/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Codel/FQ_Codel and PIE/FQ-PIE Code: * Copyright (C) 2016 Centre for Advanced Internet Architectures, * Swinburne University of Technology, Melbourne, Australia. * Portions of this code were made possible in part by a gift from * The Comcast Innovation Fund. * Implemented by Rasool Al-Saadi * * Copyright (c) 1998-2002,2010 Luigi Rizzo, Universita` di Pisa * Portions Copyright (c) 2000 Akamba Corp. * All rights reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Configuration and internal object management for dummynet. */ #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */ #include #include /* ip_output(), IP_FORWARDING */ #include #include #include #include #include #include #ifdef NEW_AQM #include #endif #include /* which objects to copy */ #define DN_C_LINK 0x01 #define DN_C_SCH 0x02 #define DN_C_FLOW 0x04 #define DN_C_FS 0x08 #define DN_C_QUEUE 0x10 /* we use this argument in case of a schk_new */ struct schk_new_arg { struct dn_alg *fp; struct dn_sch *sch; }; /*---- callout hooks. ----*/ static struct callout dn_timeout; static int dn_tasks_started = 0; static int dn_gone; static struct task dn_task; static struct taskqueue *dn_tq = NULL; /* global scheduler list */ struct mtx sched_mtx; CK_LIST_HEAD(, dn_alg) schedlist; #ifdef NEW_AQM CK_LIST_HEAD(, dn_aqm) aqmlist; /* list of AQMs */ #endif static void dummynet(void *arg) { (void)arg; /* UNUSED */ taskqueue_enqueue(dn_tq, &dn_task); } void dn_reschedule(void) { if (dn_gone != 0) return; callout_reset_sbt(&dn_timeout, tick_sbt, 0, dummynet, NULL, C_HARDCLOCK | C_DIRECT_EXEC); } /*----- end of callout hooks -----*/ #ifdef NEW_AQM /* Return AQM descriptor for given type or name. */ static struct dn_aqm * find_aqm_type(int type, char *name) { struct dn_aqm *d; NET_EPOCH_ASSERT(); CK_LIST_FOREACH(d, &aqmlist, next) { if (d->type == type || (name && !strcasecmp(d->name, name))) return d; } return NULL; /* not found */ } #endif /* Return a scheduler descriptor given the type or name. */ static struct dn_alg * find_sched_type(int type, char *name) { struct dn_alg *d; NET_EPOCH_ASSERT(); CK_LIST_FOREACH(d, &schedlist, next) { if (d->type == type || (name && !strcasecmp(d->name, name))) return d; } return NULL; /* not found */ } int ipdn_bound_var(int *v, int dflt, int lo, int hi, const char *msg) { int oldv = *v; const char *op = NULL; if (dflt < lo) dflt = lo; if (dflt > hi) dflt = hi; if (oldv < lo) { *v = dflt; op = "Bump"; } else if (oldv > hi) { *v = hi; op = "Clamp"; } else return *v; if (op && msg) printf("%s %s to %d (was %d)\n", op, msg, *v, oldv); return *v; } /*---- flow_id mask, hash and compare functions ---*/ /* * The flow_id includes the 5-tuple, the queue/pipe number * which we store in the extra area in host order, * and for ipv6 also the flow_id6. * XXX see if we want the tos byte (can store in 'flags') */ static struct ipfw_flow_id * flow_id_mask(struct ipfw_flow_id *mask, struct ipfw_flow_id *id) { int is_v6 = IS_IP6_FLOW_ID(id); id->dst_port &= mask->dst_port; id->src_port &= mask->src_port; id->proto &= mask->proto; id->extra &= mask->extra; if (is_v6) { APPLY_MASK(&id->dst_ip6, &mask->dst_ip6); APPLY_MASK(&id->src_ip6, &mask->src_ip6); id->flow_id6 &= mask->flow_id6; } else { id->dst_ip &= mask->dst_ip; id->src_ip &= mask->src_ip; } return id; } /* computes an OR of two masks, result in dst and also returned */ static struct ipfw_flow_id * flow_id_or(struct ipfw_flow_id *src, struct ipfw_flow_id *dst) { int is_v6 = IS_IP6_FLOW_ID(dst); dst->dst_port |= src->dst_port; dst->src_port |= src->src_port; dst->proto |= src->proto; dst->extra |= src->extra; if (is_v6) { #define OR_MASK(_d, _s) \ (_d)->__u6_addr.__u6_addr32[0] |= (_s)->__u6_addr.__u6_addr32[0]; \ (_d)->__u6_addr.__u6_addr32[1] |= (_s)->__u6_addr.__u6_addr32[1]; \ (_d)->__u6_addr.__u6_addr32[2] |= (_s)->__u6_addr.__u6_addr32[2]; \ (_d)->__u6_addr.__u6_addr32[3] |= (_s)->__u6_addr.__u6_addr32[3]; OR_MASK(&dst->dst_ip6, &src->dst_ip6); OR_MASK(&dst->src_ip6, &src->src_ip6); #undef OR_MASK dst->flow_id6 |= src->flow_id6; } else { dst->dst_ip |= src->dst_ip; dst->src_ip |= src->src_ip; } return dst; } static int nonzero_mask(struct ipfw_flow_id *m) { if (m->dst_port || m->src_port || m->proto || m->extra) return 1; if (IS_IP6_FLOW_ID(m)) { return m->dst_ip6.__u6_addr.__u6_addr32[0] || m->dst_ip6.__u6_addr.__u6_addr32[1] || m->dst_ip6.__u6_addr.__u6_addr32[2] || m->dst_ip6.__u6_addr.__u6_addr32[3] || m->src_ip6.__u6_addr.__u6_addr32[0] || m->src_ip6.__u6_addr.__u6_addr32[1] || m->src_ip6.__u6_addr.__u6_addr32[2] || m->src_ip6.__u6_addr.__u6_addr32[3] || m->flow_id6; } else { return m->dst_ip || m->src_ip; } } /* XXX we may want a better hash function */ static uint32_t flow_id_hash(struct ipfw_flow_id *id) { uint32_t i; if (IS_IP6_FLOW_ID(id)) { uint32_t *d = (uint32_t *)&id->dst_ip6; uint32_t *s = (uint32_t *)&id->src_ip6; i = (d[0] ) ^ (d[1]) ^ (d[2] ) ^ (d[3]) ^ (d[0] >> 15) ^ (d[1] >> 15) ^ (d[2] >> 15) ^ (d[3] >> 15) ^ (s[0] << 1) ^ (s[1] << 1) ^ (s[2] << 1) ^ (s[3] << 1) ^ (s[0] << 16) ^ (s[1] << 16) ^ (s[2] << 16) ^ (s[3] << 16) ^ (id->dst_port << 1) ^ (id->src_port) ^ (id->extra) ^ (id->proto ) ^ (id->flow_id6); } else { i = (id->dst_ip) ^ (id->dst_ip >> 15) ^ (id->src_ip << 1) ^ (id->src_ip >> 16) ^ (id->extra) ^ (id->dst_port << 1) ^ (id->src_port) ^ (id->proto); } return i; } /* Like bcmp, returns 0 if ids match, 1 otherwise. */ static int flow_id_cmp(struct ipfw_flow_id *id1, struct ipfw_flow_id *id2) { int is_v6 = IS_IP6_FLOW_ID(id1); if (!is_v6) { if (IS_IP6_FLOW_ID(id2)) return 1; /* different address families */ return (id1->dst_ip == id2->dst_ip && id1->src_ip == id2->src_ip && id1->dst_port == id2->dst_port && id1->src_port == id2->src_port && id1->proto == id2->proto && id1->extra == id2->extra) ? 0 : 1; } /* the ipv6 case */ return ( !bcmp(&id1->dst_ip6,&id2->dst_ip6, sizeof(id1->dst_ip6)) && !bcmp(&id1->src_ip6,&id2->src_ip6, sizeof(id1->src_ip6)) && id1->dst_port == id2->dst_port && id1->src_port == id2->src_port && id1->proto == id2->proto && id1->extra == id2->extra && id1->flow_id6 == id2->flow_id6) ? 0 : 1; } /*--------- end of flow-id mask, hash and compare ---------*/ /*--- support functions for the qht hashtable ---- * Entries are hashed by flow-id */ static uint32_t q_hash(uintptr_t key, int flags, void *arg) { /* compute the hash slot from the flow id */ struct ipfw_flow_id *id = (flags & DNHT_KEY_IS_OBJ) ? &((struct dn_queue *)key)->ni.fid : (struct ipfw_flow_id *)key; return flow_id_hash(id); } static int q_match(void *obj, uintptr_t key, int flags, void *arg) { struct dn_queue *o = (struct dn_queue *)obj; struct ipfw_flow_id *id2; if (flags & DNHT_KEY_IS_OBJ) { /* compare pointers */ id2 = &((struct dn_queue *)key)->ni.fid; } else { id2 = (struct ipfw_flow_id *)key; } return (0 == flow_id_cmp(&o->ni.fid, id2)); } /* * create a new queue instance for the given 'key'. */ static void * q_new(uintptr_t key, int flags, void *arg) { struct dn_queue *q, *template = arg; struct dn_fsk *fs = template->fs; int size = sizeof(*q) + fs->sched->fp->q_datalen; q = malloc(size, M_DUMMYNET, M_NOWAIT | M_ZERO); if (q == NULL) { D("no memory for new queue"); return NULL; } set_oid(&q->ni.oid, DN_QUEUE, size); if (fs->fs.flags & DN_QHT_HASH) q->ni.fid = *(struct ipfw_flow_id *)key; q->fs = fs; q->_si = template->_si; q->_si->q_count++; if (fs->sched->fp->new_queue) fs->sched->fp->new_queue(q); #ifdef NEW_AQM /* call AQM init function after creating a queue*/ if (fs->aqmfp && fs->aqmfp->init) if(fs->aqmfp->init(q)) D("unable to init AQM for fs %d", fs->fs.fs_nr); #endif V_dn_cfg.queue_count++; return q; } /* * Notify schedulers that a queue is going away. * If (flags & DN_DESTROY), also free the packets. * The version for callbacks is called q_delete_cb(). */ static void dn_delete_queue(struct dn_queue *q, int flags) { struct dn_fsk *fs = q->fs; #ifdef NEW_AQM /* clean up AQM status for queue 'q' * cleanup here is called just with MULTIQUEUE */ if (fs && fs->aqmfp && fs->aqmfp->cleanup) fs->aqmfp->cleanup(q); #endif // D("fs %p si %p\n", fs, q->_si); /* notify the parent scheduler that the queue is going away */ if (fs && fs->sched->fp->free_queue) fs->sched->fp->free_queue(q); q->_si->q_count--; q->_si = NULL; if (flags & DN_DESTROY) { if (q->mq.head) dn_free_pkts(q->mq.head); bzero(q, sizeof(*q)); // safety free(q, M_DUMMYNET); V_dn_cfg.queue_count--; } } static int q_delete_cb(void *q, void *arg) { int flags = (int)(uintptr_t)arg; dn_delete_queue(q, flags); return (flags & DN_DESTROY) ? DNHT_SCAN_DEL : 0; } /* * calls dn_delete_queue/q_delete_cb on all queues, * which notifies the parent scheduler and possibly drains packets. * flags & DN_DESTROY: drains queues and destroy qht; */ static void qht_delete(struct dn_fsk *fs, int flags) { ND("fs %d start flags %d qht %p", fs->fs.fs_nr, flags, fs->qht); if (!fs->qht) return; if (fs->fs.flags & DN_QHT_HASH) { dn_ht_scan(fs->qht, q_delete_cb, (void *)(uintptr_t)flags); if (flags & DN_DESTROY) { dn_ht_free(fs->qht, 0); fs->qht = NULL; } } else { dn_delete_queue((struct dn_queue *)(fs->qht), flags); if (flags & DN_DESTROY) fs->qht = NULL; } } /* * Find and possibly create the queue for a MULTIQUEUE scheduler. * We never call it for !MULTIQUEUE (the queue is in the sch_inst). */ struct dn_queue * ipdn_q_find(struct dn_fsk *fs, struct dn_sch_inst *si, struct ipfw_flow_id *id) { struct dn_queue template; template._si = si; template.fs = fs; if (fs->fs.flags & DN_QHT_HASH) { struct ipfw_flow_id masked_id; if (fs->qht == NULL) { fs->qht = dn_ht_init(NULL, fs->fs.buckets, offsetof(struct dn_queue, q_next), q_hash, q_match, q_new); if (fs->qht == NULL) return NULL; } masked_id = *id; flow_id_mask(&fs->fsk_mask, &masked_id); return dn_ht_find(fs->qht, (uintptr_t)&masked_id, DNHT_INSERT, &template); } else { if (fs->qht == NULL) fs->qht = q_new(0, 0, &template); return (struct dn_queue *)fs->qht; } } /*--- end of queue hash table ---*/ /*--- support functions for the sch_inst hashtable ---- * * These are hashed by flow-id */ static uint32_t si_hash(uintptr_t key, int flags, void *arg) { /* compute the hash slot from the flow id */ struct ipfw_flow_id *id = (flags & DNHT_KEY_IS_OBJ) ? &((struct dn_sch_inst *)key)->ni.fid : (struct ipfw_flow_id *)key; return flow_id_hash(id); } static int si_match(void *obj, uintptr_t key, int flags, void *arg) { struct dn_sch_inst *o = obj; struct ipfw_flow_id *id2; id2 = (flags & DNHT_KEY_IS_OBJ) ? &((struct dn_sch_inst *)key)->ni.fid : (struct ipfw_flow_id *)key; return flow_id_cmp(&o->ni.fid, id2) == 0; } /* * create a new instance for the given 'key' * Allocate memory for instance, delay line and scheduler private data. */ static void * si_new(uintptr_t key, int flags, void *arg) { struct dn_schk *s = arg; struct dn_sch_inst *si; int l = sizeof(*si) + s->fp->si_datalen; si = malloc(l, M_DUMMYNET, M_NOWAIT | M_ZERO); if (si == NULL) goto error; /* Set length only for the part passed up to userland. */ set_oid(&si->ni.oid, DN_SCH_I, sizeof(struct dn_flow)); set_oid(&(si->dline.oid), DN_DELAY_LINE, sizeof(struct delay_line)); /* mark si and dline as outside the event queue */ si->ni.oid.id = si->dline.oid.id = -1; si->sched = s; si->dline.si = si; if (s->fp->new_sched && s->fp->new_sched(si)) { D("new_sched error"); goto error; } if (s->sch.flags & DN_HAVE_MASK) si->ni.fid = *(struct ipfw_flow_id *)key; #ifdef NEW_AQM /* init AQM status for !DN_MULTIQUEUE sched*/ if (!(s->fp->flags & DN_MULTIQUEUE)) if (s->fs->aqmfp && s->fs->aqmfp->init) if(s->fs->aqmfp->init((struct dn_queue *)(si + 1))) { D("unable to init AQM for fs %d", s->fs->fs.fs_nr); goto error; } #endif V_dn_cfg.si_count++; return si; error: if (si) { bzero(si, sizeof(*si)); // safety free(si, M_DUMMYNET); } return NULL; } /* * Callback from siht to delete all scheduler instances. Remove * si and delay line from the system heap, destroy all queues. * We assume that all flowset have been notified and do not * point to us anymore. */ static int si_destroy(void *_si, void *arg) { struct dn_sch_inst *si = _si; struct dn_schk *s = si->sched; struct delay_line *dl = &si->dline; if (dl->oid.subtype) /* remove delay line from event heap */ heap_extract(&V_dn_cfg.evheap, dl); dn_free_pkts(dl->mq.head); /* drain delay line */ if (si->kflags & DN_ACTIVE) /* remove si from event heap */ heap_extract(&V_dn_cfg.evheap, si); #ifdef NEW_AQM /* clean up AQM status for !DN_MULTIQUEUE sched * Note that all queues belong to fs were cleaned up in fsk_detach. * When drain_scheduler is called s->fs and q->fs are pointing * to a correct fs, so we can use fs in this case. */ if (!(s->fp->flags & DN_MULTIQUEUE)) { struct dn_queue *q = (struct dn_queue *)(si + 1); if (q->aqm_status && q->fs->aqmfp) if (q->fs->aqmfp->cleanup) q->fs->aqmfp->cleanup(q); } #endif if (s->fp->free_sched) s->fp->free_sched(si); bzero(si, sizeof(*si)); /* safety */ free(si, M_DUMMYNET); V_dn_cfg.si_count--; return DNHT_SCAN_DEL; } /* * Find the scheduler instance for this packet. If we need to apply * a mask, do on a local copy of the flow_id to preserve the original. * Assume siht is always initialized if we have a mask. */ struct dn_sch_inst * ipdn_si_find(struct dn_schk *s, struct ipfw_flow_id *id) { if (s->sch.flags & DN_HAVE_MASK) { struct ipfw_flow_id id_t = *id; flow_id_mask(&s->sch.sched_mask, &id_t); return dn_ht_find(s->siht, (uintptr_t)&id_t, DNHT_INSERT, s); } if (!s->siht) s->siht = si_new(0, 0, s); return (struct dn_sch_inst *)s->siht; } /* callback to flush credit for the scheduler instance */ static int si_reset_credit(void *_si, void *arg) { struct dn_sch_inst *si = _si; struct dn_link *p = &si->sched->link; si->credit = p->burst + (V_dn_cfg.io_fast ? p->bandwidth : 0); return 0; } static void schk_reset_credit(struct dn_schk *s) { if (s->sch.flags & DN_HAVE_MASK) dn_ht_scan(s->siht, si_reset_credit, NULL); else if (s->siht) si_reset_credit(s->siht, NULL); } /*---- end of sch_inst hashtable ---------------------*/ /*------------------------------------------------------- * flowset hash (fshash) support. Entries are hashed by fs_nr. * New allocations are put in the fsunlinked list, from which * they are removed when they point to a specific scheduler. */ static uint32_t fsk_hash(uintptr_t key, int flags, void *arg) { uint32_t i = !(flags & DNHT_KEY_IS_OBJ) ? key : ((struct dn_fsk *)key)->fs.fs_nr; return ( (i>>8)^(i>>4)^i ); } static int fsk_match(void *obj, uintptr_t key, int flags, void *arg) { struct dn_fsk *fs = obj; int i = !(flags & DNHT_KEY_IS_OBJ) ? key : ((struct dn_fsk *)key)->fs.fs_nr; return (fs->fs.fs_nr == i); } static void * fsk_new(uintptr_t key, int flags, void *arg) { struct dn_fsk *fs; fs = malloc(sizeof(*fs), M_DUMMYNET, M_NOWAIT | M_ZERO); if (fs) { set_oid(&fs->fs.oid, DN_FS, sizeof(fs->fs)); V_dn_cfg.fsk_count++; fs->drain_bucket = 0; SLIST_INSERT_HEAD(&V_dn_cfg.fsu, fs, sch_chain); } return fs; } #ifdef NEW_AQM /* callback function for cleaning up AQM queue status belongs to a flowset * connected to scheduler instance '_si' (for !DN_MULTIQUEUE only). */ static int si_cleanup_q(void *_si, void *arg) { struct dn_sch_inst *si = _si; if (!(si->sched->fp->flags & DN_MULTIQUEUE)) { if (si->sched->fs->aqmfp && si->sched->fs->aqmfp->cleanup) si->sched->fs->aqmfp->cleanup((struct dn_queue *) (si+1)); } return 0; } /* callback to clean up queue AQM status.*/ static int q_cleanup_q(void *_q, void *arg) { struct dn_queue *q = _q; q->fs->aqmfp->cleanup(q); return 0; } /* Clean up all AQM queues status belongs to flowset 'fs' and then * deconfig AQM for flowset 'fs' */ static void aqm_cleanup_deconfig_fs(struct dn_fsk *fs) { struct dn_sch_inst *si; /* clean up AQM status for all queues for !DN_MULTIQUEUE sched*/ if (fs->fs.fs_nr > DN_MAX_ID) { if (fs->sched && !(fs->sched->fp->flags & DN_MULTIQUEUE)) { if (fs->sched->sch.flags & DN_HAVE_MASK) dn_ht_scan(fs->sched->siht, si_cleanup_q, NULL); else { /* single si i.e. no sched mask */ si = (struct dn_sch_inst *) fs->sched->siht; if (si && fs->aqmfp && fs->aqmfp->cleanup) fs->aqmfp->cleanup((struct dn_queue *) (si+1)); } } } /* clean up AQM status for all queues for DN_MULTIQUEUE sched*/ if (fs->sched && fs->sched->fp->flags & DN_MULTIQUEUE && fs->qht) { if (fs->fs.flags & DN_QHT_HASH) dn_ht_scan(fs->qht, q_cleanup_q, NULL); else fs->aqmfp->cleanup((struct dn_queue *)(fs->qht)); } /* deconfig AQM */ if(fs->aqmcfg && fs->aqmfp && fs->aqmfp->deconfig) fs->aqmfp->deconfig(fs); } #endif /* * detach flowset from its current scheduler. Flags as follows: * DN_DETACH removes from the fsk_list * DN_DESTROY deletes individual queues * DN_DELETE_FS destroys the flowset (otherwise goes in unlinked). */ static void fsk_detach(struct dn_fsk *fs, int flags) { if (flags & DN_DELETE_FS) flags |= DN_DESTROY; ND("fs %d from sched %d flags %s %s %s", fs->fs.fs_nr, fs->fs.sched_nr, (flags & DN_DELETE_FS) ? "DEL_FS":"", (flags & DN_DESTROY) ? "DEL":"", (flags & DN_DETACH) ? "DET":""); if (flags & DN_DETACH) { /* detach from the list */ struct dn_fsk_head *h; h = fs->sched ? &fs->sched->fsk_list : &V_dn_cfg.fsu; SLIST_REMOVE(h, fs, dn_fsk, sch_chain); } /* Free the RED parameters, they will be recomputed on * subsequent attach if needed. */ free(fs->w_q_lookup, M_DUMMYNET); fs->w_q_lookup = NULL; qht_delete(fs, flags); #ifdef NEW_AQM aqm_cleanup_deconfig_fs(fs); #endif if (fs->sched && fs->sched->fp->free_fsk) fs->sched->fp->free_fsk(fs); fs->sched = NULL; if (flags & DN_DELETE_FS) { bzero(fs, sizeof(*fs)); /* safety */ free(fs, M_DUMMYNET); V_dn_cfg.fsk_count--; } else { SLIST_INSERT_HEAD(&V_dn_cfg.fsu, fs, sch_chain); } } /* * Detach or destroy all flowsets in a list. * flags specifies what to do: * DN_DESTROY: flush all queues * DN_DELETE_FS: DN_DESTROY + destroy flowset * DN_DELETE_FS implies DN_DESTROY */ static void fsk_detach_list(struct dn_fsk_head *h, int flags) { struct dn_fsk *fs; int n = 0; /* only for stats */ ND("head %p flags %x", h, flags); while ((fs = SLIST_FIRST(h))) { SLIST_REMOVE_HEAD(h, sch_chain); n++; fsk_detach(fs, flags); } ND("done %d flowsets", n); } /* * called on 'queue X delete' -- removes the flowset from fshash, * deletes all queues for the flowset, and removes the flowset. */ static int delete_fs(int i, int locked) { struct dn_fsk *fs; int err = 0; if (!locked) DN_BH_WLOCK(); fs = dn_ht_find(V_dn_cfg.fshash, i, DNHT_REMOVE, NULL); ND("fs %d found %p", i, fs); if (fs) { fsk_detach(fs, DN_DETACH | DN_DELETE_FS); err = 0; } else err = EINVAL; if (!locked) DN_BH_WUNLOCK(); return err; } /*----- end of flowset hashtable support -------------*/ /*------------------------------------------------------------ * Scheduler hash. When searching by index we pass sched_nr, * otherwise we pass struct dn_sch * which is the first field in * struct dn_schk so we can cast between the two. We use this trick * because in the create phase (but it should be fixed). */ static uint32_t schk_hash(uintptr_t key, int flags, void *_arg) { uint32_t i = !(flags & DNHT_KEY_IS_OBJ) ? key : ((struct dn_schk *)key)->sch.sched_nr; return ( (i>>8)^(i>>4)^i ); } static int schk_match(void *obj, uintptr_t key, int flags, void *_arg) { struct dn_schk *s = (struct dn_schk *)obj; int i = !(flags & DNHT_KEY_IS_OBJ) ? key : ((struct dn_schk *)key)->sch.sched_nr; return (s->sch.sched_nr == i); } /* * Create the entry and intialize with the sched hash if needed. * Leave s->fp unset so we can tell whether a dn_ht_find() returns * a new object or a previously existing one. */ static void * schk_new(uintptr_t key, int flags, void *arg) { struct schk_new_arg *a = arg; struct dn_schk *s; int l = sizeof(*s) +a->fp->schk_datalen; s = malloc(l, M_DUMMYNET, M_NOWAIT | M_ZERO); if (s == NULL) return NULL; set_oid(&s->link.oid, DN_LINK, sizeof(s->link)); s->sch = *a->sch; // copy initial values s->link.link_nr = s->sch.sched_nr; SLIST_INIT(&s->fsk_list); /* initialize the hash table or create the single instance */ s->fp = a->fp; /* si_new needs this */ s->drain_bucket = 0; if (s->sch.flags & DN_HAVE_MASK) { s->siht = dn_ht_init(NULL, s->sch.buckets, offsetof(struct dn_sch_inst, si_next), si_hash, si_match, si_new); if (s->siht == NULL) { free(s, M_DUMMYNET); return NULL; } } s->fp = NULL; /* mark as a new scheduler */ V_dn_cfg.schk_count++; return s; } /* * Callback for sched delete. Notify all attached flowsets to * detach from the scheduler, destroy the internal flowset, and * all instances. The scheduler goes away too. * arg is 0 (only detach flowsets and destroy instances) * DN_DESTROY (detach & delete queues, delete schk) * or DN_DELETE_FS (delete queues and flowsets, delete schk) */ static int schk_delete_cb(void *obj, void *arg) { struct dn_schk *s = obj; #if 0 int a = (int)arg; ND("sched %d arg %s%s", s->sch.sched_nr, a&DN_DESTROY ? "DEL ":"", a&DN_DELETE_FS ? "DEL_FS":""); #endif fsk_detach_list(&s->fsk_list, arg ? DN_DESTROY : 0); /* no more flowset pointing to us now */ if (s->sch.flags & DN_HAVE_MASK) { dn_ht_scan(s->siht, si_destroy, NULL); dn_ht_free(s->siht, 0); } else if (s->siht) si_destroy(s->siht, NULL); free(s->profile, M_DUMMYNET); s->profile = NULL; s->siht = NULL; if (s->fp->destroy) s->fp->destroy(s); bzero(s, sizeof(*s)); // safety free(obj, M_DUMMYNET); V_dn_cfg.schk_count--; return DNHT_SCAN_DEL; } /* * called on a 'sched X delete' command. Deletes a single scheduler. * This is done by removing from the schedhash, unlinking all * flowsets and deleting their traffic. */ static int delete_schk(int i) { struct dn_schk *s; s = dn_ht_find(V_dn_cfg.schedhash, i, DNHT_REMOVE, NULL); ND("%d %p", i, s); if (!s) return EINVAL; delete_fs(i + DN_MAX_ID, 1); /* first delete internal fs */ /* then detach flowsets, delete traffic */ schk_delete_cb(s, (void*)(uintptr_t)DN_DESTROY); return 0; } /*--- end of schk hashtable support ---*/ static int copy_obj(char **start, char *end, void *_o, const char *msg, int i) { struct dn_id o; union { struct dn_link l; struct dn_schk s; } dn; int have = end - *start; memcpy(&o, _o, sizeof(o)); if (have < o.len || o.len == 0 || o.type == 0) { D("(WARN) type %d %s %d have %d need %d", o.type, msg, i, have, o.len); return 1; } ND("type %d %s %d len %d", o.type, msg, i, o.len); if (o.type == DN_LINK) { memcpy(&dn.l, _o, sizeof(dn.l)); /* Adjust burst parameter for link */ dn.l.burst = div64(dn.l.burst, 8 * hz); dn.l.delay = dn.l.delay * 1000 / hz; memcpy(*start, &dn.l, sizeof(dn.l)); } else if (o.type == DN_SCH) { /* Set dn.s.sch.oid.id to the number of instances */ memcpy(&dn.s, _o, sizeof(dn.s)); dn.s.sch.oid.id = (dn.s.sch.flags & DN_HAVE_MASK) ? dn_ht_entries(dn.s.siht) : (dn.s.siht ? 1 : 0); memcpy(*start, &dn.s, sizeof(dn.s)); } else memcpy(*start, _o, o.len); *start += o.len; return 0; } /* Specific function to copy a queue. * Copies only the user-visible part of a queue (which is in * a struct dn_flow), and sets len accordingly. */ static int copy_obj_q(char **start, char *end, void *_o, const char *msg, int i) { struct dn_id *o = _o; int have = end - *start; int len = sizeof(struct dn_flow); /* see above comment */ if (have < len || o->len == 0 || o->type != DN_QUEUE) { D("ERROR type %d %s %d have %d need %d", o->type, msg, i, have, len); return 1; } ND("type %d %s %d len %d", o->type, msg, i, len); memcpy(*start, _o, len); ((struct dn_id*)(*start))->len = len; *start += len; return 0; } static int copy_q_cb(void *obj, void *arg) { struct dn_queue *q = obj; struct copy_args *a = arg; struct dn_flow *ni = (struct dn_flow *)(*a->start); if (copy_obj_q(a->start, a->end, &q->ni, "queue", -1)) return DNHT_SCAN_END; ni->oid.type = DN_FLOW; /* override the DN_QUEUE */ ni->oid.id = si_hash((uintptr_t)&ni->fid, 0, NULL); return 0; } static int copy_q(struct copy_args *a, struct dn_fsk *fs, int flags) { if (!fs->qht) return 0; if (fs->fs.flags & DN_QHT_HASH) dn_ht_scan(fs->qht, copy_q_cb, a); else copy_q_cb(fs->qht, a); return 0; } /* * This routine only copies the initial part of a profile ? XXX */ static int copy_profile(struct copy_args *a, struct dn_profile *p) { int have = a->end - *a->start; /* XXX here we check for max length */ int profile_len = sizeof(struct dn_profile) - ED_MAX_SAMPLES_NO*sizeof(int); if (p == NULL) return 0; if (have < profile_len) { D("error have %d need %d", have, profile_len); return 1; } memcpy(*a->start, p, profile_len); ((struct dn_id *)(*a->start))->len = profile_len; *a->start += profile_len; return 0; } static int copy_flowset(struct copy_args *a, struct dn_fsk *fs, int flags) { struct dn_fs *ufs = (struct dn_fs *)(*a->start); if (!fs) return 0; ND("flowset %d", fs->fs.fs_nr); if (copy_obj(a->start, a->end, &fs->fs, "flowset", fs->fs.fs_nr)) return DNHT_SCAN_END; ufs->oid.id = (fs->fs.flags & DN_QHT_HASH) ? dn_ht_entries(fs->qht) : (fs->qht ? 1 : 0); if (flags) { /* copy queues */ copy_q(a, fs, 0); } return 0; } static int copy_si_cb(void *obj, void *arg) { struct dn_sch_inst *si = obj; struct copy_args *a = arg; struct dn_flow *ni = (struct dn_flow *)(*a->start); if (copy_obj(a->start, a->end, &si->ni, "inst", si->sched->sch.sched_nr)) return DNHT_SCAN_END; ni->oid.type = DN_FLOW; /* override the DN_SCH_I */ ni->oid.id = si_hash((uintptr_t)si, DNHT_KEY_IS_OBJ, NULL); return 0; } static int copy_si(struct copy_args *a, struct dn_schk *s, int flags) { if (s->sch.flags & DN_HAVE_MASK) dn_ht_scan(s->siht, copy_si_cb, a); else if (s->siht) copy_si_cb(s->siht, a); return 0; } /* * compute a list of children of a scheduler and copy up */ static int copy_fsk_list(struct copy_args *a, struct dn_schk *s, int flags) { struct dn_fsk *fs; struct dn_id *o; uint32_t *p; int n = 0, space = sizeof(*o); SLIST_FOREACH(fs, &s->fsk_list, sch_chain) { if (fs->fs.fs_nr < DN_MAX_ID) n++; } space += n * sizeof(uint32_t); DX(3, "sched %d has %d flowsets", s->sch.sched_nr, n); if (a->end - *(a->start) < space) return DNHT_SCAN_END; o = (struct dn_id *)(*(a->start)); o->len = space; *a->start += o->len; o->type = DN_TEXT; p = (uint32_t *)(o+1); SLIST_FOREACH(fs, &s->fsk_list, sch_chain) if (fs->fs.fs_nr < DN_MAX_ID) *p++ = fs->fs.fs_nr; return 0; } static int copy_data_helper(void *_o, void *_arg) { struct copy_args *a = _arg; uint32_t *r = a->extra->r; /* start of first range */ uint32_t *lim; /* first invalid pointer */ int n; lim = (uint32_t *)((char *)(a->extra) + a->extra->o.len); if (a->type == DN_LINK || a->type == DN_SCH) { /* pipe|sched show, we receive a dn_schk */ struct dn_schk *s = _o; n = s->sch.sched_nr; if (a->type == DN_SCH && n >= DN_MAX_ID) return 0; /* not a scheduler */ if (a->type == DN_LINK && n <= DN_MAX_ID) return 0; /* not a pipe */ /* see if the object is within one of our ranges */ for (;r < lim; r += 2) { if (n < r[0] || n > r[1]) continue; /* Found a valid entry, copy and we are done */ if (a->flags & DN_C_LINK) { if (copy_obj(a->start, a->end, &s->link, "link", n)) return DNHT_SCAN_END; if (copy_profile(a, s->profile)) return DNHT_SCAN_END; if (copy_flowset(a, s->fs, 0)) return DNHT_SCAN_END; } if (a->flags & DN_C_SCH) { if (copy_obj(a->start, a->end, &s->sch, "sched", n)) return DNHT_SCAN_END; /* list all attached flowsets */ if (copy_fsk_list(a, s, 0)) return DNHT_SCAN_END; } if (a->flags & DN_C_FLOW) copy_si(a, s, 0); break; } } else if (a->type == DN_FS) { /* queue show, skip internal flowsets */ struct dn_fsk *fs = _o; n = fs->fs.fs_nr; if (n >= DN_MAX_ID) return 0; /* see if the object is within one of our ranges */ for (;r < lim; r += 2) { if (n < r[0] || n > r[1]) continue; if (copy_flowset(a, fs, 0)) return DNHT_SCAN_END; copy_q(a, fs, 0); break; /* we are done */ } } return 0; } static inline struct dn_schk * locate_scheduler(int i) { return dn_ht_find(V_dn_cfg.schedhash, i, 0, NULL); } /* * red parameters are in fixed point arithmetic. */ static int config_red(struct dn_fsk *fs) { int64_t s, idle, weight, w0; int t, i; fs->w_q = fs->fs.w_q; fs->max_p = fs->fs.max_p; ND("called"); /* Doing stuff that was in userland */ i = fs->sched->link.bandwidth; s = (i <= 0) ? 0 : hz * V_dn_cfg.red_avg_pkt_size * 8 * SCALE(1) / i; idle = div64((s * 3) , fs->w_q); /* s, fs->w_q scaled; idle not scaled */ fs->lookup_step = div64(idle , V_dn_cfg.red_lookup_depth); /* fs->lookup_step not scaled, */ if (!fs->lookup_step) fs->lookup_step = 1; w0 = weight = SCALE(1) - fs->w_q; //fs->w_q scaled for (t = fs->lookup_step; t > 1; --t) weight = SCALE_MUL(weight, w0); fs->lookup_weight = (int)(weight); // scaled /* Now doing stuff that was in kerneland */ fs->min_th = SCALE(fs->fs.min_th); fs->max_th = SCALE(fs->fs.max_th); if (fs->fs.max_th == fs->fs.min_th) fs->c_1 = fs->max_p; else fs->c_1 = SCALE((int64_t)(fs->max_p)) / (fs->fs.max_th - fs->fs.min_th); fs->c_2 = SCALE_MUL(fs->c_1, SCALE(fs->fs.min_th)); if (fs->fs.flags & DN_IS_GENTLE_RED) { fs->c_3 = (SCALE(1) - fs->max_p) / fs->fs.max_th; fs->c_4 = SCALE(1) - 2 * fs->max_p; } /* If the lookup table already exist, free and create it again. */ free(fs->w_q_lookup, M_DUMMYNET); fs->w_q_lookup = NULL; if (V_dn_cfg.red_lookup_depth == 0) { printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth" "must be > 0\n"); fs->fs.flags &= ~DN_IS_RED; fs->fs.flags &= ~DN_IS_GENTLE_RED; return (EINVAL); } fs->lookup_depth = V_dn_cfg.red_lookup_depth; fs->w_q_lookup = (u_int *)malloc(fs->lookup_depth * sizeof(int), M_DUMMYNET, M_NOWAIT); if (fs->w_q_lookup == NULL) { printf("dummynet: sorry, cannot allocate red lookup table\n"); fs->fs.flags &= ~DN_IS_RED; fs->fs.flags &= ~DN_IS_GENTLE_RED; return(ENOSPC); } /* Fill the lookup table with (1 - w_q)^x */ fs->w_q_lookup[0] = SCALE(1) - fs->w_q; for (i = 1; i < fs->lookup_depth; i++) fs->w_q_lookup[i] = SCALE_MUL(fs->w_q_lookup[i - 1], fs->lookup_weight); if (V_dn_cfg.red_avg_pkt_size < 1) V_dn_cfg.red_avg_pkt_size = 512; fs->avg_pkt_size = V_dn_cfg.red_avg_pkt_size; if (V_dn_cfg.red_max_pkt_size < 1) V_dn_cfg.red_max_pkt_size = 1500; fs->max_pkt_size = V_dn_cfg.red_max_pkt_size; ND("exit"); return 0; } /* Scan all flowset attached to this scheduler and update red */ static void update_red(struct dn_schk *s) { struct dn_fsk *fs; SLIST_FOREACH(fs, &s->fsk_list, sch_chain) { if (fs && (fs->fs.flags & DN_IS_RED)) config_red(fs); } } /* attach flowset to scheduler s, possibly requeue */ static void fsk_attach(struct dn_fsk *fs, struct dn_schk *s) { ND("remove fs %d from fsunlinked, link to sched %d", fs->fs.fs_nr, s->sch.sched_nr); SLIST_REMOVE(&V_dn_cfg.fsu, fs, dn_fsk, sch_chain); fs->sched = s; SLIST_INSERT_HEAD(&s->fsk_list, fs, sch_chain); if (s->fp->new_fsk) s->fp->new_fsk(fs); /* XXX compute fsk_mask */ fs->fsk_mask = fs->fs.flow_mask; if (fs->sched->sch.flags & DN_HAVE_MASK) flow_id_or(&fs->sched->sch.sched_mask, &fs->fsk_mask); if (fs->qht) { /* * we must drain qht according to the old * type, and reinsert according to the new one. * The requeue is complex -- in general we need to * reclassify every single packet. * For the time being, let's hope qht is never set * when we reach this point. */ D("XXX TODO requeue from fs %d to sch %d", fs->fs.fs_nr, s->sch.sched_nr); fs->qht = NULL; } /* set the new type for qht */ if (nonzero_mask(&fs->fsk_mask)) fs->fs.flags |= DN_QHT_HASH; else fs->fs.flags &= ~DN_QHT_HASH; /* XXX config_red() can fail... */ if (fs->fs.flags & DN_IS_RED) config_red(fs); } /* update all flowsets which may refer to this scheduler */ static void update_fs(struct dn_schk *s) { struct dn_fsk *fs, *tmp; SLIST_FOREACH_SAFE(fs, &V_dn_cfg.fsu, sch_chain, tmp) { if (s->sch.sched_nr != fs->fs.sched_nr) { D("fs %d for sch %d not %d still unlinked", fs->fs.fs_nr, fs->fs.sched_nr, s->sch.sched_nr); continue; } fsk_attach(fs, s); } } #ifdef NEW_AQM /* Retrieve AQM configurations to ipfw userland */ static int get_aqm_parms(struct sockopt *sopt) { struct dn_extra_parms *ep; struct dn_fsk *fs; size_t sopt_valsize; int l, err = 0; sopt_valsize = sopt->sopt_valsize; l = sizeof(*ep); if (sopt->sopt_valsize < l) { D("bad len sopt->sopt_valsize %d len %d", (int) sopt->sopt_valsize , l); err = EINVAL; return err; } ep = malloc(l, M_DUMMYNET, M_NOWAIT); if(!ep) { err = ENOMEM ; return err; } do { err = sooptcopyin(sopt, ep, l, l); if(err) break; sopt->sopt_valsize = sopt_valsize; if (ep->oid.len < l) { err = EINVAL; break; } fs = dn_ht_find(V_dn_cfg.fshash, ep->nr, 0, NULL); if (!fs) { D("fs %d not found", ep->nr); err = EINVAL; break; } if (fs->aqmfp && fs->aqmfp->getconfig) { if(fs->aqmfp->getconfig(fs, ep)) { D("Error while trying to get AQM params"); err = EINVAL; break; } ep->oid.len = l; err = sooptcopyout(sopt, ep, l); } }while(0); free(ep, M_DUMMYNET); return err; } /* Retrieve AQM configurations to ipfw userland */ static int get_sched_parms(struct sockopt *sopt) { struct dn_extra_parms *ep; struct dn_schk *schk; size_t sopt_valsize; int l, err = 0; sopt_valsize = sopt->sopt_valsize; l = sizeof(*ep); if (sopt->sopt_valsize < l) { D("bad len sopt->sopt_valsize %d len %d", (int) sopt->sopt_valsize , l); err = EINVAL; return err; } ep = malloc(l, M_DUMMYNET, M_NOWAIT); if(!ep) { err = ENOMEM ; return err; } do { err = sooptcopyin(sopt, ep, l, l); if(err) break; sopt->sopt_valsize = sopt_valsize; if (ep->oid.len < l) { err = EINVAL; break; } schk = locate_scheduler(ep->nr); if (!schk) { D("sched %d not found", ep->nr); err = EINVAL; break; } if (schk->fp && schk->fp->getconfig) { if(schk->fp->getconfig(schk, ep)) { D("Error while trying to get sched params"); err = EINVAL; break; } ep->oid.len = l; err = sooptcopyout(sopt, ep, l); } }while(0); free(ep, M_DUMMYNET); return err; } /* Configure AQM for flowset 'fs'. * extra parameters are passed from userland. */ static int config_aqm(struct dn_fsk *fs, struct dn_extra_parms *ep, int busy) { int err = 0; NET_EPOCH_ASSERT(); do { /* no configurations */ if (!ep) { err = 0; break; } /* no AQM for this flowset*/ if (!strcmp(ep->name,"")) { err = 0; break; } if (ep->oid.len < sizeof(*ep)) { D("short aqm len %d", ep->oid.len); err = EINVAL; break; } if (busy) { D("Unable to configure flowset, flowset busy!"); err = EINVAL; break; } /* deconfigure old aqm if exist */ if (fs->aqmcfg && fs->aqmfp && fs->aqmfp->deconfig) { aqm_cleanup_deconfig_fs(fs); } if (!(fs->aqmfp = find_aqm_type(0, ep->name))) { D("AQM functions not found for type %s!", ep->name); fs->fs.flags &= ~DN_IS_AQM; err = EINVAL; break; } else fs->fs.flags |= DN_IS_AQM; if (ep->oid.subtype != DN_AQM_PARAMS) { D("Wrong subtype"); err = EINVAL; break; } if (fs->aqmfp->config) { err = fs->aqmfp->config(fs, ep, ep->oid.len); if (err) { D("Unable to configure AQM for FS %d", fs->fs.fs_nr ); fs->fs.flags &= ~DN_IS_AQM; fs->aqmfp = NULL; break; } } } while(0); return err; } #endif /* * Configuration -- to preserve backward compatibility we use * the following scheme (N is 65536) * NUMBER SCHED LINK FLOWSET * 1 .. N-1 (1)WFQ (2)WFQ (3)queue * N+1 .. 2N-1 (4)FIFO (5)FIFO (6)FIFO for sched 1..N-1 * 2N+1 .. 3N-1 -- -- (7)FIFO for sched N+1..2N-1 * * "pipe i config" configures #1, #2 and #3 * "sched i config" configures #1 and possibly #6 * "queue i config" configures #3 * #1 is configured with 'pipe i config' or 'sched i config' * #2 is configured with 'pipe i config', and created if not * existing with 'sched i config' * #3 is configured with 'queue i config' * #4 is automatically configured after #1, can only be FIFO * #5 is automatically configured after #2 * #6 is automatically created when #1 is !MULTIQUEUE, * and can be updated. * #7 is automatically configured after #2 */ /* * configure a link (and its FIFO instance) */ static int config_link(struct dn_link *p, struct dn_id *arg) { int i; if (p->oid.len != sizeof(*p)) { D("invalid pipe len %d", p->oid.len); return EINVAL; } i = p->link_nr; if (i <= 0 || i >= DN_MAX_ID) return EINVAL; /* * The config program passes parameters as follows: * bw = bits/second (0 means no limits), * delay = ms, must be translated into ticks. * qsize = slots/bytes * burst ??? */ p->delay = (p->delay * hz) / 1000; /* Scale burst size: bytes -> bits * hz */ p->burst *= 8 * hz; DN_BH_WLOCK(); /* do it twice, base link and FIFO link */ for (; i < 2*DN_MAX_ID; i += DN_MAX_ID) { struct dn_schk *s = locate_scheduler(i); if (s == NULL) { DN_BH_WUNLOCK(); D("sched %d not found", i); return EINVAL; } /* remove profile if exists */ free(s->profile, M_DUMMYNET); s->profile = NULL; /* copy all parameters */ s->link.oid = p->oid; s->link.link_nr = i; s->link.delay = p->delay; if (s->link.bandwidth != p->bandwidth) { /* XXX bandwidth changes, need to update red params */ s->link.bandwidth = p->bandwidth; update_red(s); } s->link.burst = p->burst; schk_reset_credit(s); } V_dn_cfg.id++; DN_BH_WUNLOCK(); return 0; } /* * configure a flowset. Can be called from inside with locked=1, */ static struct dn_fsk * config_fs(struct dn_fs *nfs, struct dn_id *arg, int locked) { int i; struct dn_fsk *fs; #ifdef NEW_AQM struct dn_extra_parms *ep; #endif if (nfs->oid.len != sizeof(*nfs)) { D("invalid flowset len %d", nfs->oid.len); return NULL; } i = nfs->fs_nr; if (i <= 0 || i >= 3*DN_MAX_ID) return NULL; #ifdef NEW_AQM ep = NULL; if (arg != NULL) { ep = malloc(sizeof(*ep), M_TEMP, M_NOWAIT); if (ep == NULL) return (NULL); memcpy(ep, arg, sizeof(*ep)); } #endif ND("flowset %d", i); /* XXX other sanity checks */ if (nfs->flags & DN_QSIZE_BYTES) { ipdn_bound_var(&nfs->qsize, 16384, 1500, V_dn_cfg.byte_limit, NULL); // "queue byte size"); } else { ipdn_bound_var(&nfs->qsize, 50, 1, V_dn_cfg.slot_limit, NULL); // "queue slot size"); } if (nfs->flags & DN_HAVE_MASK) { /* make sure we have some buckets */ ipdn_bound_var((int *)&nfs->buckets, V_dn_cfg.hash_size, 1, V_dn_cfg.max_hash_size, "flowset buckets"); } else { nfs->buckets = 1; /* we only need 1 */ } if (!locked) DN_BH_WLOCK(); do { /* exit with break when done */ struct dn_schk *s; int flags = nfs->sched_nr ? DNHT_INSERT : 0; int j; int oldc = V_dn_cfg.fsk_count; fs = dn_ht_find(V_dn_cfg.fshash, i, flags, NULL); if (fs == NULL) { D("missing sched for flowset %d", i); break; } /* grab some defaults from the existing one */ if (nfs->sched_nr == 0) /* reuse */ nfs->sched_nr = fs->fs.sched_nr; for (j = 0; j < sizeof(nfs->par)/sizeof(nfs->par[0]); j++) { if (nfs->par[j] == -1) /* reuse */ nfs->par[j] = fs->fs.par[j]; } if (bcmp(&fs->fs, nfs, sizeof(*nfs)) == 0) { ND("flowset %d unchanged", i); #ifdef NEW_AQM if (ep != NULL) { /* * Reconfigure AQM as the parameters can be changed. * We consider the flowset as busy if it has scheduler * instance(s). */ s = locate_scheduler(nfs->sched_nr); config_aqm(fs, ep, s != NULL && s->siht != NULL); } #endif break; /* no change, nothing to do */ } if (oldc != V_dn_cfg.fsk_count) /* new item */ V_dn_cfg.id++; s = locate_scheduler(nfs->sched_nr); /* detach from old scheduler if needed, preserving * queues if we need to reattach. Then update the * configuration, and possibly attach to the new sched. */ DX(2, "fs %d changed sched %d@%p to %d@%p", fs->fs.fs_nr, fs->fs.sched_nr, fs->sched, nfs->sched_nr, s); if (fs->sched) { int flags = s ? DN_DETACH : (DN_DETACH | DN_DESTROY); flags |= DN_DESTROY; /* XXX temporary */ fsk_detach(fs, flags); } fs->fs = *nfs; /* copy configuration */ #ifdef NEW_AQM fs->aqmfp = NULL; if (ep != NULL) config_aqm(fs, ep, s != NULL && s->siht != NULL); #endif if (s != NULL) fsk_attach(fs, s); } while (0); if (!locked) DN_BH_WUNLOCK(); #ifdef NEW_AQM free(ep, M_TEMP); #endif return fs; } /* * config/reconfig a scheduler and its FIFO variant. * For !MULTIQUEUE schedulers, also set up the flowset. * * On reconfigurations (detected because s->fp is set), * detach existing flowsets preserving traffic, preserve link, * and delete the old scheduler creating a new one. */ static int config_sched(struct dn_sch *_nsch, struct dn_id *arg) { struct dn_schk *s; struct schk_new_arg a; /* argument for schk_new */ int i; struct dn_link p; /* copy of oldlink */ struct dn_profile *pf = NULL; /* copy of old link profile */ /* Used to preserv mask parameter */ struct ipfw_flow_id new_mask; int new_buckets = 0; int new_flags = 0; int pipe_cmd; int err = ENOMEM; NET_EPOCH_ASSERT(); a.sch = _nsch; if (a.sch->oid.len != sizeof(*a.sch)) { D("bad sched len %d", a.sch->oid.len); return EINVAL; } i = a.sch->sched_nr; if (i <= 0 || i >= DN_MAX_ID) return EINVAL; /* make sure we have some buckets */ if (a.sch->flags & DN_HAVE_MASK) ipdn_bound_var((int *)&a.sch->buckets, V_dn_cfg.hash_size, 1, V_dn_cfg.max_hash_size, "sched buckets"); /* XXX other sanity checks */ bzero(&p, sizeof(p)); pipe_cmd = a.sch->flags & DN_PIPE_CMD; a.sch->flags &= ~DN_PIPE_CMD; //XXX do it even if is not set? if (pipe_cmd) { /* Copy mask parameter */ new_mask = a.sch->sched_mask; new_buckets = a.sch->buckets; new_flags = a.sch->flags; } DN_BH_WLOCK(); again: /* run twice, for wfq and fifo */ /* * lookup the type. If not supplied, use the previous one * or default to WF2Q+. Otherwise, return an error. */ V_dn_cfg.id++; a.fp = find_sched_type(a.sch->oid.subtype, a.sch->name); if (a.fp != NULL) { /* found. Lookup or create entry */ s = dn_ht_find(V_dn_cfg.schedhash, i, DNHT_INSERT, &a); } else if (a.sch->oid.subtype == 0 && !a.sch->name[0]) { /* No type. search existing s* or retry with WF2Q+ */ s = dn_ht_find(V_dn_cfg.schedhash, i, 0, &a); if (s != NULL) { a.fp = s->fp; /* Scheduler exists, skip to FIFO scheduler * if command was pipe config... */ if (pipe_cmd) goto next; } else { /* New scheduler, create a wf2q+ with no mask * if command was pipe config... */ if (pipe_cmd) { /* clear mask parameter */ bzero(&a.sch->sched_mask, sizeof(new_mask)); a.sch->buckets = 0; a.sch->flags &= ~DN_HAVE_MASK; } a.sch->oid.subtype = DN_SCHED_WF2QP; goto again; } } else { D("invalid scheduler type %d %s", a.sch->oid.subtype, a.sch->name); err = EINVAL; goto error; } /* normalize name and subtype */ a.sch->oid.subtype = a.fp->type; bzero(a.sch->name, sizeof(a.sch->name)); strlcpy(a.sch->name, a.fp->name, sizeof(a.sch->name)); if (s == NULL) { D("cannot allocate scheduler %d", i); goto error; } /* restore existing link if any */ if (p.link_nr) { s->link = p; if (!pf || pf->link_nr != p.link_nr) { /* no saved value */ s->profile = NULL; /* XXX maybe not needed */ } else { s->profile = malloc(sizeof(struct dn_profile), M_DUMMYNET, M_NOWAIT | M_ZERO); if (s->profile == NULL) { D("cannot allocate profile"); goto error; //XXX } memcpy(s->profile, pf, sizeof(*pf)); } } p.link_nr = 0; if (s->fp == NULL) { DX(2, "sched %d new type %s", i, a.fp->name); } else if (s->fp != a.fp || bcmp(a.sch, &s->sch, sizeof(*a.sch)) ) { /* already existing. */ DX(2, "sched %d type changed from %s to %s", i, s->fp->name, a.fp->name); DX(4, " type/sub %d/%d -> %d/%d", s->sch.oid.type, s->sch.oid.subtype, a.sch->oid.type, a.sch->oid.subtype); if (s->link.link_nr == 0) D("XXX WARNING link 0 for sched %d", i); p = s->link; /* preserve link */ if (s->profile) {/* preserve profile */ if (!pf) pf = malloc(sizeof(*pf), M_DUMMYNET, M_NOWAIT | M_ZERO); if (pf) /* XXX should issue a warning otherwise */ memcpy(pf, s->profile, sizeof(*pf)); } /* remove from the hash */ dn_ht_find(V_dn_cfg.schedhash, i, DNHT_REMOVE, NULL); /* Detach flowsets, preserve queues. */ // schk_delete_cb(s, NULL); // XXX temporarily, kill queues schk_delete_cb(s, (void *)DN_DESTROY); goto again; } else { DX(4, "sched %d unchanged type %s", i, a.fp->name); } /* complete initialization */ s->sch = *a.sch; s->fp = a.fp; s->cfg = arg; // XXX schk_reset_credit(s); /* create the internal flowset if needed, * trying to reuse existing ones if available */ if (!(s->fp->flags & DN_MULTIQUEUE) && !s->fs) { s->fs = dn_ht_find(V_dn_cfg.fshash, i, 0, NULL); if (!s->fs) { struct dn_fs fs; bzero(&fs, sizeof(fs)); set_oid(&fs.oid, DN_FS, sizeof(fs)); fs.fs_nr = i + DN_MAX_ID; fs.sched_nr = i; s->fs = config_fs(&fs, NULL, 1 /* locked */); } if (!s->fs) { schk_delete_cb(s, (void *)DN_DESTROY); D("error creating internal fs for %d", i); goto error; } } /* call init function after the flowset is created */ if (s->fp->config) s->fp->config(s); update_fs(s); next: if (i < DN_MAX_ID) { /* now configure the FIFO instance */ i += DN_MAX_ID; if (pipe_cmd) { /* Restore mask parameter for FIFO */ a.sch->sched_mask = new_mask; a.sch->buckets = new_buckets; a.sch->flags = new_flags; } else { /* sched config shouldn't modify the FIFO scheduler */ if (dn_ht_find(V_dn_cfg.schedhash, i, 0, &a) != NULL) { /* FIFO already exist, don't touch it */ err = 0; /* and this is not an error */ goto error; } } a.sch->sched_nr = i; a.sch->oid.subtype = DN_SCHED_FIFO; bzero(a.sch->name, sizeof(a.sch->name)); goto again; } err = 0; error: DN_BH_WUNLOCK(); free(pf, M_DUMMYNET); return err; } /* * attach a profile to a link */ static int config_profile(struct dn_profile *pf, struct dn_id *arg) { struct dn_schk *s; int i, olen, err = 0; if (pf->oid.len < sizeof(*pf)) { D("short profile len %d", pf->oid.len); return EINVAL; } i = pf->link_nr; if (i <= 0 || i >= DN_MAX_ID) return EINVAL; /* XXX other sanity checks */ DN_BH_WLOCK(); for (; i < 2*DN_MAX_ID; i += DN_MAX_ID) { s = locate_scheduler(i); if (s == NULL) { err = EINVAL; break; } V_dn_cfg.id++; /* * If we had a profile and the new one does not fit, * or it is deleted, then we need to free memory. */ if (s->profile && (pf->samples_no == 0 || s->profile->oid.len < pf->oid.len)) { free(s->profile, M_DUMMYNET); s->profile = NULL; } if (pf->samples_no == 0) continue; /* * new profile, possibly allocate memory * and copy data. */ if (s->profile == NULL) s->profile = malloc(pf->oid.len, M_DUMMYNET, M_NOWAIT | M_ZERO); if (s->profile == NULL) { D("no memory for profile %d", i); err = ENOMEM; break; } /* preserve larger length XXX double check */ olen = s->profile->oid.len; if (olen < pf->oid.len) olen = pf->oid.len; memcpy(s->profile, pf, pf->oid.len); s->profile->oid.len = olen; } DN_BH_WUNLOCK(); return err; } /* * Delete all objects: */ static void dummynet_flush(void) { /* delete all schedulers and related links/queues/flowsets */ dn_ht_scan(V_dn_cfg.schedhash, schk_delete_cb, (void *)(uintptr_t)DN_DELETE_FS); /* delete all remaining (unlinked) flowsets */ DX(4, "still %d unlinked fs", V_dn_cfg.fsk_count); dn_ht_free(V_dn_cfg.fshash, DNHT_REMOVE); fsk_detach_list(&V_dn_cfg.fsu, DN_DELETE_FS); /* Reinitialize system heap... */ heap_init(&V_dn_cfg.evheap, 16, offsetof(struct dn_id, id)); } /* * Main handler for configuration. We are guaranteed to be called * with an oid which is at least a dn_id. * - the first object is the command (config, delete, flush, ...) * - config_link must be issued after the corresponding config_sched * - parameters (DN_TXT) for an object must precede the object * processed on a config_sched. */ int do_config(void *p, int l) { struct dn_id o; union { struct dn_profile profile; struct dn_fs fs; struct dn_link link; struct dn_sch sched; } *dn; struct dn_id *arg; uintptr_t a; int err, err2, off; memcpy(&o, p, sizeof(o)); if (o.id != DN_API_VERSION) { D("invalid api version got %d need %d", o.id, DN_API_VERSION); return EINVAL; } arg = NULL; dn = NULL; for (off = 0; l >= sizeof(o); memcpy(&o, (char *)p + off, sizeof(o))) { if (o.len < sizeof(o) || l < o.len) { D("bad len o.len %d len %d", o.len, l); err = EINVAL; break; } l -= o.len; err = 0; switch (o.type) { default: D("cmd %d not implemented", o.type); break; #ifdef EMULATE_SYSCTL /* sysctl emulation. * if we recognize the command, jump to the correct * handler and return */ case DN_SYSCTL_SET: err = kesysctl_emu_set(p, l); return err; #endif case DN_CMD_CONFIG: /* simply a header */ break; case DN_CMD_DELETE: /* the argument is in the first uintptr_t after o */ if (o.len < sizeof(o) + sizeof(a)) { err = EINVAL; break; } memcpy(&a, (char *)p + off + sizeof(o), sizeof(a)); switch (o.subtype) { case DN_LINK: /* delete base and derived schedulers */ DN_BH_WLOCK(); err = delete_schk(a); err2 = delete_schk(a + DN_MAX_ID); DN_BH_WUNLOCK(); if (!err) err = err2; break; default: D("invalid delete type %d", o.subtype); err = EINVAL; break; case DN_FS: err = (a < 1 || a >= DN_MAX_ID) ? EINVAL : delete_fs(a, 0) ; break; } break; case DN_CMD_FLUSH: DN_BH_WLOCK(); dummynet_flush(); DN_BH_WUNLOCK(); break; case DN_TEXT: /* store argument of next block */ free(arg, M_TEMP); arg = malloc(o.len, M_TEMP, M_NOWAIT); if (arg == NULL) { err = ENOMEM; break; } memcpy(arg, (char *)p + off, o.len); break; case DN_LINK: if (dn == NULL) dn = malloc(sizeof(*dn), M_TEMP, M_NOWAIT); if (dn == NULL) { err = ENOMEM; break; } memcpy(&dn->link, (char *)p + off, sizeof(dn->link)); err = config_link(&dn->link, arg); break; case DN_PROFILE: if (dn == NULL) dn = malloc(sizeof(*dn), M_TEMP, M_NOWAIT); if (dn == NULL) { err = ENOMEM; break; } memcpy(&dn->profile, (char *)p + off, sizeof(dn->profile)); err = config_profile(&dn->profile, arg); break; case DN_SCH: if (dn == NULL) dn = malloc(sizeof(*dn), M_TEMP, M_NOWAIT); if (dn == NULL) { err = ENOMEM; break; } memcpy(&dn->sched, (char *)p + off, sizeof(dn->sched)); err = config_sched(&dn->sched, arg); break; case DN_FS: if (dn == NULL) dn = malloc(sizeof(*dn), M_TEMP, M_NOWAIT); if (dn == NULL) { err = ENOMEM; break; } memcpy(&dn->fs, (char *)p + off, sizeof(dn->fs)); err = (NULL == config_fs(&dn->fs, arg, 0)); break; } if (err != 0) break; off += o.len; } free(arg, M_TEMP); free(dn, M_TEMP); return err; } static int compute_space(struct dn_id *cmd, struct copy_args *a) { int x = 0, need = 0; int profile_size = sizeof(struct dn_profile) - ED_MAX_SAMPLES_NO*sizeof(int); /* NOTE about compute space: * NP = V_dn_cfg.schk_count * NSI = V_dn_cfg.si_count * NF = V_dn_cfg.fsk_count * NQ = V_dn_cfg.queue_count * - ipfw pipe show * (NP/2)*(dn_link + dn_sch + dn_id + dn_fs) only half scheduler * link, scheduler template, flowset * integrated in scheduler and header * for flowset list * (NSI)*(dn_flow) all scheduler instance (includes * the queue instance) * - ipfw sched show * (NP/2)*(dn_link + dn_sch + dn_id + dn_fs) only half scheduler * link, scheduler template, flowset * integrated in scheduler and header * for flowset list * (NSI * dn_flow) all scheduler instances * (NF * sizeof(uint_32)) space for flowset list linked to scheduler * (NQ * dn_queue) all queue [XXXfor now not listed] * - ipfw queue show * (NF * dn_fs) all flowset * (NQ * dn_queue) all queues */ switch (cmd->subtype) { default: return -1; /* XXX where do LINK and SCH differ ? */ /* 'ipfw sched show' could list all queues associated to * a scheduler. This feature for now is disabled */ case DN_LINK: /* pipe show */ x = DN_C_LINK | DN_C_SCH | DN_C_FLOW; need += V_dn_cfg.schk_count * (sizeof(struct dn_fs) + profile_size) / 2; need += V_dn_cfg.fsk_count * sizeof(uint32_t); break; case DN_SCH: /* sched show */ need += V_dn_cfg.schk_count * (sizeof(struct dn_fs) + profile_size) / 2; need += V_dn_cfg.fsk_count * sizeof(uint32_t); x = DN_C_SCH | DN_C_LINK | DN_C_FLOW; break; case DN_FS: /* queue show */ x = DN_C_FS | DN_C_QUEUE; break; case DN_GET_COMPAT: /* compatibility mode */ need = dn_compat_calc_size(); break; } a->flags = x; if (x & DN_C_SCH) { need += V_dn_cfg.schk_count * sizeof(struct dn_sch) / 2; /* NOT also, each fs might be attached to a sched */ need += V_dn_cfg.schk_count * sizeof(struct dn_id) / 2; } if (x & DN_C_FS) need += V_dn_cfg.fsk_count * sizeof(struct dn_fs); if (x & DN_C_LINK) { need += V_dn_cfg.schk_count * sizeof(struct dn_link) / 2; } /* * When exporting a queue to userland, only pass up the * struct dn_flow, which is the only visible part. */ if (x & DN_C_QUEUE) need += V_dn_cfg.queue_count * sizeof(struct dn_flow); if (x & DN_C_FLOW) need += V_dn_cfg.si_count * (sizeof(struct dn_flow)); return need; } /* * If compat != NULL dummynet_get is called in compatibility mode. * *compat will be the pointer to the buffer to pass to ipfw */ int dummynet_get(struct sockopt *sopt, void **compat) { int have, i, need, error; char *start = NULL, *buf; size_t sopt_valsize; struct dn_id *cmd; struct copy_args a; struct copy_range r; int l = sizeof(struct dn_id); bzero(&a, sizeof(a)); bzero(&r, sizeof(r)); /* save and restore original sopt_valsize around copyin */ sopt_valsize = sopt->sopt_valsize; cmd = &r.o; if (!compat) { /* copy at least an oid, and possibly a full object */ error = sooptcopyin(sopt, cmd, sizeof(r), sizeof(*cmd)); sopt->sopt_valsize = sopt_valsize; if (error) goto done; l = cmd->len; #ifdef EMULATE_SYSCTL /* sysctl emulation. */ if (cmd->type == DN_SYSCTL_GET) return kesysctl_emu_get(sopt); #endif if (l > sizeof(r)) { /* request larger than default, allocate buffer */ cmd = malloc(l, M_DUMMYNET, M_NOWAIT); if (cmd == NULL) { error = ENOMEM; goto done; } error = sooptcopyin(sopt, cmd, l, l); sopt->sopt_valsize = sopt_valsize; if (error) goto done; } } else { /* compatibility */ error = 0; cmd->type = DN_CMD_GET; cmd->len = sizeof(struct dn_id); cmd->subtype = DN_GET_COMPAT; // cmd->id = sopt_valsize; D("compatibility mode"); } #ifdef NEW_AQM /* get AQM params */ if(cmd->subtype == DN_AQM_PARAMS) { error = get_aqm_parms(sopt); goto done; /* get Scheduler params */ } else if (cmd->subtype == DN_SCH_PARAMS) { error = get_sched_parms(sopt); goto done; } #endif a.extra = (struct copy_range *)cmd; if (cmd->len == sizeof(*cmd)) { /* no range, create a default */ uint32_t *rp = (uint32_t *)(cmd + 1); cmd->len += 2* sizeof(uint32_t); rp[0] = 1; rp[1] = DN_MAX_ID - 1; if (cmd->subtype == DN_LINK) { rp[0] += DN_MAX_ID; rp[1] += DN_MAX_ID; } } /* Count space (under lock) and allocate (outside lock). * Exit with lock held if we manage to get enough buffer. * Try a few times then give up. */ for (have = 0, i = 0; i < 10; i++) { DN_BH_WLOCK(); need = compute_space(cmd, &a); /* if there is a range, ignore value from compute_space() */ if (l > sizeof(*cmd)) need = sopt_valsize - sizeof(*cmd); if (need < 0) { DN_BH_WUNLOCK(); error = EINVAL; goto done; } need += sizeof(*cmd); cmd->id = need; if (have >= need) break; DN_BH_WUNLOCK(); free(start, M_DUMMYNET); start = NULL; if (need > sopt_valsize) break; have = need; start = malloc(have, M_DUMMYNET, M_NOWAIT | M_ZERO); } if (start == NULL) { if (compat) { *compat = NULL; error = 1; // XXX } else { error = sooptcopyout(sopt, cmd, sizeof(*cmd)); } goto done; } ND("have %d:%d sched %d, %d:%d links %d, %d:%d flowsets %d, " "%d:%d si %d, %d:%d queues %d", V_dn_cfg.schk_count, sizeof(struct dn_sch), DN_SCH, V_dn_cfg.schk_count, sizeof(struct dn_link), DN_LINK, V_dn_cfg.fsk_count, sizeof(struct dn_fs), DN_FS, V_dn_cfg.si_count, sizeof(struct dn_flow), DN_SCH_I, V_dn_cfg.queue_count, sizeof(struct dn_queue), DN_QUEUE); sopt->sopt_valsize = sopt_valsize; a.type = cmd->subtype; if (compat == NULL) { memcpy(start, cmd, sizeof(*cmd)); ((struct dn_id*)(start))->len = sizeof(struct dn_id); buf = start + sizeof(*cmd); } else buf = start; a.start = &buf; a.end = start + have; /* start copying other objects */ if (compat) { a.type = DN_COMPAT_PIPE; dn_ht_scan(V_dn_cfg.schedhash, copy_data_helper_compat, &a); a.type = DN_COMPAT_QUEUE; dn_ht_scan(V_dn_cfg.fshash, copy_data_helper_compat, &a); } else if (a.type == DN_FS) { dn_ht_scan(V_dn_cfg.fshash, copy_data_helper, &a); } else { dn_ht_scan(V_dn_cfg.schedhash, copy_data_helper, &a); } DN_BH_WUNLOCK(); if (compat) { *compat = start; sopt->sopt_valsize = buf - start; /* free() is done by ip_dummynet_compat() */ start = NULL; //XXX hack } else { error = sooptcopyout(sopt, start, buf - start); } done: if (cmd != &r.o) free(cmd, M_DUMMYNET); free(start, M_DUMMYNET); return error; } /* Callback called on scheduler instance to delete it if idle */ static int drain_scheduler_cb(void *_si, void *arg) { struct dn_sch_inst *si = _si; if ((si->kflags & DN_ACTIVE) || si->dline.mq.head != NULL) return 0; if (si->sched->fp->flags & DN_MULTIQUEUE) { if (si->q_count == 0) return si_destroy(si, NULL); else return 0; } else { /* !DN_MULTIQUEUE */ if ((si+1)->ni.length == 0) return si_destroy(si, NULL); else return 0; } return 0; /* unreachable */ } /* Callback called on scheduler to check if it has instances */ static int drain_scheduler_sch_cb(void *_s, void *arg) { struct dn_schk *s = _s; if (s->sch.flags & DN_HAVE_MASK) { dn_ht_scan_bucket(s->siht, &s->drain_bucket, drain_scheduler_cb, NULL); s->drain_bucket++; } else { if (s->siht) { if (drain_scheduler_cb(s->siht, NULL) == DNHT_SCAN_DEL) s->siht = NULL; } } return 0; } /* Called every tick, try to delete a 'bucket' of scheduler */ void dn_drain_scheduler(void) { dn_ht_scan_bucket(V_dn_cfg.schedhash, &V_dn_cfg.drain_sch, drain_scheduler_sch_cb, NULL); V_dn_cfg.drain_sch++; } /* Callback called on queue to delete if it is idle */ static int drain_queue_cb(void *_q, void *arg) { struct dn_queue *q = _q; if (q->ni.length == 0) { dn_delete_queue(q, DN_DESTROY); return DNHT_SCAN_DEL; /* queue is deleted */ } return 0; /* queue isn't deleted */ } /* Callback called on flowset used to check if it has queues */ static int drain_queue_fs_cb(void *_fs, void *arg) { struct dn_fsk *fs = _fs; if (fs->fs.flags & DN_QHT_HASH) { /* Flowset has a hash table for queues */ dn_ht_scan_bucket(fs->qht, &fs->drain_bucket, drain_queue_cb, NULL); fs->drain_bucket++; } else { /* No hash table for this flowset, null the pointer * if the queue is deleted */ if (fs->qht) { if (drain_queue_cb(fs->qht, NULL) == DNHT_SCAN_DEL) fs->qht = NULL; } } return 0; } /* Called every tick, try to delete a 'bucket' of queue */ void dn_drain_queue(void) { /* scan a bucket of flowset */ dn_ht_scan_bucket(V_dn_cfg.fshash, &V_dn_cfg.drain_fs, drain_queue_fs_cb, NULL); V_dn_cfg.drain_fs++; } /* * Handler for the various dummynet socket options */ static int ip_dn_ctl(struct sockopt *sopt) { struct epoch_tracker et; void *p = NULL; int error, l; error = priv_check(sopt->sopt_td, PRIV_NETINET_DUMMYNET); if (error) return (error); /* Disallow sets in really-really secure mode. */ if (sopt->sopt_dir == SOPT_SET) { error = securelevel_ge(sopt->sopt_td->td_ucred, 3); if (error) return (error); } NET_EPOCH_ENTER(et); switch (sopt->sopt_name) { default : D("dummynet: unknown option %d", sopt->sopt_name); error = EINVAL; break; case IP_DUMMYNET_FLUSH: case IP_DUMMYNET_CONFIGURE: case IP_DUMMYNET_DEL: /* remove a pipe or queue */ case IP_DUMMYNET_GET: D("dummynet: compat option %d", sopt->sopt_name); error = ip_dummynet_compat(sopt); break; case IP_DUMMYNET3 : if (sopt->sopt_dir == SOPT_GET) { error = dummynet_get(sopt, NULL); break; } l = sopt->sopt_valsize; if (l < sizeof(struct dn_id) || l > 12000) { D("argument len %d invalid", l); break; } p = malloc(l, M_TEMP, M_NOWAIT); if (p == NULL) { error = ENOMEM; break; } error = sooptcopyin(sopt, p, l, l); if (error) break ; error = do_config(p, l); break; } free(p, M_TEMP); NET_EPOCH_EXIT(et); return error ; } static void ip_dn_vnet_init(void) { if (V_dn_cfg.init_done) return; V_dn_cfg.init_done = 1; /* Set defaults here. MSVC does not accept initializers, * and this is also useful for vimages */ /* queue limits */ V_dn_cfg.slot_limit = 100; /* Foot shooting limit for queues. */ V_dn_cfg.byte_limit = 1024 * 1024; V_dn_cfg.expire = 1; /* RED parameters */ V_dn_cfg.red_lookup_depth = 256; /* default lookup table depth */ V_dn_cfg.red_avg_pkt_size = 512; /* default medium packet size */ V_dn_cfg.red_max_pkt_size = 1500; /* default max packet size */ /* hash tables */ V_dn_cfg.max_hash_size = 65536; /* max in the hash tables */ V_dn_cfg.hash_size = 64; /* default hash size */ /* create hash tables for schedulers and flowsets. * In both we search by key and by pointer. */ V_dn_cfg.schedhash = dn_ht_init(NULL, V_dn_cfg.hash_size, offsetof(struct dn_schk, schk_next), schk_hash, schk_match, schk_new); V_dn_cfg.fshash = dn_ht_init(NULL, V_dn_cfg.hash_size, offsetof(struct dn_fsk, fsk_next), fsk_hash, fsk_match, fsk_new); /* bucket index to drain object */ V_dn_cfg.drain_fs = 0; V_dn_cfg.drain_sch = 0; heap_init(&V_dn_cfg.evheap, 16, offsetof(struct dn_id, id)); SLIST_INIT(&V_dn_cfg.fsu); DN_LOCK_INIT(); /* Initialize curr_time adjustment mechanics. */ getmicrouptime(&V_dn_cfg.prev_t); } static void ip_dn_vnet_destroy(void) { DN_BH_WLOCK(); dummynet_flush(); DN_BH_WUNLOCK(); dn_ht_free(V_dn_cfg.schedhash, 0); dn_ht_free(V_dn_cfg.fshash, 0); heap_free(&V_dn_cfg.evheap); DN_LOCK_DESTROY(); } static void ip_dn_init(void) { if (dn_tasks_started) return; mtx_init(&sched_mtx, "dn_sched", NULL, MTX_DEF); dn_tasks_started = 1; TASK_INIT(&dn_task, 0, dummynet_task, NULL); dn_tq = taskqueue_create_fast("dummynet", M_WAITOK, taskqueue_thread_enqueue, &dn_tq); taskqueue_start_threads(&dn_tq, 1, PI_NET, "dummynet"); CK_LIST_INIT(&schedlist); callout_init(&dn_timeout, 1); dn_reschedule(); } static void ip_dn_destroy(int last) { /* ensure no more callouts are started */ dn_gone = 1; /* check for last */ if (last) { ND("removing last instance\n"); ip_dn_ctl_ptr = NULL; ip_dn_io_ptr = NULL; } callout_drain(&dn_timeout); taskqueue_drain(dn_tq, &dn_task); taskqueue_free(dn_tq); } static int dummynet_modevent(module_t mod, int type, void *data) { if (type == MOD_LOAD) { if (ip_dn_io_ptr) { printf("DUMMYNET already loaded\n"); return EEXIST ; } ip_dn_init(); ip_dn_ctl_ptr = ip_dn_ctl; ip_dn_io_ptr = dummynet_io; return 0; } else if (type == MOD_UNLOAD) { ip_dn_destroy(1 /* last */); return 0; } else return EOPNOTSUPP; } /* modevent helpers for the modules */ static int load_dn_sched(struct dn_alg *d) { struct dn_alg *s; if (d == NULL) return 1; /* error */ ip_dn_init(); /* just in case, we need the lock */ /* Check that mandatory funcs exists */ if (d->enqueue == NULL || d->dequeue == NULL) { D("missing enqueue or dequeue for %s", d->name); return 1; } /* Search if scheduler already exists */ mtx_lock(&sched_mtx); CK_LIST_FOREACH(s, &schedlist, next) { if (strcmp(s->name, d->name) == 0) { D("%s already loaded", d->name); break; /* scheduler already exists */ } } if (s == NULL) CK_LIST_INSERT_HEAD(&schedlist, d, next); mtx_unlock(&sched_mtx); D("dn_sched %s %sloaded", d->name, s ? "not ":""); return s ? 1 : 0; } static int unload_dn_sched(struct dn_alg *s) { struct dn_alg *tmp, *r; int err = EINVAL; ND("called for %s", s->name); mtx_lock(&sched_mtx); CK_LIST_FOREACH_SAFE(r, &schedlist, next, tmp) { if (strcmp(s->name, r->name) != 0) continue; ND("ref_count = %d", r->ref_count); err = (r->ref_count != 0) ? EBUSY : 0; if (err == 0) CK_LIST_REMOVE(r, next); break; } mtx_unlock(&sched_mtx); NET_EPOCH_WAIT(); D("dn_sched %s %sunloaded", s->name, err ? "not ":""); return err; } int dn_sched_modevent(module_t mod, int cmd, void *arg) { struct dn_alg *sch = arg; if (cmd == MOD_LOAD) return load_dn_sched(sch); else if (cmd == MOD_UNLOAD) return unload_dn_sched(sch); else return EINVAL; } static moduledata_t dummynet_mod = { "dummynet", dummynet_modevent, NULL }; #define DN_SI_SUB SI_SUB_PROTO_FIREWALL #define DN_MODEV_ORD (SI_ORDER_ANY - 128) /* after ipfw */ DECLARE_MODULE(dummynet, dummynet_mod, DN_SI_SUB, DN_MODEV_ORD); MODULE_DEPEND(dummynet, ipfw, 3, 3, 3); MODULE_VERSION(dummynet, 3); /* * Starting up. Done in order after dummynet_modevent() has been called. * VNET_SYSINIT is also called for each existing vnet and each new vnet. */ VNET_SYSINIT(vnet_dn_init, DN_SI_SUB, DN_MODEV_ORD+2, ip_dn_vnet_init, NULL); /* * Shutdown handlers up shop. These are done in REVERSE ORDER, but still * after dummynet_modevent() has been called. Not called on reboot. * VNET_SYSUNINIT is also called for each exiting vnet as it exits. * or when the module is unloaded. */ VNET_SYSUNINIT(vnet_dn_uninit, DN_SI_SUB, DN_MODEV_ORD+2, ip_dn_vnet_destroy, NULL); #ifdef NEW_AQM /* modevent helpers for the AQM modules */ static int load_dn_aqm(struct dn_aqm *d) { struct dn_aqm *aqm=NULL; if (d == NULL) return 1; /* error */ ip_dn_init(); /* just in case, we need the lock */ /* Check that mandatory funcs exists */ if (d->enqueue == NULL || d->dequeue == NULL) { D("missing enqueue or dequeue for %s", d->name); return 1; } mtx_lock(&sched_mtx); /* Search if AQM already exists */ CK_LIST_FOREACH(aqm, &aqmlist, next) { if (strcmp(aqm->name, d->name) == 0) { D("%s already loaded", d->name); break; /* AQM already exists */ } } if (aqm == NULL) CK_LIST_INSERT_HEAD(&aqmlist, d, next); mtx_unlock(&sched_mtx); D("dn_aqm %s %sloaded", d->name, aqm ? "not ":""); return aqm ? 1 : 0; } /* Callback to clean up AQM status for queues connected to a flowset * and then deconfigure the flowset. * This function is called before an AQM module is unloaded */ static int fs_cleanup(void *_fs, void *arg) { struct dn_fsk *fs = _fs; uint32_t type = *(uint32_t *)arg; if (fs->aqmfp && fs->aqmfp->type == type) aqm_cleanup_deconfig_fs(fs); return 0; } static int unload_dn_aqm(struct dn_aqm *aqm) { struct dn_aqm *tmp, *r; int err = EINVAL; err = 0; ND("called for %s", aqm->name); /* clean up AQM status and deconfig flowset */ dn_ht_scan(V_dn_cfg.fshash, fs_cleanup, &aqm->type); mtx_lock(&sched_mtx); CK_LIST_FOREACH_SAFE(r, &aqmlist, next, tmp) { if (strcmp(aqm->name, r->name) != 0) continue; ND("ref_count = %d", r->ref_count); err = (r->ref_count != 0 || r->cfg_ref_count != 0) ? EBUSY : 0; if (err == 0) CK_LIST_REMOVE(r, next); break; } mtx_unlock(&sched_mtx); NET_EPOCH_WAIT(); D("%s %sunloaded", aqm->name, err ? "not ":""); if (err) D("ref_count=%d, cfg_ref_count=%d", r->ref_count, r->cfg_ref_count); return err; } int dn_aqm_modevent(module_t mod, int cmd, void *arg) { struct dn_aqm *aqm = arg; if (cmd == MOD_LOAD) return load_dn_aqm(aqm); else if (cmd == MOD_UNLOAD) return unload_dn_aqm(aqm); else return EINVAL; } #endif /* end of file */