/* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This code is referd to RFC 2367 */ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif /* INET6 */ #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include /* randomness */ #include #define FULLMASK 0xff #define _BITS(bytes) ((bytes) << 3) #define UINT32_80PCT 0xcccccccc /* * Note on SA reference counting: * - SAs that are not in DEAD state will have (total external reference + 1) * following value in reference count field. they cannot be freed and are * referenced from SA header. * - SAs that are in DEAD state will have (total external reference) * in reference count field. they are ready to be freed. reference from * SA header will be removed in key_delsav(), when the reference count * field hits 0 (= no external reference other than from SA header. */ VNET_DEFINE(u_int32_t, key_debug_level) = 0; VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000; VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100; VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0; /*interval to initialize randseed,1(m)*/ VNET_DEFINE_STATIC(u_int, key_int_random) = 60; /* interval to expire acquiring, 30(s)*/ VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30; /* counter for blocking SADB_ACQUIRE.*/ VNET_DEFINE_STATIC(int, key_blockacq_count) = 10; /* lifetime for blocking SADB_ACQUIRE.*/ VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20; /* preferred old sa rather than new sa.*/ VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1; #define V_key_spi_trycnt VNET(key_spi_trycnt) #define V_key_spi_minval VNET(key_spi_minval) #define V_key_spi_maxval VNET(key_spi_maxval) #define V_policy_id VNET(policy_id) #define V_key_int_random VNET(key_int_random) #define V_key_larval_lifetime VNET(key_larval_lifetime) #define V_key_blockacq_count VNET(key_blockacq_count) #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) #define V_key_preferred_oldsa VNET(key_preferred_oldsa) VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0; #define V_acq_seq VNET(acq_seq) VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0; #define V_sp_genid VNET(sp_genid) /* SPD */ TAILQ_HEAD(secpolicy_queue, secpolicy); LIST_HEAD(secpolicy_list, secpolicy); VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]); VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]); static struct rmlock sptree_lock; #define V_sptree VNET(sptree) #define V_sptree_ifnet VNET(sptree_ifnet) #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) #define SPTREE_WLOCK() rm_wlock(&sptree_lock) #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) /* Hash table for lookup SP using unique id */ VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl); VNET_DEFINE_STATIC(u_long, sphash_mask); #define V_sphashtbl VNET(sphashtbl) #define V_sphash_mask VNET(sphash_mask) #define SPHASH_NHASH_LOG2 7 #define SPHASH_NHASH (1 << SPHASH_NHASH_LOG2) #define SPHASH_HASHVAL(id) (key_u32hash(id) & V_sphash_mask) #define SPHASH_HASH(id) &V_sphashtbl[SPHASH_HASHVAL(id)] /* SPD cache */ struct spdcache_entry { struct secpolicyindex spidx; /* secpolicyindex */ struct secpolicy *sp; /* cached policy to be used */ LIST_ENTRY(spdcache_entry) chain; }; LIST_HEAD(spdcache_entry_list, spdcache_entry); #define SPDCACHE_MAX_ENTRIES_PER_HASH 8 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0; #define V_key_spdcache_maxentries VNET(key_spdcache_maxentries) VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32; #define V_key_spdcache_threshold VNET(key_spdcache_threshold) VNET_DEFINE_STATIC(unsigned long, spd_size) = 0; #define V_spd_size VNET(spd_size) #define SPDCACHE_ENABLED() (V_key_spdcache_maxentries != 0) #define SPDCACHE_ACTIVE() \ (SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold) VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl); VNET_DEFINE_STATIC(u_long, spdcachehash_mask); #define V_spdcachehashtbl VNET(spdcachehashtbl) #define V_spdcachehash_mask VNET(spdcachehash_mask) #define SPDCACHE_HASHVAL(idx) \ (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) & \ V_spdcachehash_mask) /* Each cache line is protected by a mutex */ VNET_DEFINE_STATIC(struct mtx *, spdcache_lock); #define V_spdcache_lock VNET(spdcache_lock) #define SPDCACHE_LOCK_INIT(a) \ mtx_init(&V_spdcache_lock[a], "spdcache", \ "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK) #define SPDCACHE_LOCK_DESTROY(a) mtx_destroy(&V_spdcache_lock[a]) #define SPDCACHE_LOCK(a) mtx_lock(&V_spdcache_lock[a]); #define SPDCACHE_UNLOCK(a) mtx_unlock(&V_spdcache_lock[a]); static struct sx spi_alloc_lock; #define SPI_ALLOC_LOCK_INIT() sx_init(&spi_alloc_lock, "spialloc") #define SPI_ALLOC_LOCK_DESTROY() sx_destroy(&spi_alloc_lock) #define SPI_ALLOC_LOCK() sx_xlock(&spi_alloc_lock) #define SPI_ALLOC_UNLOCK() sx_unlock(&spi_alloc_lock) #define SPI_ALLOC_LOCK_ASSERT() sx_assert(&spi_alloc_lock, SA_XLOCKED) /* SAD */ TAILQ_HEAD(secashead_queue, secashead); LIST_HEAD(secashead_list, secashead); VNET_DEFINE_STATIC(struct secashead_queue, sahtree); static struct rmlock sahtree_lock; #define V_sahtree VNET(sahtree) #define SAHTREE_LOCK_INIT() rm_init(&sahtree_lock, "sahtree") #define SAHTREE_LOCK_DESTROY() rm_destroy(&sahtree_lock) #define SAHTREE_RLOCK_TRACKER struct rm_priotracker sahtree_tracker #define SAHTREE_RLOCK() rm_rlock(&sahtree_lock, &sahtree_tracker) #define SAHTREE_RUNLOCK() rm_runlock(&sahtree_lock, &sahtree_tracker) #define SAHTREE_RLOCK_ASSERT() rm_assert(&sahtree_lock, RA_RLOCKED) #define SAHTREE_WLOCK() rm_wlock(&sahtree_lock) #define SAHTREE_WUNLOCK() rm_wunlock(&sahtree_lock) #define SAHTREE_WLOCK_ASSERT() rm_assert(&sahtree_lock, RA_WLOCKED) #define SAHTREE_UNLOCK_ASSERT() rm_assert(&sahtree_lock, RA_UNLOCKED) /* Hash table for lookup in SAD using SA addresses */ VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl); VNET_DEFINE_STATIC(u_long, sahaddrhash_mask); #define V_sahaddrhashtbl VNET(sahaddrhashtbl) #define V_sahaddrhash_mask VNET(sahaddrhash_mask) #define SAHHASH_NHASH_LOG2 7 #define SAHHASH_NHASH (1 << SAHHASH_NHASH_LOG2) #define SAHADDRHASH_HASHVAL(idx) \ (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ V_sahaddrhash_mask) #define SAHADDRHASH_HASH(saidx) \ &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)] /* Hash table for lookup in SAD using SPI */ LIST_HEAD(secasvar_list, secasvar); VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl); VNET_DEFINE_STATIC(u_long, savhash_mask); #define V_savhashtbl VNET(savhashtbl) #define V_savhash_mask VNET(savhash_mask) #define SAVHASH_NHASH_LOG2 7 #define SAVHASH_NHASH (1 << SAVHASH_NHASH_LOG2) #define SAVHASH_HASHVAL(spi) (key_u32hash(spi) & V_savhash_mask) #define SAVHASH_HASH(spi) &V_savhashtbl[SAVHASH_HASHVAL(spi)] static uint32_t key_addrprotohash(const union sockaddr_union *src, const union sockaddr_union *dst, const uint8_t *proto) { uint32_t hval; hval = fnv_32_buf(proto, sizeof(*proto), FNV1_32_INIT); switch (dst->sa.sa_family) { #ifdef INET case AF_INET: hval = fnv_32_buf(&src->sin.sin_addr, sizeof(in_addr_t), hval); hval = fnv_32_buf(&dst->sin.sin_addr, sizeof(in_addr_t), hval); break; #endif #ifdef INET6 case AF_INET6: hval = fnv_32_buf(&src->sin6.sin6_addr, sizeof(struct in6_addr), hval); hval = fnv_32_buf(&dst->sin6.sin6_addr, sizeof(struct in6_addr), hval); break; #endif default: hval = 0; ipseclog((LOG_DEBUG, "%s: unknown address family %d\n", __func__, dst->sa.sa_family)); } return (hval); } static uint32_t key_u32hash(uint32_t val) { return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT)); } /* registed list */ VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); #define V_regtree VNET(regtree) static struct mtx regtree_lock; #define REGTREE_LOCK_INIT() \ mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) #define REGTREE_LOCK() mtx_lock(®tree_lock) #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) /* Acquiring list */ LIST_HEAD(secacq_list, secacq); VNET_DEFINE_STATIC(struct secacq_list, acqtree); #define V_acqtree VNET(acqtree) static struct mtx acq_lock; #define ACQ_LOCK_INIT() \ mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF) #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) #define ACQ_LOCK() mtx_lock(&acq_lock) #define ACQ_UNLOCK() mtx_unlock(&acq_lock) #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) /* Hash table for lookup in ACQ list using SA addresses */ VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl); VNET_DEFINE_STATIC(u_long, acqaddrhash_mask); #define V_acqaddrhashtbl VNET(acqaddrhashtbl) #define V_acqaddrhash_mask VNET(acqaddrhash_mask) /* Hash table for lookup in ACQ list using SEQ number */ VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl); VNET_DEFINE_STATIC(u_long, acqseqhash_mask); #define V_acqseqhashtbl VNET(acqseqhashtbl) #define V_acqseqhash_mask VNET(acqseqhash_mask) #define ACQHASH_NHASH_LOG2 7 #define ACQHASH_NHASH (1 << ACQHASH_NHASH_LOG2) #define ACQADDRHASH_HASHVAL(idx) \ (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ V_acqaddrhash_mask) #define ACQSEQHASH_HASHVAL(seq) \ (key_u32hash(seq) & V_acqseqhash_mask) #define ACQADDRHASH_HASH(saidx) \ &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)] #define ACQSEQHASH_HASH(seq) \ &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)] /* SP acquiring list */ VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree); #define V_spacqtree VNET(spacqtree) static struct mtx spacq_lock; #define SPACQ_LOCK_INIT() \ mtx_init(&spacq_lock, "spacqtree", \ "fast ipsec security policy acquire list", MTX_DEF) #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) #define SPACQ_LOCK() mtx_lock(&spacq_lock) #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) static const int minsize[] = { [SADB_EXT_RESERVED] = sizeof(struct sadb_msg), [SADB_EXT_SA] = sizeof(struct sadb_sa), [SADB_EXT_LIFETIME_CURRENT] = sizeof(struct sadb_lifetime), [SADB_EXT_LIFETIME_HARD] = sizeof(struct sadb_lifetime), [SADB_EXT_LIFETIME_SOFT] = sizeof(struct sadb_lifetime), [SADB_EXT_ADDRESS_SRC] = sizeof(struct sadb_address), [SADB_EXT_ADDRESS_DST] = sizeof(struct sadb_address), [SADB_EXT_ADDRESS_PROXY] = sizeof(struct sadb_address), [SADB_EXT_KEY_AUTH] = sizeof(struct sadb_key), [SADB_EXT_KEY_ENCRYPT] = sizeof(struct sadb_key), [SADB_EXT_IDENTITY_SRC] = sizeof(struct sadb_ident), [SADB_EXT_IDENTITY_DST] = sizeof(struct sadb_ident), [SADB_EXT_SENSITIVITY] = sizeof(struct sadb_sens), [SADB_EXT_PROPOSAL] = sizeof(struct sadb_prop), [SADB_EXT_SUPPORTED_AUTH] = sizeof(struct sadb_supported), [SADB_EXT_SUPPORTED_ENCRYPT] = sizeof(struct sadb_supported), [SADB_EXT_SPIRANGE] = sizeof(struct sadb_spirange), [SADB_X_EXT_KMPRIVATE] = 0, [SADB_X_EXT_POLICY] = sizeof(struct sadb_x_policy), [SADB_X_EXT_SA2] = sizeof(struct sadb_x_sa2), [SADB_X_EXT_NAT_T_TYPE] = sizeof(struct sadb_x_nat_t_type), [SADB_X_EXT_NAT_T_SPORT] = sizeof(struct sadb_x_nat_t_port), [SADB_X_EXT_NAT_T_DPORT] = sizeof(struct sadb_x_nat_t_port), [SADB_X_EXT_NAT_T_OAI] = sizeof(struct sadb_address), [SADB_X_EXT_NAT_T_OAR] = sizeof(struct sadb_address), [SADB_X_EXT_NAT_T_FRAG] = sizeof(struct sadb_x_nat_t_frag), [SADB_X_EXT_SA_REPLAY] = sizeof(struct sadb_x_sa_replay), [SADB_X_EXT_NEW_ADDRESS_SRC] = sizeof(struct sadb_address), [SADB_X_EXT_NEW_ADDRESS_DST] = sizeof(struct sadb_address), }; _Static_assert(nitems(minsize) == SADB_EXT_MAX + 1, "minsize size mismatch"); static const int maxsize[] = { [SADB_EXT_RESERVED] = sizeof(struct sadb_msg), [SADB_EXT_SA] = sizeof(struct sadb_sa), [SADB_EXT_LIFETIME_CURRENT] = sizeof(struct sadb_lifetime), [SADB_EXT_LIFETIME_HARD] = sizeof(struct sadb_lifetime), [SADB_EXT_LIFETIME_SOFT] = sizeof(struct sadb_lifetime), [SADB_EXT_ADDRESS_SRC] = 0, [SADB_EXT_ADDRESS_DST] = 0, [SADB_EXT_ADDRESS_PROXY] = 0, [SADB_EXT_KEY_AUTH] = 0, [SADB_EXT_KEY_ENCRYPT] = 0, [SADB_EXT_IDENTITY_SRC] = 0, [SADB_EXT_IDENTITY_DST] = 0, [SADB_EXT_SENSITIVITY] = 0, [SADB_EXT_PROPOSAL] = 0, [SADB_EXT_SUPPORTED_AUTH] = 0, [SADB_EXT_SUPPORTED_ENCRYPT] = 0, [SADB_EXT_SPIRANGE] = sizeof(struct sadb_spirange), [SADB_X_EXT_KMPRIVATE] = 0, [SADB_X_EXT_POLICY] = 0, [SADB_X_EXT_SA2] = sizeof(struct sadb_x_sa2), [SADB_X_EXT_NAT_T_TYPE] = sizeof(struct sadb_x_nat_t_type), [SADB_X_EXT_NAT_T_SPORT] = sizeof(struct sadb_x_nat_t_port), [SADB_X_EXT_NAT_T_DPORT] = sizeof(struct sadb_x_nat_t_port), [SADB_X_EXT_NAT_T_OAI] = 0, [SADB_X_EXT_NAT_T_OAR] = 0, [SADB_X_EXT_NAT_T_FRAG] = sizeof(struct sadb_x_nat_t_frag), [SADB_X_EXT_SA_REPLAY] = sizeof(struct sadb_x_sa_replay), [SADB_X_EXT_NEW_ADDRESS_SRC] = 0, [SADB_X_EXT_NEW_ADDRESS_DST] = 0, }; _Static_assert(nitems(maxsize) == SADB_EXT_MAX + 1, "maxsize size mismatch"); /* * Internal values for SA flags: * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses, * thus we will not free the most of SA content in key_delsav(). */ #define SADB_X_EXT_F_CLONED 0x80000000 #define SADB_CHECKLEN(_mhp, _ext) \ ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \ ((_mhp)->extlen[(_ext)] > maxsize[(_ext)]))) #define SADB_CHECKHDR(_mhp, _ext) ((_mhp)->ext[(_ext)] == NULL) VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256; VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0; VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128; #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) #define V_ipsec_esp_auth VNET(ipsec_esp_auth) #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) #ifdef IPSEC_DEBUG VNET_DEFINE(int, ipsec_debug) = 1; #else VNET_DEFINE(int, ipsec_debug) = 0; #endif #ifdef INET SYSCTL_DECL(_net_inet_ipsec); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, "Enable IPsec debugging output when set."); #endif #ifdef INET6 SYSCTL_DECL(_net_inet6_ipsec6); SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, "Enable IPsec debugging output when set."); #endif SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); /* max count of trial for the decision of spi value */ SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); /* minimum spi value to allocate automatically. */ SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); /* maximun spi value to allocate automatically. */ SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); /* interval to initialize randseed */ SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); /* lifetime for larval SA */ SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); /* counter for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); /* ESP auth */ SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); /* minimum ESP key length */ SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); /* minimum AH key length */ SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); /* perfered old SA rather than new SA */ SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); SYSCTL_NODE(_net_key, OID_AUTO, spdcache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "SPD cache"); SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries, CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0, "Maximum number of entries in the SPD cache" " (power of 2, 0 to disable)"); SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold, CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0, "Number of SPs that make the SPD cache active"); #define __LIST_CHAINED(elm) \ (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache"); static uma_zone_t __read_mostly ipsec_key_lft_zone; /* * set parameters into secpolicyindex buffer. * Must allocate secpolicyindex buffer passed to this function. */ #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ do { \ bzero((idx), sizeof(struct secpolicyindex)); \ (idx)->dir = (_dir); \ (idx)->prefs = (ps); \ (idx)->prefd = (pd); \ (idx)->ul_proto = (ulp); \ bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ } while (0) /* * set parameters into secasindex buffer. * Must allocate secasindex buffer before calling this function. */ #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ do { \ bzero((idx), sizeof(struct secasindex)); \ (idx)->proto = (p); \ (idx)->mode = (m); \ (idx)->reqid = (r); \ bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ key_porttosaddr(&(idx)->src.sa, 0); \ key_porttosaddr(&(idx)->dst.sa, 0); \ } while (0) /* key statistics */ struct _keystat { u_long getspi_count; /* the avarage of count to try to get new SPI */ } keystat; struct sadb_msghdr { struct sadb_msg *msg; struct sadb_ext *ext[SADB_EXT_MAX + 1]; int extoff[SADB_EXT_MAX + 1]; int extlen[SADB_EXT_MAX + 1]; }; static const struct supported_ealgs { int sadb_alg; const struct enc_xform *xform; } supported_ealgs[] = { { SADB_X_EALG_AES, &enc_xform_aes_cbc }, { SADB_EALG_NULL, &enc_xform_null }, { SADB_X_EALG_AESCTR, &enc_xform_aes_icm }, { SADB_X_EALG_AESGCM16, &enc_xform_aes_nist_gcm }, { SADB_X_EALG_AESGMAC, &enc_xform_aes_nist_gmac }, { SADB_X_EALG_CHACHA20POLY1305, &enc_xform_chacha20_poly1305 }, }; static const struct supported_aalgs { int sadb_alg; const struct auth_hash *xform; } supported_aalgs[] = { { SADB_X_AALG_NULL, &auth_hash_null }, { SADB_AALG_SHA1HMAC, &auth_hash_hmac_sha1 }, { SADB_X_AALG_SHA2_256, &auth_hash_hmac_sha2_256 }, { SADB_X_AALG_SHA2_384, &auth_hash_hmac_sha2_384 }, { SADB_X_AALG_SHA2_512, &auth_hash_hmac_sha2_512 }, { SADB_X_AALG_AES128GMAC, &auth_hash_nist_gmac_aes_128 }, { SADB_X_AALG_AES192GMAC, &auth_hash_nist_gmac_aes_192 }, { SADB_X_AALG_AES256GMAC, &auth_hash_nist_gmac_aes_256 }, { SADB_X_AALG_CHACHA20POLY1305, &auth_hash_poly1305 }, }; static const struct supported_calgs { int sadb_alg; const struct comp_algo *xform; } supported_calgs[] = { { SADB_X_CALG_DEFLATE, &comp_algo_deflate }, }; #ifndef IPSEC_DEBUG2 static struct callout key_timer; #endif static void key_unlink(struct secpolicy *); static void key_detach(struct secpolicy *); static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir); static struct secpolicy *key_getsp(struct secpolicyindex *); static struct secpolicy *key_getspbyid(u_int32_t); static struct mbuf *key_gather_mbuf(struct mbuf *, const struct sadb_msghdr *, int, int, ...); static int key_spdadd(struct socket *, struct mbuf *, const struct sadb_msghdr *); static uint32_t key_getnewspid(void); static int key_spddelete(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spddelete2(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spdget(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spdflush(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spddump(struct socket *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf *key_setdumpsp(struct secpolicy *, u_int8_t, u_int32_t, u_int32_t); static struct mbuf *key_sp2mbuf(struct secpolicy *); static size_t key_getspreqmsglen(struct secpolicy *); static int key_spdexpire(struct secpolicy *); static struct secashead *key_newsah(struct secasindex *); static void key_freesah(struct secashead **); static void key_delsah(struct secashead *); static struct secasvar *key_newsav(const struct sadb_msghdr *, struct secasindex *, uint32_t, int *); static void key_delsav(struct secasvar *); static void key_unlinksav(struct secasvar *); static struct secashead *key_getsah(struct secasindex *); static int key_checkspidup(uint32_t); static struct secasvar *key_getsavbyspi(uint32_t); static int key_setnatt(struct secasvar *, const struct sadb_msghdr *); static int key_setsaval(struct secasvar *, const struct sadb_msghdr *); static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *); static int key_updateaddresses(struct socket *, struct mbuf *, const struct sadb_msghdr *, struct secasvar *, struct secasindex *); static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, u_int8_t, u_int32_t, u_int32_t); static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, u_int32_t, pid_t, u_int16_t); static struct mbuf *key_setsadbsa(struct secasvar *); static struct mbuf *key_setsadbaddr(u_int16_t, const struct sockaddr *, u_int8_t, u_int16_t); static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); static struct mbuf *key_setsadbxtype(u_int16_t); static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); static struct mbuf *key_setsadbxsareplay(u_int32_t); static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, u_int32_t, u_int32_t); static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t, struct malloc_type *); static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *); /* flags for key_cmpsaidx() */ #define CMP_HEAD 1 /* protocol, addresses. */ #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ #define CMP_REQID 3 /* additionally HEAD, reaid. */ #define CMP_EXACTLY 4 /* all elements. */ static int key_cmpsaidx(const struct secasindex *, const struct secasindex *, int); static int key_cmpspidx_exactly(struct secpolicyindex *, struct secpolicyindex *); static int key_cmpspidx_withmask(struct secpolicyindex *, struct secpolicyindex *); static int key_bbcmp(const void *, const void *, u_int); static uint8_t key_satype2proto(uint8_t); static uint8_t key_proto2satype(uint8_t); static int key_getspi(struct socket *, struct mbuf *, const struct sadb_msghdr *); static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); static int key_update(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_add(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_setident(struct secashead *, const struct sadb_msghdr *); static struct mbuf *key_getmsgbuf_x1(struct mbuf *, const struct sadb_msghdr *); static int key_delete(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_delete_all(struct socket *, struct mbuf *, const struct sadb_msghdr *, struct secasindex *); static int key_get(struct socket *, struct mbuf *, const struct sadb_msghdr *); static void key_getcomb_setlifetime(struct sadb_comb *); static struct mbuf *key_getcomb_ealg(void); static struct mbuf *key_getcomb_ah(void); static struct mbuf *key_getcomb_ipcomp(void); static struct mbuf *key_getprop(const struct secasindex *); static int key_acquire(const struct secasindex *, struct secpolicy *); static uint32_t key_newacq(const struct secasindex *, int *); static uint32_t key_getacq(const struct secasindex *, int *); static int key_acqdone(const struct secasindex *, uint32_t); static int key_acqreset(uint32_t); static struct secspacq *key_newspacq(struct secpolicyindex *); static struct secspacq *key_getspacq(struct secpolicyindex *); static int key_acquire2(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_register(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_expire(struct secasvar *, int); static int key_flush(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_dump(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_promisc(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_senderror(struct socket *, struct mbuf *, int); static int key_validate_ext(const struct sadb_ext *, int); static int key_align(struct mbuf *, struct sadb_msghdr *); static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t); static struct mbuf *key_setkey(struct seckey *, uint16_t); static void spdcache_init(void); static void spdcache_clear(void); static struct spdcache_entry *spdcache_entry_alloc( const struct secpolicyindex *spidx, struct secpolicy *policy); static void spdcache_entry_free(struct spdcache_entry *entry); #ifdef VIMAGE static void spdcache_destroy(void); #endif #define DBG_IPSEC_INITREF(t, p) do { \ refcount_init(&(p)->refcnt, 1); \ KEYDBG(KEY_STAMP, \ printf("%s: Initialize refcnt %s(%p) = %u\n", \ __func__, #t, (p), (p)->refcnt)); \ } while (0) #define DBG_IPSEC_ADDREF(t, p) do { \ refcount_acquire(&(p)->refcnt); \ KEYDBG(KEY_STAMP, \ printf("%s: Acquire refcnt %s(%p) -> %u\n", \ __func__, #t, (p), (p)->refcnt)); \ } while (0) #define DBG_IPSEC_DELREF(t, p) do { \ KEYDBG(KEY_STAMP, \ printf("%s: Release refcnt %s(%p) -> %u\n", \ __func__, #t, (p), (p)->refcnt - 1)); \ refcount_release(&(p)->refcnt); \ } while (0) #define IPSEC_INITREF(t, p) refcount_init(&(p)->refcnt, 1) #define IPSEC_ADDREF(t, p) refcount_acquire(&(p)->refcnt) #define IPSEC_DELREF(t, p) refcount_release(&(p)->refcnt) #define SP_INITREF(p) IPSEC_INITREF(SP, p) #define SP_ADDREF(p) IPSEC_ADDREF(SP, p) #define SP_DELREF(p) IPSEC_DELREF(SP, p) #define SAH_INITREF(p) IPSEC_INITREF(SAH, p) #define SAH_ADDREF(p) IPSEC_ADDREF(SAH, p) #define SAH_DELREF(p) IPSEC_DELREF(SAH, p) #define SAV_INITREF(p) IPSEC_INITREF(SAV, p) #define SAV_ADDREF(p) IPSEC_ADDREF(SAV, p) #define SAV_DELREF(p) IPSEC_DELREF(SAV, p) /* * Update the refcnt while holding the SPTREE lock. */ void key_addref(struct secpolicy *sp) { SP_ADDREF(sp); } /* * Return 0 when there are known to be no SP's for the specified * direction. Otherwise return 1. This is used by IPsec code * to optimize performance. */ int key_havesp(u_int dir) { IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); return (TAILQ_FIRST(&V_sptree[dir]) != NULL); } int key_havesp_any(void) { return (V_spd_size != 0); } /* * Allocate a single mbuf with a buffer of the desired length. The buffer is * pre-zeroed to help ensure that uninitialized pad bytes are not leaked. */ static struct mbuf * key_mget(u_int len) { struct mbuf *m; KASSERT(len <= MCLBYTES, ("%s: invalid buffer length %u", __func__, len)); m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (NULL); memset(mtod(m, void *), 0, len); return (m); } /* %%% IPsec policy management */ /* * Return current SPDB generation. */ uint32_t key_getspgen(void) { return (V_sp_genid); } void key_bumpspgen(void) { V_sp_genid++; } static int key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst) { /* family match */ if (src->sa_family != dst->sa_family) return (EINVAL); /* sa_len match */ if (src->sa_len != dst->sa_len) return (EINVAL); switch (src->sa_family) { #ifdef INET case AF_INET: if (src->sa_len != sizeof(struct sockaddr_in)) return (EINVAL); break; #endif #ifdef INET6 case AF_INET6: if (src->sa_len != sizeof(struct sockaddr_in6)) return (EINVAL); break; #endif default: return (EAFNOSUPPORT); } return (0); } struct secpolicy * key_do_allocsp(struct secpolicyindex *spidx, u_int dir) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; IPSEC_ASSERT(spidx != NULL, ("null spidx")); IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); SPTREE_RLOCK(); TAILQ_FOREACH(sp, &V_sptree[dir], chain) { if (key_cmpspidx_withmask(&sp->spidx, spidx)) { SP_ADDREF(sp); break; } } SPTREE_RUNLOCK(); return (sp); } /* * allocating a SP for OUTBOUND or INBOUND packet. * Must call key_freesp() later. * OUT: NULL: not found * others: found and return the pointer. */ struct secpolicy * key_allocsp(struct secpolicyindex *spidx, u_int dir) { struct spdcache_entry *entry, *lastentry, *tmpentry; struct secpolicy *sp; uint32_t hashv; time_t ts; int nb_entries; if (!SPDCACHE_ACTIVE()) { sp = key_do_allocsp(spidx, dir); goto out; } hashv = SPDCACHE_HASHVAL(spidx); SPDCACHE_LOCK(hashv); nb_entries = 0; LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) { /* Removed outdated entries */ if (entry->sp != NULL && entry->sp->state == IPSEC_SPSTATE_DEAD) { LIST_REMOVE(entry, chain); spdcache_entry_free(entry); continue; } nb_entries++; if (!key_cmpspidx_exactly(&entry->spidx, spidx)) { lastentry = entry; continue; } sp = entry->sp; if (entry->sp != NULL) SP_ADDREF(sp); /* IPSECSTAT_INC(ips_spdcache_hits); */ SPDCACHE_UNLOCK(hashv); goto out; } /* IPSECSTAT_INC(ips_spdcache_misses); */ sp = key_do_allocsp(spidx, dir); entry = spdcache_entry_alloc(spidx, sp); if (entry != NULL) { if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) { LIST_REMOVE(lastentry, chain); spdcache_entry_free(lastentry); } LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain); } SPDCACHE_UNLOCK(hashv); out: if (sp != NULL) { /* found a SPD entry */ ts = time_second; if (__predict_false(sp->lastused != ts)) sp->lastused = ts; KEYDBG(IPSEC_STAMP, printf("%s: return SP(%p)\n", __func__, sp)); KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); } else { KEYDBG(IPSEC_DATA, printf("%s: lookup failed for ", __func__); kdebug_secpolicyindex(spidx, NULL)); } return (sp); } /* * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed * or should be signed by MD5 signature. * We don't use key_allocsa() for such lookups, because we don't know SPI. * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with * signed packet. We use SADB only as storage for password. * OUT: positive: corresponding SA for given saidx found. * NULL: SA not found */ struct secasvar * key_allocsa_tcpmd5(struct secasindex *saidx) { SAHTREE_RLOCK_TRACKER; struct secashead *sah; struct secasvar *sav; IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("unexpected security protocol %u", saidx->proto)); IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5, ("unexpected mode %u", saidx->mode)); SAHTREE_RLOCK(); LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { KEYDBG(IPSEC_DUMP, printf("%s: checking SAH\n", __func__); kdebug_secash(sah, " ")); if (sah->saidx.proto != IPPROTO_TCP) continue; if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) break; } if (sah != NULL) { if (V_key_preferred_oldsa) sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); else sav = TAILQ_FIRST(&sah->savtree_alive); if (sav != NULL) SAV_ADDREF(sav); } else sav = NULL; SAHTREE_RUNLOCK(); if (sav != NULL) { KEYDBG(IPSEC_STAMP, printf("%s: return SA(%p)\n", __func__, sav)); KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); } else { KEYDBG(IPSEC_STAMP, printf("%s: SA not found\n", __func__)); KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); } return (sav); } /* * Allocating an SA entry for an *OUTBOUND* packet. * OUT: positive: corresponding SA for given saidx found. * NULL: SA not found, but will be acquired, check *error * for acquiring status. */ struct secasvar * key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx, int *error) { SAHTREE_RLOCK_TRACKER; struct secashead *sah; struct secasvar *sav; IPSEC_ASSERT(saidx != NULL, ("null saidx")); IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || saidx->mode == IPSEC_MODE_TUNNEL, ("unexpected policy %u", saidx->mode)); /* * We check new SA in the IPsec request because a different * SA may be involved each time this request is checked, either * because new SAs are being configured, or this request is * associated with an unconnected datagram socket, or this request * is associated with a system default policy. */ SAHTREE_RLOCK(); LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { KEYDBG(IPSEC_DUMP, printf("%s: checking SAH\n", __func__); kdebug_secash(sah, " ")); if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) break; } if (sah != NULL) { /* * Allocate the oldest SA available according to * draft-jenkins-ipsec-rekeying-03. */ if (V_key_preferred_oldsa) sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); else sav = TAILQ_FIRST(&sah->savtree_alive); if (sav != NULL) SAV_ADDREF(sav); } else sav = NULL; SAHTREE_RUNLOCK(); if (sav != NULL) { *error = 0; KEYDBG(IPSEC_STAMP, printf("%s: chosen SA(%p) for SP(%p)\n", __func__, sav, sp)); KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); return (sav); /* return referenced SA */ } /* there is no SA */ *error = key_acquire(saidx, sp); if ((*error) != 0) ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire()\n", __func__, *error)); KEYDBG(IPSEC_STAMP, printf("%s: acquire SA for SP(%p), error %d\n", __func__, sp, *error)); KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); return (NULL); } /* * allocating a usable SA entry for a *INBOUND* packet. * Must call key_freesav() later. * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). * NULL: not found, or error occurred. * * According to RFC 2401 SA is uniquely identified by a triple SPI, * destination address, and security protocol. But according to RFC 4301, * SPI by itself suffices to specify an SA. * * Note that, however, we do need to keep source address in IPsec SA. * IKE specification and PF_KEY specification do assume that we * keep source address in IPsec SA. We see a tricky situation here. */ struct secasvar * key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi) { SAHTREE_RLOCK_TRACKER; struct secasvar *sav; IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH || proto == IPPROTO_IPCOMP, ("unexpected security protocol %u", proto)); SAHTREE_RLOCK(); LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { if (sav->spi == spi) break; } /* * We use single SPI namespace for all protocols, so it is * impossible to have SPI duplicates in the SAVHASH. */ if (sav != NULL) { if (sav->state != SADB_SASTATE_LARVAL && sav->sah->saidx.proto == proto && key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) == 0) SAV_ADDREF(sav); else sav = NULL; } SAHTREE_RUNLOCK(); if (sav == NULL) { KEYDBG(IPSEC_STAMP, char buf[IPSEC_ADDRSTRLEN]; printf("%s: SA not found for spi %u proto %u dst %s\n", __func__, ntohl(spi), proto, ipsec_address(dst, buf, sizeof(buf)))); } else { KEYDBG(IPSEC_STAMP, printf("%s: return SA(%p)\n", __func__, sav)); KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); } return (sav); } struct secasvar * key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst, uint8_t proto) { SAHTREE_RLOCK_TRACKER; struct secasindex saidx; struct secashead *sah; struct secasvar *sav; IPSEC_ASSERT(src != NULL, ("null src address")); IPSEC_ASSERT(dst != NULL, ("null dst address")); KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa, &dst->sa, &saidx); sav = NULL; SAHTREE_RLOCK(); LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { if (IPSEC_MODE_TUNNEL != sah->saidx.mode) continue; if (proto != sah->saidx.proto) continue; if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0) continue; if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0) continue; /* XXXAE: is key_preferred_oldsa reasonably?*/ if (V_key_preferred_oldsa) sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); else sav = TAILQ_FIRST(&sah->savtree_alive); if (sav != NULL) { SAV_ADDREF(sav); break; } } SAHTREE_RUNLOCK(); KEYDBG(IPSEC_STAMP, printf("%s: return SA(%p)\n", __func__, sav)); if (sav != NULL) KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); return (sav); } /* * Must be called after calling key_allocsp(). */ void key_freesp(struct secpolicy **spp) { struct secpolicy *sp = *spp; IPSEC_ASSERT(sp != NULL, ("null sp")); if (SP_DELREF(sp) == 0) return; KEYDBG(IPSEC_STAMP, printf("%s: last reference to SP(%p)\n", __func__, sp)); KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); *spp = NULL; while (sp->tcount > 0) ipsec_delisr(sp->req[--sp->tcount]); free(sp, M_IPSEC_SP); } static void key_unlink(struct secpolicy *sp) { SPTREE_WLOCK(); key_detach(sp); SPTREE_WUNLOCK(); if (SPDCACHE_ENABLED()) spdcache_clear(); key_freesp(&sp); } static void key_detach(struct secpolicy *sp) { IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || sp->spidx.dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", sp->spidx.dir)); SPTREE_WLOCK_ASSERT(); KEYDBG(KEY_STAMP, printf("%s: SP(%p)\n", __func__, sp)); if (sp->state != IPSEC_SPSTATE_ALIVE) { /* SP is already unlinked */ return; } sp->state = IPSEC_SPSTATE_DEAD; TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); V_spd_size--; LIST_REMOVE(sp, idhash); V_sp_genid++; } /* * insert a secpolicy into the SP database. Lower priorities first */ static void key_insertsp(struct secpolicy *newsp) { struct secpolicy *sp; SPTREE_WLOCK_ASSERT(); TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) { if (newsp->priority < sp->priority) { TAILQ_INSERT_BEFORE(sp, newsp, chain); goto done; } } TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); done: LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash); newsp->state = IPSEC_SPSTATE_ALIVE; V_spd_size++; V_sp_genid++; } /* * Insert a bunch of VTI secpolicies into the SPDB. * We keep VTI policies in the separate list due to following reasons: * 1) they should be immutable to user's or some deamon's attempts to * delete. The only way delete such policies - destroy or unconfigure * corresponding virtual inteface. * 2) such policies have traffic selector that matches all traffic per * address family. * Since all VTI policies have the same priority, we don't care about * policies order. */ int key_register_ifnet(struct secpolicy **spp, u_int count) { struct mbuf *m; u_int i; SPTREE_WLOCK(); /* * First of try to acquire id for each SP. */ for (i = 0; i < count; i++) { IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", spp[i]->spidx.dir)); if ((spp[i]->id = key_getnewspid()) == 0) { SPTREE_WUNLOCK(); return (EAGAIN); } } for (i = 0; i < count; i++) { TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir], spp[i], chain); /* * NOTE: despite the fact that we keep VTI SP in the * separate list, SPHASH contains policies from both * sources. Thus SADB_X_SPDGET will correctly return * SP by id, because it uses SPHASH for lookups. */ LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash); spp[i]->state = IPSEC_SPSTATE_IFNET; } SPTREE_WUNLOCK(); /* * Notify user processes about new SP. */ for (i = 0; i < count; i++) { m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0); if (m != NULL) key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); } return (0); } void key_unregister_ifnet(struct secpolicy **spp, u_int count) { struct mbuf *m; u_int i; SPTREE_WLOCK(); for (i = 0; i < count; i++) { IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", spp[i]->spidx.dir)); if (spp[i]->state != IPSEC_SPSTATE_IFNET) continue; spp[i]->state = IPSEC_SPSTATE_DEAD; TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir], spp[i], chain); V_spd_size--; LIST_REMOVE(spp[i], idhash); } SPTREE_WUNLOCK(); if (SPDCACHE_ENABLED()) spdcache_clear(); for (i = 0; i < count; i++) { m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0); if (m != NULL) key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); } } /* * Must be called after calling key_allocsa(). * This function is called by key_freesp() to free some SA allocated * for a policy. */ void key_freesav(struct secasvar **psav) { struct secasvar *sav = *psav; IPSEC_ASSERT(sav != NULL, ("null sav")); CURVNET_ASSERT_SET(); if (SAV_DELREF(sav) == 0) return; KEYDBG(IPSEC_STAMP, printf("%s: last reference to SA(%p)\n", __func__, sav)); *psav = NULL; key_delsav(sav); } /* * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK. * Expect that SA has extra reference due to lookup. * Release this references, also release SAH reference after unlink. */ static void key_unlinksav(struct secasvar *sav) { struct secashead *sah; KEYDBG(KEY_STAMP, printf("%s: SA(%p)\n", __func__, sav)); CURVNET_ASSERT_SET(); SAHTREE_UNLOCK_ASSERT(); SAHTREE_WLOCK(); if (sav->state == SADB_SASTATE_DEAD) { /* SA is already unlinked */ SAHTREE_WUNLOCK(); return; } /* Unlink from SAH */ if (sav->state == SADB_SASTATE_LARVAL) TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); else TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); /* Unlink from SPI hash */ LIST_REMOVE(sav, spihash); sav->state = SADB_SASTATE_DEAD; sah = sav->sah; SAHTREE_WUNLOCK(); key_freesav(&sav); /* Since we are unlinked, release reference to SAH */ key_freesah(&sah); } /* %%% SPD management */ /* * search SPD * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_getsp(struct secpolicyindex *spidx) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; IPSEC_ASSERT(spidx != NULL, ("null spidx")); SPTREE_RLOCK(); TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { if (key_cmpspidx_exactly(spidx, &sp->spidx)) { SP_ADDREF(sp); break; } } SPTREE_RUNLOCK(); return sp; } /* * get SP by index. * OUT: NULL : not found * others : found, pointer to referenced SP. */ static struct secpolicy * key_getspbyid(uint32_t id) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; SPTREE_RLOCK(); LIST_FOREACH(sp, SPHASH_HASH(id), idhash) { if (sp->id == id) { SP_ADDREF(sp); break; } } SPTREE_RUNLOCK(); return (sp); } struct secpolicy * key_newsp(void) { struct secpolicy *sp; sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO); if (sp != NULL) SP_INITREF(sp); return (sp); } struct ipsecrequest * ipsec_newisr(void) { return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR, M_NOWAIT | M_ZERO)); } void ipsec_delisr(struct ipsecrequest *p) { free(p, M_IPSEC_SR); } /* * create secpolicy structure from sadb_x_policy structure. * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure * are not set, so must be set properly later. */ struct secpolicy * key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) { struct secpolicy *newsp; IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); if (len != PFKEY_EXTLEN(xpl0)) { ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); *error = EINVAL; return NULL; } if ((newsp = key_newsp()) == NULL) { *error = ENOBUFS; return NULL; } newsp->spidx.dir = xpl0->sadb_x_policy_dir; newsp->policy = xpl0->sadb_x_policy_type; newsp->priority = xpl0->sadb_x_policy_priority; newsp->tcount = 0; /* check policy */ switch (xpl0->sadb_x_policy_type) { case IPSEC_POLICY_DISCARD: case IPSEC_POLICY_NONE: case IPSEC_POLICY_ENTRUST: case IPSEC_POLICY_BYPASS: break; case IPSEC_POLICY_IPSEC: { struct sadb_x_ipsecrequest *xisr; struct ipsecrequest *isr; int tlen; /* validity check */ if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return NULL; } tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); while (tlen > 0) { /* length check */ if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) || xisr->sadb_x_ipsecrequest_len > tlen) { ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " "length.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return NULL; } if (newsp->tcount >= IPSEC_MAXREQ) { ipseclog((LOG_DEBUG, "%s: too many ipsecrequests.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return (NULL); } /* allocate request buffer */ /* NB: data structure is zero'd */ isr = ipsec_newisr(); if (isr == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); key_freesp(&newsp); *error = ENOBUFS; return NULL; } newsp->req[newsp->tcount++] = isr; /* set values */ switch (xisr->sadb_x_ipsecrequest_proto) { case IPPROTO_ESP: case IPPROTO_AH: case IPPROTO_IPCOMP: break; default: ipseclog((LOG_DEBUG, "%s: invalid proto type=%u\n", __func__, xisr->sadb_x_ipsecrequest_proto)); key_freesp(&newsp); *error = EPROTONOSUPPORT; return NULL; } isr->saidx.proto = (uint8_t)xisr->sadb_x_ipsecrequest_proto; switch (xisr->sadb_x_ipsecrequest_mode) { case IPSEC_MODE_TRANSPORT: case IPSEC_MODE_TUNNEL: break; case IPSEC_MODE_ANY: default: ipseclog((LOG_DEBUG, "%s: invalid mode=%u\n", __func__, xisr->sadb_x_ipsecrequest_mode)); key_freesp(&newsp); *error = EINVAL; return NULL; } isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode; switch (xisr->sadb_x_ipsecrequest_level) { case IPSEC_LEVEL_DEFAULT: case IPSEC_LEVEL_USE: case IPSEC_LEVEL_REQUIRE: break; case IPSEC_LEVEL_UNIQUE: /* validity check */ /* * If range violation of reqid, kernel will * update it, don't refuse it. */ if (xisr->sadb_x_ipsecrequest_reqid > IPSEC_MANUAL_REQID_MAX) { ipseclog((LOG_DEBUG, "%s: reqid=%d range " "violation, updated by kernel.\n", __func__, xisr->sadb_x_ipsecrequest_reqid)); xisr->sadb_x_ipsecrequest_reqid = 0; } /* allocate new reqid id if reqid is zero. */ if (xisr->sadb_x_ipsecrequest_reqid == 0) { u_int32_t reqid; if ((reqid = key_newreqid()) == 0) { key_freesp(&newsp); *error = ENOBUFS; return NULL; } isr->saidx.reqid = reqid; xisr->sadb_x_ipsecrequest_reqid = reqid; } else { /* set it for manual keying. */ isr->saidx.reqid = xisr->sadb_x_ipsecrequest_reqid; } break; default: ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", __func__, xisr->sadb_x_ipsecrequest_level)); key_freesp(&newsp); *error = EINVAL; return NULL; } isr->level = xisr->sadb_x_ipsecrequest_level; /* set IP addresses if there */ if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { struct sockaddr *paddr; len = tlen - sizeof(*xisr); paddr = (struct sockaddr *)(xisr + 1); /* validity check */ if (len < sizeof(struct sockaddr) || len < 2 * paddr->sa_len || paddr->sa_len > sizeof(isr->saidx.src)) { ipseclog((LOG_DEBUG, "%s: invalid " "request address length.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return NULL; } /* * Request length should be enough to keep * source and destination addresses. */ if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + 2 * paddr->sa_len) { ipseclog((LOG_DEBUG, "%s: invalid " "ipsecrequest length.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return (NULL); } bcopy(paddr, &isr->saidx.src, paddr->sa_len); paddr = (struct sockaddr *)((caddr_t)paddr + paddr->sa_len); /* validity check */ if (paddr->sa_len != isr->saidx.src.sa.sa_len) { ipseclog((LOG_DEBUG, "%s: invalid " "request address length.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return NULL; } /* AF family should match */ if (paddr->sa_family != isr->saidx.src.sa.sa_family) { ipseclog((LOG_DEBUG, "%s: address " "family doesn't match.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return (NULL); } bcopy(paddr, &isr->saidx.dst, paddr->sa_len); } else { /* * Addresses for TUNNEL mode requests are * mandatory. */ if (isr->saidx.mode == IPSEC_MODE_TUNNEL) { ipseclog((LOG_DEBUG, "%s: missing " "request addresses.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return (NULL); } } tlen -= xisr->sadb_x_ipsecrequest_len; /* validity check */ if (tlen < 0) { ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return NULL; } xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr + xisr->sadb_x_ipsecrequest_len); } /* XXXAE: LARVAL SP */ if (newsp->tcount < 1) { ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms " "not found.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return (NULL); } } break; default: ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); key_freesp(&newsp); *error = EINVAL; return NULL; } *error = 0; return (newsp); } uint32_t key_newreqid(void) { static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; if (auto_reqid == ~0) auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; else auto_reqid++; /* XXX should be unique check */ return (auto_reqid); } /* * copy secpolicy struct to sadb_x_policy structure indicated. */ static struct mbuf * key_sp2mbuf(struct secpolicy *sp) { struct mbuf *m; size_t tlen; tlen = key_getspreqmsglen(sp); m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, tlen); m->m_len = tlen; if (key_sp2msg(sp, m->m_data, &tlen) != 0) { m_freem(m); return (NULL); } return (m); } int key_sp2msg(struct secpolicy *sp, void *request, size_t *len) { struct sadb_x_ipsecrequest *xisr; struct sadb_x_policy *xpl; struct ipsecrequest *isr; size_t xlen, ilen; caddr_t p; int error, i; IPSEC_ASSERT(sp != NULL, ("null policy")); xlen = sizeof(*xpl); if (*len < xlen) return (EINVAL); error = 0; bzero(request, *len); xpl = (struct sadb_x_policy *)request; xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; xpl->sadb_x_policy_type = sp->policy; xpl->sadb_x_policy_dir = sp->spidx.dir; xpl->sadb_x_policy_id = sp->id; xpl->sadb_x_policy_priority = sp->priority; switch (sp->state) { case IPSEC_SPSTATE_IFNET: xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET; break; case IPSEC_SPSTATE_PCB: xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB; break; default: xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL; } /* if is the policy for ipsec ? */ if (sp->policy == IPSEC_POLICY_IPSEC) { p = (caddr_t)xpl + sizeof(*xpl); for (i = 0; i < sp->tcount; i++) { isr = sp->req[i]; ilen = PFKEY_ALIGN8(sizeof(*xisr) + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len); xlen += ilen; if (xlen > *len) { error = ENOBUFS; /* Calculate needed size */ continue; } xisr = (struct sadb_x_ipsecrequest *)p; xisr->sadb_x_ipsecrequest_len = ilen; xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; xisr->sadb_x_ipsecrequest_level = isr->level; xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; p += sizeof(*xisr); bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); p += isr->saidx.src.sa.sa_len; bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); p += isr->saidx.dst.sa.sa_len; } } xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen); if (error == 0) *len = xlen; else *len = sizeof(*xpl); return (error); } /* m will not be freed nor modified */ static struct mbuf * key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, int ndeep, int nitem, ...) { va_list ap; int idx; int i; struct mbuf *result = NULL, *n; int len; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); va_start(ap, nitem); for (i = 0; i < nitem; i++) { idx = va_arg(ap, int); if (idx < 0 || idx > SADB_EXT_MAX) goto fail; /* don't attempt to pull empty extension */ if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) continue; if (idx != SADB_EXT_RESERVED && (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) continue; if (idx == SADB_EXT_RESERVED) { len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); MGETHDR(n, M_NOWAIT, MT_DATA); if (!n) goto fail; n->m_len = len; n->m_next = NULL; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t)); } else if (i < ndeep) { len = mhp->extlen[idx]; n = m_get2(len, M_NOWAIT, MT_DATA, 0); if (n == NULL) goto fail; m_align(n, len); n->m_len = len; m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], mtod(n, caddr_t)); } else { n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], M_NOWAIT); } if (n == NULL) goto fail; if (result) m_cat(result, n); else result = n; } va_end(ap); if ((result->m_flags & M_PKTHDR) != 0) { result->m_pkthdr.len = 0; for (n = result; n; n = n->m_next) result->m_pkthdr.len += n->m_len; } return result; fail: m_freem(result); va_end(ap); return NULL; } /* * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing * add an entry to SP database, when received * * from the user(?). * Adding to SP database, * and send * * to the socket which was send. * * SPDADD set a unique policy entry. * SPDSETIDX like SPDADD without a part of policy requests. * SPDUPDATE replace a unique policy entry. * * XXXAE: serialize this in PF_KEY to avoid races. * m will always be freed. */ static int key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secpolicyindex spidx; struct sadb_address *src0, *dst0; struct sadb_x_policy *xpl0, *xpl; struct sadb_lifetime *lft = NULL; struct secpolicy *newsp, *oldsp; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) { if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; /* check the direciton */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); return key_senderror(so, m, EINVAL); } /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); return key_senderror(so, m, EINVAL); } /* policy requests are mandatory when action is ipsec. */ if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { ipseclog((LOG_DEBUG, "%s: policy requests required.\n", __func__)); return key_senderror(so, m, EINVAL); } error = key_checksockaddrs((struct sockaddr *)(src0 + 1), (struct sockaddr *)(dst0 + 1)); if (error != 0 || src0->sadb_address_proto != dst0->sadb_address_proto) { ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); return key_senderror(so, m, error); } /* make secindex */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, &spidx); /* Checking there is SP already or not. */ oldsp = key_getsp(&spidx); if (oldsp != NULL) { if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { KEYDBG(KEY_STAMP, printf("%s: unlink SP(%p) for SPDUPDATE\n", __func__, oldsp)); KEYDBG(KEY_DATA, kdebug_secpolicy(oldsp)); } else { key_freesp(&oldsp); ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", __func__)); return (key_senderror(so, m, EEXIST)); } } /* allocate new SP entry */ if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { if (oldsp != NULL) { key_unlink(oldsp); key_freesp(&oldsp); /* second for our reference */ } return key_senderror(so, m, error); } newsp->lastused = newsp->created = time_second; newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; bcopy(&spidx, &newsp->spidx, sizeof(spidx)); SPTREE_WLOCK(); if ((newsp->id = key_getnewspid()) == 0) { if (oldsp != NULL) key_detach(oldsp); SPTREE_WUNLOCK(); if (oldsp != NULL) { key_freesp(&oldsp); /* first for key_detach */ IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug")); key_freesp(&oldsp); /* second for our reference */ if (SPDCACHE_ENABLED()) /* refresh cache because of key_detach */ spdcache_clear(); } key_freesp(&newsp); return key_senderror(so, m, ENOBUFS); } if (oldsp != NULL) key_detach(oldsp); key_insertsp(newsp); SPTREE_WUNLOCK(); if (oldsp != NULL) { key_freesp(&oldsp); /* first for key_detach */ IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug")); key_freesp(&oldsp); /* second for our reference */ } if (SPDCACHE_ENABLED()) spdcache_clear(); KEYDBG(KEY_STAMP, printf("%s: SP(%p)\n", __func__, newsp)); KEYDBG(KEY_DATA, kdebug_secpolicy(newsp)); { struct mbuf *n, *mpolicy; struct sadb_msg *newmsg; int off; /* create new sadb_msg to reply. */ if (lft) { n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); } else { n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); } if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(*newmsg)) { n = m_pullup(n, sizeof(*newmsg)); if (!n) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); off = 0; mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), sizeof(*xpl), &off); if (mpolicy == NULL) { /* n is already freed */ return key_senderror(so, m, ENOBUFS); } xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { m_freem(n); return key_senderror(so, m, EINVAL); } xpl->sadb_x_policy_id = newsp->id; m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * get new policy id. * OUT: * 0: failure. * others: success. */ static uint32_t key_getnewspid(void) { struct secpolicy *sp; uint32_t newid = 0; int tries, limit; SPTREE_WLOCK_ASSERT(); limit = atomic_load_int(&V_key_spi_trycnt); for (tries = 0; tries < limit; tries++) { if (V_policy_id == ~0) /* overflowed */ newid = V_policy_id = 1; else newid = ++V_policy_id; LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) { if (sp->id == newid) break; } if (sp == NULL) break; } if (tries == limit || newid == 0) { ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n", __func__)); return (0); } return (newid); } /* * SADB_SPDDELETE processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secpolicyindex spidx; struct sadb_address *src0, *dst0; struct sadb_x_policy *xpl0; struct secpolicy *sp; IPSEC_ASSERT(so != NULL, ("null so")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; /* check the direciton */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); return key_senderror(so, m, EINVAL); } /* Only DISCARD, NONE and IPSEC are allowed */ if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); return key_senderror(so, m, EINVAL); } if (key_checksockaddrs((struct sockaddr *)(src0 + 1), (struct sockaddr *)(dst0 + 1)) != 0 || src0->sadb_address_proto != dst0->sadb_address_proto) { ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); return key_senderror(so, m, EINVAL); } /* make secindex */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, &spidx); /* Is there SP in SPD ? */ if ((sp = key_getsp(&spidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); return key_senderror(so, m, EINVAL); } /* save policy id to buffer to be returned. */ xpl0->sadb_x_policy_id = sp->id; KEYDBG(KEY_STAMP, printf("%s: SP(%p)\n", __func__, sp)); KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); key_unlink(sp); key_freesp(&sp); { struct mbuf *n; struct sadb_msg *newmsg; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_SPDDELETE2 processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secpolicy *sp; uint32_t id; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } id = ((struct sadb_x_policy *) mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ if ((sp = key_getspbyid(id)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", __func__, id)); return key_senderror(so, m, EINVAL); } KEYDBG(KEY_STAMP, printf("%s: SP(%p)\n", __func__, sp)); KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); key_unlink(sp); if (sp->state != IPSEC_SPSTATE_DEAD) { ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n", __func__, id)); key_freesp(&sp); return (key_senderror(so, m, EACCES)); } key_freesp(&sp); { struct mbuf *n, *nn; struct sadb_msg *newmsg; int off, len; /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); n = key_mget(len); if (n == NULL) return key_senderror(so, m, ENOBUFS); n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", off, len)); n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); if (!n->m_next) { m_freem(n); return key_senderror(so, m, ENOBUFS); } n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) n->m_pkthdr.len += nn->m_len; newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_X_SPDGET processing * receive * * from the user(?), * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secpolicy *sp; struct mbuf *n; uint32_t id; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } id = ((struct sadb_x_policy *) mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ if ((sp = key_getspbyid(id)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", __func__, id)); return key_senderror(so, m, ENOENT); } n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); key_freesp(&sp); if (n != NULL) { m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } else return key_senderror(so, m, ENOBUFS); } /* * SADB_X_SPDACQUIRE processing. * Acquire policy and SA(s) for a *OUTBOUND* packet. * send * * to KMD, and expect to receive * with SADB_X_SPDACQUIRE if error occurred, * or * * with SADB_X_SPDUPDATE from KMD by PF_KEY. * policy(*) is without policy requests. * * 0 : succeed * others: error number */ int key_spdacquire(struct secpolicy *sp) { struct mbuf *result = NULL, *m; struct secspacq *newspacq; IPSEC_ASSERT(sp != NULL, ("null secpolicy")); IPSEC_ASSERT(sp->req == NULL, ("policy exists")); IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, ("policy not IPSEC %u", sp->policy)); /* Get an entry to check whether sent message or not. */ newspacq = key_getspacq(&sp->spidx); if (newspacq != NULL) { if (V_key_blockacq_count < newspacq->count) { /* reset counter and do send message. */ newspacq->count = 0; } else { /* increment counter and do nothing. */ newspacq->count++; SPACQ_UNLOCK(); return (0); } SPACQ_UNLOCK(); } else { /* make new entry for blocking to send SADB_ACQUIRE. */ newspacq = key_newspacq(&sp->spidx); if (newspacq == NULL) return ENOBUFS; } /* create new sadb_msg to reply. */ m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); if (!m) return ENOBUFS; result = m; result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); } /* * SADB_SPDFLUSH processing * receive * * from the user, and free all entries in secpctree. * and send, * * to the user. * NOTE: what to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secpolicy_queue drainq; struct sadb_msg *newmsg; struct secpolicy *sp, *nextsp; u_int dir; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) return key_senderror(so, m, EINVAL); TAILQ_INIT(&drainq); SPTREE_WLOCK(); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); } /* * We need to set state to DEAD for each policy to be sure, * that another thread won't try to unlink it. * Also remove SP from sphash. */ TAILQ_FOREACH(sp, &drainq, chain) { sp->state = IPSEC_SPSTATE_DEAD; LIST_REMOVE(sp, idhash); } V_sp_genid++; V_spd_size = 0; SPTREE_WUNLOCK(); if (SPDCACHE_ENABLED()) spdcache_clear(); sp = TAILQ_FIRST(&drainq); while (sp != NULL) { nextsp = TAILQ_NEXT(sp, chain); key_freesp(&sp); sp = nextsp; } if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } if (m->m_next) m_freem(m->m_next); m->m_next = NULL; m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } static uint8_t key_satype2scopemask(uint8_t satype) { if (satype == IPSEC_POLICYSCOPE_ANY) return (0xff); return (satype); } /* * SADB_SPDDUMP processing * receive * * from the user, and dump all SP leaves and send, * ..... * to the ikmpd. * * NOTE: * sadb_msg_satype is considered as mask of policy scopes. * m will always be freed. */ static int key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; struct mbuf *n; int cnt; u_int dir, scope; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* search SPD entry and get buffer size. */ cnt = 0; scope = key_satype2scopemask(mhp->msg->sadb_msg_satype); SPTREE_RLOCK(); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { if (scope & IPSEC_POLICYSCOPE_GLOBAL) { TAILQ_FOREACH(sp, &V_sptree[dir], chain) cnt++; } if (scope & IPSEC_POLICYSCOPE_IFNET) { TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) cnt++; } } if (cnt == 0) { SPTREE_RUNLOCK(); return key_senderror(so, m, ENOENT); } for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { if (scope & IPSEC_POLICYSCOPE_GLOBAL) { TAILQ_FOREACH(sp, &V_sptree[dir], chain) { --cnt; n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, mhp->msg->sadb_msg_pid); if (n != NULL) key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } if (scope & IPSEC_POLICYSCOPE_IFNET) { TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) { --cnt; n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, mhp->msg->sadb_msg_pid); if (n != NULL) key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } } SPTREE_RUNLOCK(); m_freem(m); return (0); } static struct mbuf * key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *m; struct seclifetime lt; m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); if (!m) goto fail; result = m; m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) goto fail; m_cat(result, m); m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) goto fail; m_cat(result, m); m = key_sp2mbuf(sp); if (!m) goto fail; m_cat(result, m); if(sp->lifetime){ lt.addtime=sp->created; lt.usetime= sp->lastused; m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); if (!m) goto fail; m_cat(result, m); lt.addtime=sp->lifetime; lt.usetime= sp->validtime; m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); if (!m) goto fail; m_cat(result, m); } if ((result->m_flags & M_PKTHDR) == 0) goto fail; if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto fail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: m_freem(result); return NULL; } /* * get PFKEY message length for security policy and request. */ static size_t key_getspreqmsglen(struct secpolicy *sp) { size_t tlen, len; int i; tlen = sizeof(struct sadb_x_policy); /* if is the policy for ipsec ? */ if (sp->policy != IPSEC_POLICY_IPSEC) return (tlen); /* get length of ipsec requests */ for (i = 0; i < sp->tcount; i++) { len = sizeof(struct sadb_x_ipsecrequest) + sp->req[i]->saidx.src.sa.sa_len + sp->req[i]->saidx.dst.sa.sa_len; tlen += PFKEY_ALIGN8(len); } return (tlen); } /* * SADB_SPDEXPIRE processing * send * * to KMD by PF_KEY. * * OUT: 0 : succeed * others : error number */ static int key_spdexpire(struct secpolicy *sp) { struct sadb_lifetime *lt; struct mbuf *result = NULL, *m; int len, error = -1; IPSEC_ASSERT(sp != NULL, ("null secpolicy")); KEYDBG(KEY_STAMP, printf("%s: SP(%p)\n", __func__, sp)); KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); /* set msg header */ m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; /* create lifetime extension (current and hard) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) { error = ENOBUFS; goto fail; } m_align(m, len); m->m_len = len; bzero(mtod(m, caddr_t), len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = sp->created; lt->sadb_lifetime_usetime = sp->lastused; lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = sp->lifetime; lt->sadb_lifetime_usetime = sp->validtime; m_cat(result, m); /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set secpolicy */ m = key_sp2mbuf(sp); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } /* %%% SAD management */ /* * allocating and initialize new SA head. * OUT: NULL : failure due to the lack of memory. * others : pointer to new SA head. */ static struct secashead * key_newsah(struct secasindex *saidx) { struct secashead *sah; sah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT | M_ZERO); if (sah == NULL) { PFKEYSTAT_INC(in_nomem); return (NULL); } TAILQ_INIT(&sah->savtree_larval); TAILQ_INIT(&sah->savtree_alive); sah->saidx = *saidx; sah->state = SADB_SASTATE_DEAD; SAH_INITREF(sah); KEYDBG(KEY_STAMP, printf("%s: SAH(%p)\n", __func__, sah)); KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); return (sah); } static void key_freesah(struct secashead **psah) { struct secashead *sah = *psah; CURVNET_ASSERT_SET(); if (SAH_DELREF(sah) == 0) return; KEYDBG(KEY_STAMP, printf("%s: last reference to SAH(%p)\n", __func__, sah)); KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); *psah = NULL; key_delsah(sah); } static void key_delsah(struct secashead *sah) { IPSEC_ASSERT(sah != NULL, ("NULL sah")); IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD, ("Attempt to free non DEAD SAH %p", sah)); IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval), ("Attempt to free SAH %p with LARVAL SA", sah)); IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive), ("Attempt to free SAH %p with ALIVE SA", sah)); free(sah, M_IPSEC_SAH); } /* * allocating a new SA for key_add() and key_getspi() call, * and copy the values of mhp into new buffer. * When SAD message type is SADB_GETSPI set SA state to LARVAL. * For SADB_ADD create and initialize SA with MATURE state. * OUT: NULL : fail * others : pointer to new secasvar. */ static struct secasvar * key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx, uint32_t spi, int *errp) { struct secashead *sah; struct secasvar *sav; int isnew; IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI || mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type")); sav = NULL; sah = NULL; /* check SPI value */ switch (saidx->proto) { case IPPROTO_ESP: case IPPROTO_AH: /* * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values * 1-255 reserved by IANA for future use, * 0 for implementation specific, local use. */ if (ntohl(spi) <= 255) { ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", __func__, ntohl(spi))); *errp = EINVAL; goto done; } break; } sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO); if (sav == NULL) { *errp = ENOBUFS; goto done; } sav->lock = malloc_aligned(max(sizeof(struct rmlock), CACHE_LINE_SIZE), CACHE_LINE_SIZE, M_IPSEC_MISC, M_NOWAIT | M_ZERO); if (sav->lock == NULL) { *errp = ENOBUFS; goto done; } rm_init(sav->lock, "ipsec association"); sav->lft_c = uma_zalloc_pcpu(ipsec_key_lft_zone, M_NOWAIT | M_ZERO); if (sav->lft_c == NULL) { *errp = ENOBUFS; goto done; } sav->spi = spi; sav->seq = mhp->msg->sadb_msg_seq; sav->state = SADB_SASTATE_LARVAL; sav->pid = (pid_t)mhp->msg->sadb_msg_pid; SAV_INITREF(sav); again: sah = key_getsah(saidx); if (sah == NULL) { /* create a new SA index */ sah = key_newsah(saidx); if (sah == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); *errp = ENOBUFS; goto done; } isnew = 1; } else isnew = 0; sav->sah = sah; if (mhp->msg->sadb_msg_type == SADB_GETSPI) { sav->created = time_second; } else if (sav->state == SADB_SASTATE_LARVAL) { /* * Do not call key_setsaval() second time in case * of `goto again`. We will have MATURE state. */ *errp = key_setsaval(sav, mhp); if (*errp != 0) goto done; sav->state = SADB_SASTATE_MATURE; } SAHTREE_WLOCK(); /* * Check that existing SAH wasn't unlinked. * Since we didn't hold the SAHTREE lock, it is possible, * that callout handler or key_flush() or key_delete() could * unlink this SAH. */ if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) { SAHTREE_WUNLOCK(); key_freesah(&sah); /* reference from key_getsah() */ goto again; } if (isnew != 0) { /* * Add new SAH into SADB. * * XXXAE: we can serialize key_add and key_getspi calls, so * several threads will not fight in the race. * Otherwise we should check under SAHTREE lock, that this * SAH would not added twice. */ TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); /* Add new SAH into hash by addresses */ LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); /* Now we are linked in the chain */ sah->state = SADB_SASTATE_MATURE; /* * SAV references this new SAH. * In case of existing SAH we reuse reference * from key_getsah(). */ SAH_ADDREF(sah); } /* Link SAV with SAH */ if (sav->state == SADB_SASTATE_MATURE) TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain); else TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain); /* Add SAV into SPI hash */ LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash); SAHTREE_WUNLOCK(); *errp = 0; /* success */ done: if (*errp != 0) { if (sav != NULL) { if (sav->lock != NULL) { rm_destroy(sav->lock); free(sav->lock, M_IPSEC_MISC); } if (sav->lft_c != NULL) uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c); free(sav, M_IPSEC_SA), sav = NULL; } if (sah != NULL) key_freesah(&sah); if (*errp == ENOBUFS) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); PFKEYSTAT_INC(in_nomem); } } return (sav); } /* * free() SA variable entry. */ static void key_cleansav(struct secasvar *sav) { if (sav->natt != NULL) { free(sav->natt, M_IPSEC_MISC); sav->natt = NULL; } if (sav->flags & SADB_X_EXT_F_CLONED) return; if (sav->tdb_xform != NULL) { sav->tdb_xform->xf_cleanup(sav); sav->tdb_xform = NULL; } if (sav->key_auth != NULL) { zfree(sav->key_auth->key_data, M_IPSEC_MISC); free(sav->key_auth, M_IPSEC_MISC); sav->key_auth = NULL; } if (sav->key_enc != NULL) { zfree(sav->key_enc->key_data, M_IPSEC_MISC); free(sav->key_enc, M_IPSEC_MISC); sav->key_enc = NULL; } if (sav->replay != NULL) { mtx_destroy(&sav->replay->lock); if (sav->replay->bitmap != NULL) free(sav->replay->bitmap, M_IPSEC_MISC); free(sav->replay, M_IPSEC_MISC); sav->replay = NULL; } if (sav->lft_h != NULL) { free(sav->lft_h, M_IPSEC_MISC); sav->lft_h = NULL; } if (sav->lft_s != NULL) { free(sav->lft_s, M_IPSEC_MISC); sav->lft_s = NULL; } } /* * free() SA variable entry. */ static void key_delsav(struct secasvar *sav) { IPSEC_ASSERT(sav != NULL, ("null sav")); IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD, ("attempt to free non DEAD SA %p", sav)); IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); /* * SA must be unlinked from the chain and hashtbl. * If SA was cloned, we leave all fields untouched, * except NAT-T config. */ key_cleansav(sav); if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) { rm_destroy(sav->lock); free(sav->lock, M_IPSEC_MISC); uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c); } free(sav, M_IPSEC_SA); } /* * search SAH. * OUT: * NULL : not found * others : found, referenced pointer to a SAH. */ static struct secashead * key_getsah(struct secasindex *saidx) { SAHTREE_RLOCK_TRACKER; struct secashead *sah; SAHTREE_RLOCK(); LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) { SAH_ADDREF(sah); break; } } SAHTREE_RUNLOCK(); return (sah); } /* * Check not to be duplicated SPI. * OUT: * 0 : not found * 1 : found SA with given SPI. */ static int key_checkspidup(uint32_t spi) { SAHTREE_RLOCK_TRACKER; struct secasvar *sav; /* Assume SPI is in network byte order */ SAHTREE_RLOCK(); LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { if (sav->spi == spi) break; } SAHTREE_RUNLOCK(); return (sav != NULL); } /* * Search SA by SPI. * OUT: * NULL : not found * others : found, referenced pointer to a SA. */ static struct secasvar * key_getsavbyspi(uint32_t spi) { SAHTREE_RLOCK_TRACKER; struct secasvar *sav; /* Assume SPI is in network byte order */ SAHTREE_RLOCK(); LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { if (sav->spi != spi) continue; SAV_ADDREF(sav); break; } SAHTREE_RUNLOCK(); return (sav); } static int key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp) { struct seclifetime *lft_h, *lft_s, *tmp; /* Lifetime extension is optional, check that it is present. */ if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) { /* * In case of SADB_UPDATE we may need to change * existing lifetimes. */ if (sav->state == SADB_SASTATE_MATURE) { lft_h = lft_s = NULL; goto reset; } return (0); } /* Both HARD and SOFT extensions must present */ if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); return (EINVAL); } if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) || SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return (EINVAL); } lft_h = key_dup_lifemsg((const struct sadb_lifetime *) mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC); if (lft_h == NULL) { PFKEYSTAT_INC(in_nomem); ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return (ENOBUFS); } lft_s = key_dup_lifemsg((const struct sadb_lifetime *) mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC); if (lft_s == NULL) { PFKEYSTAT_INC(in_nomem); free(lft_h, M_IPSEC_MISC); ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return (ENOBUFS); } reset: if (sav->state != SADB_SASTATE_LARVAL) { /* * key_update() holds reference to this SA, * so it won't be deleted in meanwhile. */ SECASVAR_WLOCK(sav); tmp = sav->lft_h; sav->lft_h = lft_h; lft_h = tmp; tmp = sav->lft_s; sav->lft_s = lft_s; lft_s = tmp; SECASVAR_WUNLOCK(sav); if (lft_h != NULL) free(lft_h, M_IPSEC_MISC); if (lft_s != NULL) free(lft_s, M_IPSEC_MISC); return (0); } /* We can update lifetime without holding a lock */ IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n")); IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n")); sav->lft_h = lft_h; sav->lft_s = lft_s; return (0); } /* * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*. * You must update these if need. Expects only LARVAL SAs. * OUT: 0: success. * !0: failure. */ static int key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp) { const struct sadb_sa *sa0; const struct sadb_key *key0; uint32_t replay; size_t len; int error; IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL, ("Attempt to update non LARVAL SA")); /* XXX rewrite */ error = key_setident(sav->sah, mhp); if (error != 0) goto fail; /* SA */ if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) { if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { error = EINVAL; goto fail; } sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; sav->alg_auth = sa0->sadb_sa_auth; sav->alg_enc = sa0->sadb_sa_encrypt; sav->flags = sa0->sadb_sa_flags; if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) { ipseclog((LOG_DEBUG, "%s: invalid sa_flags 0x%08x.\n", __func__, sav->flags)); error = EINVAL; goto fail; } /* Optional replay window */ replay = 0; if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) replay = sa0->sadb_sa_replay; if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) { if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) { error = EINVAL; goto fail; } replay = ((const struct sadb_x_sa_replay *) mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay; if (replay > UINT32_MAX - 32) { ipseclog((LOG_DEBUG, "%s: replay window too big.\n", __func__)); error = EINVAL; goto fail; } replay = (replay + 7) >> 3; } sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC, M_NOWAIT | M_ZERO); if (sav->replay == NULL) { PFKEYSTAT_INC(in_nomem); ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } mtx_init(&sav->replay->lock, "ipsec replay", NULL, MTX_DEF); if (replay != 0) { /* number of 32b blocks to be allocated */ uint32_t bitmap_size; /* RFC 6479: * - the allocated replay window size must be * a power of two. * - use an extra 32b block as a redundant window. */ bitmap_size = 1; while (replay + 4 > bitmap_size) bitmap_size <<= 1; bitmap_size = bitmap_size / 4; sav->replay->bitmap = malloc( bitmap_size * sizeof(uint32_t), M_IPSEC_MISC, M_NOWAIT | M_ZERO); if (sav->replay->bitmap == NULL) { PFKEYSTAT_INC(in_nomem); ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } sav->replay->bitmap_size = bitmap_size; sav->replay->wsize = replay; } } /* Authentication keys */ if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) { error = EINVAL; goto fail; } error = 0; key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; len = mhp->extlen[SADB_EXT_KEY_AUTH]; switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_TCPSIGNATURE: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_auth != SADB_X_AALG_NULL) error = EINVAL; break; case SADB_X_SATYPE_IPCOMP: default: error = EINVAL; break; } if (error) { ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", __func__)); goto fail; } sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC); if (sav->key_auth == NULL ) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); PFKEYSTAT_INC(in_nomem); error = ENOBUFS; goto fail; } } /* Encryption key */ if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) { if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) { error = EINVAL; goto fail; } error = 0; key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_ESP: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_enc != SADB_EALG_NULL) { error = EINVAL; break; } sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC); if (sav->key_enc == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); PFKEYSTAT_INC(in_nomem); error = ENOBUFS; goto fail; } break; case SADB_X_SATYPE_IPCOMP: if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) error = EINVAL; sav->key_enc = NULL; /*just in case*/ break; case SADB_SATYPE_AH: case SADB_X_SATYPE_TCPSIGNATURE: default: error = EINVAL; break; } if (error) { ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", __func__)); goto fail; } } /* set iv */ sav->ivlen = 0; switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: if (sav->flags & SADB_X_EXT_DERIV) { ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " "given to AH SA.\n", __func__)); error = EINVAL; goto fail; } if (sav->alg_enc != SADB_EALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); error = EINVAL; goto fail; } error = xform_init(sav, XF_AH); break; case SADB_SATYPE_ESP: if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) == (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) { ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " "given to old-esp.\n", __func__)); error = EINVAL; goto fail; } error = xform_init(sav, XF_ESP); break; case SADB_X_SATYPE_IPCOMP: if (sav->alg_auth != SADB_AALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); error = EINVAL; goto fail; } if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && ntohl(sav->spi) >= 0x10000) { ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", __func__)); error = EINVAL; goto fail; } error = xform_init(sav, XF_IPCOMP); break; case SADB_X_SATYPE_TCPSIGNATURE: if (sav->alg_enc != SADB_EALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); error = EINVAL; goto fail; } error = xform_init(sav, XF_TCPSIGNATURE); break; default: ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); error = EPROTONOSUPPORT; goto fail; } if (error) { ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", __func__, mhp->msg->sadb_msg_satype)); goto fail; } /* Handle NAT-T headers */ error = key_setnatt(sav, mhp); if (error != 0) goto fail; /* Initialize lifetime for CURRENT */ sav->firstused = 0; sav->created = time_second; /* lifetimes for HARD and SOFT */ error = key_updatelifetimes(sav, mhp); if (error == 0) return (0); fail: key_cleansav(sav); return (error); } /* * subroutine for SADB_GET and SADB_DUMP. */ static struct mbuf * key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype, uint32_t seq, uint32_t pid) { struct seclifetime lft_c; struct mbuf *result = NULL, *tres = NULL, *m; int i, dumporder[] = { SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG, }; uint32_t replay_count; SECASVAR_RLOCK_TRACKER; m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); if (m == NULL) goto fail; result = m; for (i = nitems(dumporder) - 1; i >= 0; i--) { m = NULL; switch (dumporder[i]) { case SADB_EXT_SA: m = key_setsadbsa(sav); if (!m) goto fail; break; case SADB_X_EXT_SA2: { SECASVAR_RLOCK(sav); replay_count = sav->replay ? sav->replay->count : 0; SECASVAR_RUNLOCK(sav); m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, sav->sah->saidx.reqid); if (!m) goto fail; break; } case SADB_X_EXT_SA_REPLAY: if (sav->replay == NULL || sav->replay->wsize <= UINT8_MAX) continue; m = key_setsadbxsareplay(sav->replay->wsize); if (!m) goto fail; break; case SADB_EXT_ADDRESS_SRC: m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) goto fail; break; case SADB_EXT_ADDRESS_DST: m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) goto fail; break; case SADB_EXT_KEY_AUTH: if (!sav->key_auth) continue; m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); if (!m) goto fail; break; case SADB_EXT_KEY_ENCRYPT: if (!sav->key_enc) continue; m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); if (!m) goto fail; break; case SADB_EXT_LIFETIME_CURRENT: lft_c.addtime = sav->created; lft_c.allocations = (uint32_t)counter_u64_fetch( sav->lft_c_allocations); lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes); lft_c.usetime = sav->firstused; m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT); if (!m) goto fail; break; case SADB_EXT_LIFETIME_HARD: if (!sav->lft_h) continue; m = key_setlifetime(sav->lft_h, SADB_EXT_LIFETIME_HARD); if (!m) goto fail; break; case SADB_EXT_LIFETIME_SOFT: if (!sav->lft_s) continue; m = key_setlifetime(sav->lft_s, SADB_EXT_LIFETIME_SOFT); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_TYPE: if (sav->natt == NULL) continue; m = key_setsadbxtype(UDP_ENCAP_ESPINUDP); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_DPORT: if (sav->natt == NULL) continue; m = key_setsadbxport(sav->natt->dport, SADB_X_EXT_NAT_T_DPORT); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_SPORT: if (sav->natt == NULL) continue; m = key_setsadbxport(sav->natt->sport, SADB_X_EXT_NAT_T_SPORT); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_OAI: if (sav->natt == NULL || (sav->natt->flags & IPSEC_NATT_F_OAI) == 0) continue; m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI, &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_OAR: if (sav->natt == NULL || (sav->natt->flags & IPSEC_NATT_F_OAR) == 0) continue; m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR, &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_FRAG: /* We do not (yet) support those. */ continue; case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: /* XXX: should we brought from SPD ? */ case SADB_EXT_SENSITIVITY: default: continue; } if (!m) goto fail; if (tres) m_cat(m, tres); tres = m; } m_cat(result, tres); tres = NULL; if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto fail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: m_freem(result); m_freem(tres); return NULL; } /* * set data into sadb_msg. */ static struct mbuf * key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, pid_t pid, u_int16_t reserved) { struct mbuf *m; struct sadb_msg *p; int len; len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); if (len > MCLBYTES) return NULL; m = key_mget(len); if (m == NULL) return NULL; m->m_pkthdr.len = m->m_len = len; m->m_next = NULL; p = mtod(m, struct sadb_msg *); bzero(p, len); p->sadb_msg_version = PF_KEY_V2; p->sadb_msg_type = type; p->sadb_msg_errno = 0; p->sadb_msg_satype = satype; p->sadb_msg_len = PFKEY_UNIT64(tlen); p->sadb_msg_reserved = reserved; p->sadb_msg_seq = seq; p->sadb_msg_pid = (u_int32_t)pid; return m; } /* * copy secasvar data into sadb_address. */ static struct mbuf * key_setsadbsa(struct secasvar *sav) { struct mbuf *m; struct sadb_sa *p; int len; len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_sa *); bzero(p, len); p->sadb_sa_len = PFKEY_UNIT64(len); p->sadb_sa_exttype = SADB_EXT_SA; p->sadb_sa_spi = sav->spi; p->sadb_sa_replay = sav->replay ? (sav->replay->wsize > UINT8_MAX ? UINT8_MAX : sav->replay->wsize): 0; p->sadb_sa_state = sav->state; p->sadb_sa_auth = sav->alg_auth; p->sadb_sa_encrypt = sav->alg_enc; p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX; return (m); } /* * set data into sadb_address. */ static struct mbuf * key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) { struct mbuf *m; struct sadb_address *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + PFKEY_ALIGN8(saddr->sa_len); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_address *); bzero(p, len); p->sadb_address_len = PFKEY_UNIT64(len); p->sadb_address_exttype = exttype; p->sadb_address_proto = ul_proto; if (prefixlen == FULLMASK) { switch (saddr->sa_family) { case AF_INET: prefixlen = sizeof(struct in_addr) << 3; break; case AF_INET6: prefixlen = sizeof(struct in6_addr) << 3; break; default: ; /*XXX*/ } } p->sadb_address_prefixlen = prefixlen; p->sadb_address_reserved = 0; bcopy(saddr, mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), saddr->sa_len); return m; } /* * set data into sadb_x_sa2. */ static struct mbuf * key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) { struct mbuf *m; struct sadb_x_sa2 *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_sa2 *); bzero(p, len); p->sadb_x_sa2_len = PFKEY_UNIT64(len); p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; p->sadb_x_sa2_mode = mode; p->sadb_x_sa2_reserved1 = 0; p->sadb_x_sa2_reserved2 = 0; p->sadb_x_sa2_sequence = seq; p->sadb_x_sa2_reqid = reqid; return m; } /* * Set data into sadb_x_sa_replay. */ static struct mbuf * key_setsadbxsareplay(u_int32_t replay) { struct mbuf *m; struct sadb_x_sa_replay *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_sa_replay *); bzero(p, len); p->sadb_x_sa_replay_len = PFKEY_UNIT64(len); p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY; p->sadb_x_sa_replay_replay = (replay << 3); return m; } /* * Set a type in sadb_x_nat_t_type. */ static struct mbuf * key_setsadbxtype(u_int16_t type) { struct mbuf *m; size_t len; struct sadb_x_nat_t_type *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_nat_t_type *); bzero(p, len); p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; p->sadb_x_nat_t_type_type = type; return (m); } /* * Set a port in sadb_x_nat_t_port. * In contrast to default RFC 2367 behaviour, port is in network byte order. */ static struct mbuf * key_setsadbxport(u_int16_t port, u_int16_t type) { struct mbuf *m; size_t len; struct sadb_x_nat_t_port *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_nat_t_port *); bzero(p, len); p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_port_exttype = type; p->sadb_x_nat_t_port_port = port; return (m); } /* * Get port from sockaddr. Port is in network byte order. */ uint16_t key_portfromsaddr(struct sockaddr *sa) { switch (sa->sa_family) { #ifdef INET case AF_INET: return ((struct sockaddr_in *)sa)->sin_port; #endif #ifdef INET6 case AF_INET6: return ((struct sockaddr_in6 *)sa)->sin6_port; #endif } return (0); } /* * Set port in struct sockaddr. Port is in network byte order. */ void key_porttosaddr(struct sockaddr *sa, uint16_t port) { switch (sa->sa_family) { #ifdef INET case AF_INET: ((struct sockaddr_in *)sa)->sin_port = port; break; #endif #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)sa)->sin6_port = port; break; #endif default: ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", __func__, sa->sa_family)); break; } } /* * set data into sadb_x_policy */ static struct mbuf * key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority) { struct mbuf *m; struct sadb_x_policy *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_policy *); bzero(p, len); p->sadb_x_policy_len = PFKEY_UNIT64(len); p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; p->sadb_x_policy_type = type; p->sadb_x_policy_dir = dir; p->sadb_x_policy_id = id; p->sadb_x_policy_priority = priority; return m; } /* %%% utilities */ /* Take a key message (sadb_key) from the socket and turn it into one * of the kernel's key structures (seckey). * * IN: pointer to the src * OUT: NULL no more memory */ struct seckey * key_dup_keymsg(const struct sadb_key *src, size_t len, struct malloc_type *type) { struct seckey *dst; dst = malloc(sizeof(*dst), type, M_NOWAIT); if (dst != NULL) { dst->bits = src->sadb_key_bits; dst->key_data = malloc(len, type, M_NOWAIT); if (dst->key_data != NULL) { bcopy((const char *)(src + 1), dst->key_data, len); } else { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); free(dst, type); dst = NULL; } } else { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); } return (dst); } /* Take a lifetime message (sadb_lifetime) passed in on a socket and * turn it into one of the kernel's lifetime structures (seclifetime). * * IN: pointer to the destination, source and malloc type * OUT: NULL, no more memory */ static struct seclifetime * key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) { struct seclifetime *dst; dst = malloc(sizeof(*dst), type, M_NOWAIT); if (dst == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return (NULL); } dst->allocations = src->sadb_lifetime_allocations; dst->bytes = src->sadb_lifetime_bytes; dst->addtime = src->sadb_lifetime_addtime; dst->usetime = src->sadb_lifetime_usetime; return (dst); } /* * compare two secasindex structure. * flag can specify to compare 2 saidxes. * compare two secasindex structure without both mode and reqid. * don't compare port. * IN: * saidx0: source, it can be in SAD. * saidx1: object. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, int flag) { /* sanity */ if (saidx0 == NULL && saidx1 == NULL) return 1; if (saidx0 == NULL || saidx1 == NULL) return 0; if (saidx0->proto != saidx1->proto) return 0; if (flag == CMP_EXACTLY) { if (saidx0->mode != saidx1->mode) return 0; if (saidx0->reqid != saidx1->reqid) return 0; if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) return 0; } else { /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ if (flag == CMP_MODE_REQID || flag == CMP_REQID) { /* * If reqid of SPD is non-zero, unique SA is required. * The result must be of same reqid in this case. */ if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) return 0; } if (flag == CMP_MODE_REQID) { if (saidx0->mode != IPSEC_MODE_ANY && saidx0->mode != saidx1->mode) return 0; } if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) return 0; if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) return 0; } return 1; } /* * compare two secindex structure exactly. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from PFKEY message. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpspidx_exactly(struct secpolicyindex *spidx0, struct secpolicyindex *spidx1) { /* sanity */ if (spidx0 == NULL && spidx1 == NULL) return 1; if (spidx0 == NULL || spidx1 == NULL) return 0; if (spidx0->prefs != spidx1->prefs || spidx0->prefd != spidx1->prefd || spidx0->ul_proto != spidx1->ul_proto || spidx0->dir != spidx1->dir) return 0; return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; } /* * compare two secindex structure with mask. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from IP header. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpspidx_withmask(struct secpolicyindex *spidx0, struct secpolicyindex *spidx1) { /* sanity */ if (spidx0 == NULL && spidx1 == NULL) return 1; if (spidx0 == NULL || spidx1 == NULL) return 0; if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) return 0; /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && spidx0->ul_proto != spidx1->ul_proto) return 0; switch (spidx0->src.sa.sa_family) { case AF_INET: if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) return 0; if (!key_bbcmp(&spidx0->src.sin.sin_addr, &spidx1->src.sin.sin_addr, spidx0->prefs)) return 0; break; case AF_INET6: if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) return 0; /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (spidx0->src.sin6.sin6_scope_id && spidx1->src.sin6.sin6_scope_id && spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) return 0; if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, &spidx1->src.sin6.sin6_addr, spidx0->prefs)) return 0; break; default: /* XXX */ if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) return 0; break; } switch (spidx0->dst.sa.sa_family) { case AF_INET: if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) return 0; if (!key_bbcmp(&spidx0->dst.sin.sin_addr, &spidx1->dst.sin.sin_addr, spidx0->prefd)) return 0; break; case AF_INET6: if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) return 0; /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (spidx0->dst.sin6.sin6_scope_id && spidx1->dst.sin6.sin6_scope_id && spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) return 0; if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) return 0; break; default: /* XXX */ if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) return 0; break; } /* XXX Do we check other field ? e.g. flowinfo */ return 1; } #ifdef satosin #undef satosin #endif #define satosin(s) ((const struct sockaddr_in *)s) #ifdef satosin6 #undef satosin6 #endif #define satosin6(s) ((const struct sockaddr_in6 *)s) /* returns 0 on match */ int key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, int port) { if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) return 1; switch (sa1->sa_family) { #ifdef INET case AF_INET: if (sa1->sa_len != sizeof(struct sockaddr_in)) return 1; if (satosin(sa1)->sin_addr.s_addr != satosin(sa2)->sin_addr.s_addr) { return 1; } if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) return 1; break; #endif #ifdef INET6 case AF_INET6: if (sa1->sa_len != sizeof(struct sockaddr_in6)) return 1; /*EINVAL*/ if (satosin6(sa1)->sin6_scope_id != satosin6(sa2)->sin6_scope_id) { return 1; } if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, &satosin6(sa2)->sin6_addr)) { return 1; } if (port && satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { return 1; } break; #endif default: if (bcmp(sa1, sa2, sa1->sa_len) != 0) return 1; break; } return 0; } /* returns 0 on match */ int key_sockaddrcmp_withmask(const struct sockaddr *sa1, const struct sockaddr *sa2, size_t mask) { if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) return (1); switch (sa1->sa_family) { #ifdef INET case AF_INET: return (!key_bbcmp(&satosin(sa1)->sin_addr, &satosin(sa2)->sin_addr, mask)); #endif #ifdef INET6 case AF_INET6: if (satosin6(sa1)->sin6_scope_id != satosin6(sa2)->sin6_scope_id) return (1); return (!key_bbcmp(&satosin6(sa1)->sin6_addr, &satosin6(sa2)->sin6_addr, mask)); #endif } return (1); } #undef satosin #undef satosin6 /* * compare two buffers with mask. * IN: * addr1: source * addr2: object * bits: Number of bits to compare * OUT: * 1 : equal * 0 : not equal */ static int key_bbcmp(const void *a1, const void *a2, u_int bits) { const unsigned char *p1 = a1; const unsigned char *p2 = a2; /* XXX: This could be considerably faster if we compare a word * at a time, but it is complicated on LSB Endian machines */ /* Handle null pointers */ if (p1 == NULL || p2 == NULL) return (p1 == p2); while (bits >= 8) { if (*p1++ != *p2++) return 0; bits -= 8; } if (bits > 0) { u_int8_t mask = ~((1<<(8-bits))-1); if ((*p1 & mask) != (*p2 & mask)) return 0; } return 1; /* Match! */ } static void key_flush_spd(time_t now) { SPTREE_RLOCK_TRACKER; struct secpolicy_list drainq; struct secpolicy *sp, *nextsp; u_int dir; LIST_INIT(&drainq); SPTREE_RLOCK(); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { TAILQ_FOREACH(sp, &V_sptree[dir], chain) { if (sp->lifetime == 0 && sp->validtime == 0) continue; if ((sp->lifetime && now - sp->created > sp->lifetime) || (sp->validtime && now - sp->lastused > sp->validtime)) { /* Hold extra reference to send SPDEXPIRE */ SP_ADDREF(sp); LIST_INSERT_HEAD(&drainq, sp, drainq); } } } SPTREE_RUNLOCK(); if (LIST_EMPTY(&drainq)) return; SPTREE_WLOCK(); sp = LIST_FIRST(&drainq); while (sp != NULL) { nextsp = LIST_NEXT(sp, drainq); /* Check that SP is still linked */ if (sp->state != IPSEC_SPSTATE_ALIVE) { LIST_REMOVE(sp, drainq); key_freesp(&sp); /* release extra reference */ sp = nextsp; continue; } TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); V_spd_size--; LIST_REMOVE(sp, idhash); sp->state = IPSEC_SPSTATE_DEAD; sp = nextsp; } V_sp_genid++; SPTREE_WUNLOCK(); if (SPDCACHE_ENABLED()) spdcache_clear(); sp = LIST_FIRST(&drainq); while (sp != NULL) { nextsp = LIST_NEXT(sp, drainq); key_spdexpire(sp); key_freesp(&sp); /* release extra reference */ key_freesp(&sp); /* release last reference */ sp = nextsp; } } static void key_flush_sad(time_t now) { SAHTREE_RLOCK_TRACKER; struct secashead_list emptyq; struct secasvar_list drainq, hexpireq, sexpireq, freeq; struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; SECASVAR_RLOCK_TRACKER; LIST_INIT(&drainq); LIST_INIT(&hexpireq); LIST_INIT(&sexpireq); LIST_INIT(&emptyq); SAHTREE_RLOCK(); TAILQ_FOREACH(sah, &V_sahtree, chain) { /* Check for empty SAH */ if (TAILQ_EMPTY(&sah->savtree_larval) && TAILQ_EMPTY(&sah->savtree_alive)) { SAH_ADDREF(sah); LIST_INSERT_HEAD(&emptyq, sah, drainq); continue; } /* Add all stale LARVAL SAs into drainq */ TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { if (now - sav->created < V_key_larval_lifetime) continue; SAV_ADDREF(sav); LIST_INSERT_HEAD(&drainq, sav, drainq); } TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { /* lifetimes aren't specified */ if (sav->lft_h == NULL) continue; SECASVAR_RLOCK(sav); /* * Check again with lock held, because it may * be updated by SADB_UPDATE. */ if (sav->lft_h == NULL) { SECASVAR_RUNLOCK(sav); continue; } /* * RFC 2367: * HARD lifetimes MUST take precedence over SOFT * lifetimes, meaning if the HARD and SOFT lifetimes * are the same, the HARD lifetime will appear on the * EXPIRE message. */ /* check HARD lifetime */ if ((sav->lft_h->addtime != 0 && now - sav->created > sav->lft_h->addtime) || (sav->lft_h->usetime != 0 && sav->firstused && now - sav->firstused > sav->lft_h->usetime) || (sav->lft_h->bytes != 0 && counter_u64_fetch( sav->lft_c_bytes) > sav->lft_h->bytes)) { SECASVAR_RUNLOCK(sav); SAV_ADDREF(sav); LIST_INSERT_HEAD(&hexpireq, sav, drainq); continue; } /* check SOFT lifetime (only for MATURE SAs) */ if (sav->state == SADB_SASTATE_MATURE && ( (sav->lft_s->addtime != 0 && now - sav->created > sav->lft_s->addtime) || (sav->lft_s->usetime != 0 && sav->firstused && now - sav->firstused > sav->lft_s->usetime) || (sav->lft_s->bytes != 0 && counter_u64_fetch( sav->lft_c_bytes) > sav->lft_s->bytes) || (!(sav->flags & SADB_X_SAFLAGS_ESN) && (sav->replay != NULL) && ( (sav->replay->count > UINT32_80PCT) || (sav->replay->last > UINT32_80PCT))))) { SECASVAR_RUNLOCK(sav); SAV_ADDREF(sav); LIST_INSERT_HEAD(&sexpireq, sav, drainq); continue; } SECASVAR_RUNLOCK(sav); } } SAHTREE_RUNLOCK(); if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) && LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq)) return; LIST_INIT(&freeq); SAHTREE_WLOCK(); /* Unlink stale LARVAL SAs */ sav = LIST_FIRST(&drainq); while (sav != NULL) { nextsav = LIST_NEXT(sav, drainq); /* Check that SA is still LARVAL */ if (sav->state != SADB_SASTATE_LARVAL) { LIST_REMOVE(sav, drainq); LIST_INSERT_HEAD(&freeq, sav, drainq); sav = nextsav; continue; } TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); LIST_REMOVE(sav, spihash); sav->state = SADB_SASTATE_DEAD; sav = nextsav; } /* Unlink all SAs with expired HARD lifetime */ sav = LIST_FIRST(&hexpireq); while (sav != NULL) { nextsav = LIST_NEXT(sav, drainq); /* Check that SA is not unlinked */ if (sav->state == SADB_SASTATE_DEAD) { LIST_REMOVE(sav, drainq); LIST_INSERT_HEAD(&freeq, sav, drainq); sav = nextsav; continue; } TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); LIST_REMOVE(sav, spihash); sav->state = SADB_SASTATE_DEAD; sav = nextsav; } /* Mark all SAs with expired SOFT lifetime as DYING */ sav = LIST_FIRST(&sexpireq); while (sav != NULL) { nextsav = LIST_NEXT(sav, drainq); /* Check that SA is not unlinked */ if (sav->state == SADB_SASTATE_DEAD) { LIST_REMOVE(sav, drainq); LIST_INSERT_HEAD(&freeq, sav, drainq); sav = nextsav; continue; } /* * NOTE: this doesn't change SA order in the chain. */ sav->state = SADB_SASTATE_DYING; sav = nextsav; } /* Unlink empty SAHs */ sah = LIST_FIRST(&emptyq); while (sah != NULL) { nextsah = LIST_NEXT(sah, drainq); /* Check that SAH is still empty and not unlinked */ if (sah->state == SADB_SASTATE_DEAD || !TAILQ_EMPTY(&sah->savtree_larval) || !TAILQ_EMPTY(&sah->savtree_alive)) { LIST_REMOVE(sah, drainq); key_freesah(&sah); /* release extra reference */ sah = nextsah; continue; } TAILQ_REMOVE(&V_sahtree, sah, chain); LIST_REMOVE(sah, addrhash); sah->state = SADB_SASTATE_DEAD; sah = nextsah; } SAHTREE_WUNLOCK(); /* Send SPDEXPIRE messages */ sav = LIST_FIRST(&hexpireq); while (sav != NULL) { nextsav = LIST_NEXT(sav, drainq); key_expire(sav, 1); key_freesah(&sav->sah); /* release reference from SAV */ key_freesav(&sav); /* release extra reference */ key_freesav(&sav); /* release last reference */ sav = nextsav; } sav = LIST_FIRST(&sexpireq); while (sav != NULL) { nextsav = LIST_NEXT(sav, drainq); key_expire(sav, 0); key_freesav(&sav); /* release extra reference */ sav = nextsav; } /* Free stale LARVAL SAs */ sav = LIST_FIRST(&drainq); while (sav != NULL) { nextsav = LIST_NEXT(sav, drainq); key_freesah(&sav->sah); /* release reference from SAV */ key_freesav(&sav); /* release extra reference */ key_freesav(&sav); /* release last reference */ sav = nextsav; } /* Free SAs that were unlinked/changed by someone else */ sav = LIST_FIRST(&freeq); while (sav != NULL) { nextsav = LIST_NEXT(sav, drainq); key_freesav(&sav); /* release extra reference */ sav = nextsav; } /* Free empty SAH */ sah = LIST_FIRST(&emptyq); while (sah != NULL) { nextsah = LIST_NEXT(sah, drainq); key_freesah(&sah); /* release extra reference */ key_freesah(&sah); /* release last reference */ sah = nextsah; } } static void key_flush_acq(time_t now) { struct secacq *acq, *nextacq; /* ACQ tree */ ACQ_LOCK(); acq = LIST_FIRST(&V_acqtree); while (acq != NULL) { nextacq = LIST_NEXT(acq, chain); if (now - acq->created > V_key_blockacq_lifetime) { LIST_REMOVE(acq, chain); LIST_REMOVE(acq, addrhash); LIST_REMOVE(acq, seqhash); free(acq, M_IPSEC_SAQ); } acq = nextacq; } ACQ_UNLOCK(); } static void key_flush_spacq(time_t now) { struct secspacq *acq, *nextacq; /* SP ACQ tree */ SPACQ_LOCK(); for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { nextacq = LIST_NEXT(acq, chain); if (now - acq->created > V_key_blockacq_lifetime && __LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); free(acq, M_IPSEC_SAQ); } } SPACQ_UNLOCK(); } /* * time handler. * scanning SPD and SAD to check status for each entries, * and do to remove or to expire. * XXX: year 2038 problem may remain. */ static void key_timehandler(void *arg) { VNET_ITERATOR_DECL(vnet_iter); time_t now = time_second; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); key_flush_spd(now); key_flush_sad(now); key_flush_acq(now); key_flush_spacq(now); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); #ifndef IPSEC_DEBUG2 /* do exchange to tick time !! */ callout_schedule(&key_timer, hz); #endif /* IPSEC_DEBUG2 */ } u_long key_random(void) { u_long value; arc4random_buf(&value, sizeof(value)); return value; } /* * map SADB_SATYPE_* to IPPROTO_*. * if satype == SADB_SATYPE then satype is mapped to ~0. * OUT: * 0: invalid satype. */ static uint8_t key_satype2proto(uint8_t satype) { switch (satype) { case SADB_SATYPE_UNSPEC: return IPSEC_PROTO_ANY; case SADB_SATYPE_AH: return IPPROTO_AH; case SADB_SATYPE_ESP: return IPPROTO_ESP; case SADB_X_SATYPE_IPCOMP: return IPPROTO_IPCOMP; case SADB_X_SATYPE_TCPSIGNATURE: return IPPROTO_TCP; default: return 0; } /* NOTREACHED */ } /* * map IPPROTO_* to SADB_SATYPE_* * OUT: * 0: invalid protocol type. */ static uint8_t key_proto2satype(uint8_t proto) { switch (proto) { case IPPROTO_AH: return SADB_SATYPE_AH; case IPPROTO_ESP: return SADB_SATYPE_ESP; case IPPROTO_IPCOMP: return SADB_X_SATYPE_IPCOMP; case IPPROTO_TCP: return SADB_X_SATYPE_TCPSIGNATURE; default: return 0; } /* NOTREACHED */ } /* %%% PF_KEY */ /* * SADB_GETSPI processing is to receive * * from the IKMPd, to assign a unique spi value, to hang on the INBOUND * tree with the status of LARVAL, and send * * to the IKMPd. * * IN: mhp: pointer to the pointer to each header. * OUT: NULL if fail. * other if success, return pointer to the message to send. */ static int key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secasindex saidx; struct sadb_address *src0, *dst0; struct secasvar *sav; uint32_t reqid, spi; int error; uint8_t mode, proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) #ifdef PFKEY_STRICT_CHECKS || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE) #endif ) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); error = EINVAL; goto fail; } if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) #ifdef PFKEY_STRICT_CHECKS || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE) #endif ) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); error = EINVAL; goto fail; } if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { mode = IPSEC_MODE_ANY; reqid = 0; } else { if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); error = EINVAL; goto fail; } mode = ((struct sadb_x_sa2 *) mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *) mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); error = EINVAL; goto fail; } error = key_checksockaddrs((struct sockaddr *)(src0 + 1), (struct sockaddr *)(dst0 + 1)); if (error != 0) { ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); error = EINVAL; goto fail; } KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); /* SPI allocation */ SPI_ALLOC_LOCK(); spi = key_do_getnewspi( (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); if (spi == 0) { /* * Requested SPI or SPI range is not available or * already used. */ SPI_ALLOC_UNLOCK(); error = EEXIST; goto fail; } sav = key_newsav(mhp, &saidx, spi, &error); SPI_ALLOC_UNLOCK(); if (sav == NULL) goto fail; if (sav->seq != 0) { /* * RFC2367: * If the SADB_GETSPI message is in response to a * kernel-generated SADB_ACQUIRE, the sadb_msg_seq * MUST be the same as the SADB_ACQUIRE message. * * XXXAE: However it doesn't definethe behaviour how to * check this and what to do if it doesn't match. * Also what we should do if it matches? * * We can compare saidx used in SADB_ACQUIRE with saidx * used in SADB_GETSPI, but this probably can break * existing software. For now just warn if it doesn't match. * * XXXAE: anyway it looks useless. */ key_acqdone(&saidx, sav->seq); } KEYDBG(KEY_STAMP, printf("%s: SA(%p)\n", __func__, sav)); KEYDBG(KEY_DATA, kdebug_secasv(sav)); { struct mbuf *n, *nn; struct sadb_sa *m_sa; struct sadb_msg *newmsg; int off, len; /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + PFKEY_ALIGN8(sizeof(struct sadb_sa)); n = key_mget(len); if (n == NULL) { error = ENOBUFS; goto fail; } n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); m_sa->sadb_sa_exttype = SADB_EXT_SA; m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */ off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", off, len)); n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n->m_next) { m_freem(n); error = ENOBUFS; goto fail; } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) n->m_pkthdr.len += nn->m_len; newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_seq = sav->seq; newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } fail: return (key_senderror(so, m, error)); } /* * allocating new SPI * called by key_getspi(). * OUT: * 0: failure. * others: success, SPI in network byte order. */ static uint32_t key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) { uint32_t min, max, newspi, t; int tries, limit; SPI_ALLOC_LOCK_ASSERT(); /* set spi range to allocate */ if (spirange != NULL) { min = spirange->sadb_spirange_min; max = spirange->sadb_spirange_max; } else { min = V_key_spi_minval; max = V_key_spi_maxval; } /* IPCOMP needs 2-byte SPI */ if (saidx->proto == IPPROTO_IPCOMP) { if (min >= 0x10000) min = 0xffff; if (max >= 0x10000) max = 0xffff; if (min > max) { t = min; min = max; max = t; } } if (min == max) { if (key_checkspidup(htonl(min))) { ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", __func__, min)); return 0; } tries = 1; newspi = min; } else { /* init SPI */ newspi = 0; limit = atomic_load_int(&V_key_spi_trycnt); /* when requesting to allocate spi ranged */ for (tries = 0; tries < limit; tries++) { /* generate pseudo-random SPI value ranged. */ newspi = min + (key_random() % (max - min + 1)); if (!key_checkspidup(htonl(newspi))) break; } if (tries == limit || newspi == 0) { ipseclog((LOG_DEBUG, "%s: failed to allocate SPI.\n", __func__)); return 0; } } /* statistics */ keystat.getspi_count = (keystat.getspi_count + tries) / 2; return (htonl(newspi)); } /* * Find TCP-MD5 SA with corresponding secasindex. * If not found, return NULL and fill SPI with usable value if needed. */ static struct secasvar * key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi) { SAHTREE_RLOCK_TRACKER; struct secashead *sah; struct secasvar *sav; IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto")); SAHTREE_RLOCK(); LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { if (sah->saidx.proto != IPPROTO_TCP) continue; if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) break; } if (sah != NULL) { if (V_key_preferred_oldsa) sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); else sav = TAILQ_FIRST(&sah->savtree_alive); if (sav != NULL) { SAV_ADDREF(sav); SAHTREE_RUNLOCK(); return (sav); } } if (spi == NULL) { /* No SPI required */ SAHTREE_RUNLOCK(); return (NULL); } /* Check that SPI is unique */ LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) { if (sav->spi == *spi) break; } if (sav == NULL) { SAHTREE_RUNLOCK(); /* SPI is already unique */ return (NULL); } SAHTREE_RUNLOCK(); /* XXX: not optimal */ *spi = key_do_getnewspi(NULL, saidx); return (NULL); } static int key_updateaddresses(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, struct secasvar *sav, struct secasindex *saidx) { struct sockaddr *newaddr; struct secashead *sah; struct secasvar *newsav, *tmp; struct mbuf *n; int error, isnew; /* Check that we need to change SAH */ if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) { newaddr = (struct sockaddr *)( ((struct sadb_address *) mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1); bcopy(newaddr, &saidx->src, newaddr->sa_len); key_porttosaddr(&saidx->src.sa, 0); } if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { newaddr = (struct sockaddr *)( ((struct sadb_address *) mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1); bcopy(newaddr, &saidx->dst, newaddr->sa_len); key_porttosaddr(&saidx->dst.sa, 0); } if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa); if (error != 0) { ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n", __func__)); return (error); } sah = key_getsah(saidx); if (sah == NULL) { /* create a new SA index */ sah = key_newsah(saidx); if (sah == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return (ENOBUFS); } isnew = 2; /* SAH is new */ } else isnew = 1; /* existing SAH is referenced */ } else { /* * src and dst addresses are still the same. * Do we want to change NAT-T config? */ if (sav->sah->saidx.proto != IPPROTO_ESP || SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) || SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); return (EINVAL); } /* We hold reference to SA, thus SAH will be referenced too. */ sah = sav->sah; isnew = 0; } newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO); if (newsav == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } /* Clone SA's content into newsav */ SAV_INITREF(newsav); bcopy(sav, newsav, offsetof(struct secasvar, chain)); /* * We create new NAT-T config if it is needed. * Old NAT-T config will be freed by key_cleansav() when * last reference to SA will be released. */ newsav->natt = NULL; newsav->sah = sah; newsav->state = SADB_SASTATE_MATURE; error = key_setnatt(newsav, mhp); if (error != 0) goto fail; SAHTREE_WLOCK(); /* Check that SA is still alive */ if (sav->state == SADB_SASTATE_DEAD) { /* SA was unlinked */ SAHTREE_WUNLOCK(); error = ESRCH; goto fail; } /* Unlink SA from SAH and SPI hash */ IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0, ("SA is already cloned")); IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE || sav->state == SADB_SASTATE_DYING, ("Wrong SA state %u\n", sav->state)); TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); LIST_REMOVE(sav, spihash); sav->state = SADB_SASTATE_DEAD; /* * Link new SA with SAH. Keep SAs ordered by * create time (newer are first). */ TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) { if (newsav->created > tmp->created) { TAILQ_INSERT_BEFORE(tmp, newsav, chain); break; } } if (tmp == NULL) TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain); /* Add new SA into SPI hash. */ LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash); /* Add new SAH into SADB. */ if (isnew == 2) { TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); sah->state = SADB_SASTATE_MATURE; SAH_ADDREF(sah); /* newsav references new SAH */ } /* * isnew == 1 -> @sah was referenced by key_getsah(). * isnew == 0 -> we use the same @sah, that was used by @sav, * and we use its reference for @newsav. */ SECASVAR_WLOCK(sav); /* XXX: replace cntr with pointer? */ newsav->cntr = sav->cntr; sav->flags |= SADB_X_EXT_F_CLONED; SECASVAR_WUNLOCK(sav); SAHTREE_WUNLOCK(); KEYDBG(KEY_STAMP, printf("%s: SA(%p) cloned into SA(%p)\n", __func__, sav, newsav)); KEYDBG(KEY_DATA, kdebug_secasv(newsav)); key_freesav(&sav); /* release last reference */ /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return (ENOBUFS); } m_freem(m); key_sendup_mbuf(so, n, KEY_SENDUP_ALL); return (0); fail: if (isnew != 0) key_freesah(&sah); if (newsav != NULL) { if (newsav->natt != NULL) free(newsav->natt, M_IPSEC_MISC); free(newsav, M_IPSEC_SA); } return (error); } /* * SADB_UPDATE processing * receive * * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. * and send * * to the ikmpd. * * m will always be freed. */ static int key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secasindex saidx; struct sadb_address *src0, *dst0; struct sadb_sa *sa0; struct secasvar *sav; uint32_t reqid; int error; uint8_t mode, proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { mode = IPSEC_MODE_ANY; reqid = 0; } else { if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } mode = ((struct sadb_x_sa2 *) mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *) mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* * Only SADB_SASTATE_MATURE SAs may be submitted in an * SADB_UPDATE message. */ if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); #ifdef PFKEY_STRICT_CHECKS return key_senderror(so, m, EINVAL); #endif } error = key_checksockaddrs((struct sockaddr *)(src0 + 1), (struct sockaddr *)(dst0 + 1)); if (error != 0) { ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); return key_senderror(so, m, error); } KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); sav = key_getsavbyspi(sa0->sadb_sa_spi); if (sav == NULL) { ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n", __func__, ntohl(sa0->sadb_sa_spi))); return key_senderror(so, m, EINVAL); } /* * Check that SADB_UPDATE issued by the same process that did * SADB_GETSPI or SADB_ADD. */ if (sav->pid != mhp->msg->sadb_msg_pid) { ipseclog((LOG_DEBUG, "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__, ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid)); key_freesav(&sav); return key_senderror(so, m, EINVAL); } /* saidx should match with SA. */ if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) { ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n", __func__, ntohl(sav->spi))); key_freesav(&sav); return key_senderror(so, m, ESRCH); } if (sav->state == SADB_SASTATE_LARVAL) { if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); key_freesav(&sav); return key_senderror(so, m, EINVAL); } /* * We can set any values except src, dst and SPI. */ error = key_setsaval(sav, mhp); if (error != 0) { key_freesav(&sav); return (key_senderror(so, m, error)); } /* Change SA state to MATURE */ SAHTREE_WLOCK(); if (sav->state != SADB_SASTATE_LARVAL) { /* SA was deleted or another thread made it MATURE. */ SAHTREE_WUNLOCK(); key_freesav(&sav); return (key_senderror(so, m, ESRCH)); } /* * NOTE: we keep SAs in savtree_alive ordered by created * time. When SA's state changed from LARVAL to MATURE, * we update its created time in key_setsaval() and move * it into head of savtree_alive. */ TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain); sav->state = SADB_SASTATE_MATURE; SAHTREE_WUNLOCK(); } else { /* * For DYING and MATURE SA we can change only state * and lifetimes. Report EINVAL if something else attempted * to change. */ if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { key_freesav(&sav); return (key_senderror(so, m, EINVAL)); } error = key_updatelifetimes(sav, mhp); if (error != 0) { key_freesav(&sav); return (key_senderror(so, m, error)); } /* * This is FreeBSD extension to RFC2367. * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change * SA addresses (for example to implement MOBIKE protocol * as described in RFC4555). Also we allow to change * NAT-T config. */ if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) || !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || sav->natt != NULL) { error = key_updateaddresses(so, m, mhp, sav, &saidx); key_freesav(&sav); if (error != 0) return (key_senderror(so, m, error)); return (0); } /* Check that SA is still alive */ SAHTREE_WLOCK(); if (sav->state == SADB_SASTATE_DEAD) { /* SA was unlinked */ SAHTREE_WUNLOCK(); key_freesav(&sav); return (key_senderror(so, m, ESRCH)); } /* * NOTE: there is possible state moving from DYING to MATURE, * but this doesn't change created time, so we won't reorder * this SA. */ sav->state = SADB_SASTATE_MATURE; SAHTREE_WUNLOCK(); } KEYDBG(KEY_STAMP, printf("%s: SA(%p)\n", __func__, sav)); KEYDBG(KEY_DATA, kdebug_secasv(sav)); key_freesav(&sav); { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_ADD processing * add an entry to SA database, when received * * from the ikmpd, * and send * * to the ikmpd. * * IGNORE identity and sensitivity messages. * * m will always be freed. */ static int key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secasindex saidx; struct sadb_address *src0, *dst0; struct sadb_sa *sa0; struct secasvar *sav; uint32_t reqid, spi; uint8_t mode, proto; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && ( SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && ( SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) || SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) || (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { mode = IPSEC_MODE_ANY; reqid = 0; } else { if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } mode = ((struct sadb_x_sa2 *) mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *) mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; /* * Only SADB_SASTATE_MATURE SAs may be submitted in an * SADB_ADD message. */ if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); #ifdef PFKEY_STRICT_CHECKS return key_senderror(so, m, EINVAL); #endif } error = key_checksockaddrs((struct sockaddr *)(src0 + 1), (struct sockaddr *)(dst0 + 1)); if (error != 0) { ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); return key_senderror(so, m, error); } KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); spi = sa0->sadb_sa_spi; /* * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using * secasindex. * XXXAE: IPComp seems also doesn't use SPI. */ SPI_ALLOC_LOCK(); if (proto == IPPROTO_TCP) { sav = key_getsav_tcpmd5(&saidx, &spi); if (sav == NULL && spi == 0) { SPI_ALLOC_UNLOCK(); /* Failed to allocate SPI */ ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); return key_senderror(so, m, EEXIST); } /* XXX: SPI that we report back can have another value */ } else { /* We can create new SA only if SPI is different. */ sav = key_getsavbyspi(spi); } if (sav != NULL) { SPI_ALLOC_UNLOCK(); key_freesav(&sav); ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); return key_senderror(so, m, EEXIST); } sav = key_newsav(mhp, &saidx, spi, &error); SPI_ALLOC_UNLOCK(); if (sav == NULL) return key_senderror(so, m, error); KEYDBG(KEY_STAMP, printf("%s: return SA(%p)\n", __func__, sav)); KEYDBG(KEY_DATA, kdebug_secasv(sav)); /* * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule * ACQ for deletion. */ if (sav->seq != 0) key_acqdone(&saidx, sav->seq); { /* * Don't call key_freesav() on error here, as we would like to * keep the SA in the database. */ struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * NAT-T support. * IKEd may request the use ESP in UDP encapsulation when it detects the * presence of NAT. It uses NAT-T extension headers for such SAs to specify * parameters needed for encapsulation and decapsulation. These PF_KEY * extension headers are not standardized, so this comment addresses our * implementation. * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only * UDP_ENCAP_ESPINUDP as described in RFC3948. * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for * UDP header. We use these ports in UDP encapsulation procedure, also we * can check them in UDP decapsulation procedure. * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or * responder. These addresses can be used for transport mode to adjust * checksum after decapsulation and decryption. Since original IP addresses * used by peer usually different (we detected presence of NAT), TCP/UDP * pseudo header checksum and IP header checksum was calculated using original * addresses. After decapsulation and decryption we need to adjust checksum * to have correct datagram. * * We expect presence of NAT-T extension headers only in SADB_ADD and * SADB_UPDATE messages. We report NAT-T extension headers in replies * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages. */ static int key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp) { struct sadb_x_nat_t_port *port; struct sadb_x_nat_t_type *type; struct sadb_address *oai, *oar; struct sockaddr *sa; uint32_t addr; uint16_t cksum; int i; IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized")); /* * Ignore NAT-T headers if sproto isn't ESP. */ if (sav->sah->saidx.proto != IPPROTO_ESP) return (0); if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) && !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) && !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) || SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) || SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return (EINVAL); } } else return (0); type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE]; if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) { ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n", __func__, type->sadb_x_nat_t_type_type)); return (EINVAL); } /* * Allocate storage for NAT-T config. * On error it will be released by key_cleansav(). */ sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC, M_NOWAIT | M_ZERO); if (sav->natt == NULL) { PFKEYSTAT_INC(in_nomem); ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return (ENOBUFS); } port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT]; if (port->sadb_x_nat_t_port_port == 0) { ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n", __func__)); return (EINVAL); } sav->natt->sport = port->sadb_x_nat_t_port_port; port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (port->sadb_x_nat_t_port_port == 0) { ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n", __func__)); return (EINVAL); } sav->natt->dport = port->sadb_x_nat_t_port_port; /* * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional * and needed only for transport mode IPsec. * Usually NAT translates only one address, but it is possible, * that both addresses could be translated. * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA. */ if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) { if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return (EINVAL); } oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; } else oai = NULL; if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) { if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return (EINVAL); } oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; } else oar = NULL; /* Initialize addresses only for transport mode */ if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) { cksum = 0; if (oai != NULL) { sa = (struct sockaddr *)(oai + 1); switch (sa->sa_family) { #ifdef AF_INET case AF_INET: if (sa->sa_len != sizeof(struct sockaddr_in)) { ipseclog((LOG_DEBUG, "%s: wrong NAT-OAi header.\n", __func__)); return (EINVAL); } /* Ignore address if it the same */ if (((struct sockaddr_in *)sa)->sin_addr.s_addr != sav->sah->saidx.src.sin.sin_addr.s_addr) { bcopy(sa, &sav->natt->oai.sa, sa->sa_len); sav->natt->flags |= IPSEC_NATT_F_OAI; /* Calculate checksum delta */ addr = sav->sah->saidx.src.sin.sin_addr.s_addr; cksum = in_addword(cksum, ~addr >> 16); cksum = in_addword(cksum, ~addr & 0xffff); addr = sav->natt->oai.sin.sin_addr.s_addr; cksum = in_addword(cksum, addr >> 16); cksum = in_addword(cksum, addr & 0xffff); } break; #endif #ifdef AF_INET6 case AF_INET6: if (sa->sa_len != sizeof(struct sockaddr_in6)) { ipseclog((LOG_DEBUG, "%s: wrong NAT-OAi header.\n", __func__)); return (EINVAL); } /* Ignore address if it the same */ if (memcmp(&((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr, &sav->sah->saidx.src.sin6.sin6_addr.s6_addr, sizeof(struct in6_addr)) != 0) { bcopy(sa, &sav->natt->oai.sa, sa->sa_len); sav->natt->flags |= IPSEC_NATT_F_OAI; /* Calculate checksum delta */ for (i = 0; i < 8; i++) { cksum = in_addword(cksum, ~sav->sah->saidx.src.sin6.sin6_addr.s6_addr16[i]); cksum = in_addword(cksum, sav->natt->oai.sin6.sin6_addr.s6_addr16[i]); } } break; #endif default: ipseclog((LOG_DEBUG, "%s: wrong NAT-OAi header.\n", __func__)); return (EINVAL); } } if (oar != NULL) { sa = (struct sockaddr *)(oar + 1); switch (sa->sa_family) { #ifdef AF_INET case AF_INET: if (sa->sa_len != sizeof(struct sockaddr_in)) { ipseclog((LOG_DEBUG, "%s: wrong NAT-OAr header.\n", __func__)); return (EINVAL); } /* Ignore address if it the same */ if (((struct sockaddr_in *)sa)->sin_addr.s_addr != sav->sah->saidx.dst.sin.sin_addr.s_addr) { bcopy(sa, &sav->natt->oar.sa, sa->sa_len); sav->natt->flags |= IPSEC_NATT_F_OAR; /* Calculate checksum delta */ addr = sav->sah->saidx.dst.sin.sin_addr.s_addr; cksum = in_addword(cksum, ~addr >> 16); cksum = in_addword(cksum, ~addr & 0xffff); addr = sav->natt->oar.sin.sin_addr.s_addr; cksum = in_addword(cksum, addr >> 16); cksum = in_addword(cksum, addr & 0xffff); } break; #endif #ifdef AF_INET6 case AF_INET6: if (sa->sa_len != sizeof(struct sockaddr_in6)) { ipseclog((LOG_DEBUG, "%s: wrong NAT-OAr header.\n", __func__)); return (EINVAL); } /* Ignore address if it the same */ if (memcmp(&((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr, &sav->sah->saidx.dst.sin6.sin6_addr.s6_addr, 16) != 0) { bcopy(sa, &sav->natt->oar.sa, sa->sa_len); sav->natt->flags |= IPSEC_NATT_F_OAR; /* Calculate checksum delta */ for (i = 0; i < 8; i++) { cksum = in_addword(cksum, ~sav->sah->saidx.dst.sin6.sin6_addr.s6_addr16[i]); cksum = in_addword(cksum, sav->natt->oar.sin6.sin6_addr.s6_addr16[i]); } } break; #endif default: ipseclog((LOG_DEBUG, "%s: wrong NAT-OAr header.\n", __func__)); return (EINVAL); } } sav->natt->cksum = cksum; } return (0); } static int key_setident(struct secashead *sah, const struct sadb_msghdr *mhp) { const struct sadb_ident *idsrc, *iddst; IPSEC_ASSERT(sah != NULL, ("null secashead")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* don't make buffer if not there */ if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) && SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { sah->idents = NULL; sah->identd = NULL; return (0); } if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); return (EINVAL); } idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; /* validity check */ if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); return EINVAL; } switch (idsrc->sadb_ident_type) { case SADB_IDENTTYPE_PREFIX: case SADB_IDENTTYPE_FQDN: case SADB_IDENTTYPE_USERFQDN: default: /* XXX do nothing */ sah->idents = NULL; sah->identd = NULL; return 0; } /* make structure */ sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); if (sah->idents == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return ENOBUFS; } sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); if (sah->identd == NULL) { free(sah->idents, M_IPSEC_MISC); sah->idents = NULL; ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return ENOBUFS; } sah->idents->type = idsrc->sadb_ident_type; sah->idents->id = idsrc->sadb_ident_id; sah->identd->type = iddst->sadb_ident_type; sah->identd->id = iddst->sadb_ident_id; return 0; } /* * m will not be freed on return. * it is caller's responsibility to free the result. * * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers * from the request in defined order. */ static struct mbuf * key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) { struct mbuf *n; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED, SADB_EXT_SA, SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC, SADB_X_EXT_NEW_ADDRESS_DST); if (!n) return NULL; if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return NULL; } mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; mtod(n, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); return n; } /* * SADB_DELETE processing * receive * * from the ikmpd, and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secasindex saidx; struct sadb_address *src0, *dst0; struct secasvar *sav; struct sadb_sa *sa0; uint8_t proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); if (key_checksockaddrs((struct sockaddr *)(src0 + 1), (struct sockaddr *)(dst0 + 1)) != 0) { ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); return (key_senderror(so, m, EINVAL)); } KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) { /* * Caller wants us to delete all non-LARVAL SAs * that match the src/dst. This is used during * IKE INITIAL-CONTACT. * XXXAE: this looks like some extension to RFC2367. */ ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); return (key_delete_all(so, m, mhp, &saidx)); } if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return (key_senderror(so, m, EINVAL)); } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; SPI_ALLOC_LOCK(); if (proto == IPPROTO_TCP) sav = key_getsav_tcpmd5(&saidx, NULL); else sav = key_getsavbyspi(sa0->sadb_sa_spi); SPI_ALLOC_UNLOCK(); if (sav == NULL) { ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n", __func__, ntohl(sa0->sadb_sa_spi))); return (key_senderror(so, m, ESRCH)); } if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", __func__, ntohl(sav->spi))); key_freesav(&sav); return (key_senderror(so, m, ESRCH)); } KEYDBG(KEY_STAMP, printf("%s: SA(%p)\n", __func__, sav)); KEYDBG(KEY_DATA, kdebug_secasv(sav)); key_unlinksav(sav); key_freesav(&sav); { struct mbuf *n; struct sadb_msg *newmsg; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * delete all SAs for src/dst. Called from key_delete(). */ static int key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, struct secasindex *saidx) { struct secasvar_queue drainq; struct secashead *sah; struct secasvar *sav, *nextsav; TAILQ_INIT(&drainq); SAHTREE_WLOCK(); LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0) continue; /* Move all ALIVE SAs into drainq */ TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); } /* Unlink all queued SAs from SPI hash */ TAILQ_FOREACH(sav, &drainq, chain) { sav->state = SADB_SASTATE_DEAD; LIST_REMOVE(sav, spihash); } SAHTREE_WUNLOCK(); /* Now we can release reference for all SAs in drainq */ sav = TAILQ_FIRST(&drainq); while (sav != NULL) { KEYDBG(KEY_STAMP, printf("%s: SA(%p)\n", __func__, sav)); KEYDBG(KEY_DATA, kdebug_secasv(sav)); nextsav = TAILQ_NEXT(sav, chain); key_freesah(&sav->sah); /* release reference from SAV */ key_freesav(&sav); /* release last reference */ sav = nextsav; } { struct mbuf *n; struct sadb_msg *newmsg; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * Delete all alive SAs for corresponding xform. * Larval SAs have not initialized tdb_xform, so it is safe to leave them * here when xform disappears. */ void key_delete_xform(const struct xformsw *xsp) { struct secasvar_queue drainq; struct secashead *sah; struct secasvar *sav, *nextsav; TAILQ_INIT(&drainq); SAHTREE_WLOCK(); TAILQ_FOREACH(sah, &V_sahtree, chain) { sav = TAILQ_FIRST(&sah->savtree_alive); if (sav == NULL) continue; if (sav->tdb_xform != xsp) continue; /* * It is supposed that all SAs in the chain are related to * one xform. */ TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); } /* Unlink all queued SAs from SPI hash */ TAILQ_FOREACH(sav, &drainq, chain) { sav->state = SADB_SASTATE_DEAD; LIST_REMOVE(sav, spihash); } SAHTREE_WUNLOCK(); /* Now we can release reference for all SAs in drainq */ sav = TAILQ_FIRST(&drainq); while (sav != NULL) { KEYDBG(KEY_STAMP, printf("%s: SA(%p)\n", __func__, sav)); KEYDBG(KEY_DATA, kdebug_secasv(sav)); nextsav = TAILQ_NEXT(sav, chain); key_freesah(&sav->sah); /* release reference from SAV */ key_freesav(&sav); /* release last reference */ sav = nextsav; } } /* * SADB_GET processing * receive * * from the ikmpd, and get a SP and a SA to respond, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secasindex saidx; struct sadb_address *src0, *dst0; struct sadb_sa *sa0; struct secasvar *sav; uint8_t proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; if (key_checksockaddrs((struct sockaddr *)(src0 + 1), (struct sockaddr *)(dst0 + 1)) != 0) { ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); return key_senderror(so, m, EINVAL); } KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); SPI_ALLOC_LOCK(); if (proto == IPPROTO_TCP) sav = key_getsav_tcpmd5(&saidx, NULL); else sav = key_getsavbyspi(sa0->sadb_sa_spi); SPI_ALLOC_UNLOCK(); if (sav == NULL) { ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); return key_senderror(so, m, ESRCH); } if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", __func__, ntohl(sa0->sadb_sa_spi))); key_freesav(&sav); return (key_senderror(so, m, ESRCH)); } { struct mbuf *n; uint8_t satype; /* map proto to satype */ if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", __func__)); key_freesav(&sav); return key_senderror(so, m, EINVAL); } /* create new sadb_msg to reply. */ n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); key_freesav(&sav); if (!n) return key_senderror(so, m, ENOBUFS); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* XXX make it sysctl-configurable? */ static void key_getcomb_setlifetime(struct sadb_comb *comb) { comb->sadb_comb_soft_allocations = 1; comb->sadb_comb_hard_allocations = 1; comb->sadb_comb_soft_bytes = 0; comb->sadb_comb_hard_bytes = 0; comb->sadb_comb_hard_addtime = 86400; /* 1 day */ comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; } /* * XXX reorder combinations by preference * XXX no idea if the user wants ESP authentication or not */ static struct mbuf * key_getcomb_ealg(void) { struct sadb_comb *comb; const struct enc_xform *algo; struct mbuf *result = NULL, *m, *n; int encmin; int i, off, o; int totlen; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_EALG_MAX; i++) { algo = enc_algorithm_lookup(i); if (algo == NULL) continue; /* discard algorithms with key size smaller than system min */ if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) continue; if (_BITS(algo->minkey) < V_ipsec_esp_keymin) encmin = V_ipsec_esp_keymin; else encmin = _BITS(algo->minkey); if (V_ipsec_esp_auth) m = key_getcomb_ah(); else { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_NOWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; bzero(mtod(m, caddr_t), m->m_len); } } if (!m) goto fail; totlen = 0; for (n = m; n; n = n->m_next) totlen += n->m_len; IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); for (off = 0; off < totlen; off += l) { n = m_pulldown(m, off, l, &o); if (!n) { /* m is already freed */ goto fail; } comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; comb->sadb_comb_encrypt_minbits = encmin; comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); } if (!result) result = m; else m_cat(result, m); } return result; fail: if (result) m_freem(result); return NULL; } static void key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, u_int16_t* max) { *min = *max = ah->hashsize; if (ah->keysize == 0) { /* * Transform takes arbitrary key size but algorithm * key size is restricted. Enforce this here. */ switch (alg) { case SADB_X_AALG_NULL: *min = 1; *max = 256; break; case SADB_X_AALG_SHA2_256: *min = *max = 32; break; case SADB_X_AALG_SHA2_384: *min = *max = 48; break; case SADB_X_AALG_SHA2_512: *min = *max = 64; break; default: DPRINTF(("%s: unknown AH algorithm %u\n", __func__, alg)); break; } } } /* * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ah(void) { const struct auth_hash *algo; struct sadb_comb *comb; struct mbuf *m; u_int16_t minkeysize, maxkeysize; int i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_AALG_MAX; i++) { #if 1 /* we prefer HMAC algorithms, not old algorithms */ if (i != SADB_AALG_SHA1HMAC && i != SADB_X_AALG_SHA2_256 && i != SADB_X_AALG_SHA2_384 && i != SADB_X_AALG_SHA2_512) continue; #endif algo = auth_algorithm_lookup(i); if (!algo) continue; key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); /* discard algorithms with key size smaller than system min */ if (_BITS(minkeysize) < V_ipsec_ah_keymin) continue; if (!m) { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_NOWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; } } else M_PREPEND(m, l, M_NOWAIT); if (!m) return NULL; comb = mtod(m, struct sadb_comb *); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_auth = i; comb->sadb_comb_auth_minbits = _BITS(minkeysize); comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); } return m; } /* * not really an official behavior. discussed in pf_key@inner.net in Sep2000. * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ipcomp(void) { const struct comp_algo *algo; struct sadb_comb *comb; struct mbuf *m; int i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_X_CALG_MAX; i++) { algo = comp_algorithm_lookup(i); if (!algo) continue; if (!m) { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_NOWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; } } else M_PREPEND(m, l, M_NOWAIT); if (!m) return NULL; comb = mtod(m, struct sadb_comb *); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; /* what should we set into sadb_comb_*_{min,max}bits? */ } return m; } /* * XXX no way to pass mode (transport/tunnel) to userland * XXX replay checking? * XXX sysctl interface to ipsec_{ah,esp}_keymin */ static struct mbuf * key_getprop(const struct secasindex *saidx) { struct sadb_prop *prop; struct mbuf *m, *n; const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); int totlen; switch (saidx->proto) { case IPPROTO_ESP: m = key_getcomb_ealg(); break; case IPPROTO_AH: m = key_getcomb_ah(); break; case IPPROTO_IPCOMP: m = key_getcomb_ipcomp(); break; default: return NULL; } if (!m) return NULL; M_PREPEND(m, l, M_NOWAIT); if (!m) return NULL; totlen = 0; for (n = m; n; n = n->m_next) totlen += n->m_len; prop = mtod(m, struct sadb_prop *); bzero(prop, sizeof(*prop)); prop->sadb_prop_len = PFKEY_UNIT64(totlen); prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; prop->sadb_prop_replay = 32; /* XXX */ return m; } /* * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). * send * * to KMD, and expect to receive * with SADB_ACQUIRE if error occurred, * or * with SADB_GETSPI * from KMD by PF_KEY. * * XXX x_policy is outside of RFC2367 (KAME extension). * XXX sensitivity is not supported. * XXX for ipcomp, RFC2367 does not define how to fill in proposal. * see comment for key_getcomb_ipcomp(). * * OUT: * 0 : succeed * others: error number */ static int key_acquire(const struct secasindex *saidx, struct secpolicy *sp) { union sockaddr_union addr; struct mbuf *result, *m; uint32_t seq; int error; uint16_t ul_proto; uint8_t mask, satype; IPSEC_ASSERT(saidx != NULL, ("null saidx")); satype = key_proto2satype(saidx->proto); IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); error = -1; result = NULL; ul_proto = IPSEC_ULPROTO_ANY; /* Get seq number to check whether sending message or not. */ seq = key_getacq(saidx, &error); if (seq == 0) return (error); m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; /* * set sadb_address for saidx's. * * Note that if sp is supplied, then we're being called from * key_allocsa_policy() and should supply port and protocol * information. * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too. * XXXAE: probably we can handle this in the ipsec[46]_allocsa(). * XXXAE: it looks like we should save this info in the ACQ entry. */ if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || sp->spidx.ul_proto == IPPROTO_UDP)) ul_proto = sp->spidx.ul_proto; addr = saidx->src; mask = FULLMASK; if (ul_proto != IPSEC_ULPROTO_ANY) { switch (sp->spidx.src.sa.sa_family) { case AF_INET: if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { addr.sin.sin_port = sp->spidx.src.sin.sin_port; mask = sp->spidx.prefs; } break; case AF_INET6: if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { addr.sin6.sin6_port = sp->spidx.src.sin6.sin6_port; mask = sp->spidx.prefs; } break; default: break; } } m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); addr = saidx->dst; mask = FULLMASK; if (ul_proto != IPSEC_ULPROTO_ANY) { switch (sp->spidx.dst.sa.sa_family) { case AF_INET: if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { addr.sin.sin_port = sp->spidx.dst.sin.sin_port; mask = sp->spidx.prefd; } break; case AF_INET6: if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { addr.sin6.sin6_port = sp->spidx.dst.sin6.sin6_port; mask = sp->spidx.prefd; } break; default: break; } } m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* XXX proxy address (optional) */ /* * Set sadb_x_policy. This is KAME extension to RFC2367. */ if (sp != NULL) { m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, sp->priority); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* * Set sadb_x_sa2 extension if saidx->reqid is not zero. * This is FreeBSD extension to RFC2367. */ if (saidx->reqid != 0) { m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid); if (m == NULL) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* XXX identity (optional) */ #if 0 if (idexttype && fqdn) { /* create identity extension (FQDN) */ struct sadb_ident *id; int fqdnlen; fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ id = (struct sadb_ident *)p; bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); id->sadb_ident_exttype = idexttype; id->sadb_ident_type = SADB_IDENTTYPE_FQDN; bcopy(fqdn, id + 1, fqdnlen); p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); } if (idexttype) { /* create identity extension (USERFQDN) */ struct sadb_ident *id; int userfqdnlen; if (userfqdn) { /* +1 for terminating-NUL */ userfqdnlen = strlen(userfqdn) + 1; } else userfqdnlen = 0; id = (struct sadb_ident *)p; bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); id->sadb_ident_exttype = idexttype; id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; /* XXX is it correct? */ if (curproc && curproc->p_cred) id->sadb_ident_id = curproc->p_cred->p_ruid; if (userfqdn && userfqdnlen) bcopy(userfqdn, id + 1, userfqdnlen); p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); } #endif /* XXX sensitivity (optional) */ /* create proposal/combination extension */ m = key_getprop(saidx); #if 0 /* * spec conformant: always attach proposal/combination extension, * the problem is that we have no way to attach it for ipcomp, * due to the way sadb_comb is declared in RFC2367. */ if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); #else /* * outside of spec; make proposal/combination extension optional. */ if (m) m_cat(result, m); #endif if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); KEYDBG(KEY_STAMP, printf("%s: SP(%p)\n", __func__, sp)); KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL)); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } static uint32_t key_newacq(const struct secasindex *saidx, int *perror) { struct secacq *acq; uint32_t seq; acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO); if (acq == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); *perror = ENOBUFS; return (0); } /* copy secindex */ bcopy(saidx, &acq->saidx, sizeof(acq->saidx)); acq->created = time_second; acq->count = 0; /* add to acqtree */ ACQ_LOCK(); seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); LIST_INSERT_HEAD(&V_acqtree, acq, chain); LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash); LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash); ACQ_UNLOCK(); *perror = 0; return (seq); } static uint32_t key_getacq(const struct secasindex *saidx, int *perror) { struct secacq *acq; uint32_t seq; ACQ_LOCK(); LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) { if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) { if (acq->count > V_key_blockacq_count) { /* * Reset counter and send message. * Also reset created time to keep ACQ for * this saidx. */ acq->created = time_second; acq->count = 0; seq = acq->seq; } else { /* * Increment counter and do nothing. * We send SADB_ACQUIRE message only * for each V_key_blockacq_count packet. */ acq->count++; seq = 0; } break; } } ACQ_UNLOCK(); if (acq != NULL) { *perror = 0; return (seq); } /* allocate new entry */ return (key_newacq(saidx, perror)); } static int key_acqreset(uint32_t seq) { struct secacq *acq; ACQ_LOCK(); LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { if (acq->seq == seq) { acq->count = 0; acq->created = time_second; break; } } ACQ_UNLOCK(); if (acq == NULL) return (ESRCH); return (0); } /* * Mark ACQ entry as stale to remove it in key_flush_acq(). * Called after successful SADB_GETSPI message. */ static int key_acqdone(const struct secasindex *saidx, uint32_t seq) { struct secacq *acq; ACQ_LOCK(); LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { if (acq->seq == seq) break; } if (acq != NULL) { if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) { ipseclog((LOG_DEBUG, "%s: Mismatched saidx for ACQ %u\n", __func__, seq)); acq = NULL; } else { acq->created = 0; } } else { ipseclog((LOG_DEBUG, "%s: ACQ %u is not found.\n", __func__, seq)); } ACQ_UNLOCK(); if (acq == NULL) return (ESRCH); return (0); } static struct secspacq * key_newspacq(struct secpolicyindex *spidx) { struct secspacq *acq; /* get new entry */ acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); if (acq == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return NULL; } /* copy secindex */ bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); acq->created = time_second; acq->count = 0; /* add to spacqtree */ SPACQ_LOCK(); LIST_INSERT_HEAD(&V_spacqtree, acq, chain); SPACQ_UNLOCK(); return acq; } static struct secspacq * key_getspacq(struct secpolicyindex *spidx) { struct secspacq *acq; SPACQ_LOCK(); LIST_FOREACH(acq, &V_spacqtree, chain) { if (key_cmpspidx_exactly(spidx, &acq->spidx)) { /* NB: return holding spacq_lock */ return acq; } } SPACQ_UNLOCK(); return NULL; } /* * SADB_ACQUIRE processing, * in first situation, is receiving * * from the ikmpd, and clear sequence of its secasvar entry. * * In second situation, is receiving * * from a user land process, and return * * to the socket. * * m will always be freed. */ static int key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { SAHTREE_RLOCK_TRACKER; struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; uint32_t reqid; int error; uint8_t mode, proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* * Error message from KMd. * We assume that if error was occurred in IKEd, the length of PFKEY * message is equal to the size of sadb_msg structure. * We do not raise error even if error occurred in this function. */ if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { /* check sequence number */ if (mhp->msg->sadb_msg_seq == 0 || mhp->msg->sadb_msg_errno == 0) { ipseclog((LOG_DEBUG, "%s: must specify sequence " "number and errno.\n", __func__)); } else { /* * IKEd reported that error occurred. * XXXAE: what it expects from the kernel? * Probably we should send SADB_ACQUIRE again? * If so, reset ACQ's state. * XXXAE: it looks useless. */ key_acqreset(mhp->msg->sadb_msg_seq); } m_freem(m); return (0); } /* * This message is from user land. */ /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) { ipseclog((LOG_DEBUG, "%s: invalid message: missing required header.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { mode = IPSEC_MODE_ANY; reqid = 0; } else { if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { ipseclog((LOG_DEBUG, "%s: invalid message: wrong header size.\n", __func__)); return key_senderror(so, m, EINVAL); } mode = ((struct sadb_x_sa2 *) mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *) mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; error = key_checksockaddrs((struct sockaddr *)(src0 + 1), (struct sockaddr *)(dst0 + 1)); if (error != 0) { ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); return key_senderror(so, m, EINVAL); } KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); /* get a SA index */ SAHTREE_RLOCK(); LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) break; } SAHTREE_RUNLOCK(); if (sah != NULL) { ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); return key_senderror(so, m, EEXIST); } error = key_acquire(&saidx, NULL); if (error != 0) { ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire()\n", __func__, error)); return key_senderror(so, m, error); } m_freem(m); return (0); } /* * SADB_REGISTER processing. * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. * receive * * from the ikmpd, and register a socket to send PF_KEY messages, * and send * * to KMD by PF_KEY. * If socket is detached, must free from regnode. * * m will always be freed. */ static int key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secreg *reg, *newreg = NULL; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* check for invalid register message */ if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) return key_senderror(so, m, EINVAL); /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) goto setmsg; /* check whether existing or not */ REGTREE_LOCK(); LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { if (reg->so == so) { REGTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: socket exists already.\n", __func__)); return key_senderror(so, m, EEXIST); } } /* create regnode */ newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); if (newreg == NULL) { REGTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } newreg->so = so; ((struct keycb *)(so->so_pcb))->kp_registered++; /* add regnode to regtree. */ LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); REGTREE_UNLOCK(); setmsg: { struct mbuf *n; struct sadb_msg *newmsg; struct sadb_supported *sup; u_int len, alen, elen; int off; int i; struct sadb_alg *alg; /* create new sadb_msg to reply. */ alen = 0; for (i = 1; i <= SADB_AALG_MAX; i++) { if (auth_algorithm_lookup(i)) alen += sizeof(struct sadb_alg); } if (alen) alen += sizeof(struct sadb_supported); elen = 0; for (i = 1; i <= SADB_EALG_MAX; i++) { if (enc_algorithm_lookup(i)) elen += sizeof(struct sadb_alg); } if (elen) elen += sizeof(struct sadb_supported); len = sizeof(struct sadb_msg) + alen + elen; if (len > MCLBYTES) return key_senderror(so, m, ENOBUFS); n = key_mget(len); if (n == NULL) return key_senderror(so, m, ENOBUFS); n->m_pkthdr.len = n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(len); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); /* for authentication algorithm */ if (alen) { sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); sup->sadb_supported_len = PFKEY_UNIT64(alen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_AALG_MAX; i++) { const struct auth_hash *aalgo; u_int16_t minkeysize, maxkeysize; aalgo = auth_algorithm_lookup(i); if (!aalgo) continue; alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = 0; key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); alg->sadb_alg_minbits = _BITS(minkeysize); alg->sadb_alg_maxbits = _BITS(maxkeysize); off += PFKEY_ALIGN8(sizeof(*alg)); } } /* for encryption algorithm */ if (elen) { sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); sup->sadb_supported_len = PFKEY_UNIT64(elen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_EALG_MAX; i++) { const struct enc_xform *ealgo; ealgo = enc_algorithm_lookup(i); if (!ealgo) continue; alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = ealgo->ivsize; alg->sadb_alg_minbits = _BITS(ealgo->minkey); alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); } } IPSEC_ASSERT(off == len, ("length assumption failed (off %u len %u)", off, len)); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); } } /* * free secreg entry registered. * XXX: I want to do free a socket marked done SADB_RESIGER to socket. */ void key_freereg(struct socket *so) { struct secreg *reg; int i; IPSEC_ASSERT(so != NULL, ("NULL so")); /* * check whether existing or not. * check all type of SA, because there is a potential that * one socket is registered to multiple type of SA. */ REGTREE_LOCK(); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_FOREACH(reg, &V_regtree[i], chain) { if (reg->so == so && __LIST_CHAINED(reg)) { LIST_REMOVE(reg, chain); free(reg, M_IPSEC_SAR); break; } } } REGTREE_UNLOCK(); } /* * SADB_EXPIRE processing * send * * to KMD by PF_KEY. * NOTE: We send only soft lifetime extension. * * OUT: 0 : succeed * others : error number */ static int key_expire(struct secasvar *sav, int hard) { struct mbuf *result = NULL, *m; struct sadb_lifetime *lt; uint32_t replay_count; int error, len; uint8_t satype; SECASVAR_RLOCK_TRACKER; IPSEC_ASSERT (sav != NULL, ("null sav")); IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); KEYDBG(KEY_STAMP, printf("%s: SA(%p) expired %s lifetime\n", __func__, sav, hard ? "hard": "soft")); KEYDBG(KEY_DATA, kdebug_secasv(sav)); /* set msg header */ satype = key_proto2satype(sav->sah->saidx.proto); IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); if (!m) { error = ENOBUFS; goto fail; } result = m; /* create SA extension */ m = key_setsadbsa(sav); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* create SA extension */ SECASVAR_RLOCK(sav); replay_count = sav->replay ? sav->replay->count : 0; SECASVAR_RUNLOCK(sav); m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, sav->sah->saidx.reqid); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); if (sav->replay && sav->replay->wsize > UINT8_MAX) { m = key_setsadbxsareplay(sav->replay->wsize); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* create lifetime extension (current and soft) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) { error = ENOBUFS; goto fail; } m_align(m, len); m->m_len = len; bzero(mtod(m, caddr_t), len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = (uint32_t)counter_u64_fetch(sav->lft_c_allocations); lt->sadb_lifetime_bytes = counter_u64_fetch(sav->lft_c_bytes); lt->sadb_lifetime_addtime = sav->created; lt->sadb_lifetime_usetime = sav->firstused; lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); if (hard) { lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lt->sadb_lifetime_allocations = sav->lft_h->allocations; lt->sadb_lifetime_bytes = sav->lft_h->bytes; lt->sadb_lifetime_addtime = sav->lft_h->addtime; lt->sadb_lifetime_usetime = sav->lft_h->usetime; } else { lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; lt->sadb_lifetime_allocations = sav->lft_s->allocations; lt->sadb_lifetime_bytes = sav->lft_s->bytes; lt->sadb_lifetime_addtime = sav->lft_s->addtime; lt->sadb_lifetime_usetime = sav->lft_s->usetime; } m_cat(result, m); /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* * XXX-BZ Handle NAT-T extensions here. * XXXAE: it doesn't seem quite useful. IKEs should not depend on * this information, we report only significant SA fields. */ if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } static void key_freesah_flushed(struct secashead_queue *flushq) { struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; sah = TAILQ_FIRST(flushq); while (sah != NULL) { sav = TAILQ_FIRST(&sah->savtree_larval); while (sav != NULL) { nextsav = TAILQ_NEXT(sav, chain); TAILQ_REMOVE(&sah->savtree_larval, sav, chain); key_freesav(&sav); /* release last reference */ key_freesah(&sah); /* release reference from SAV */ sav = nextsav; } sav = TAILQ_FIRST(&sah->savtree_alive); while (sav != NULL) { nextsav = TAILQ_NEXT(sav, chain); TAILQ_REMOVE(&sah->savtree_alive, sav, chain); key_freesav(&sav); /* release last reference */ key_freesah(&sah); /* release reference from SAV */ sav = nextsav; } nextsah = TAILQ_NEXT(sah, chain); key_freesah(&sah); /* release last reference */ sah = nextsah; } } /* * SADB_FLUSH processing * receive * * from the ikmpd, and free all entries in secastree. * and send, * * to the ikmpd. * NOTE: to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secashead_queue flushq; struct sadb_msg *newmsg; struct secashead *sah, *nextsah; struct secasvar *sav; uint8_t proto; int i; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } KEYDBG(KEY_STAMP, printf("%s: proto %u\n", __func__, proto)); TAILQ_INIT(&flushq); if (proto == IPSEC_PROTO_ANY) { /* no SATYPE specified, i.e. flushing all SA. */ SAHTREE_WLOCK(); /* Move all SAHs into flushq */ TAILQ_CONCAT(&flushq, &V_sahtree, chain); /* Flush all buckets in SPI hash */ for (i = 0; i < V_savhash_mask + 1; i++) LIST_INIT(&V_savhashtbl[i]); /* Flush all buckets in SAHADDRHASH */ for (i = 0; i < V_sahaddrhash_mask + 1; i++) LIST_INIT(&V_sahaddrhashtbl[i]); /* Mark all SAHs as unlinked */ TAILQ_FOREACH(sah, &flushq, chain) { sah->state = SADB_SASTATE_DEAD; /* * Callout handler makes its job using * RLOCK and drain queues. In case, when this * function will be called just before it * acquires WLOCK, we need to mark SAs as * unlinked to prevent second unlink. */ TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { sav->state = SADB_SASTATE_DEAD; } TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { sav->state = SADB_SASTATE_DEAD; } } SAHTREE_WUNLOCK(); } else { SAHTREE_WLOCK(); sah = TAILQ_FIRST(&V_sahtree); while (sah != NULL) { IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD, ("DEAD SAH %p in SADB_FLUSH", sah)); nextsah = TAILQ_NEXT(sah, chain); if (sah->saidx.proto != proto) { sah = nextsah; continue; } sah->state = SADB_SASTATE_DEAD; TAILQ_REMOVE(&V_sahtree, sah, chain); LIST_REMOVE(sah, addrhash); /* Unlink all SAs from SPI hash */ TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { LIST_REMOVE(sav, spihash); sav->state = SADB_SASTATE_DEAD; } TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { LIST_REMOVE(sav, spihash); sav->state = SADB_SASTATE_DEAD; } /* Add SAH into flushq */ TAILQ_INSERT_HEAD(&flushq, sah, chain); sah = nextsah; } SAHTREE_WUNLOCK(); } key_freesah_flushed(&flushq); /* Free all queued SAs and SAHs */ if (m->m_len < sizeof(struct sadb_msg) || sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } if (m->m_next) m_freem(m->m_next); m->m_next = NULL; m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } /* * SADB_DUMP processing * dump all entries including status of DEAD in SAD. * receive * * from the ikmpd, and dump all secasvar leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ static int key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { SAHTREE_RLOCK_TRACKER; struct secashead *sah; struct secasvar *sav; struct mbuf *n; uint32_t cnt; uint8_t proto, satype; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } /* count sav entries to be sent to the userland. */ cnt = 0; SAHTREE_RLOCK(); TAILQ_FOREACH(sah, &V_sahtree, chain) { if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; TAILQ_FOREACH(sav, &sah->savtree_larval, chain) cnt++; TAILQ_FOREACH(sav, &sah->savtree_alive, chain) cnt++; } if (cnt == 0) { SAHTREE_RUNLOCK(); return key_senderror(so, m, ENOENT); } /* send this to the userland, one at a time. */ TAILQ_FOREACH(sah, &V_sahtree, chain) { if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; /* map proto to satype */ if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { SAHTREE_RUNLOCK(); ipseclog((LOG_DEBUG, "%s: there was invalid proto in " "SAD.\n", __func__)); return key_senderror(so, m, EINVAL); } TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { n = key_setdumpsa(sav, SADB_DUMP, satype, --cnt, mhp->msg->sadb_msg_pid); if (n == NULL) { SAHTREE_RUNLOCK(); return key_senderror(so, m, ENOBUFS); } key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { n = key_setdumpsa(sav, SADB_DUMP, satype, --cnt, mhp->msg->sadb_msg_pid); if (n == NULL) { SAHTREE_RUNLOCK(); return key_senderror(so, m, ENOBUFS); } key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } SAHTREE_RUNLOCK(); m_freem(m); return (0); } /* * SADB_X_PROMISC processing * * m will always be freed. */ static int key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { int olen; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); if (olen < sizeof(struct sadb_msg)) { #if 1 return key_senderror(so, m, EINVAL); #else m_freem(m); return 0; #endif } else if (olen == sizeof(struct sadb_msg)) { /* enable/disable promisc mode */ struct keycb *kp; if ((kp = so->so_pcb) == NULL) return key_senderror(so, m, EINVAL); mhp->msg->sadb_msg_errno = 0; switch (mhp->msg->sadb_msg_satype) { case 0: case 1: kp->kp_promisc = mhp->msg->sadb_msg_satype; break; default: return key_senderror(so, m, EINVAL); } /* send the original message back to everyone */ mhp->msg->sadb_msg_errno = 0; return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } else { /* send packet as is */ m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); /* TODO: if sadb_msg_seq is specified, send to specific pid */ return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } } static int (*key_typesw[])(struct socket *, struct mbuf *, const struct sadb_msghdr *) = { [SADB_RESERVED] = NULL, [SADB_GETSPI] = key_getspi, [SADB_UPDATE] = key_update, [SADB_ADD] = key_add, [SADB_DELETE] = key_delete, [SADB_GET] = key_get, [SADB_ACQUIRE] = key_acquire2, [SADB_REGISTER] = key_register, [SADB_EXPIRE] = NULL, [SADB_FLUSH] = key_flush, [SADB_DUMP] = key_dump, [SADB_X_PROMISC] = key_promisc, [SADB_X_PCHANGE] = NULL, [SADB_X_SPDUPDATE] = key_spdadd, [SADB_X_SPDADD] = key_spdadd, [SADB_X_SPDDELETE] = key_spddelete, [SADB_X_SPDGET] = key_spdget, [SADB_X_SPDACQUIRE] = NULL, [SADB_X_SPDDUMP] = key_spddump, [SADB_X_SPDFLUSH] = key_spdflush, [SADB_X_SPDSETIDX] = key_spdadd, [SADB_X_SPDEXPIRE] = NULL, [SADB_X_SPDDELETE2] = key_spddelete2, }; /* * parse sadb_msg buffer to process PFKEYv2, * and create a data to response if needed. * I think to be dealed with mbuf directly. * IN: * msgp : pointer to pointer to a received buffer pulluped. * This is rewrited to response. * so : pointer to socket. * OUT: * length for buffer to send to user process. */ int key_parse(struct mbuf *m, struct socket *so) { struct sadb_msg *msg; struct sadb_msghdr mh; u_int orglen; int error; int target; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); if (m->m_len < sizeof(struct sadb_msg)) { m = m_pullup(m, sizeof(struct sadb_msg)); if (!m) return ENOBUFS; } msg = mtod(m, struct sadb_msg *); orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); target = KEY_SENDUP_ONE; if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); PFKEYSTAT_INC(out_invlen); error = EINVAL; goto senderror; } if (msg->sadb_msg_version != PF_KEY_V2) { ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", __func__, msg->sadb_msg_version)); PFKEYSTAT_INC(out_invver); error = EINVAL; goto senderror; } if (msg->sadb_msg_type > SADB_MAX) { ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", __func__, msg->sadb_msg_type)); PFKEYSTAT_INC(out_invmsgtype); error = EINVAL; goto senderror; } /* for old-fashioned code - should be nuked */ if (m->m_pkthdr.len > MCLBYTES) { m_freem(m); return ENOBUFS; } if (m->m_next) { struct mbuf *n; n = key_mget(m->m_pkthdr.len); if (n == NULL) { m_freem(m); return ENOBUFS; } m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; n->m_next = NULL; m_freem(m); m = n; } /* align the mbuf chain so that extensions are in contiguous region. */ error = key_align(m, &mh); if (error) return error; msg = mh.msg; /* We use satype as scope mask for spddump */ if (msg->sadb_msg_type == SADB_X_SPDDUMP) { switch (msg->sadb_msg_satype) { case IPSEC_POLICYSCOPE_ANY: case IPSEC_POLICYSCOPE_GLOBAL: case IPSEC_POLICYSCOPE_IFNET: case IPSEC_POLICYSCOPE_PCB: break; default: ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", __func__, msg->sadb_msg_type)); PFKEYSTAT_INC(out_invsatype); error = EINVAL; goto senderror; } } else { switch (msg->sadb_msg_satype) { /* check SA type */ case SADB_SATYPE_UNSPEC: switch (msg->sadb_msg_type) { case SADB_GETSPI: case SADB_UPDATE: case SADB_ADD: case SADB_DELETE: case SADB_GET: case SADB_ACQUIRE: case SADB_EXPIRE: ipseclog((LOG_DEBUG, "%s: must specify satype " "when msg type=%u.\n", __func__, msg->sadb_msg_type)); PFKEYSTAT_INC(out_invsatype); error = EINVAL; goto senderror; } break; case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_IPCOMP: case SADB_X_SATYPE_TCPSIGNATURE: switch (msg->sadb_msg_type) { case SADB_X_SPDADD: case SADB_X_SPDDELETE: case SADB_X_SPDGET: case SADB_X_SPDFLUSH: case SADB_X_SPDSETIDX: case SADB_X_SPDUPDATE: case SADB_X_SPDDELETE2: ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", __func__, msg->sadb_msg_type)); PFKEYSTAT_INC(out_invsatype); error = EINVAL; goto senderror; } break; case SADB_SATYPE_RSVP: case SADB_SATYPE_OSPFV2: case SADB_SATYPE_RIPV2: case SADB_SATYPE_MIP: ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", __func__, msg->sadb_msg_satype)); PFKEYSTAT_INC(out_invsatype); error = EOPNOTSUPP; goto senderror; case 1: /* XXX: What does it do? */ if (msg->sadb_msg_type == SADB_X_PROMISC) break; /*FALLTHROUGH*/ default: ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", __func__, msg->sadb_msg_satype)); PFKEYSTAT_INC(out_invsatype); error = EINVAL; goto senderror; } } /* check field of upper layer protocol and address family */ if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { struct sadb_address *src0, *dst0; u_int plen; src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); /* check upper layer protocol */ if (src0->sadb_address_proto != dst0->sadb_address_proto) { ipseclog((LOG_DEBUG, "%s: upper layer protocol " "mismatched.\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } /* check family */ if (PFKEY_ADDR_SADDR(src0)->sa_family != PFKEY_ADDR_SADDR(dst0)->sa_family) { ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } if (PFKEY_ADDR_SADDR(src0)->sa_len != PFKEY_ADDR_SADDR(dst0)->sa_len) { ipseclog((LOG_DEBUG, "%s: address struct size " "mismatched.\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in)) { PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } break; case AF_INET6: if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in6)) { PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } break; default: ipseclog((LOG_DEBUG, "%s: unsupported address family\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EAFNOSUPPORT; goto senderror; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: plen = 0; /*fool gcc*/ break; } /* check max prefix length */ if (src0->sadb_address_prefixlen > plen || dst0->sadb_address_prefixlen > plen) { ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } /* * prefixlen == 0 is valid because there can be a case when * all addresses are matched. */ } if (msg->sadb_msg_type >= nitems(key_typesw) || key_typesw[msg->sadb_msg_type] == NULL) { PFKEYSTAT_INC(out_invmsgtype); error = EINVAL; goto senderror; } return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); senderror: msg->sadb_msg_errno = error; return key_sendup_mbuf(so, m, target); } static int key_senderror(struct socket *so, struct mbuf *m, int code) { struct sadb_msg *msg; IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), ("mbuf too small, len %u", m->m_len)); msg = mtod(m, struct sadb_msg *); msg->sadb_msg_errno = code; return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } /* * set the pointer to each header into message buffer. * m will be freed on error. * XXX larger-than-MCLBYTES extension? */ static int key_align(struct mbuf *m, struct sadb_msghdr *mhp) { struct mbuf *n; struct sadb_ext *ext; size_t off, end; int extlen; int toff; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), ("mbuf too small, len %u", m->m_len)); /* initialize */ bzero(mhp, sizeof(*mhp)); mhp->msg = mtod(m, struct sadb_msg *); mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); extlen = end; /*just in case extlen is not updated*/ for (off = sizeof(struct sadb_msg); off < end; off += extlen) { n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); /* set pointer */ switch (ext->sadb_ext_type) { case SADB_EXT_SA: case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_LIFETIME_CURRENT: case SADB_EXT_LIFETIME_HARD: case SADB_EXT_LIFETIME_SOFT: case SADB_EXT_KEY_AUTH: case SADB_EXT_KEY_ENCRYPT: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: case SADB_EXT_SENSITIVITY: case SADB_EXT_PROPOSAL: case SADB_EXT_SUPPORTED_AUTH: case SADB_EXT_SUPPORTED_ENCRYPT: case SADB_EXT_SPIRANGE: case SADB_X_EXT_POLICY: case SADB_X_EXT_SA2: case SADB_X_EXT_NAT_T_TYPE: case SADB_X_EXT_NAT_T_SPORT: case SADB_X_EXT_NAT_T_DPORT: case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: case SADB_X_EXT_NAT_T_FRAG: case SADB_X_EXT_SA_REPLAY: case SADB_X_EXT_NEW_ADDRESS_SRC: case SADB_X_EXT_NEW_ADDRESS_DST: /* duplicate check */ /* * XXX Are there duplication payloads of either * KEY_AUTH or KEY_ENCRYPT ? */ if (mhp->ext[ext->sadb_ext_type] != NULL) { ipseclog((LOG_DEBUG, "%s: duplicate ext_type " "%u\n", __func__, ext->sadb_ext_type)); m_freem(m); PFKEYSTAT_INC(out_dupext); return EINVAL; } break; default: ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", __func__, ext->sadb_ext_type)); m_freem(m); PFKEYSTAT_INC(out_invexttype); return EINVAL; } extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); if (key_validate_ext(ext, extlen)) { m_freem(m); PFKEYSTAT_INC(out_invlen); return EINVAL; } n = m_pulldown(m, off, extlen, &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); mhp->ext[ext->sadb_ext_type] = ext; mhp->extoff[ext->sadb_ext_type] = off; mhp->extlen[ext->sadb_ext_type] = extlen; } if (off != end) { m_freem(m); PFKEYSTAT_INC(out_invlen); return EINVAL; } return 0; } static int key_validate_ext(const struct sadb_ext *ext, int len) { const struct sockaddr *sa; enum { NONE, ADDR } checktype = NONE; int baselen = 0; const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) return EINVAL; /* if it does not match minimum/maximum length, bail */ if (ext->sadb_ext_type >= nitems(minsize) || ext->sadb_ext_type >= nitems(maxsize)) return EINVAL; if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) return EINVAL; if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) return EINVAL; /* more checks based on sadb_ext_type XXX need more */ switch (ext->sadb_ext_type) { case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: case SADB_X_EXT_NEW_ADDRESS_SRC: case SADB_X_EXT_NEW_ADDRESS_DST: baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); checktype = ADDR; break; case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: if (((const struct sadb_ident *)ext)->sadb_ident_type == SADB_X_IDENTTYPE_ADDR) { baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); checktype = ADDR; } else checktype = NONE; break; default: checktype = NONE; break; } switch (checktype) { case NONE: break; case ADDR: sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); if (len < baselen + sal) return EINVAL; if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) return EINVAL; break; } return 0; } void spdcache_init(void) { int i; TUNABLE_INT_FETCH("net.key.spdcache.maxentries", &V_key_spdcache_maxentries); TUNABLE_INT_FETCH("net.key.spdcache.threshold", &V_key_spdcache_threshold); if (V_key_spdcache_maxentries) { V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries, SPDCACHE_MAX_ENTRIES_PER_HASH); V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries / SPDCACHE_MAX_ENTRIES_PER_HASH, M_IPSEC_SPDCACHE, &V_spdcachehash_mask); V_key_spdcache_maxentries = (V_spdcachehash_mask + 1) * SPDCACHE_MAX_ENTRIES_PER_HASH; V_spdcache_lock = malloc(sizeof(struct mtx) * (V_spdcachehash_mask + 1), M_IPSEC_SPDCACHE, M_WAITOK | M_ZERO); for (i = 0; i < V_spdcachehash_mask + 1; ++i) SPDCACHE_LOCK_INIT(i); } } struct spdcache_entry * spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp) { struct spdcache_entry *entry; entry = malloc(sizeof(struct spdcache_entry), M_IPSEC_SPDCACHE, M_NOWAIT | M_ZERO); if (entry == NULL) return (NULL); if (sp != NULL) SP_ADDREF(sp); entry->spidx = *spidx; entry->sp = sp; return (entry); } void spdcache_entry_free(struct spdcache_entry *entry) { if (entry->sp != NULL) key_freesp(&entry->sp); free(entry, M_IPSEC_SPDCACHE); } void spdcache_clear(void) { struct spdcache_entry *entry; int i; for (i = 0; i < V_spdcachehash_mask + 1; ++i) { SPDCACHE_LOCK(i); while (!LIST_EMPTY(&V_spdcachehashtbl[i])) { entry = LIST_FIRST(&V_spdcachehashtbl[i]); LIST_REMOVE(entry, chain); spdcache_entry_free(entry); } SPDCACHE_UNLOCK(i); } } #ifdef VIMAGE void spdcache_destroy(void) { int i; if (SPDCACHE_ENABLED()) { spdcache_clear(); hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask); for (i = 0; i < V_spdcachehash_mask + 1; ++i) SPDCACHE_LOCK_DESTROY(i); free(V_spdcache_lock, M_IPSEC_SPDCACHE); } } #endif static void key_vnet_init(void *arg __unused) { int i; for (i = 0; i < IPSEC_DIR_MAX; i++) { TAILQ_INIT(&V_sptree[i]); TAILQ_INIT(&V_sptree_ifnet[i]); } TAILQ_INIT(&V_sahtree); V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask); V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask); V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH, &V_sahaddrhash_mask); V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, &V_acqaddrhash_mask); V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, &V_acqseqhash_mask); spdcache_init(); for (i = 0; i <= SADB_SATYPE_MAX; i++) LIST_INIT(&V_regtree[i]); LIST_INIT(&V_acqtree); LIST_INIT(&V_spacqtree); } VNET_SYSINIT(key_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, key_vnet_init, NULL); static void key_init(void *arg __unused) { ipsec_key_lft_zone = uma_zcreate("IPsec SA lft_c", sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); SPTREE_LOCK_INIT(); REGTREE_LOCK_INIT(); SAHTREE_LOCK_INIT(); ACQ_LOCK_INIT(); SPACQ_LOCK_INIT(); SPI_ALLOC_LOCK_INIT(); #ifndef IPSEC_DEBUG2 callout_init(&key_timer, 1); callout_reset(&key_timer, hz, key_timehandler, NULL); #endif /*IPSEC_DEBUG2*/ /* initialize key statistics */ keystat.getspi_count = 1; if (bootverbose) printf("IPsec: Initialized Security Association Processing.\n"); } SYSINIT(key_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_init, NULL); #ifdef VIMAGE static void key_vnet_destroy(void *arg __unused) { struct secashead_queue sahdrainq; struct secpolicy_queue drainq; struct secpolicy *sp, *nextsp; struct secacq *acq, *nextacq; struct secspacq *spacq, *nextspacq; struct secashead *sah; struct secasvar *sav; struct secreg *reg; int i; /* * XXX: can we just call free() for each object without * walking through safe way with releasing references? */ TAILQ_INIT(&drainq); SPTREE_WLOCK(); for (i = 0; i < IPSEC_DIR_MAX; i++) { TAILQ_CONCAT(&drainq, &V_sptree[i], chain); TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain); } for (i = 0; i < V_sphash_mask + 1; i++) LIST_INIT(&V_sphashtbl[i]); SPTREE_WUNLOCK(); spdcache_destroy(); sp = TAILQ_FIRST(&drainq); while (sp != NULL) { nextsp = TAILQ_NEXT(sp, chain); key_freesp(&sp); sp = nextsp; } TAILQ_INIT(&sahdrainq); SAHTREE_WLOCK(); TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain); for (i = 0; i < V_savhash_mask + 1; i++) LIST_INIT(&V_savhashtbl[i]); for (i = 0; i < V_sahaddrhash_mask + 1; i++) LIST_INIT(&V_sahaddrhashtbl[i]); TAILQ_FOREACH(sah, &sahdrainq, chain) { sah->state = SADB_SASTATE_DEAD; TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { sav->state = SADB_SASTATE_DEAD; } TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { sav->state = SADB_SASTATE_DEAD; } } SAHTREE_WUNLOCK(); key_freesah_flushed(&sahdrainq); hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask); hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask); hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask); REGTREE_LOCK(); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_FOREACH(reg, &V_regtree[i], chain) { if (__LIST_CHAINED(reg)) { LIST_REMOVE(reg, chain); free(reg, M_IPSEC_SAR); break; } } } REGTREE_UNLOCK(); ACQ_LOCK(); acq = LIST_FIRST(&V_acqtree); while (acq != NULL) { nextacq = LIST_NEXT(acq, chain); LIST_REMOVE(acq, chain); free(acq, M_IPSEC_SAQ); acq = nextacq; } for (i = 0; i < V_acqaddrhash_mask + 1; i++) LIST_INIT(&V_acqaddrhashtbl[i]); for (i = 0; i < V_acqseqhash_mask + 1; i++) LIST_INIT(&V_acqseqhashtbl[i]); ACQ_UNLOCK(); SPACQ_LOCK(); for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; spacq = nextspacq) { nextspacq = LIST_NEXT(spacq, chain); if (__LIST_CHAINED(spacq)) { LIST_REMOVE(spacq, chain); free(spacq, M_IPSEC_SAQ); } } SPACQ_UNLOCK(); hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask); hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask); } VNET_SYSUNINIT(key_vnet_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, key_vnet_destroy, NULL); #endif /* * XXX: as long as domains are not unloadable, this function is never called, * provided for consistensy and future unload support. */ static void key_destroy(void *arg __unused) { uma_zdestroy(ipsec_key_lft_zone); #ifndef IPSEC_DEBUG2 callout_drain(&key_timer); #endif SPTREE_LOCK_DESTROY(); REGTREE_LOCK_DESTROY(); SAHTREE_LOCK_DESTROY(); ACQ_LOCK_DESTROY(); SPACQ_LOCK_DESTROY(); SPI_ALLOC_LOCK_DESTROY(); } SYSUNINIT(key_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_destroy, NULL); /* record data transfer on SA, and update timestamps */ void key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) { IPSEC_ASSERT(sav != NULL, ("Null secasvar")); IPSEC_ASSERT(m != NULL, ("Null mbuf")); /* * XXX Currently, there is a difference of bytes size * between inbound and outbound processing. */ counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len); /* * We use the number of packets as the unit of * allocations. We increment the variable * whenever {esp,ah}_{in,out}put is called. */ counter_u64_add(sav->lft_c_allocations, 1); /* * NOTE: We record CURRENT usetime by using wall clock, * in seconds. HARD and SOFT lifetime are measured by the time * difference (again in seconds) from usetime. * * usetime * v expire expire * -----+-----+--------+---> t * <--------------> HARD * <-----> SOFT */ if (sav->firstused == 0) sav->firstused = time_second; } /* * Take one of the kernel's security keys and convert it into a PF_KEY * structure within an mbuf, suitable for sending up to a waiting * application in user land. * * IN: * src: A pointer to a kernel security key. * exttype: Which type of key this is. Refer to the PF_KEY data structures. * OUT: * a valid mbuf or NULL indicating an error * */ static struct mbuf * key_setkey(struct seckey *src, uint16_t exttype) { struct mbuf *m; struct sadb_key *p; int len; if (src == NULL) return NULL; len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return NULL; m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_key *); bzero(p, len); p->sadb_key_len = PFKEY_UNIT64(len); p->sadb_key_exttype = exttype; p->sadb_key_bits = src->bits; bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); return m; } /* * Take one of the kernel's lifetime data structures and convert it * into a PF_KEY structure within an mbuf, suitable for sending up to * a waiting application in user land. * * IN: * src: A pointer to a kernel lifetime structure. * exttype: Which type of lifetime this is. Refer to the PF_KEY * data structures for more information. * OUT: * a valid mbuf or NULL indicating an error * */ static struct mbuf * key_setlifetime(struct seclifetime *src, uint16_t exttype) { struct mbuf *m = NULL; struct sadb_lifetime *p; int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); if (src == NULL) return NULL; m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return m; m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_lifetime *); bzero(p, len); p->sadb_lifetime_len = PFKEY_UNIT64(len); p->sadb_lifetime_exttype = exttype; p->sadb_lifetime_allocations = src->allocations; p->sadb_lifetime_bytes = src->bytes; p->sadb_lifetime_addtime = src->addtime; p->sadb_lifetime_usetime = src->usetime; return m; } const struct enc_xform * enc_algorithm_lookup(int alg) { int i; for (i = 0; i < nitems(supported_ealgs); i++) if (alg == supported_ealgs[i].sadb_alg) return (supported_ealgs[i].xform); return (NULL); } const struct auth_hash * auth_algorithm_lookup(int alg) { int i; for (i = 0; i < nitems(supported_aalgs); i++) if (alg == supported_aalgs[i].sadb_alg) return (supported_aalgs[i].xform); return (NULL); } const struct comp_algo * comp_algorithm_lookup(int alg) { int i; for (i = 0; i < nitems(supported_calgs); i++) if (alg == supported_calgs[i].sadb_alg) return (supported_calgs[i].xform); return (NULL); }