axf->Update, &ctx); /* Pad the AAD (including length field) to a full block. */ len = (len + crp->crp_aad_length) % CCM_CBC_BLOCK_LEN; if (len != 0) { len = CCM_CBC_BLOCK_LEN - len; memset(blk, 0, CCM_CBC_BLOCK_LEN); axf->Update(&ctx, blk, len); } } if (crp->crp_cipher_key != NULL) exf->setkey(swe->sw_kschedule, crp->crp_cipher_key, crypto_get_params(crp->crp_session)->csp_cipher_klen); exf->reinit(swe->sw_kschedule, crp->crp_iv, ivlen); /* Do encryption/decryption with MAC */ crypto_cursor_init(&cc_in, &crp->crp_buf); crypto_cursor_advance(&cc_in, crp->crp_payload_start); if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) { crypto_cursor_init(&cc_out, &crp->crp_obuf); crypto_cursor_advance(&cc_out, crp->crp_payload_output_start); } else cc_out = cc_in; for (resid = crp->crp_payload_length; resid >= blksz; resid -= blksz) { inblk = crypto_cursor_segment(&cc_in, &len); if (len < blksz) { crypto_cursor_copydata(&cc_in, blksz, blk); inblk = blk; } else crypto_cursor_advance(&cc_in, blksz); if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { outblk = crypto_cursor_segment(&cc_out, &len); if (len < blksz) outblk = blk; axf->Update(&ctx, inblk, blksz); exf->encrypt(swe->sw_kschedule, inblk, outblk); if (outblk == blk) crypto_cursor_copyback(&cc_out, blksz, blk); else crypto_cursor_advance(&cc_out, blksz); } else { /* * One of the problems with CCM+CBC is that * the authentication is done on the * unencrypted data. As a result, we have to * decrypt the data twice: once to generate * the tag and a second time after the tag is * verified. */ exf->decrypt(swe->sw_kschedule, inblk, blk); axf->Update(&ctx, blk, blksz); } } if (resid > 0) { crypto_cursor_copydata(&cc_in, resid, blk); if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { axf->Update(&ctx, blk, resid); exf->encrypt_last(swe->sw_kschedule, blk, blk, resid); crypto_cursor_copyback(&cc_out, resid, blk); } else { exf->decrypt_last(swe->sw_kschedule, blk, blk, resid); axf->Update(&ctx, blk, resid); } } /* Finalize MAC */ axf->Final(tag, &ctx); /* Validate tag */ error = 0; if (!CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { u_char tag2[AES_CBC_MAC_HASH_LEN]; crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen, tag2); r = timingsafe_bcmp(tag, tag2, swa->sw_mlen); explicit_bzero(tag2, sizeof(tag2)); if (r != 0) { error = EBADMSG; goto out; } /* tag matches, decrypt data */ exf->reinit(swe->sw_kschedule, crp->crp_iv, ivlen); crypto_cursor_init(&cc_in, &crp->crp_buf); crypto_cursor_advance(&cc_in, crp->crp_payload_start); for (resid = crp->crp_payload_length; resid > blksz; resid -= blksz) { inblk = crypto_cursor_segment(&cc_in, &len); if (len < blksz) { crypto_cursor_copydata(&cc_in, blksz, blk); inblk = blk; } else crypto_cursor_advance(&cc_in, blksz); outblk = crypto_cursor_segment(&cc_out, &len); if (len < blksz) outblk = blk; exf->decrypt(swe->sw_kschedule, inblk, outblk); if (outblk == blk) crypto_cursor_copyback(&cc_out, blksz, blk); else crypto_cursor_advance(&cc_out, blksz); } if (resid > 0) { crypto_cursor_copydata(&cc_in, resid, blk); exf->decrypt_last(swe->sw_kschedule, blk, blk, resid); crypto_cursor_copyback(&cc_out, resid, blk); } } else { /* Inject the authentication data */ crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen, tag); } out: explicit_bzero(blkbuf, sizeof(blkbuf)); explicit_bzero(tag, sizeof(tag)); return (error); } static int swcr_chacha20_poly1305(struct swcr_session *ses, struct cryptop *crp) { const struct crypto_session_params *csp; uint64_t blkbuf[howmany(CHACHA20_NATIVE_BLOCK_LEN, sizeof(uint64_t))]; u_char *blk = (u_char *)blkbuf; u_char tag[POLY1305_HASH_LEN]; struct crypto_buffer_cursor cc_in, cc_out; const u_char *inblk; u_char *outblk; uint64_t *blkp; union authctx ctx; struct swcr_auth *swa; struct swcr_encdec *swe; const struct auth_hash *axf; const struct enc_xform *exf; size_t len; int blksz, error, r, resid; swa = &ses->swcr_auth; axf = swa->sw_axf; swe = &ses->swcr_encdec; exf = swe->sw_exf; blksz = exf->native_blocksize; KASSERT(blksz <= sizeof(blkbuf), ("%s: blocksize mismatch", __func__)); if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0) return (EINVAL); csp = crypto_get_params(crp->crp_session); /* Generate Poly1305 key. */ if (crp->crp_cipher_key != NULL) axf->Setkey(&ctx, crp->crp_cipher_key, csp->csp_cipher_klen); else axf->Setkey(&ctx, csp->csp_cipher_key, csp->csp_cipher_klen); axf->Reinit(&ctx, crp->crp_iv, csp->csp_ivlen); /* Supply MAC with AAD */ if (crp->crp_aad != NULL) axf->Update(&ctx, crp->crp_aad, crp->crp_aad_length); else crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length, axf->Update, &ctx); if (crp->crp_aad_length % 16 != 0) { /* padding1 */ memset(blk, 0, 16); axf->Update(&ctx, blk, 16 - crp->crp_aad_length % 16); } if (crp->crp_cipher_key != NULL) exf->setkey(swe->sw_kschedule, crp->crp_cipher_key, csp->csp_cipher_klen); exf->reinit(swe->sw_kschedule, crp->crp_iv, csp->csp_ivlen); /* Do encryption with MAC */ crypto_cursor_init(&cc_in, &crp->crp_buf); crypto_cursor_advance(&cc_in, crp->crp_payload_start); if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) { crypto_cursor_init(&cc_out, &crp->crp_obuf); crypto_cursor_advance(&cc_out, crp->crp_payload_output_start); } else cc_out = cc_in; for (resid = crp->crp_payload_length; resid >= blksz; resid -= blksz) { inblk = crypto_cursor_segment(&cc_in, &len); if (len < blksz) { crypto_cursor_copydata(&cc_in, blksz, blk); inblk = blk; } else crypto_cursor_advance(&cc_in, blksz); if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { outblk = crypto_cursor_segment(&cc_out, &len); if (len < blksz) outblk = blk; exf->encrypt(swe->sw_kschedule, inblk, outblk); axf->Update(&ctx, outblk, blksz); if (outblk == blk) crypto_cursor_copyback(&cc_out, blksz, blk); else crypto_cursor_advance(&cc_out, blksz); } else { axf->Update(&ctx, inblk, blksz); } } if (resid > 0) { crypto_cursor_copydata(&cc_in, resid, blk); if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { exf->encrypt_last(swe->sw_kschedule, blk, blk, resid); crypto_cursor_copyback(&cc_out, resid, blk); } axf->Update(&ctx, blk, resid); if (resid % 16 != 0) { /* padding2 */ memset(blk, 0, 16); axf->Update(&ctx, blk, 16 - resid % 16); } } /* lengths */ blkp = (uint64_t *)blk; blkp[0] = htole64(crp->crp_aad_length); blkp[1] = htole64(crp->crp_payload_length); axf->Update(&ctx, blk, sizeof(uint64_t) * 2); /* Finalize MAC */ axf->Final(tag, &ctx); /* Validate tag */ error = 0; if (!CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { u_char tag2[POLY1305_HASH_LEN]; crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen, tag2); r = timingsafe_bcmp(tag, tag2, swa->sw_mlen); explicit_bzero(tag2, sizeof(tag2)); if (r != 0) { error = EBADMSG; goto out; } /* tag matches, decrypt data */ crypto_cursor_init(&cc_in, &crp->crp_buf); crypto_cursor_advance(&cc_in, crp->crp_payload_start); for (resid = crp->crp_payload_length; resid > blksz; resid -= blksz) { inblk = crypto_cursor_segment(&cc_in, &len); if (len < blksz) { crypto_cursor_copydata(&cc_in, blksz, blk); inblk = blk; } else crypto_cursor_advance(&cc_in, blksz); outblk = crypto_cursor_segment(&cc_out, &len); if (len < blksz) outblk = blk; exf->decrypt(swe->sw_kschedule, inblk, outblk); if (outblk == blk) crypto_cursor_copyback(&cc_out, blksz, blk); else crypto_cursor_advance(&cc_out, blksz); } if (resid > 0) { crypto_cursor_copydata(&cc_in, resid, blk); exf->decrypt_last(swe->sw_kschedule, blk, blk, resid); crypto_cursor_copyback(&cc_out, resid, blk); } } else { /* Inject the authentication data */ crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen, tag); } out: explicit_bzero(blkbuf, sizeof(blkbuf)); explicit_bzero(tag, sizeof(tag)); explicit_bzero(&ctx, sizeof(ctx)); return (error); } /* * Apply a cipher and a digest to perform EtA. */ static int swcr_eta(struct swcr_session *ses, struct cryptop *crp) { int error; if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { error = swcr_encdec(ses, crp); if (error == 0) error = swcr_authcompute(ses, crp); } else { error = swcr_authcompute(ses, crp); if (error == 0) error = swcr_encdec(ses, crp); } return (error); } /* * Apply a compression/decompression algorithm */ static int swcr_compdec(struct swcr_session *ses, struct cryptop *crp) { const struct comp_algo *cxf; uint8_t *data, *out; int adj; uint32_t result; cxf = ses->swcr_compdec.sw_cxf; /* We must handle the whole buffer of data in one time * then if there is not all the data in the mbuf, we must * copy in a buffer. */ data = malloc(crp->crp_payload_length, M_CRYPTO_DATA, M_NOWAIT); if (data == NULL) return (EINVAL); crypto_copydata(crp, crp->crp_payload_start, crp->crp_payload_length, data); if (CRYPTO_OP_IS_COMPRESS(crp->crp_op)) result = cxf->compress(data, crp->crp_payload_length, &out); else result = cxf->decompress(data, crp->crp_payload_length, &out); free(data, M_CRYPTO_DATA); if (result == 0) return (EINVAL); crp->crp_olen = result; /* Check the compressed size when doing compression */ if (CRYPTO_OP_IS_COMPRESS(crp->crp_op)) { if (result >= crp->crp_payload_length) { /* Compression was useless, we lost time */ free(out, M_CRYPTO_DATA); return (0); } } /* Copy back the (de)compressed data. m_copyback is * extending the mbuf as necessary. */ crypto_copyback(crp, crp->crp_payload_start, result, out); if (result < crp->crp_payload_length) { switch (crp->crp_buf.cb_type) { case CRYPTO_BUF_MBUF: case CRYPTO_BUF_SINGLE_MBUF: adj = result - crp->crp_payload_length; m_adj(crp->crp_buf.cb_mbuf, adj); break; case CRYPTO_BUF_UIO: { struct uio *uio = crp->crp_buf.cb_uio; int ind; adj = crp->crp_payload_length - result; ind = uio->uio_iovcnt - 1; while (adj > 0 && ind >= 0) { if (adj < uio->uio_iov[ind].iov_len) { uio->uio_iov[ind].iov_len -= adj; break; } adj -= uio->uio_iov[ind].iov_len; uio->uio_iov[ind].iov_len = 0; ind--; uio->uio_iovcnt--; } } break; case CRYPTO_BUF_VMPAGE: adj = crp->crp_payload_length - result; crp->crp_buf.cb_vm_page_len -= adj; break; default: break; } } free(out, M_CRYPTO_DATA); return 0; } static int swcr_setup_cipher(struct swcr_session *ses, const struct crypto_session_params *csp) { struct swcr_encdec *swe; const struct enc_xform *txf; int error; swe = &ses->swcr_encdec; txf = crypto_cipher(csp); if (txf->ctxsize != 0) { swe->sw_kschedule = malloc(txf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if (swe->sw_kschedule == NULL) return (ENOMEM); } if (csp->csp_cipher_key != NULL) { error = txf->setkey(swe->sw_kschedule, csp->csp_cipher_key, csp->csp_cipher_klen); if (error) return (error); } swe->sw_exf = txf; return (0); } static int swcr_setup_auth(struct swcr_session *ses, const struct crypto_session_params *csp) { struct swcr_auth *swa; const struct auth_hash *axf; swa = &ses->swcr_auth; axf = crypto_auth_hash(csp); swa->sw_axf = axf; if (csp->csp_auth_mlen < 0 || csp->csp_auth_mlen > axf->hashsize) return (EINVAL); if (csp->csp_auth_mlen == 0) swa->sw_mlen = axf->hashsize; else swa->sw_mlen = csp->csp_auth_mlen; swa->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if (swa->sw_ictx == NULL) return (ENOBUFS); switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_224_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_NULL_HMAC: case CRYPTO_RIPEMD160_HMAC: swa->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if (swa->sw_octx == NULL) return (ENOBUFS); if (csp->csp_auth_key != NULL) { swcr_authprepare(axf, swa, csp->csp_auth_key, csp->csp_auth_klen); } if (csp->csp_mode == CSP_MODE_DIGEST) ses->swcr_process = swcr_authcompute; break; case CRYPTO_SHA1: case CRYPTO_SHA2_224: case CRYPTO_SHA2_256: case CRYPTO_SHA2_384: case CRYPTO_SHA2_512: axf->Init(swa->sw_ictx); if (csp->csp_mode == CSP_MODE_DIGEST) ses->swcr_process = swcr_authcompute; break; case CRYPTO_AES_NIST_GMAC: axf->Init(swa->sw_ictx); axf->Setkey(swa->sw_ictx, csp->csp_auth_key, csp->csp_auth_klen); if (csp->csp_mode == CSP_MODE_DIGEST) ses->swcr_process = swcr_gmac; break; case CRYPTO_POLY1305: case CRYPTO_BLAKE2B: case CRYPTO_BLAKE2S: /* * Blake2b and Blake2s support an optional key but do * not require one. */ if (csp->csp_auth_klen == 0 || csp->csp_auth_key != NULL) axf->Setkey(swa->sw_ictx, csp->csp_auth_key, csp->csp_auth_klen); axf->Init(swa->sw_ictx); if (csp->csp_mode == CSP_MODE_DIGEST) ses->swcr_process = swcr_authcompute; break; case CRYPTO_AES_CCM_CBC_MAC: axf->Init(swa->sw_ictx); axf->Setkey(swa->sw_ictx, csp->csp_auth_key, csp->csp_auth_klen); if (csp->csp_mode == CSP_MODE_DIGEST) ses->swcr_process = swcr_ccm_cbc_mac; break; } return (0); } static int swcr_setup_gcm(struct swcr_session *ses, const struct crypto_session_params *csp) { struct swcr_auth *swa; const struct auth_hash *axf; if (csp->csp_ivlen != AES_GCM_IV_LEN) return (EINVAL); /* First, setup the auth side. */ swa = &ses->swcr_auth; switch (csp->csp_cipher_klen * 8) { case 128: axf = &auth_hash_nist_gmac_aes_128; break; case 192: axf = &auth_hash_nist_gmac_aes_192; break; case 256: axf = &auth_hash_nist_gmac_aes_256; break; default: return (EINVAL); } swa->sw_axf = axf; if (csp->csp_auth_mlen < 0 || csp->csp_auth_mlen > axf->hashsize) return (EINVAL); if (csp->csp_auth_mlen == 0) swa->sw_mlen = axf->hashsize; else swa->sw_mlen = csp->csp_auth_mlen; swa->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if (swa->sw_ictx == NULL) return (ENOBUFS); axf->Init(swa->sw_ictx); if (csp->csp_cipher_key != NULL) axf->Setkey(swa->sw_ictx, csp->csp_cipher_key, csp->csp_cipher_klen); /* Second, setup the cipher side. */ return (swcr_setup_cipher(ses, csp)); } static int swcr_setup_ccm(struct swcr_session *ses, const struct crypto_session_params *csp) { struct swcr_auth *swa; const struct auth_hash *axf; /* First, setup the auth side. */ swa = &ses->swcr_auth; switch (csp->csp_cipher_klen * 8) { case 128: axf = &auth_hash_ccm_cbc_mac_128; break; case 192: axf = &auth_hash_ccm_cbc_mac_192; break; case 256: axf = &auth_hash_ccm_cbc_mac_256; break; default: return (EINVAL); } swa->sw_axf = axf; if (csp->csp_auth_mlen < 0 || csp->csp_auth_mlen > axf->hashsize) return (EINVAL); if (csp->csp_auth_mlen == 0) swa->sw_mlen = axf->hashsize; else swa->sw_mlen = csp->csp_auth_mlen; swa->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if (swa->sw_ictx == NULL) return (ENOBUFS); axf->Init(swa->sw_ictx); if (csp->csp_cipher_key != NULL) axf->Setkey(swa->sw_ictx, csp->csp_cipher_key, csp->csp_cipher_klen); /* Second, setup the cipher side. */ return (swcr_setup_cipher(ses, csp)); } static int swcr_setup_chacha20_poly1305(struct swcr_session *ses, const struct crypto_session_params *csp) { struct swcr_auth *swa; const struct auth_hash *axf; /* First, setup the auth side. */ swa = &ses->swcr_auth; axf = &auth_hash_chacha20_poly1305; swa->sw_axf = axf; if (csp->csp_auth_mlen < 0 || csp->csp_auth_mlen > axf->hashsize) return (EINVAL); if (csp->csp_auth_mlen == 0) swa->sw_mlen = axf->hashsize; else swa->sw_mlen = csp->csp_auth_mlen; /* The auth state is regenerated for each nonce. */ /* Second, setup the cipher side. */ return (swcr_setup_cipher(ses, csp)); } static bool swcr_auth_supported(const struct crypto_session_params *csp) { const struct auth_hash *axf; axf = crypto_auth_hash(csp); if (axf == NULL) return (false); switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_224_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_NULL_HMAC: case CRYPTO_RIPEMD160_HMAC: break; case CRYPTO_AES_NIST_GMAC: switch (csp->csp_auth_klen * 8) { case 128: case 192: case 256: break; default: return (false); } if (csp->csp_auth_key == NULL) return (false); if (csp->csp_ivlen != AES_GCM_IV_LEN) return (false); break; case CRYPTO_POLY1305: if (csp->csp_auth_klen != POLY1305_KEY_LEN) return (false); break; case CRYPTO_AES_CCM_CBC_MAC: switch (csp->csp_auth_klen * 8) { case 128: case 192: case 256: break; default: return (false); } if (csp->csp_auth_key == NULL) return (false); break; } return (true); } static bool swcr_cipher_supported(const struct crypto_session_params *csp) { const struct enc_xform *txf; txf = crypto_cipher(csp); if (txf == NULL) return (false); if (csp->csp_cipher_alg != CRYPTO_NULL_CBC && txf->ivsize != csp->csp_ivlen) return (false); return (true); } #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) static int swcr_probesession(device_t dev, const struct crypto_session_params *csp) { if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) return (EINVAL); switch (csp->csp_mode) { case CSP_MODE_COMPRESS: switch (csp->csp_cipher_alg) { case CRYPTO_DEFLATE_COMP: break; default: return (EINVAL); } break; case CSP_MODE_CIPHER: switch (csp->csp_cipher_alg) { case CRYPTO_AES_NIST_GCM_16: case CRYPTO_AES_CCM_16: case CRYPTO_CHACHA20_POLY1305: return (EINVAL); default: if (!swcr_cipher_supported(csp)) return (EINVAL); break; } break; case CSP_MODE_DIGEST: if (!swcr_auth_supported(csp)) return (EINVAL); break; case CSP_MODE_AEAD: switch (csp->csp_cipher_alg) { case CRYPTO_AES_NIST_GCM_16: case CRYPTO_AES_CCM_16: case CRYPTO_CHACHA20_POLY1305: break; default: return (EINVAL); } break; case CSP_MODE_ETA: /* AEAD algorithms cannot be used for EtA. */ switch (csp->csp_cipher_alg) { case CRYPTO_AES_NIST_GCM_16: case CRYPTO_AES_CCM_16: case CRYPTO_CHACHA20_POLY1305: return (EINVAL); } switch (csp->csp_auth_alg) { case CRYPTO_AES_NIST_GMAC: case CRYPTO_AES_CCM_CBC_MAC: return (EINVAL); } if (!swcr_cipher_supported(csp) || !swcr_auth_supported(csp)) return (EINVAL); break; default: return (EINVAL); } return (CRYPTODEV_PROBE_SOFTWARE); } /* * Generate a new software session. */ static int swcr_newsession(device_t dev, crypto_session_t cses, const struct crypto_session_params *csp) { struct swcr_session *ses; struct swcr_encdec *swe; struct swcr_auth *swa; const struct comp_algo *cxf; int error; ses = crypto_get_driver_session(cses); mtx_init(&ses->swcr_lock, "swcr session lock", NULL, MTX_DEF); error = 0; swe = &ses->swcr_encdec; swa = &ses->swcr_auth; switch (csp->csp_mode) { case CSP_MODE_COMPRESS: switch (csp->csp_cipher_alg) { case CRYPTO_DEFLATE_COMP: cxf = &comp_algo_deflate; break; #ifdef INVARIANTS default: panic("bad compression algo"); #endif } ses->swcr_compdec.sw_cxf = cxf; ses->swcr_process = swcr_compdec; break; case CSP_MODE_CIPHER: switch (csp->csp_cipher_alg) { case CRYPTO_NULL_CBC: ses->swcr_process = swcr_null; break; #ifdef INVARIANTS case CRYPTO_AES_NIST_GCM_16: case CRYPTO_AES_CCM_16: case CRYPTO_CHACHA20_POLY1305: panic("bad cipher algo"); #endif default: error = swcr_setup_cipher(ses, csp); if (error == 0) ses->swcr_process = swcr_encdec; } break; case CSP_MODE_DIGEST: error = swcr_setup_auth(ses, csp); break; case CSP_MODE_AEAD: switch (csp->csp_cipher_alg) { case CRYPTO_AES_NIST_GCM_16: error = swcr_setup_gcm(ses, csp); if (error == 0) ses->swcr_process = swcr_gcm; break; case CRYPTO_AES_CCM_16: error = swcr_setup_ccm(ses, csp); if (error == 0) ses->swcr_process = swcr_ccm; break; case CRYPTO_CHACHA20_POLY1305: error = swcr_setup_chacha20_poly1305(ses, csp); if (error == 0) ses->swcr_process = swcr_chacha20_poly1305; break; #ifdef INVARIANTS default: panic("bad aead algo"); #endif } break; case CSP_MODE_ETA: #ifdef INVARIANTS switch (csp->csp_cipher_alg) { case CRYPTO_AES_NIST_GCM_16: case CRYPTO_AES_CCM_16: case CRYPTO_CHACHA20_POLY1305: panic("bad eta cipher algo"); } switch (csp->csp_auth_alg) { case CRYPTO_AES_NIST_GMAC: case CRYPTO_AES_CCM_CBC_MAC: panic("bad eta auth algo"); } #endif error = swcr_setup_auth(ses, csp); if (error) break; if (csp->csp_cipher_alg == CRYPTO_NULL_CBC) { /* Effectively degrade to digest mode. */ ses->swcr_process = swcr_authcompute; break; } error = swcr_setup_cipher(ses, csp); if (error == 0) ses->swcr_process = swcr_eta; break; default: error = EINVAL; } if (error) swcr_freesession(dev, cses); return (error); } static void swcr_freesession(device_t dev, crypto_session_t cses) { struct swcr_session *ses; ses = crypto_get_driver_session(cses); mtx_destroy(&ses->swcr_lock); zfree(ses->swcr_encdec.sw_kschedule, M_CRYPTO_DATA); zfree(ses->swcr_auth.sw_ictx, M_CRYPTO_DATA); zfree(ses->swcr_auth.sw_octx, M_CRYPTO_DATA); } /* * Process a software request. */ static int swcr_process(device_t dev, struct cryptop *crp, int hint) { struct swcr_session *ses; ses = crypto_get_driver_session(crp->crp_session); mtx_lock(&ses->swcr_lock); crp->crp_etype = ses->swcr_process(ses, crp); mtx_unlock(&ses->swcr_lock); crypto_done(crp); return (0); } static void swcr_identify(driver_t *drv, device_t parent) { /* NB: order 10 is so we get attached after h/w devices */ if (device_find_child(parent, "cryptosoft", -1) == NULL && BUS_ADD_CHILD(parent, 10, "cryptosoft", 0) == 0) panic("cryptosoft: could not attach"); } static int swcr_probe(device_t dev) { device_set_desc(dev, "software crypto"); device_quiet(dev); return (BUS_PROBE_NOWILDCARD); } static int swcr_attach(device_t dev) { swcr_id = crypto_get_driverid(dev, sizeof(struct swcr_session), CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC); if (swcr_id < 0) { device_printf(dev, "cannot initialize!"); return (ENXIO); } return (0); } static int swcr_detach(device_t dev) { crypto_unregister_all(swcr_id); return 0; } static device_method_t swcr_methods[] = { DEVMETHOD(device_identify, swcr_identify), DEVMETHOD(device_probe, swcr_probe), DEVMETHOD(device_attach, swcr_attach), DEVMETHOD(device_detach, swcr_detach), DEVMETHOD(cryptodev_probesession, swcr_probesession), DEVMETHOD(cryptodev_newsession, swcr_newsession), DEVMETHOD(cryptodev_freesession,swcr_freesession), DEVMETHOD(cryptodev_process, swcr_process), {0, 0}, }; static driver_t swcr_driver = { "cryptosoft", swcr_methods, 0, /* NB: no softc */ }; static devclass_t swcr_devclass; /* * NB: We explicitly reference the crypto module so we * get the necessary ordering when built as a loadable * module. This is required because we bundle the crypto * module code together with the cryptosoft driver (otherwise * normal module dependencies would handle things). */ extern int crypto_modevent(struct module *, int, void *); /* XXX where to attach */ DRIVER_MODULE(cryptosoft, nexus, swcr_driver, swcr_devclass, crypto_modevent,0); MODULE_VERSION(cryptosoft, 1); MODULE_DEPEND(cryptosoft, crypto, 1, 1, 1);