/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * Copyright (c) 2010-2011 Juniper Networks, Inc. * Copyright (c) 2014 Kevin Lo * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: udp6_usrreq.c,v 1.27 2001/05/21 05:45:10 jinmei Exp $ * $KAME: udp6_output.c,v 1.31 2001/05/21 16:39:15 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include VNET_DEFINE(int, zero_checksum_port) = 0; #define V_zero_checksum_port VNET(zero_checksum_port) SYSCTL_INT(_net_inet6_udp6, OID_AUTO, rfc6935_port, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(zero_checksum_port), 0, "Zero UDP checksum allowed for traffic to/from this port."); /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ static void udp6_detach(struct socket *so); static int udp6_append(struct inpcb *inp, struct mbuf *n, int off, struct sockaddr_in6 *fromsa) { struct socket *so; struct mbuf *opts = NULL, *tmp_opts; struct udpcb *up; bool filtered; INP_LOCK_ASSERT(inp); /* * Engage the tunneling protocol. */ up = intoudpcb(inp); if (up->u_tun_func != NULL) { in_pcbref(inp); INP_RUNLOCK(inp); filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&fromsa[0], up->u_tun_ctx); INP_RLOCK(inp); if (filtered) return (in_pcbrele_rlocked(inp)); } off += sizeof(struct udphdr); #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* Check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv6)) { if (IPSEC_CHECK_POLICY(ipv6, n, inp) != 0) { m_freem(n); return (0); } /* IPSec UDP encaps. */ if ((up->u_flags & UF_ESPINUDP) != 0 && UDPENCAP_INPUT(ipv6, n, off, AF_INET6) != 0) { return (0); /* Consumed. */ } } #endif /* IPSEC */ #ifdef MAC if (mac_inpcb_check_deliver(inp, n) != 0) { m_freem(n); return (0); } #endif opts = NULL; if (inp->inp_flags & INP_CONTROLOPTS || inp->inp_socket->so_options & SO_TIMESTAMP) ip6_savecontrol(inp, n, &opts); if ((inp->inp_vflag & INP_IPV6) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { tmp_opts = sbcreatecontrol(&fromsa[1], sizeof(struct sockaddr_in6), IPV6_ORIGDSTADDR, IPPROTO_IPV6, M_NOWAIT); if (tmp_opts) { if (opts) { tmp_opts->m_next = opts; opts = tmp_opts; } else opts = tmp_opts; } } m_adj(n, off); so = inp->inp_socket; SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, (struct sockaddr *)&fromsa[0], n, opts) == 0) { soroverflow_locked(so); m_freem(n); if (opts) m_freem(opts); UDPSTAT_INC(udps_fullsock); } else sorwakeup_locked(so); return (0); } struct udp6_multi_match_ctx { struct ip6_hdr *ip6; struct udphdr *uh; }; static bool udp6_multi_match(const struct inpcb *inp, void *v) { struct udp6_multi_match_ctx *ctx = v; if ((inp->inp_vflag & INP_IPV6) == 0) return(false); if (inp->inp_lport != ctx->uh->uh_dport) return(false); if (inp->inp_fport != 0 && inp->inp_fport != ctx->uh->uh_sport) return(false); if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) && !IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &ctx->ip6->ip6_dst)) return (false); if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) && (!IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &ctx->ip6->ip6_src) || inp->inp_fport != ctx->uh->uh_sport)) return (false); return (true); } static int udp6_multi_input(struct mbuf *m, int off, int proto, struct sockaddr_in6 *fromsa) { struct udp6_multi_match_ctx ctx; struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), INPLOOKUP_RLOCKPCB, udp6_multi_match, &ctx); struct inpcb *inp; struct ip6_moptions *imo; struct mbuf *n; int appends = 0; /* * In the event that laddr should be set to the link-local * address (this happens in RIPng), the multicast address * specified in the received packet will not match laddr. To * handle this situation, matching is relaxed if the * receiving interface is the same as one specified in the * socket and if the destination multicast address matches * one of the multicast groups specified in the socket. */ /* * KAME note: traditionally we dropped udpiphdr from mbuf * here. We need udphdr for IPsec processing so we do that * later. */ ctx.ip6 = mtod(m, struct ip6_hdr *); ctx.uh = (struct udphdr *)((char *)ctx.ip6 + off); while ((inp = inp_next(&inpi)) != NULL) { INP_RLOCK_ASSERT(inp); /* * XXXRW: Because we weren't holding either the inpcb * or the hash lock when we checked for a match * before, we should probably recheck now that the * inpcb lock is (supposed to be) held. */ /* * Handle socket delivery policy for any-source * and source-specific multicast. [RFC3678] */ if ((imo = inp->in6p_moptions) != NULL) { struct sockaddr_in6 mcaddr; int blocked; bzero(&mcaddr, sizeof(struct sockaddr_in6)); mcaddr.sin6_len = sizeof(struct sockaddr_in6); mcaddr.sin6_family = AF_INET6; mcaddr.sin6_addr = ctx.ip6->ip6_dst; blocked = im6o_mc_filter(imo, m->m_pkthdr.rcvif, (struct sockaddr *)&mcaddr, (struct sockaddr *)&fromsa[0]); if (blocked != MCAST_PASS) { if (blocked == MCAST_NOTGMEMBER) IP6STAT_INC(ip6s_notmember); if (blocked == MCAST_NOTSMEMBER || blocked == MCAST_MUTED) UDPSTAT_INC(udps_filtermcast); continue; } } if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { if (proto == IPPROTO_UDPLITE) UDPLITE_PROBE(receive, NULL, inp, ctx.ip6, inp, ctx.uh); else UDP_PROBE(receive, NULL, inp, ctx.ip6, inp, ctx.uh); if (udp6_append(inp, n, off, fromsa)) { break; } else appends++; } /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids * searching through all pcbs in the common case of a * non-shared port. It assumes that an application * will never clear these options after setting them. */ if ((inp->inp_socket->so_options & (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { INP_RUNLOCK(inp); break; } } m_freem(m); if (appends == 0) { /* * No matching pcb found; discard datagram. (No need * to send an ICMP Port Unreachable for a broadcast * or multicast datgram.) */ UDPSTAT_INC(udps_noport); UDPSTAT_INC(udps_noportmcast); } return (IPPROTO_DONE); } int udp6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct ip6_hdr *ip6; struct udphdr *uh; struct inpcb *inp; struct inpcbinfo *pcbinfo; struct udpcb *up; int off = *offp; int cscov_partial; int plen, ulen; struct sockaddr_in6 fromsa[2]; struct m_tag *fwd_tag; uint16_t uh_sum; uint8_t nxt; NET_EPOCH_ASSERT(); if (m->m_len < off + sizeof(struct udphdr)) { m = m_pullup(m, off + sizeof(struct udphdr)); if (m == NULL) { IP6STAT_INC(ip6s_exthdrtoolong); *mp = NULL; return (IPPROTO_DONE); } } ip6 = mtod(m, struct ip6_hdr *); uh = (struct udphdr *)((caddr_t)ip6 + off); UDPSTAT_INC(udps_ipackets); /* * Destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto badunlocked; plen = ntohs(ip6->ip6_plen) - off + sizeof(*ip6); ulen = ntohs((u_short)uh->uh_ulen); nxt = proto; cscov_partial = (nxt == IPPROTO_UDPLITE) ? 1 : 0; if (nxt == IPPROTO_UDPLITE) { /* Zero means checksum over the complete packet. */ if (ulen == 0) ulen = plen; if (ulen == plen) cscov_partial = 0; if ((ulen < sizeof(struct udphdr)) || (ulen > plen)) { /* XXX: What is the right UDPLite MIB counter? */ goto badunlocked; } if (uh->uh_sum == 0) { /* XXX: What is the right UDPLite MIB counter? */ goto badunlocked; } } else { if ((ulen < sizeof(struct udphdr)) || (plen != ulen)) { UDPSTAT_INC(udps_badlen); goto badunlocked; } if (uh->uh_sum == 0) { UDPSTAT_INC(udps_nosum); /* * dport 0 was rejected earlier so this is OK even if * zero_checksum_port is 0 (which is its default value). */ if (ntohs(uh->uh_dport) == V_zero_checksum_port) goto skip_checksum; else goto badunlocked; } } if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) && !cscov_partial) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh_sum = m->m_pkthdr.csum_data; else uh_sum = in6_cksum_pseudo(ip6, ulen, nxt, m->m_pkthdr.csum_data); uh_sum ^= 0xffff; } else uh_sum = in6_cksum_partial(m, nxt, off, plen, ulen); if (uh_sum != 0) { UDPSTAT_INC(udps_badsum); goto badunlocked; } skip_checksum: /* * Construct sockaddr format source address. */ init_sin6(&fromsa[0], m, 0); fromsa[0].sin6_port = uh->uh_sport; init_sin6(&fromsa[1], m, 1); fromsa[1].sin6_port = uh->uh_dport; pcbinfo = udp_get_inpcbinfo(nxt); if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { *mp = NULL; return (udp6_multi_input(m, off, proto, fromsa)); } /* * Locate pcb for datagram. */ /* * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ if ((m->m_flags & M_IP6_NEXTHOP) && (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { struct sockaddr_in6 *next_hop6; next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1); /* * Transparently forwarded. Pretend to be the destination. * Already got one like this? */ inp = in6_pcblookup_mbuf(pcbinfo, &ip6->ip6_src, uh->uh_sport, &ip6->ip6_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in6_pcblookup(pcbinfo, &ip6->ip6_src, uh->uh_sport, &next_hop6->sin6_addr, next_hop6->sin6_port ? htons(next_hop6->sin6_port) : uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif); } /* Remove the tag from the packet. We don't need it anymore. */ m_tag_delete(m, fwd_tag); m->m_flags &= ~M_IP6_NEXTHOP; } else inp = in6_pcblookup_mbuf(pcbinfo, &ip6->ip6_src, uh->uh_sport, &ip6->ip6_dst, uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif, m); if (inp == NULL) { if (V_udp_log_in_vain) { char ip6bufs[INET6_ADDRSTRLEN]; char ip6bufd[INET6_ADDRSTRLEN]; log(LOG_INFO, "Connection attempt to UDP [%s]:%d from [%s]:%d\n", ip6_sprintf(ip6bufd, &ip6->ip6_dst), ntohs(uh->uh_dport), ip6_sprintf(ip6bufs, &ip6->ip6_src), ntohs(uh->uh_sport)); } if (nxt == IPPROTO_UDPLITE) UDPLITE_PROBE(receive, NULL, NULL, ip6, NULL, uh); else UDP_PROBE(receive, NULL, NULL, ip6, NULL, uh); UDPSTAT_INC(udps_noport); if (m->m_flags & M_MCAST) { printf("UDP6: M_MCAST is set in a unicast packet.\n"); UDPSTAT_INC(udps_noportmcast); goto badunlocked; } if (V_udp_blackhole && (V_udp_blackhole_local || !in6_localaddr(&ip6->ip6_src))) goto badunlocked; icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0); *mp = NULL; return (IPPROTO_DONE); } INP_RLOCK_ASSERT(inp); up = intoudpcb(inp); if (cscov_partial) { if (up->u_rxcslen == 0 || up->u_rxcslen > ulen) { INP_RUNLOCK(inp); m_freem(m); *mp = NULL; return (IPPROTO_DONE); } } if (nxt == IPPROTO_UDPLITE) UDPLITE_PROBE(receive, NULL, inp, ip6, inp, uh); else UDP_PROBE(receive, NULL, inp, ip6, inp, uh); if (udp6_append(inp, m, off, fromsa) == 0) INP_RUNLOCK(inp); *mp = NULL; return (IPPROTO_DONE); badunlocked: m_freem(m); *mp = NULL; return (IPPROTO_DONE); } static void udp6_common_ctlinput(struct ip6ctlparam *ip6cp, struct inpcbinfo *pcbinfo) { struct udphdr uh; struct ip6_hdr *ip6; struct mbuf *m; struct inpcb *inp; int errno, off = 0; struct udp_portonly { u_int16_t uh_sport; u_int16_t uh_dport; } *uhp; if ((errno = icmp6_errmap(ip6cp->ip6c_icmp6)) == 0) return; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; /* Check if we can safely examine src and dst ports. */ if (m->m_pkthdr.len < off + sizeof(*uhp)) return; bzero(&uh, sizeof(uh)); m_copydata(m, off, sizeof(*uhp), (caddr_t)&uh); /* Check to see if its tunneled */ inp = in6_pcblookup_mbuf(pcbinfo, &ip6->ip6_dst, uh.uh_dport, &ip6->ip6_src, uh.uh_sport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif, m); if (inp != NULL) { struct udpcb *up; udp_tun_icmp_t *func; up = intoudpcb(inp); func = up->u_icmp_func; INP_RUNLOCK(inp); if (func != NULL) func(ip6cp); } in6_pcbnotify(pcbinfo, ip6cp->ip6c_finaldst, uh.uh_dport, ip6cp->ip6c_src, uh.uh_sport, errno, ip6cp->ip6c_cmdarg, udp_notify); } static void udp6_ctlinput(struct ip6ctlparam *ctl) { return (udp6_common_ctlinput(ctl, &V_udbinfo)); } static void udplite6_ctlinput(struct ip6ctlparam *ctl) { return (udp6_common_ctlinput(ctl, &V_ulitecbinfo)); } static int udp6_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in6 addrs[2]; struct epoch_tracker et; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); if (req->newlen != sizeof(addrs)) return (EINVAL); if (req->oldlen != sizeof(struct xucred)) return (EINVAL); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { return (error); } NET_EPOCH_ENTER(et); inp = in6_pcblookup(&V_udbinfo, &addrs[1].sin6_addr, addrs[1].sin6_port, &addrs[0].sin6_addr, addrs[0].sin6_port, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); NET_EPOCH_EXIT(et); if (inp != NULL) { INP_RLOCK_ASSERT(inp); if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet6_udp6, OID_AUTO, getcred, CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, udp6_getcred, "S,xucred", "Get the xucred of a UDP6 connection"); static int udp6_send(struct socket *so, int flags_arg, struct mbuf *m, struct sockaddr *addr6, struct mbuf *control, struct thread *td) { struct inpcb *inp; struct ip6_hdr *ip6; struct udphdr *udp6; struct in6_addr *laddr, *faddr, in6a; struct ip6_pktopts *optp, opt; struct sockaddr_in6 *sin6, tmp; struct epoch_tracker et; int cscov_partial, error, flags, hlen, scope_ambiguous; u_int32_t ulen, plen; uint16_t cscov; u_short fport; uint8_t nxt; if (addr6) { error = 0; if (addr6->sa_family != AF_INET6) error = EAFNOSUPPORT; else if (addr6->sa_len != sizeof(struct sockaddr_in6)) error = EINVAL; if (__predict_false(error != 0)) { m_freem(control); m_freem(m); return (error); } } sin6 = (struct sockaddr_in6 *)addr6; /* * In contrast to IPv4 we do not validate the max. packet length * here due to IPv6 Jumbograms (RFC2675). */ scope_ambiguous = 0; if (sin6) { /* Protect *addr6 from overwrites. */ tmp = *sin6; sin6 = &tmp; /* * Application should provide a proper zone ID or the use of * default zone IDs should be enabled. Unfortunately, some * applications do not behave as it should, so we need a * workaround. Even if an appropriate ID is not determined, * we'll see if we can determine the outgoing interface. If we * can, determine the zone ID based on the interface below. */ if (sin6->sin6_scope_id == 0 && !V_ip6_use_defzone) scope_ambiguous = 1; if ((error = sa6_embedscope(sin6, V_ip6_use_defzone)) != 0) { if (control) m_freem(control); m_freem(m); return (error); } } inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); /* * In the following cases we want a write lock on the inp for either * local operations or for possible route cache updates in the IPv6 * output path: * - on connected sockets (sin6 is NULL) for route cache updates, * - when we are not bound to an address and source port (it is * in6_pcbsetport() which will require the write lock). * * We check the inp fields before actually locking the inp, so * here exists a race, and we may WLOCK the inp and end with already * bound one by other thread. This is fine. */ if (sin6 == NULL || (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) && inp->inp_lport == 0)) INP_WLOCK(inp); else INP_RLOCK(inp); nxt = (inp->inp_socket->so_proto->pr_protocol == IPPROTO_UDP) ? IPPROTO_UDP : IPPROTO_UDPLITE; #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { int hasv4addr; if (sin6 == NULL) hasv4addr = (inp->inp_vflag & INP_IPV4); else hasv4addr = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 1 : 0; if (hasv4addr) { /* * XXXRW: We release UDP-layer locks before calling * udp_send() in order to avoid recursion. However, * this does mean there is a short window where inp's * fields are unstable. Could this lead to a * potential race in which the factors causing us to * select the UDPv4 output routine are invalidated? */ INP_UNLOCK(inp); if (sin6) in6_sin6_2_sin_in_sock((struct sockaddr *)sin6); /* addr will just be freed in sendit(). */ return (udp_send(so, flags_arg | PRUS_IPV6, m, (struct sockaddr *)sin6, control, td)); } } else #endif if (sin6 && IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* * Given this is either an IPv6-only socket or no INET is * supported we will fail the send if the given destination * address is a v4mapped address. */ INP_UNLOCK(inp); m_freem(m); m_freem(control); return (EINVAL); } NET_EPOCH_ENTER(et); if (control) { if ((error = ip6_setpktopts(control, &opt, inp->in6p_outputopts, td->td_ucred, nxt)) != 0) { goto release; } optp = &opt; } else optp = inp->in6p_outputopts; if (sin6) { /* * Since we saw no essential reason for calling in_pcbconnect, * we get rid of such kind of logic, and call in6_selectsrc * and in6_pcbsetport in order to fill in the local address * and the local port. */ if (sin6->sin6_port == 0) { error = EADDRNOTAVAIL; goto release; } if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { /* how about ::ffff:0.0.0.0 case? */ error = EISCONN; goto release; } /* * Given we handle the v4mapped case in the INET block above * assert here that it must not happen anymore. */ KASSERT(!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr), ("%s: sin6(%p)->sin6_addr is v4mapped which we " "should have handled.", __func__, sin6)); /* This only requires read-locking. */ error = in6_selectsrc_socket(sin6, optp, inp, td->td_ucred, scope_ambiguous, &in6a, NULL); if (error) goto release; laddr = &in6a; if (inp->inp_lport == 0) { struct inpcbinfo *pcbinfo; INP_WLOCK_ASSERT(inp); pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); INP_HASH_WLOCK(pcbinfo); error = in6_pcbsetport(laddr, inp, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); if (error != 0) { /* Undo an address bind that may have occurred. */ inp->in6p_laddr = in6addr_any; goto release; } } faddr = &sin6->sin6_addr; fport = sin6->sin6_port; /* allow 0 port */ } else { if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { error = ENOTCONN; goto release; } laddr = &inp->in6p_laddr; faddr = &inp->in6p_faddr; fport = inp->inp_fport; } ulen = m->m_pkthdr.len; plen = sizeof(struct udphdr) + ulen; hlen = sizeof(struct ip6_hdr); /* * Calculate data length and get a mbuf * for UDP and IP6 headers. */ M_PREPEND(m, hlen + sizeof(struct udphdr), M_NOWAIT); if (m == NULL) { error = ENOBUFS; goto release; } /* * Stuff checksum and output datagram. */ cscov = cscov_partial = 0; udp6 = (struct udphdr *)(mtod(m, caddr_t) + hlen); udp6->uh_sport = inp->inp_lport; /* lport is always set in the PCB */ udp6->uh_dport = fport; if (nxt == IPPROTO_UDPLITE) { struct udpcb *up; up = intoudpcb(inp); cscov = up->u_txcslen; if (cscov >= plen) cscov = 0; udp6->uh_ulen = htons(cscov); /* * For UDP-Lite, checksum coverage length of zero means * the entire UDPLite packet is covered by the checksum. */ cscov_partial = (cscov == 0) ? 0 : 1; } else if (plen <= 0xffff) udp6->uh_ulen = htons((u_short)plen); else udp6->uh_ulen = 0; udp6->uh_sum = 0; ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_flow = inp->inp_flow & IPV6_FLOWINFO_MASK; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; ip6->ip6_plen = htons((u_short)plen); ip6->ip6_nxt = nxt; ip6->ip6_hlim = in6_selecthlim(inp, NULL); ip6->ip6_src = *laddr; ip6->ip6_dst = *faddr; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif if (cscov_partial) { if ((udp6->uh_sum = in6_cksum_partial(m, nxt, sizeof(struct ip6_hdr), plen, cscov)) == 0) udp6->uh_sum = 0xffff; } else { udp6->uh_sum = in6_cksum_pseudo(ip6, plen, nxt, 0); m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } flags = 0; #if defined(ROUTE_MPATH) || defined(RSS) if (CALC_FLOWID_OUTBOUND_SENDTO) { uint32_t hash_type, hash_val; uint8_t pr; pr = inp->inp_socket->so_proto->pr_protocol; hash_val = fib6_calc_packet_hash(laddr, faddr, inp->inp_lport, fport, pr, &hash_type); m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); } /* do not use inp flowid */ flags |= IP_NODEFAULTFLOWID; #endif UDPSTAT_INC(udps_opackets); if (nxt == IPPROTO_UDPLITE) UDPLITE_PROBE(send, NULL, inp, ip6, inp, udp6); else UDP_PROBE(send, NULL, inp, ip6, inp, udp6); error = ip6_output(m, optp, INP_WLOCKED(inp) ? &inp->inp_route6 : NULL, flags, inp->in6p_moptions, NULL, inp); INP_UNLOCK(inp); NET_EPOCH_EXIT(et); if (control) { ip6_clearpktopts(&opt, -1); m_freem(control); } return (error); release: INP_UNLOCK(inp); NET_EPOCH_EXIT(et); if (control) { ip6_clearpktopts(&opt, -1); m_freem(control); } m_freem(m); return (error); } static void udp6_abort(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_abort: inp == NULL")); INP_WLOCK(inp); #ifdef INET if (inp->inp_vflag & INP_IPV4) { INP_WUNLOCK(inp); udp_abort(so); return; } #endif if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { INP_HASH_WLOCK(pcbinfo); in6_pcbdisconnect(inp); INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp6_attach(struct socket *so, int proto, struct thread *td) { struct inpcbinfo *pcbinfo; struct inpcb *inp; struct udpcb *up; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp == NULL, ("udp6_attach: inp != NULL")); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, udp_sendspace, udp_recvspace); if (error) return (error); } error = in_pcballoc(so, pcbinfo); if (error) return (error); inp = (struct inpcb *)so->so_pcb; inp->in6p_cksum = -1; /* just to be sure */ /* * XXX: ugly!! * IPv4 TTL initialization is necessary for an IPv6 socket as well, * because the socket may be bound to an IPv6 wildcard address, * which may match an IPv4-mapped IPv6 address. */ inp->inp_ip_ttl = V_ip_defttl; up = intoudpcb(inp); bzero(&up->u_start_zero, u_zero_size); INP_WUNLOCK(inp); return (0); } static int udp6_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in6 *sin6_p; struct inpcb *inp; struct inpcbinfo *pcbinfo; int error; u_char vflagsav; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_bind: inp == NULL")); if (nam->sa_family != AF_INET6) return (EAFNOSUPPORT); if (nam->sa_len != sizeof(struct sockaddr_in6)) return (EINVAL); sin6_p = (struct sockaddr_in6 *)nam; INP_WLOCK(inp); INP_HASH_WLOCK(pcbinfo); vflagsav = inp->inp_vflag; inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) inp->inp_vflag |= INP_IPV4; #ifdef INET else if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6_p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, &sin, td->td_ucred); goto out; } #endif } error = in6_pcbbind(inp, sin6_p, td->td_ucred); #ifdef INET out: #endif if (error != 0) inp->inp_vflag = vflagsav; INP_HASH_WUNLOCK(pcbinfo); INP_WUNLOCK(inp); return (error); } static void udp6_close(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_close: inp == NULL")); INP_WLOCK(inp); #ifdef INET if (inp->inp_vflag & INP_IPV4) { INP_WUNLOCK(inp); (void)udp_disconnect(so); return; } #endif if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { INP_HASH_WLOCK(pcbinfo); in6_pcbdisconnect(inp); INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp6_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct epoch_tracker et; struct inpcb *inp; struct inpcbinfo *pcbinfo; struct sockaddr_in6 *sin6; int error; u_char vflagsav; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_connect: inp == NULL")); sin6 = (struct sockaddr_in6 *)nam; if (sin6->sin6_family != AF_INET6) return (EAFNOSUPPORT); if (sin6->sin6_len != sizeof(*sin6)) return (EINVAL); /* * XXXRW: Need to clarify locking of v4/v6 flags. */ INP_WLOCK(inp); #ifdef INET if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { struct sockaddr_in sin; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV4) == 0) { error = EAFNOSUPPORT; goto out; } if (inp->inp_faddr.s_addr != INADDR_ANY) { error = EISCONN; goto out; } in6_sin6_2_sin(&sin, sin6); error = prison_remote_ip4(td->td_ucred, &sin.sin_addr); if (error != 0) goto out; vflagsav = inp->inp_vflag; inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; NET_EPOCH_ENTER(et); INP_HASH_WLOCK(pcbinfo); error = in_pcbconnect(inp, &sin, td->td_ucred, true); INP_HASH_WUNLOCK(pcbinfo); NET_EPOCH_EXIT(et); /* * If connect succeeds, mark socket as connected. If * connect fails and socket is unbound, reset inp_vflag * field. */ if (error == 0) soisconnected(so); else if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) inp->inp_vflag = vflagsav; goto out; } else { if ((inp->inp_vflag & INP_IPV6) == 0) { error = EAFNOSUPPORT; goto out; } } #endif if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { error = EISCONN; goto out; } error = prison_remote_ip6(td->td_ucred, &sin6->sin6_addr); if (error != 0) goto out; vflagsav = inp->inp_vflag; inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; NET_EPOCH_ENTER(et); INP_HASH_WLOCK(pcbinfo); error = in6_pcbconnect(inp, sin6, td->td_ucred, true); INP_HASH_WUNLOCK(pcbinfo); NET_EPOCH_EXIT(et); /* * If connect succeeds, mark socket as connected. If * connect fails and socket is unbound, reset inp_vflag * field. */ if (error == 0) soisconnected(so); else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) && inp->inp_lport == 0) inp->inp_vflag = vflagsav; out: INP_WUNLOCK(inp); return (error); } static void udp6_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_detach: inp == NULL")); INP_WLOCK(inp); in_pcbfree(inp); } static int udp6_disconnect(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_disconnect: inp == NULL")); INP_WLOCK(inp); #ifdef INET if (inp->inp_vflag & INP_IPV4) { INP_WUNLOCK(inp); (void)udp_disconnect(so); return (0); } #endif if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { INP_WUNLOCK(inp); return (ENOTCONN); } INP_HASH_WLOCK(pcbinfo); in6_pcbdisconnect(inp); INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; /* XXX */ SOCK_UNLOCK(so); INP_WUNLOCK(inp); return (0); } #define UDP6_PROTOSW \ .pr_type = SOCK_DGRAM, \ .pr_flags = PR_ATOMIC|PR_ADDR|PR_CAPATTACH, \ .pr_ctloutput = udp_ctloutput, \ .pr_abort = udp6_abort, \ .pr_attach = udp6_attach, \ .pr_bind = udp6_bind, \ .pr_connect = udp6_connect, \ .pr_control = in6_control, \ .pr_detach = udp6_detach, \ .pr_disconnect = udp6_disconnect, \ .pr_peeraddr = in6_mapped_peeraddr, \ .pr_send = udp6_send, \ .pr_shutdown = udp_shutdown, \ .pr_sockaddr = in6_mapped_sockaddr, \ .pr_soreceive = soreceive_dgram, \ .pr_sosend = sosend_dgram, \ .pr_sosetlabel = in_pcbsosetlabel, \ .pr_close = udp6_close struct protosw udp6_protosw = { .pr_protocol = IPPROTO_UDP, UDP6_PROTOSW }; struct protosw udplite6_protosw = { .pr_protocol = IPPROTO_UDPLITE, UDP6_PROTOSW }; static void udp6_init(void *arg __unused) { IP6PROTO_REGISTER(IPPROTO_UDP, udp6_input, udp6_ctlinput); IP6PROTO_REGISTER(IPPROTO_UDPLITE, udp6_input, udplite6_ctlinput); } SYSINIT(udp6_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp6_init, NULL);