/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2008 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * Copyright (c) 2014 Kevin Lo * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include /* * UDP and UDP-Lite protocols implementation. * Per RFC 768, August, 1980. * Per RFC 3828, July, 2004. */ /* * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums * removes the only data integrity mechanism for packets and malformed * packets that would otherwise be discarded due to bad checksums, and may * cause problems (especially for NFS data blocks). */ VNET_DEFINE(int, udp_cksum) = 1; SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(udp_cksum), 0, "compute udp checksum"); VNET_DEFINE(int, udp_log_in_vain) = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); VNET_DEFINE(int, udp_blackhole) = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(udp_blackhole), 0, "Do not send port unreachables for refused connects"); VNET_DEFINE(bool, udp_blackhole_local) = false; SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, "Enforce net.inet.udp.blackhole for locally originated packets"); u_long udp_sendspace = 9216; /* really max datagram size */ SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); u_long udp_recvspace = 40 * (1024 + #ifdef INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); /* 40 1K datagrams */ SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); VNET_DEFINE(struct inpcbinfo, udbinfo); VNET_DEFINE(struct inpcbinfo, ulitecbinfo); #ifndef UDBHASHSIZE #define UDBHASHSIZE 128 #endif VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ VNET_PCPUSTAT_SYSINIT(udpstat); SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(udpstat); #endif /* VIMAGE */ #ifdef INET static void udp_detach(struct socket *so); #endif INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash"); INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb", "udplite", "udplitehash"); static void udp_vnet_init(void *arg __unused) { /* * For now default to 2-tuple UDP hashing - until the fragment * reassembly code can also update the flowid. * * Once we can calculate the flowid that way and re-establish * a 4-tuple, flip this to 4-tuple. */ in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); /* Additional pcbinfo for UDP-Lite */ in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, UDBHASHSIZE); } VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_vnet_init, NULL); /* * Kernel module interface for updating udpstat. The argument is an index * into udpstat treated as an array of u_long. While this encodes the * general layout of udpstat into the caller, it doesn't encode its location, * so that future changes to add, for example, per-CPU stats support won't * cause binary compatibility problems for kernel modules. */ void kmod_udpstat_inc(int statnum) { counter_u64_add(VNET(udpstat)[statnum], 1); } #ifdef VIMAGE static void udp_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_udbinfo); in_pcbinfo_destroy(&V_ulitecbinfo); } VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); #endif #ifdef INET /* * Subroutine of udp_input(), which appends the provided mbuf chain to the * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that * contains the source address. If the socket ends up being an IPv6 socket, * udp_append() will convert to a sockaddr_in6 before passing the address * into the socket code. * * In the normal case udp_append() will return 0, indicating that you * must unlock the inp. However if a tunneling protocol is in place we increment * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we * then decrement the reference count. If the inp_rele returns 1, indicating the * inp is gone, we return that to the caller to tell them *not* to unlock * the inp. In the case of multi-cast this will cause the distribution * to stop (though most tunneling protocols known currently do *not* use * multicast). */ static int udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, struct sockaddr_in *udp_in) { struct sockaddr *append_sa; struct socket *so; struct mbuf *tmpopts, *opts = NULL; #ifdef INET6 struct sockaddr_in6 udp_in6; #endif struct udpcb *up; bool filtered; INP_LOCK_ASSERT(inp); /* * Engage the tunneling protocol. */ up = intoudpcb(inp); if (up->u_tun_func != NULL) { in_pcbref(inp); INP_RUNLOCK(inp); filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], up->u_tun_ctx); INP_RLOCK(inp); if (filtered) return (in_pcbrele_rlocked(inp)); } off += sizeof(struct udphdr); #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* Check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv4) && IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { m_freem(n); return (0); } if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ if (IPSEC_ENABLED(ipv4) && UDPENCAP_INPUT(ipv4, n, off, AF_INET) != 0) return (0); /* Consumed. */ } #endif /* IPSEC */ #ifdef MAC if (mac_inpcb_check_deliver(inp, n) != 0) { m_freem(n); return (0); } #endif /* MAC */ if (inp->inp_flags & INP_CONTROLOPTS || inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { #ifdef INET6 if (inp->inp_vflag & INP_IPV6) (void)ip6_savecontrol_v4(inp, n, &opts, NULL); else #endif /* INET6 */ ip_savecontrol(inp, &opts, ip, n); } if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { tmpopts = sbcreatecontrol(&udp_in[1], sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, M_NOWAIT); if (tmpopts) { if (opts) { tmpopts->m_next = opts; opts = tmpopts; } else opts = tmpopts; } } #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { bzero(&udp_in6, sizeof(udp_in6)); udp_in6.sin6_len = sizeof(udp_in6); udp_in6.sin6_family = AF_INET6; in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); append_sa = (struct sockaddr *)&udp_in6; } else #endif /* INET6 */ append_sa = (struct sockaddr *)&udp_in[0]; m_adj(n, off); so = inp->inp_socket; SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { soroverflow_locked(so); m_freem(n); if (opts) m_freem(opts); UDPSTAT_INC(udps_fullsock); } else sorwakeup_locked(so); return (0); } static bool udp_multi_match(const struct inpcb *inp, void *v) { struct ip *ip = v; struct udphdr *uh = (struct udphdr *)(ip + 1); if (inp->inp_lport != uh->uh_dport) return (false); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) return (false); #endif if (inp->inp_laddr.s_addr != INADDR_ANY && inp->inp_laddr.s_addr != ip->ip_dst.s_addr) return (false); if (inp->inp_faddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != ip->ip_src.s_addr) return (false); if (inp->inp_fport != 0 && inp->inp_fport != uh->uh_sport) return (false); return (true); } static int udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) { struct ip *ip = mtod(m, struct ip *); struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), INPLOOKUP_RLOCKPCB, udp_multi_match, ip); #ifdef KDTRACE_HOOKS struct udphdr *uh = (struct udphdr *)(ip + 1); #endif struct inpcb *inp; struct mbuf *n; int appends = 0; MPASS(ip->ip_hl == sizeof(struct ip) >> 2); while ((inp = inp_next(&inpi)) != NULL) { /* * XXXRW: Because we weren't holding either the inpcb * or the hash lock when we checked for a match * before, we should probably recheck now that the * inpcb lock is held. */ /* * Handle socket delivery policy for any-source * and source-specific multicast. [RFC3678] */ if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { struct ip_moptions *imo; struct sockaddr_in group; int blocked; imo = inp->inp_moptions; if (imo == NULL) continue; bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ip->ip_dst; blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, (struct sockaddr *)&group, (struct sockaddr *)&udp_in[0]); if (blocked != MCAST_PASS) { if (blocked == MCAST_NOTGMEMBER) IPSTAT_INC(ips_notmember); if (blocked == MCAST_NOTSMEMBER || blocked == MCAST_MUTED) UDPSTAT_INC(udps_filtermcast); continue; } } if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { if (proto == IPPROTO_UDPLITE) UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); else UDP_PROBE(receive, NULL, inp, ip, inp, uh); if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { break; } else appends++; } /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids * searching through all pcbs in the common case of a * non-shared port. It assumes that an application * will never clear these options after setting them. */ if ((inp->inp_socket->so_options & (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { INP_RUNLOCK(inp); break; } } if (appends == 0) { /* * No matching pcb found; discard datagram. (No need * to send an ICMP Port Unreachable for a broadcast * or multicast datgram.) */ UDPSTAT_INC(udps_noport); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) UDPSTAT_INC(udps_noportmcast); else UDPSTAT_INC(udps_noportbcast); } m_freem(m); return (IPPROTO_DONE); } static int udp_input(struct mbuf **mp, int *offp, int proto) { struct ip *ip; struct udphdr *uh; struct ifnet *ifp; struct inpcb *inp; uint16_t len, ip_len; struct inpcbinfo *pcbinfo; struct sockaddr_in udp_in[2]; struct mbuf *m; struct m_tag *fwd_tag; int cscov_partial, iphlen; m = *mp; iphlen = *offp; ifp = m->m_pkthdr.rcvif; *mp = NULL; UDPSTAT_INC(udps_ipackets); /* * Strip IP options, if any; should skip this, make available to * user, and use on returned packets, but we don't yet have a way to * check the checksum with options still present. */ if (iphlen > sizeof (struct ip)) { ip_stripoptions(m); iphlen = sizeof(struct ip); } /* * Get IP and UDP header together in first mbuf. */ if (m->m_len < iphlen + sizeof(struct udphdr)) { if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { UDPSTAT_INC(udps_hdrops); return (IPPROTO_DONE); } } ip = mtod(m, struct ip *); uh = (struct udphdr *)((caddr_t)ip + iphlen); cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; /* * Destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto badunlocked; /* * Construct sockaddr format source address. Stuff source address * and datagram in user buffer. */ bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); udp_in[0].sin_len = sizeof(struct sockaddr_in); udp_in[0].sin_family = AF_INET; udp_in[0].sin_port = uh->uh_sport; udp_in[0].sin_addr = ip->ip_src; udp_in[1].sin_len = sizeof(struct sockaddr_in); udp_in[1].sin_family = AF_INET; udp_in[1].sin_port = uh->uh_dport; udp_in[1].sin_addr = ip->ip_dst; /* * Make mbuf data length reflect UDP length. If not enough data to * reflect UDP length, drop. */ len = ntohs((u_short)uh->uh_ulen); ip_len = ntohs(ip->ip_len) - iphlen; if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { /* Zero means checksum over the complete packet. */ if (len == 0) len = ip_len; cscov_partial = 0; } if (ip_len != len) { if (len > ip_len || len < sizeof(struct udphdr)) { UDPSTAT_INC(udps_badlen); goto badunlocked; } if (proto == IPPROTO_UDP) m_adj(m, len - ip_len); } /* * Checksum extended UDP header and data. */ if (uh->uh_sum) { u_short uh_sum; if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && !cscov_partial) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh_sum = m->m_pkthdr.csum_data; else uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + proto)); uh_sum ^= 0xffff; } else { char b[offsetof(struct ipovly, ih_src)]; struct ipovly *ipov = (struct ipovly *)ip; memcpy(b, ipov, sizeof(b)); bzero(ipov, sizeof(ipov->ih_x1)); ipov->ih_len = (proto == IPPROTO_UDP) ? uh->uh_ulen : htons(ip_len); uh_sum = in_cksum(m, len + sizeof (struct ip)); memcpy(ipov, b, sizeof(b)); } if (uh_sum) { UDPSTAT_INC(udps_badsum); m_freem(m); return (IPPROTO_DONE); } } else { if (proto == IPPROTO_UDP) { UDPSTAT_INC(udps_nosum); } else { /* UDPLite requires a checksum */ /* XXX: What is the right UDPLite MIB counter here? */ m_freem(m); return (IPPROTO_DONE); } } if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || in_broadcast(ip->ip_dst, ifp)) return (udp_multi_input(m, proto, udp_in)); pcbinfo = udp_get_inpcbinfo(proto); /* * Locate pcb for datagram. * * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ if ((m->m_flags & M_IP_NEXTHOP) && (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { struct sockaddr_in *next_hop; next_hop = (struct sockaddr_in *)(fwd_tag + 1); /* * Transparently forwarded. Pretend to be the destination. * Already got one like this? */ inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in_pcblookup(pcbinfo, ip->ip_src, uh->uh_sport, next_hop->sin_addr, next_hop->sin_port ? htons(next_hop->sin_port) : uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, ifp); } /* Remove the tag from the packet. We don't need it anymore. */ m_tag_delete(m, fwd_tag); m->m_flags &= ~M_IP_NEXTHOP; } else inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, ifp, m); if (inp == NULL) { if (V_udp_log_in_vain) { char src[INET_ADDRSTRLEN]; char dst[INET_ADDRSTRLEN]; log(LOG_INFO, "Connection attempt to UDP %s:%d from %s:%d\n", inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); } if (proto == IPPROTO_UDPLITE) UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); else UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); UDPSTAT_INC(udps_noport); if (m->m_flags & (M_BCAST | M_MCAST)) { UDPSTAT_INC(udps_noportbcast); goto badunlocked; } if (V_udp_blackhole && (V_udp_blackhole_local || !in_localip(ip->ip_src))) goto badunlocked; if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) goto badunlocked; icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); return (IPPROTO_DONE); } /* * Check the minimum TTL for socket. */ INP_RLOCK_ASSERT(inp); if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { if (proto == IPPROTO_UDPLITE) UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); else UDP_PROBE(receive, NULL, inp, ip, inp, uh); INP_RUNLOCK(inp); m_freem(m); return (IPPROTO_DONE); } if (cscov_partial) { struct udpcb *up; up = intoudpcb(inp); if (up->u_rxcslen == 0 || up->u_rxcslen > len) { INP_RUNLOCK(inp); m_freem(m); return (IPPROTO_DONE); } } if (proto == IPPROTO_UDPLITE) UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); else UDP_PROBE(receive, NULL, inp, ip, inp, uh); if (udp_append(inp, ip, m, iphlen, udp_in) == 0) INP_RUNLOCK(inp); return (IPPROTO_DONE); badunlocked: m_freem(m); return (IPPROTO_DONE); } #endif /* INET */ /* * Notify a udp user of an asynchronous error; just wake up so that they can * collect error status. */ struct inpcb * udp_notify(struct inpcb *inp, int errno) { INP_WLOCK_ASSERT(inp); if ((errno == EHOSTUNREACH || errno == ENETUNREACH || errno == EHOSTDOWN) && inp->inp_route.ro_nh) { NH_FREE(inp->inp_route.ro_nh); inp->inp_route.ro_nh = (struct nhop_object *)NULL; } inp->inp_socket->so_error = errno; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); return (inp); } #ifdef INET static void udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo) { struct ip *ip = &icmp->icmp_ip; struct udphdr *uh; struct inpcb *inp; if (icmp_errmap(icmp) == 0) return; uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); if (inp != NULL) { INP_WLOCK_ASSERT(inp); if (inp->inp_socket != NULL) udp_notify(inp, icmp_errmap(icmp)); INP_WUNLOCK(inp); } else { inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, uh->uh_sport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { struct udpcb *up; udp_tun_icmp_t *func; up = intoudpcb(inp); func = up->u_icmp_func; INP_RUNLOCK(inp); if (func != NULL) func(icmp); } } } static void udp_ctlinput(struct icmp *icmp) { return (udp_common_ctlinput(icmp, &V_udbinfo)); } static void udplite_ctlinput(struct icmp *icmp) { return (udp_common_ctlinput(icmp, &V_ulitecbinfo)); } #endif /* INET */ static int udp_pcblist(SYSCTL_HANDLER_ARGS) { struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, INPLOOKUP_RLOCKPCB); struct xinpgen xig; struct inpcb *inp; int error; if (req->newptr != 0) return (EPERM); if (req->oldptr == 0) { int n; n = V_udbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return (0); } if ((error = sysctl_wire_old_buffer(req, 0)) != 0) return (error); bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_count = V_udbinfo.ipi_count; xig.xig_gen = V_udbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); while ((inp = inp_next(&inpi)) != NULL) { if (inp->inp_gencnt <= xig.xig_gen && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); error = SYSCTL_OUT(req, &xi, sizeof xi); if (error) { INP_RUNLOCK(inp); break; } } } if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ xig.xig_gen = V_udbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_udbinfo.ipi_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } return (error); } SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, udp_pcblist, "S,xinpcb", "List of active UDP sockets"); #ifdef INET static int udp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct epoch_tracker et; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); NET_EPOCH_ENTER(et); inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); NET_EPOCH_EXIT(et); if (inp != NULL) { INP_RLOCK_ASSERT(inp); if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 0, 0, udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); #endif /* INET */ int udp_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp; struct udpcb *up; int isudplite, error, optval; error = 0; isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); INP_WLOCK(inp); if (sopt->sopt_level != so->so_proto->pr_protocol) { #ifdef INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) { INP_WUNLOCK(inp); error = ip6_ctloutput(so, sopt); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { INP_WUNLOCK(inp); error = ip_ctloutput(so, sopt); } #endif return (error); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) #if defined(INET) || defined(INET6) case UDP_ENCAP: #ifdef INET if (INP_SOCKAF(so) == AF_INET) { if (!IPSEC_ENABLED(ipv4)) { INP_WUNLOCK(inp); return (ENOPROTOOPT); } error = UDPENCAP_PCBCTL(ipv4, inp, sopt); break; } #endif /* INET */ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { if (!IPSEC_ENABLED(ipv6)) { INP_WUNLOCK(inp); return (ENOPROTOOPT); } error = UDPENCAP_PCBCTL(ipv6, inp, sopt); break; } #endif /* INET6 */ INP_WUNLOCK(inp); return (EINVAL); #endif /* INET || INET6 */ #endif /* IPSEC */ case UDPLITE_SEND_CSCOV: case UDPLITE_RECV_CSCOV: if (!isudplite) { INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error != 0) break; inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); INP_WLOCK(inp); up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); if ((optval != 0 && optval < 8) || (optval > 65535)) { INP_WUNLOCK(inp); error = EINVAL; break; } if (sopt->sopt_name == UDPLITE_SEND_CSCOV) up->u_txcslen = optval; else up->u_rxcslen = optval; INP_WUNLOCK(inp); break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) #if defined(INET) || defined(INET6) case UDP_ENCAP: #ifdef INET if (INP_SOCKAF(so) == AF_INET) { if (!IPSEC_ENABLED(ipv4)) { INP_WUNLOCK(inp); return (ENOPROTOOPT); } error = UDPENCAP_PCBCTL(ipv4, inp, sopt); break; } #endif /* INET */ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { if (!IPSEC_ENABLED(ipv6)) { INP_WUNLOCK(inp); return (ENOPROTOOPT); } error = UDPENCAP_PCBCTL(ipv6, inp, sopt); break; } #endif /* INET6 */ INP_WUNLOCK(inp); return (EINVAL); #endif /* INET || INET6 */ #endif /* IPSEC */ case UDPLITE_SEND_CSCOV: case UDPLITE_RECV_CSCOV: if (!isudplite) { INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } up = intoudpcb(inp); KASSERT(up != NULL, ("%s: up == NULL", __func__)); if (sopt->sopt_name == UDPLITE_SEND_CSCOV) optval = up->u_txcslen; else optval = up->u_rxcslen; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; } return (error); } #ifdef INET #ifdef INET6 /* The logic here is derived from ip6_setpktopt(). See comments there. */ static int udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, struct inpcb *inp, int flags) { struct ifnet *ifp; struct in6_pktinfo *pktinfo; struct in_addr ia; if ((flags & PRUS_IPV6) == 0) return (0); if (cm->cmsg_level != IPPROTO_IPV6) return (0); if (cm->cmsg_type != IPV6_2292PKTINFO && cm->cmsg_type != IPV6_PKTINFO) return (0); if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) return (EINVAL); pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) return (EINVAL); /* Validate the interface index if specified. */ if (pktinfo->ipi6_ifindex) { struct epoch_tracker et; NET_EPOCH_ENTER(et); ifp = ifnet_byindex(pktinfo->ipi6_ifindex); NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ if (ifp == NULL) return (ENXIO); } else ifp = NULL; if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; if (in_ifhasaddr(ifp, ia) == 0) return (EADDRNOTAVAIL); } bzero(src, sizeof(*src)); src->sin_family = AF_INET; src->sin_len = sizeof(*src); src->sin_port = inp->inp_lport; src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; return (0); } #endif /* INET6 */ int udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td) { struct inpcb *inp; struct udpiphdr *ui; int len, error = 0; struct in_addr faddr, laddr; struct cmsghdr *cm; struct inpcbinfo *pcbinfo; struct sockaddr_in *sin, src; struct epoch_tracker et; int cscov_partial = 0; int ipflags = 0; u_short fport, lport; u_char tos, vflagsav; uint8_t pr; uint16_t cscov = 0; uint32_t flowid = 0; uint8_t flowtype = M_HASHTYPE_NONE; bool use_cached_route; inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_send: inp == NULL")); if (addr != NULL) { if (addr->sa_family != AF_INET) error = EAFNOSUPPORT; else if (addr->sa_len != sizeof(struct sockaddr_in)) error = EINVAL; if (__predict_false(error != 0)) { m_freem(control); m_freem(m); return (error); } } len = m->m_pkthdr.len; if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { if (control) m_freem(control); m_freem(m); return (EMSGSIZE); } src.sin_family = 0; sin = (struct sockaddr_in *)addr; /* * udp_send() may need to temporarily bind or connect the current * inpcb. As such, we don't know up front whether we will need the * pcbinfo lock or not. Do any work to decide what is needed up * front before acquiring any locks. * * We will need network epoch in either case, to safely lookup into * pcb hash. */ use_cached_route = sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0); if (use_cached_route || (flags & PRUS_IPV6) != 0) INP_WLOCK(inp); else INP_RLOCK(inp); NET_EPOCH_ENTER(et); tos = inp->inp_ip_tos; if (control != NULL) { /* * XXX: Currently, we assume all the optional information is * stored in a single mbuf. */ if (control->m_next) { m_freem(control); error = EINVAL; goto release; } for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { cm = mtod(control, struct cmsghdr *); if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) { error = EINVAL; break; } #ifdef INET6 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); if (error != 0) break; #endif if (cm->cmsg_level != IPPROTO_IP) continue; switch (cm->cmsg_type) { case IP_SENDSRCADDR: if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr))) { error = EINVAL; break; } bzero(&src, sizeof(src)); src.sin_family = AF_INET; src.sin_len = sizeof(src); src.sin_port = inp->inp_lport; src.sin_addr = *(struct in_addr *)CMSG_DATA(cm); break; case IP_TOS: if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { error = EINVAL; break; } tos = *(u_char *)CMSG_DATA(cm); break; case IP_FLOWID: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } flowid = *(uint32_t *) CMSG_DATA(cm); break; case IP_FLOWTYPE: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } flowtype = *(uint32_t *) CMSG_DATA(cm); break; #ifdef RSS case IP_RSSBUCKETID: if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { error = EINVAL; break; } /* This is just a placeholder for now */ break; #endif /* RSS */ default: error = ENOPROTOOPT; break; } if (error) break; } m_freem(control); control = NULL; } if (error) goto release; pr = inp->inp_socket->so_proto->pr_protocol; pcbinfo = udp_get_inpcbinfo(pr); /* * If the IP_SENDSRCADDR control message was specified, override the * source address for this datagram. Its use is invalidated if the * address thus specified is incomplete or clobbers other inpcbs. */ laddr = inp->inp_laddr; lport = inp->inp_lport; if (src.sin_family == AF_INET) { if ((lport == 0) || (laddr.s_addr == INADDR_ANY && src.sin_addr.s_addr == INADDR_ANY)) { error = EINVAL; goto release; } if ((flags & PRUS_IPV6) != 0) { vflagsav = inp->inp_vflag; inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; } INP_HASH_WLOCK(pcbinfo); error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); if ((flags & PRUS_IPV6) != 0) inp->inp_vflag = vflagsav; if (error) goto release; } /* * If a UDP socket has been connected, then a local address/port will * have been selected and bound. * * If a UDP socket has not been connected to, then an explicit * destination address must be used, in which case a local * address/port may not have been selected and bound. */ if (sin != NULL) { INP_LOCK_ASSERT(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { error = EISCONN; goto release; } /* * Jail may rewrite the destination address, so let it do * that before we use it. */ error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); if (error) goto release; /* * If a local address or port hasn't yet been selected, or if * the destination address needs to be rewritten due to using * a special INADDR_ constant, invoke in_pcbconnect_setup() * to do the heavy lifting. Once a port is selected, we * commit the binding back to the socket; we also commit the * binding of the address if in jail. * * If we already have a valid binding and we're not * requesting a destination address rewrite, use a fast path. */ if (inp->inp_laddr.s_addr == INADDR_ANY || inp->inp_lport == 0 || sin->sin_addr.s_addr == INADDR_ANY || sin->sin_addr.s_addr == INADDR_BROADCAST) { if ((flags & PRUS_IPV6) != 0) { vflagsav = inp->inp_vflag; inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; } INP_HASH_WLOCK(pcbinfo); error = in_pcbconnect_setup(inp, sin, &laddr.s_addr, &lport, &faddr.s_addr, &fport, td->td_ucred); if ((flags & PRUS_IPV6) != 0) inp->inp_vflag = vflagsav; if (error) { INP_HASH_WUNLOCK(pcbinfo); goto release; } /* * XXXRW: Why not commit the port if the address is * !INADDR_ANY? */ /* Commit the local port if newly assigned. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { INP_WLOCK_ASSERT(inp); /* * Remember addr if jailed, to prevent * rebinding. */ if (prison_flag(td->td_ucred, PR_IP4)) inp->inp_laddr = laddr; inp->inp_lport = lport; error = in_pcbinshash(inp); INP_HASH_WUNLOCK(pcbinfo); if (error != 0) { inp->inp_lport = 0; error = EAGAIN; goto release; } inp->inp_flags |= INP_ANONPORT; } else INP_HASH_WUNLOCK(pcbinfo); } else { faddr = sin->sin_addr; fport = sin->sin_port; } } else { INP_LOCK_ASSERT(inp); faddr = inp->inp_faddr; fport = inp->inp_fport; if (faddr.s_addr == INADDR_ANY) { error = ENOTCONN; goto release; } } /* * Calculate data length and get a mbuf for UDP, IP, and possible * link-layer headers. Immediate slide the data pointer back forward * since we won't use that space at this layer. */ M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); if (m == NULL) { error = ENOBUFS; goto release; } m->m_data += max_linkhdr; m->m_len -= max_linkhdr; m->m_pkthdr.len -= max_linkhdr; /* * Fill in mbuf with extended UDP header and addresses and length put * into network format. */ ui = mtod(m, struct udpiphdr *); /* * Filling only those fields of udpiphdr that participate in the * checksum calculation. The rest must be zeroed and will be filled * later. */ bzero(ui->ui_x1, sizeof(ui->ui_x1)); ui->ui_pr = pr; ui->ui_src = laddr; ui->ui_dst = faddr; ui->ui_sport = lport; ui->ui_dport = fport; ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); if (pr == IPPROTO_UDPLITE) { struct udpcb *up; uint16_t plen; up = intoudpcb(inp); cscov = up->u_txcslen; plen = (u_short)len + sizeof(struct udphdr); if (cscov >= plen) cscov = 0; ui->ui_len = htons(plen); ui->ui_ulen = htons(cscov); /* * For UDP-Lite, checksum coverage length of zero means * the entire UDPLite packet is covered by the checksum. */ cscov_partial = (cscov == 0) ? 0 : 1; } if (inp->inp_socket->so_options & SO_DONTROUTE) ipflags |= IP_ROUTETOIF; if (inp->inp_socket->so_options & SO_BROADCAST) ipflags |= IP_ALLOWBROADCAST; if (inp->inp_flags & INP_ONESBCAST) ipflags |= IP_SENDONES; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif /* * Set up checksum and output datagram. */ ui->ui_sum = 0; if (pr == IPPROTO_UDPLITE) { if (inp->inp_flags & INP_ONESBCAST) faddr.s_addr = INADDR_BROADCAST; if (cscov_partial) { if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) ui->ui_sum = 0xffff; } else { if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) ui->ui_sum = 0xffff; } } else if (V_udp_cksum) { if (inp->inp_flags & INP_ONESBCAST) faddr.s_addr = INADDR_BROADCAST; ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, htons((u_short)len + sizeof(struct udphdr) + pr)); m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } /* * After finishing the checksum computation, fill the remaining fields * of udpiphdr. */ ((struct ip *)ui)->ip_v = IPVERSION; ((struct ip *)ui)->ip_tos = tos; ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); if (inp->inp_flags & INP_DONTFRAG) ((struct ip *)ui)->ip_off |= htons(IP_DF); ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; UDPSTAT_INC(udps_opackets); /* * Setup flowid / RSS information for outbound socket. * * Once the UDP code decides to set a flowid some other way, * this allows the flowid to be overridden by userland. */ if (flowtype != M_HASHTYPE_NONE) { m->m_pkthdr.flowid = flowid; M_HASHTYPE_SET(m, flowtype); } #if defined(ROUTE_MPATH) || defined(RSS) else if (CALC_FLOWID_OUTBOUND_SENDTO) { uint32_t hash_val, hash_type; hash_val = fib4_calc_packet_hash(laddr, faddr, lport, fport, pr, &hash_type); m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); } /* * Don't override with the inp cached flowid value. * * Depending upon the kind of send being done, the inp * flowid/flowtype values may actually not be appropriate * for this particular socket send. * * We should either leave the flowid at zero (which is what is * currently done) or set it to some software generated * hash value based on the packet contents. */ ipflags |= IP_NODEFAULTFLOWID; #endif /* RSS */ if (pr == IPPROTO_UDPLITE) UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); else UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); error = ip_output(m, inp->inp_options, use_cached_route ? &inp->inp_route : NULL, ipflags, inp->inp_moptions, inp); INP_UNLOCK(inp); NET_EPOCH_EXIT(et); return (error); release: INP_UNLOCK(inp); NET_EPOCH_EXIT(et); m_freem(m); return (error); } void udp_abort(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_abort: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp_attach(struct socket *so, int proto, struct thread *td) { static uint32_t udp_flowid; struct inpcbinfo *pcbinfo; struct inpcb *inp; struct udpcb *up; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp == NULL, ("udp_attach: inp != NULL")); error = soreserve(so, udp_sendspace, udp_recvspace); if (error) return (error); error = in_pcballoc(so, pcbinfo); if (error) return (error); inp = sotoinpcb(so); inp->inp_ip_ttl = V_ip_defttl; inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); inp->inp_flowtype = M_HASHTYPE_OPAQUE; up = intoudpcb(inp); bzero(&up->u_start_zero, u_zero_size); INP_WUNLOCK(inp); return (0); } #endif /* INET */ int udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) { struct inpcb *inp; struct udpcb *up; KASSERT(so->so_type == SOCK_DGRAM, ("udp_set_kernel_tunneling: !dgram")); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); INP_WLOCK(inp); up = intoudpcb(inp); if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || (up->u_icmp_func != NULL))) { INP_WUNLOCK(inp); return (EBUSY); } up->u_tun_func = f; up->u_icmp_func = i; up->u_tun_ctx = ctx; INP_WUNLOCK(inp); return (0); } #ifdef INET static int udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct inpcb *inp; struct inpcbinfo *pcbinfo; struct sockaddr_in *sinp; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_bind: inp == NULL")); sinp = (struct sockaddr_in *)nam; if (nam->sa_family != AF_INET) { /* * Preserve compatibility with old programs. */ if (nam->sa_family != AF_UNSPEC || nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || sinp->sin_addr.s_addr != INADDR_ANY) return (EAFNOSUPPORT); nam->sa_family = AF_INET; } if (nam->sa_len != sizeof(struct sockaddr_in)) return (EINVAL); INP_WLOCK(inp); INP_HASH_WLOCK(pcbinfo); error = in_pcbbind(inp, sinp, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); INP_WUNLOCK(inp); return (error); } static void udp_close(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_close: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); INP_HASH_WUNLOCK(pcbinfo); soisdisconnected(so); } INP_WUNLOCK(inp); } static int udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct epoch_tracker et; struct inpcb *inp; struct inpcbinfo *pcbinfo; struct sockaddr_in *sin; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_connect: inp == NULL")); sin = (struct sockaddr_in *)nam; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_len != sizeof(*sin)) return (EINVAL); INP_WLOCK(inp); if (inp->inp_faddr.s_addr != INADDR_ANY) { INP_WUNLOCK(inp); return (EISCONN); } error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); if (error != 0) { INP_WUNLOCK(inp); return (error); } NET_EPOCH_ENTER(et); INP_HASH_WLOCK(pcbinfo); error = in_pcbconnect(inp, sin, td->td_ucred); INP_HASH_WUNLOCK(pcbinfo); NET_EPOCH_EXIT(et); if (error == 0) soisconnected(so); INP_WUNLOCK(inp); return (error); } static void udp_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_detach: inp == NULL")); KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, ("udp_detach: not disconnected")); INP_WLOCK(inp); in_pcbfree(inp); } int udp_disconnect(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr == INADDR_ANY) { INP_WUNLOCK(inp); return (ENOTCONN); } INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; /* XXX */ SOCK_UNLOCK(so); INP_WUNLOCK(inp); return (0); } #endif /* INET */ int udp_shutdown(struct socket *so, enum shutdown_how how) { int error; SOCK_LOCK(so); if (!(so->so_state & SS_ISCONNECTED)) /* * POSIX mandates us to just return ENOTCONN when shutdown(2) is * invoked on a datagram sockets, however historically we would * actually tear socket down. This is known to be leveraged by * some applications to unblock process waiting in recv(2) by * other process that it shares that socket with. Try to meet * both backward-compatibility and POSIX requirements by forcing * ENOTCONN but still flushing buffers and performing wakeup(9). * * XXXGL: it remains unknown what applications expect this * behavior and is this isolated to unix/dgram or inet/dgram or * both. See: D10351, D3039. */ error = ENOTCONN; else error = 0; SOCK_UNLOCK(so); switch (how) { case SHUT_RD: sorflush(so); break; case SHUT_RDWR: sorflush(so); /* FALLTHROUGH */ case SHUT_WR: socantsendmore(so); } return (error); } #ifdef INET #define UDP_PROTOSW \ .pr_type = SOCK_DGRAM, \ .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \ .pr_ctloutput = udp_ctloutput, \ .pr_abort = udp_abort, \ .pr_attach = udp_attach, \ .pr_bind = udp_bind, \ .pr_connect = udp_connect, \ .pr_control = in_control, \ .pr_detach = udp_detach, \ .pr_disconnect = udp_disconnect, \ .pr_peeraddr = in_getpeeraddr, \ .pr_send = udp_send, \ .pr_soreceive = soreceive_dgram, \ .pr_sosend = sosend_dgram, \ .pr_shutdown = udp_shutdown, \ .pr_sockaddr = in_getsockaddr, \ .pr_sosetlabel = in_pcbsosetlabel, \ .pr_close = udp_close struct protosw udp_protosw = { .pr_protocol = IPPROTO_UDP, UDP_PROTOSW }; struct protosw udplite_protosw = { .pr_protocol = IPPROTO_UDPLITE, UDP_PROTOSW }; static void udp_init(void *arg __unused) { IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput); IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput); } SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); #endif /* INET */