/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * Copyright (c) 2006-2007 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_kern_tls.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif /* INET6 */ #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef TCPPCAP #include #endif #ifdef TCP_OFFLOAD #include #endif #include #include #include #include #include #include #include /* * TCP protocol interface to socket abstraction. */ #ifdef INET static int tcp_connect(struct tcpcb *, struct sockaddr_in *, struct thread *td); #endif /* INET */ #ifdef INET6 static int tcp6_connect(struct tcpcb *, struct sockaddr_in6 *, struct thread *td); #endif /* INET6 */ static void tcp_disconnect(struct tcpcb *); static void tcp_usrclosed(struct tcpcb *); static void tcp_fill_info(const struct tcpcb *, struct tcp_info *); static int tcp_pru_options_support(struct tcpcb *tp, int flags); static void tcp_bblog_pru(struct tcpcb *tp, uint32_t pru, int error) { struct tcp_log_buffer *lgb; KASSERT(tp != NULL, ("tcp_bblog_pru: tp == NULL")); INP_WLOCK_ASSERT(tptoinpcb(tp)); if (tcp_bblogging_on(tp)) { lgb = tcp_log_event(tp, NULL, NULL, NULL, TCP_LOG_PRU, error, 0, NULL, false, NULL, NULL, 0, NULL); } else { lgb = NULL; } if (lgb != NULL) { if (error >= 0) { lgb->tlb_errno = (uint32_t)error; } lgb->tlb_flex1 = pru; } } /* * TCP attaches to socket via pru_attach(), reserving space, * and an internet control block. */ static int tcp_usr_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; struct tcpcb *tp = NULL; int error; inp = sotoinpcb(so); KASSERT(inp == NULL, ("tcp_usr_attach: inp != NULL")); error = soreserve(so, V_tcp_sendspace, V_tcp_recvspace); if (error) goto out; so->so_rcv.sb_flags |= SB_AUTOSIZE; so->so_snd.sb_flags |= SB_AUTOSIZE; error = in_pcballoc(so, &V_tcbinfo); if (error) goto out; inp = sotoinpcb(so); tp = tcp_newtcpcb(inp); if (tp == NULL) { error = ENOBUFS; in_pcbfree(inp); goto out; } tp->t_state = TCPS_CLOSED; /* Can we inherit anything from the listener? */ if ((so->so_listen != NULL) && (so->so_listen->so_pcb != NULL) && (tp->t_fb->tfb_inherit != NULL)) { (*tp->t_fb->tfb_inherit)(tp, sotoinpcb(so->so_listen)); } tcp_bblog_pru(tp, PRU_ATTACH, error); INP_WUNLOCK(inp); TCPSTATES_INC(TCPS_CLOSED); out: TCP_PROBE2(debug__user, tp, PRU_ATTACH); return (error); } /* * tcp_usr_detach is called when the socket layer loses its final reference * to the socket, be it a file descriptor reference, a reference from TCP, * etc. At this point, there is only one case in which we will keep around * inpcb state: time wait. */ static void tcp_usr_detach(struct socket *so) { struct inpcb *inp; struct tcpcb *tp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); INP_WLOCK(inp); KASSERT(so->so_pcb == inp && inp->inp_socket == so, ("%s: socket %p inp %p mismatch", __func__, so, inp)); tp = intotcpcb(inp); KASSERT(inp->inp_flags & INP_DROPPED || tp->t_state < TCPS_SYN_SENT, ("%s: inp %p not dropped or embryonic", __func__, inp)); tcp_discardcb(tp); in_pcbfree(inp); } #ifdef INET /* * Give the socket an address. */ static int tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp; struct sockaddr_in *sinp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_bind: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (EINVAL); } tp = intotcpcb(inp); sinp = (struct sockaddr_in *)nam; if (nam->sa_family != AF_INET) { /* * Preserve compatibility with old programs. */ if (nam->sa_family != AF_UNSPEC || nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || sinp->sin_addr.s_addr != INADDR_ANY) { error = EAFNOSUPPORT; goto out; } nam->sa_family = AF_INET; } if (nam->sa_len != sizeof(*sinp)) { error = EINVAL; goto out; } /* * Must check for multicast addresses and disallow binding * to them. */ if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } INP_HASH_WLOCK(&V_tcbinfo); error = in_pcbbind(inp, sinp, td->td_ucred); INP_HASH_WUNLOCK(&V_tcbinfo); out: tcp_bblog_pru(tp, PRU_BIND, error); TCP_PROBE2(debug__user, tp, PRU_BIND); INP_WUNLOCK(inp); return (error); } #endif /* INET */ #ifdef INET6 static int tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp; struct sockaddr_in6 *sin6; u_char vflagsav; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_bind: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (EINVAL); } tp = intotcpcb(inp); vflagsav = inp->inp_vflag; sin6 = (struct sockaddr_in6 *)nam; if (nam->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto out; } if (nam->sa_len != sizeof(*sin6)) { error = EINVAL; goto out; } /* * Must check for multicast addresses and disallow binding * to them. */ if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { error = EAFNOSUPPORT; goto out; } INP_HASH_WLOCK(&V_tcbinfo); inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) inp->inp_vflag |= INP_IPV4; else if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6); if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) { error = EAFNOSUPPORT; INP_HASH_WUNLOCK(&V_tcbinfo); goto out; } inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, &sin, td->td_ucred); INP_HASH_WUNLOCK(&V_tcbinfo); goto out; } } #endif error = in6_pcbbind(inp, sin6, td->td_ucred); INP_HASH_WUNLOCK(&V_tcbinfo); out: if (error != 0) inp->inp_vflag = vflagsav; tcp_bblog_pru(tp, PRU_BIND, error); TCP_PROBE2(debug__user, tp, PRU_BIND); INP_WUNLOCK(inp); return (error); } #endif /* INET6 */ #ifdef INET /* * Prepare to accept connections. */ static int tcp_usr_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_listen: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (EINVAL); } tp = intotcpcb(inp); SOCK_LOCK(so); error = solisten_proto_check(so); if (error != 0) { SOCK_UNLOCK(so); goto out; } if (inp->inp_lport == 0) { INP_HASH_WLOCK(&V_tcbinfo); error = in_pcbbind(inp, NULL, td->td_ucred); INP_HASH_WUNLOCK(&V_tcbinfo); } if (error == 0) { tcp_state_change(tp, TCPS_LISTEN); solisten_proto(so, backlog); #ifdef TCP_OFFLOAD if ((so->so_options & SO_NO_OFFLOAD) == 0) tcp_offload_listen_start(tp); #endif } else { solisten_proto_abort(so); } SOCK_UNLOCK(so); if (IS_FASTOPEN(tp->t_flags)) tp->t_tfo_pending = tcp_fastopen_alloc_counter(); out: tcp_bblog_pru(tp, PRU_LISTEN, error); TCP_PROBE2(debug__user, tp, PRU_LISTEN); INP_WUNLOCK(inp); return (error); } #endif /* INET */ #ifdef INET6 static int tcp6_usr_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp; u_char vflagsav; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_listen: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (EINVAL); } tp = intotcpcb(inp); vflagsav = inp->inp_vflag; SOCK_LOCK(so); error = solisten_proto_check(so); if (error != 0) { SOCK_UNLOCK(so); goto out; } INP_HASH_WLOCK(&V_tcbinfo); if (inp->inp_lport == 0) { inp->inp_vflag &= ~INP_IPV4; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) inp->inp_vflag |= INP_IPV4; error = in6_pcbbind(inp, NULL, td->td_ucred); } INP_HASH_WUNLOCK(&V_tcbinfo); if (error == 0) { tcp_state_change(tp, TCPS_LISTEN); solisten_proto(so, backlog); #ifdef TCP_OFFLOAD if ((so->so_options & SO_NO_OFFLOAD) == 0) tcp_offload_listen_start(tp); #endif } else { solisten_proto_abort(so); } SOCK_UNLOCK(so); if (IS_FASTOPEN(tp->t_flags)) tp->t_tfo_pending = tcp_fastopen_alloc_counter(); if (error != 0) inp->inp_vflag = vflagsav; out: tcp_bblog_pru(tp, PRU_LISTEN, error); TCP_PROBE2(debug__user, tp, PRU_LISTEN); INP_WUNLOCK(inp); return (error); } #endif /* INET6 */ #ifdef INET /* * Initiate connection to peer. * Create a template for use in transmissions on this connection. * Enter SYN_SENT state, and mark socket as connecting. * Start keep-alive timer, and seed output sequence space. * Send initial segment on connection. */ static int tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct epoch_tracker et; int error = 0; struct inpcb *inp; struct tcpcb *tp; struct sockaddr_in *sinp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_connect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNREFUSED); } tp = intotcpcb(inp); sinp = (struct sockaddr_in *)nam; if (nam->sa_family != AF_INET) { error = EAFNOSUPPORT; goto out; } if (nam->sa_len != sizeof (*sinp)) { error = EINVAL; goto out; } /* * Must disallow TCP ``connections'' to multicast addresses. */ if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if (ntohl(sinp->sin_addr.s_addr) == INADDR_BROADCAST) { error = EACCES; goto out; } if ((error = prison_remote_ip4(td->td_ucred, &sinp->sin_addr)) != 0) goto out; if (SOLISTENING(so)) { error = EOPNOTSUPP; goto out; } NET_EPOCH_ENTER(et); if ((error = tcp_connect(tp, sinp, td)) != 0) goto out_in_epoch; #ifdef TCP_OFFLOAD if (registered_toedevs > 0 && (so->so_options & SO_NO_OFFLOAD) == 0 && (error = tcp_offload_connect(so, nam)) == 0) goto out_in_epoch; #endif tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); error = tcp_output(tp); KASSERT(error >= 0, ("TCP stack %s requested tcp_drop(%p) at connect()" ", error code %d", tp->t_fb->tfb_tcp_block_name, tp, -error)); out_in_epoch: NET_EPOCH_EXIT(et); out: tcp_bblog_pru(tp, PRU_CONNECT, error); TCP_PROBE2(debug__user, tp, PRU_CONNECT); INP_WUNLOCK(inp); return (error); } #endif /* INET */ #ifdef INET6 static int tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct epoch_tracker et; int error = 0; struct inpcb *inp; struct tcpcb *tp; struct sockaddr_in6 *sin6; u_int8_t incflagsav; u_char vflagsav; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_connect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNREFUSED); } tp = intotcpcb(inp); vflagsav = inp->inp_vflag; incflagsav = inp->inp_inc.inc_flags; sin6 = (struct sockaddr_in6 *)nam; if (nam->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto out; } if (nam->sa_len != sizeof (*sin6)) { error = EINVAL; goto out; } /* * Must disallow TCP ``connections'' to multicast addresses. */ if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { error = EAFNOSUPPORT; goto out; } if (SOLISTENING(so)) { error = EINVAL; goto out; } #ifdef INET /* * XXXRW: Some confusion: V4/V6 flags relate to binding, and * therefore probably require the hash lock, which isn't held here. * Is this a significant problem? */ if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { struct sockaddr_in sin; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV4) == 0) { error = EAFNOSUPPORT; goto out; } in6_sin6_2_sin(&sin, sin6); if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if (ntohl(sin.sin_addr.s_addr) == INADDR_BROADCAST) { error = EACCES; goto out; } if ((error = prison_remote_ip4(td->td_ucred, &sin.sin_addr)) != 0) goto out; inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; NET_EPOCH_ENTER(et); if ((error = tcp_connect(tp, &sin, td)) != 0) goto out_in_epoch; #ifdef TCP_OFFLOAD if (registered_toedevs > 0 && (so->so_options & SO_NO_OFFLOAD) == 0 && (error = tcp_offload_connect(so, nam)) == 0) goto out_in_epoch; #endif error = tcp_output(tp); goto out_in_epoch; } else { if ((inp->inp_vflag & INP_IPV6) == 0) { error = EAFNOSUPPORT; goto out; } } #endif if ((error = prison_remote_ip6(td->td_ucred, &sin6->sin6_addr)) != 0) goto out; inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; inp->inp_inc.inc_flags |= INC_ISIPV6; NET_EPOCH_ENTER(et); if ((error = tcp6_connect(tp, sin6, td)) != 0) goto out_in_epoch; #ifdef TCP_OFFLOAD if (registered_toedevs > 0 && (so->so_options & SO_NO_OFFLOAD) == 0 && (error = tcp_offload_connect(so, nam)) == 0) goto out_in_epoch; #endif tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); error = tcp_output(tp); out_in_epoch: NET_EPOCH_EXIT(et); out: KASSERT(error >= 0, ("TCP stack %s requested tcp_drop(%p) at connect()" ", error code %d", tp->t_fb->tfb_tcp_block_name, tp, -error)); /* * If the implicit bind in the connect call fails, restore * the flags we modified. */ if (error != 0 && inp->inp_lport == 0) { inp->inp_vflag = vflagsav; inp->inp_inc.inc_flags = incflagsav; } tcp_bblog_pru(tp, PRU_CONNECT, error); TCP_PROBE2(debug__user, tp, PRU_CONNECT); INP_WUNLOCK(inp); return (error); } #endif /* INET6 */ /* * Initiate disconnect from peer. * If connection never passed embryonic stage, just drop; * else if don't need to let data drain, then can just drop anyways, * else have to begin TCP shutdown process: mark socket disconnecting, * drain unread data, state switch to reflect user close, and * send segment (e.g. FIN) to peer. Socket will be really disconnected * when peer sends FIN and acks ours. * * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. */ static int tcp_usr_disconnect(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; struct epoch_tracker et; int error = 0; NET_EPOCH_ENTER(et); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_disconnect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); return (ECONNRESET); } tp = intotcpcb(inp); if (tp->t_state == TCPS_TIME_WAIT) goto out; tcp_disconnect(tp); out: tcp_bblog_pru(tp, PRU_DISCONNECT, error); TCP_PROBE2(debug__user, tp, PRU_DISCONNECT); INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); return (error); } #ifdef INET /* * Accept a connection. Essentially all the work is done at higher levels; * just return the address of the peer, storing through addr. */ static int tcp_usr_accept(struct socket *so, struct sockaddr *sa) { struct inpcb *inp; struct tcpcb *tp; int error = 0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_accept: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNABORTED); } tp = intotcpcb(inp); if (so->so_state & SS_ISDISCONNECTED) error = ECONNABORTED; else *(struct sockaddr_in *)sa = (struct sockaddr_in ){ .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_port = inp->inp_fport, .sin_addr = inp->inp_faddr, }; tcp_bblog_pru(tp, PRU_ACCEPT, error); TCP_PROBE2(debug__user, tp, PRU_ACCEPT); INP_WUNLOCK(inp); return (error); } #endif /* INET */ #ifdef INET6 static int tcp6_usr_accept(struct socket *so, struct sockaddr *sa) { struct inpcb *inp; struct tcpcb *tp; int error = 0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_accept: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNABORTED); } tp = intotcpcb(inp); if (so->so_state & SS_ISDISCONNECTED) { error = ECONNABORTED; } else { if (inp->inp_vflag & INP_IPV4) { struct sockaddr_in sin = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_port = inp->inp_fport, .sin_addr = inp->inp_faddr, }; in6_sin_2_v4mapsin6(&sin, (struct sockaddr_in6 *)sa); } else { *(struct sockaddr_in6 *)sa = (struct sockaddr_in6 ){ .sin6_family = AF_INET6, .sin6_len = sizeof(struct sockaddr_in6), .sin6_port = inp->inp_fport, .sin6_addr = inp->in6p_faddr, }; /* XXX: should catch errors */ (void)sa6_recoverscope((struct sockaddr_in6 *)sa); } } tcp_bblog_pru(tp, PRU_ACCEPT, error); TCP_PROBE2(debug__user, tp, PRU_ACCEPT); INP_WUNLOCK(inp); return (error); } #endif /* INET6 */ /* * Mark the connection as being incapable of further output. */ static int tcp_usr_shutdown(struct socket *so, enum shutdown_how how) { struct epoch_tracker et; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); int error = 0; SOCK_LOCK(so); if (SOLISTENING(so)) { if (how != SHUT_WR) { so->so_error = ECONNABORTED; solisten_wakeup(so); /* unlocks so */ } else SOCK_UNLOCK(so); return (ENOTCONN); } else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { SOCK_UNLOCK(so); return (ENOTCONN); } SOCK_UNLOCK(so); switch (how) { case SHUT_RD: sorflush(so); break; case SHUT_RDWR: sorflush(so); /* FALLTHROUGH */ case SHUT_WR: /* * XXXGL: mimicing old soshutdown() here. But shouldn't we * return ECONNRESEST for SHUT_RD as well? */ INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNRESET); } socantsendmore(so); NET_EPOCH_ENTER(et); tcp_usrclosed(tp); error = tcp_output_nodrop(tp); tcp_bblog_pru(tp, PRU_SHUTDOWN, error); TCP_PROBE2(debug__user, tp, PRU_SHUTDOWN); error = tcp_unlock_or_drop(tp, error); NET_EPOCH_EXIT(et); } wakeup(&so->so_timeo); return (error); } /* * After a receive, possibly send window update to peer. */ static int tcp_usr_rcvd(struct socket *so, int flags) { struct epoch_tracker et; struct inpcb *inp; struct tcpcb *tp; int outrv = 0, error = 0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_rcvd: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNRESET); } tp = intotcpcb(inp); NET_EPOCH_ENTER(et); /* * For passively-created TFO connections, don't attempt a window * update while still in SYN_RECEIVED as this may trigger an early * SYN|ACK. It is preferable to have the SYN|ACK be sent along with * application response data, or failing that, when the DELACK timer * expires. */ if (IS_FASTOPEN(tp->t_flags) && (tp->t_state == TCPS_SYN_RECEIVED)) goto out; #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) tcp_offload_rcvd(tp); else #endif outrv = tcp_output_nodrop(tp); out: tcp_bblog_pru(tp, PRU_RCVD, error); TCP_PROBE2(debug__user, tp, PRU_RCVD); (void) tcp_unlock_or_drop(tp, outrv); NET_EPOCH_EXIT(et); return (error); } /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. Unlike the other * pru_*() routines, the mbuf chains are our responsibility. We * must either enqueue them or free them. The other pru_* routines * generally are caller-frees. */ static int tcp_usr_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct epoch_tracker et; int error = 0; struct inpcb *inp; struct tcpcb *tp; #ifdef INET #ifdef INET6 struct sockaddr_in sin; #endif struct sockaddr_in *sinp; #endif #ifdef INET6 struct sockaddr_in6 *sin6; int isipv6; #endif u_int8_t incflagsav; u_char vflagsav; bool restoreflags; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_send: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { if (m != NULL && (flags & PRUS_NOTREADY) == 0) m_freem(m); INP_WUNLOCK(inp); return (ECONNRESET); } tp = intotcpcb(inp); vflagsav = inp->inp_vflag; incflagsav = inp->inp_inc.inc_flags; restoreflags = false; NET_EPOCH_ENTER(et); if (control != NULL) { /* TCP doesn't do control messages (rights, creds, etc) */ if (control->m_len > 0) { m_freem(control); error = EINVAL; goto out; } m_freem(control); /* empty control, just free it */ } if ((flags & PRUS_OOB) != 0 && (error = tcp_pru_options_support(tp, PRUS_OOB)) != 0) goto out; if (nam != NULL && tp->t_state < TCPS_SYN_SENT) { if (tp->t_state == TCPS_LISTEN) { error = EINVAL; goto out; } switch (nam->sa_family) { #ifdef INET case AF_INET: sinp = (struct sockaddr_in *)nam; if (sinp->sin_len != sizeof(struct sockaddr_in)) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV6) != 0) { error = EAFNOSUPPORT; goto out; } if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if (ntohl(sinp->sin_addr.s_addr) == INADDR_BROADCAST) { error = EACCES; goto out; } if ((error = prison_remote_ip4(td->td_ucred, &sinp->sin_addr))) goto out; #ifdef INET6 isipv6 = 0; #endif break; #endif /* INET */ #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)nam; if (sin6->sin6_len != sizeof(*sin6)) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV6PROTO) == 0) { error = EAFNOSUPPORT; goto out; } if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { error = EAFNOSUPPORT; goto out; } if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV4) == 0) { error = EAFNOSUPPORT; goto out; } restoreflags = true; inp->inp_vflag &= ~INP_IPV6; sinp = &sin; in6_sin6_2_sin(sinp, sin6); if (IN_MULTICAST( ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if ((error = prison_remote_ip4(td->td_ucred, &sinp->sin_addr))) goto out; isipv6 = 0; #else /* !INET */ error = EAFNOSUPPORT; goto out; #endif /* INET */ } else { if ((inp->inp_vflag & INP_IPV6) == 0) { error = EAFNOSUPPORT; goto out; } restoreflags = true; inp->inp_vflag &= ~INP_IPV4; inp->inp_inc.inc_flags |= INC_ISIPV6; if ((error = prison_remote_ip6(td->td_ucred, &sin6->sin6_addr))) goto out; isipv6 = 1; } break; #endif /* INET6 */ default: error = EAFNOSUPPORT; goto out; } } if (!(flags & PRUS_OOB)) { if (tp->t_acktime == 0) tp->t_acktime = ticks; sbappendstream(&so->so_snd, m, flags); m = NULL; if (nam && tp->t_state < TCPS_SYN_SENT) { KASSERT(tp->t_state == TCPS_CLOSED, ("%s: tp %p is listening", __func__, tp)); /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg using peer's cached MSS. */ #ifdef INET6 if (isipv6) error = tcp6_connect(tp, sin6, td); #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET error = tcp_connect(tp, sinp, td); #endif /* * The bind operation in tcp_connect succeeded. We * no longer want to restore the flags if later * operations fail. */ if (error == 0 || inp->inp_lport != 0) restoreflags = false; if (error) { /* m is freed if PRUS_NOTREADY is unset. */ sbflush(&so->so_snd); goto out; } if (IS_FASTOPEN(tp->t_flags)) tcp_fastopen_connect(tp); else { tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1); } } if (flags & PRUS_EOF) { /* * Close the send side of the connection after * the data is sent. */ socantsendmore(so); tcp_usrclosed(tp); } if (TCPS_HAVEESTABLISHED(tp->t_state) && ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && (tp->t_fbyte_out == 0) && (so->so_snd.sb_ccc > 0)) { tp->t_fbyte_out = ticks; if (tp->t_fbyte_out == 0) tp->t_fbyte_out = 1; if (tp->t_fbyte_out && tp->t_fbyte_in) tp->t_flags2 |= TF2_FBYTES_COMPLETE; } if (!(inp->inp_flags & INP_DROPPED) && !(flags & PRUS_NOTREADY)) { if (flags & PRUS_MORETOCOME) tp->t_flags |= TF_MORETOCOME; error = tcp_output_nodrop(tp); if (flags & PRUS_MORETOCOME) tp->t_flags &= ~TF_MORETOCOME; } } else { /* * XXXRW: PRUS_EOF not implemented with PRUS_OOB? */ SOCKBUF_LOCK(&so->so_snd); if (sbspace(&so->so_snd) < -512) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOBUFS; goto out; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ if (tp->t_acktime == 0) tp->t_acktime = ticks; sbappendstream_locked(&so->so_snd, m, flags); SOCKBUF_UNLOCK(&so->so_snd); m = NULL; if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg using peer's cached MSS. */ /* * Not going to contemplate SYN|URG */ if (IS_FASTOPEN(tp->t_flags)) tp->t_flags &= ~TF_FASTOPEN; #ifdef INET6 if (isipv6) error = tcp6_connect(tp, sin6, td); #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET error = tcp_connect(tp, sinp, td); #endif /* * The bind operation in tcp_connect succeeded. We * no longer want to restore the flags if later * operations fail. */ if (error == 0 || inp->inp_lport != 0) restoreflags = false; if (error != 0) { /* m is freed if PRUS_NOTREADY is unset. */ sbflush(&so->so_snd); goto out; } tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1); } tp->snd_up = tp->snd_una + sbavail(&so->so_snd); if ((flags & PRUS_NOTREADY) == 0) { tp->t_flags |= TF_FORCEDATA; error = tcp_output_nodrop(tp); tp->t_flags &= ~TF_FORCEDATA; } } TCP_LOG_EVENT(tp, NULL, &inp->inp_socket->so_rcv, &inp->inp_socket->so_snd, TCP_LOG_USERSEND, error, 0, NULL, false); out: /* * In case of PRUS_NOTREADY, the caller or tcp_usr_ready() is * responsible for freeing memory. */ if (m != NULL && (flags & PRUS_NOTREADY) == 0) m_freem(m); /* * If the request was unsuccessful and we changed flags, * restore the original flags. */ if (error != 0 && restoreflags) { inp->inp_vflag = vflagsav; inp->inp_inc.inc_flags = incflagsav; } tcp_bblog_pru(tp, (flags & PRUS_OOB) ? PRU_SENDOOB : ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND), error); TCP_PROBE2(debug__user, tp, (flags & PRUS_OOB) ? PRU_SENDOOB : ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND)); error = tcp_unlock_or_drop(tp, error); NET_EPOCH_EXIT(et); return (error); } static int tcp_usr_ready(struct socket *so, struct mbuf *m, int count) { struct epoch_tracker et; struct inpcb *inp; struct tcpcb *tp; int error; inp = sotoinpcb(so); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); mb_free_notready(m, count); return (ECONNRESET); } tp = intotcpcb(inp); SOCKBUF_LOCK(&so->so_snd); error = sbready(&so->so_snd, m, count); SOCKBUF_UNLOCK(&so->so_snd); if (error) { INP_WUNLOCK(inp); return (error); } NET_EPOCH_ENTER(et); error = tcp_output_unlock(tp); NET_EPOCH_EXIT(et); return (error); } /* * Abort the TCP. Drop the connection abruptly. */ static void tcp_usr_abort(struct socket *so) { struct inpcb *inp; struct tcpcb *tp; struct epoch_tracker et; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_abort: inp == NULL")); NET_EPOCH_ENTER(et); INP_WLOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_abort: inp_socket == NULL")); /* * If we still have full TCP state, and we're not dropped, drop. */ if (!(inp->inp_flags & INP_DROPPED)) { tp = intotcpcb(inp); tp = tcp_drop(tp, ECONNABORTED); if (tp == NULL) goto dropped; tcp_bblog_pru(tp, PRU_ABORT, 0); TCP_PROBE2(debug__user, tp, PRU_ABORT); } if (!(inp->inp_flags & INP_DROPPED)) { soref(so); inp->inp_flags |= INP_SOCKREF; } INP_WUNLOCK(inp); dropped: NET_EPOCH_EXIT(et); } /* * TCP socket is closed. Start friendly disconnect. */ static void tcp_usr_close(struct socket *so) { struct inpcb *inp; struct tcpcb *tp; struct epoch_tracker et; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_close: inp == NULL")); NET_EPOCH_ENTER(et); INP_WLOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_close: inp_socket == NULL")); /* * If we are still connected and we're not dropped, initiate * a disconnect. */ if (!(inp->inp_flags & INP_DROPPED)) { tp = intotcpcb(inp); if (tp->t_state != TCPS_TIME_WAIT) { tp->t_flags |= TF_CLOSED; tcp_disconnect(tp); tcp_bblog_pru(tp, PRU_CLOSE, 0); TCP_PROBE2(debug__user, tp, PRU_CLOSE); } } if (!(inp->inp_flags & INP_DROPPED)) { soref(so); inp->inp_flags |= INP_SOCKREF; } INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); } static int tcp_pru_options_support(struct tcpcb *tp, int flags) { /* * If the specific TCP stack has a pru_options * specified then it does not always support * all the PRU_XX options and we must ask it. * If the function is not specified then all * of the PRU_XX options are supported. */ int ret = 0; if (tp->t_fb->tfb_pru_options) { ret = (*tp->t_fb->tfb_pru_options)(tp, flags); } return (ret); } /* * Receive out-of-band data. */ static int tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags) { int error = 0; struct inpcb *inp; struct tcpcb *tp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_rcvoob: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNRESET); } tp = intotcpcb(inp); error = tcp_pru_options_support(tp, PRUS_OOB); if (error) { goto out; } if ((so->so_oobmark == 0 && (so->so_rcv.sb_state & SBS_RCVATMARK) == 0) || so->so_options & SO_OOBINLINE || tp->t_oobflags & TCPOOB_HADDATA) { error = EINVAL; goto out; } if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { error = EWOULDBLOCK; goto out; } m->m_len = 1; *mtod(m, caddr_t) = tp->t_iobc; if ((flags & MSG_PEEK) == 0) tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); out: tcp_bblog_pru(tp, PRU_RCVOOB, error); TCP_PROBE2(debug__user, tp, PRU_RCVOOB); INP_WUNLOCK(inp); return (error); } #ifdef INET struct protosw tcp_protosw = { .pr_type = SOCK_STREAM, .pr_protocol = IPPROTO_TCP, .pr_flags = PR_CONNREQUIRED | PR_IMPLOPCL | PR_WANTRCVD | PR_CAPATTACH, .pr_ctloutput = tcp_ctloutput, .pr_abort = tcp_usr_abort, .pr_accept = tcp_usr_accept, .pr_attach = tcp_usr_attach, .pr_bind = tcp_usr_bind, .pr_connect = tcp_usr_connect, .pr_control = in_control, .pr_detach = tcp_usr_detach, .pr_disconnect = tcp_usr_disconnect, .pr_listen = tcp_usr_listen, .pr_peeraddr = in_getpeeraddr, .pr_rcvd = tcp_usr_rcvd, .pr_rcvoob = tcp_usr_rcvoob, .pr_send = tcp_usr_send, .pr_ready = tcp_usr_ready, .pr_shutdown = tcp_usr_shutdown, .pr_sockaddr = in_getsockaddr, .pr_sosetlabel = in_pcbsosetlabel, .pr_close = tcp_usr_close, }; #endif /* INET */ #ifdef INET6 struct protosw tcp6_protosw = { .pr_type = SOCK_STREAM, .pr_protocol = IPPROTO_TCP, .pr_flags = PR_CONNREQUIRED | PR_IMPLOPCL |PR_WANTRCVD | PR_CAPATTACH, .pr_ctloutput = tcp_ctloutput, .pr_abort = tcp_usr_abort, .pr_accept = tcp6_usr_accept, .pr_attach = tcp_usr_attach, .pr_bind = tcp6_usr_bind, .pr_connect = tcp6_usr_connect, .pr_control = in6_control, .pr_detach = tcp_usr_detach, .pr_disconnect = tcp_usr_disconnect, .pr_listen = tcp6_usr_listen, .pr_peeraddr = in6_mapped_peeraddr, .pr_rcvd = tcp_usr_rcvd, .pr_rcvoob = tcp_usr_rcvoob, .pr_send = tcp_usr_send, .pr_ready = tcp_usr_ready, .pr_shutdown = tcp_usr_shutdown, .pr_sockaddr = in6_mapped_sockaddr, .pr_sosetlabel = in_pcbsosetlabel, .pr_close = tcp_usr_close, }; #endif /* INET6 */ #ifdef INET /* * Common subroutine to open a TCP connection to remote host specified * by struct sockaddr_in. Call in_pcbconnect() to choose local host address * and assign a local port number and install the inpcb into the hash. * Initialize connection parameters and enter SYN-SENT state. */ static int tcp_connect(struct tcpcb *tp, struct sockaddr_in *sin, struct thread *td) { struct inpcb *inp = tptoinpcb(tp); struct socket *so = tptosocket(tp); int error; NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); if (__predict_false((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING | SS_ISDISCONNECTED)) != 0)) return (EISCONN); INP_HASH_WLOCK(&V_tcbinfo); error = in_pcbconnect(inp, sin, td->td_ucred, true); INP_HASH_WUNLOCK(&V_tcbinfo); if (error != 0) return (error); /* * Compute window scaling to request: * Scale to fit into sweet spot. See tcp_syncache.c. * XXX: This should move to tcp_output(). */ while (tp->request_r_scale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << tp->request_r_scale) < sb_max) tp->request_r_scale++; soisconnecting(so); TCPSTAT_INC(tcps_connattempt); tcp_state_change(tp, TCPS_SYN_SENT); tp->iss = tcp_new_isn(&inp->inp_inc); if (tp->t_flags & TF_REQ_TSTMP) tp->ts_offset = tcp_new_ts_offset(&inp->inp_inc); tcp_sendseqinit(tp); return (0); } #endif /* INET */ #ifdef INET6 static int tcp6_connect(struct tcpcb *tp, struct sockaddr_in6 *sin6, struct thread *td) { struct inpcb *inp = tptoinpcb(tp); struct socket *so = tptosocket(tp); int error; NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); if (__predict_false((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED)) != 0)) return (EISCONN); INP_HASH_WLOCK(&V_tcbinfo); error = in6_pcbconnect(inp, sin6, td->td_ucred, true); INP_HASH_WUNLOCK(&V_tcbinfo); if (error != 0) return (error); /* Compute window scaling to request. */ while (tp->request_r_scale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << tp->request_r_scale) < sb_max) tp->request_r_scale++; soisconnecting(so); TCPSTAT_INC(tcps_connattempt); tcp_state_change(tp, TCPS_SYN_SENT); tp->iss = tcp_new_isn(&inp->inp_inc); if (tp->t_flags & TF_REQ_TSTMP) tp->ts_offset = tcp_new_ts_offset(&inp->inp_inc); tcp_sendseqinit(tp); return (0); } #endif /* INET6 */ /* * Export TCP internal state information via a struct tcp_info, based on the * Linux 2.6 API. Not ABI compatible as our constants are mapped differently * (TCP state machine, etc). We export all information using FreeBSD-native * constants -- for example, the numeric values for tcpi_state will differ * from Linux. */ void tcp_fill_info(const struct tcpcb *tp, struct tcp_info *ti) { INP_LOCK_ASSERT(tptoinpcb(tp)); bzero(ti, sizeof(*ti)); ti->tcpi_state = tp->t_state; if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tp->t_flags & TF_SACK_PERMIT) ti->tcpi_options |= TCPI_OPT_SACK; if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { ti->tcpi_options |= TCPI_OPT_WSCALE; ti->tcpi_snd_wscale = tp->snd_scale; ti->tcpi_rcv_wscale = tp->rcv_scale; } switch (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT)) { case TF2_ECN_PERMIT: ti->tcpi_options |= TCPI_OPT_ECN; break; case TF2_ACE_PERMIT: /* FALLTHROUGH */ case TF2_ECN_PERMIT | TF2_ACE_PERMIT: ti->tcpi_options |= TCPI_OPT_ACE; break; default: break; } if (IS_FASTOPEN(tp->t_flags)) ti->tcpi_options |= TCPI_OPT_TFO; ti->tcpi_rto = tp->t_rxtcur * tick; ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick; ti->tcpi_rtt = ((u_int64_t)tp->t_srtt * tick) >> TCP_RTT_SHIFT; ti->tcpi_rttvar = ((u_int64_t)tp->t_rttvar * tick) >> TCP_RTTVAR_SHIFT; ti->tcpi_snd_ssthresh = tp->snd_ssthresh; ti->tcpi_snd_cwnd = tp->snd_cwnd; /* * FreeBSD-specific extension fields for tcp_info. */ ti->tcpi_rcv_space = tp->rcv_wnd; ti->tcpi_rcv_nxt = tp->rcv_nxt; ti->tcpi_snd_wnd = tp->snd_wnd; ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */ ti->tcpi_snd_nxt = tp->snd_nxt; ti->tcpi_snd_mss = tp->t_maxseg; ti->tcpi_rcv_mss = tp->t_maxseg; ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack; ti->tcpi_rcv_ooopack = tp->t_rcvoopack; ti->tcpi_snd_zerowin = tp->t_sndzerowin; ti->tcpi_snd_una = tp->snd_una; ti->tcpi_snd_max = tp->snd_max; ti->tcpi_rcv_numsacks = tp->rcv_numsacks; ti->tcpi_rcv_adv = tp->rcv_adv; ti->tcpi_dupacks = tp->t_dupacks; ti->tcpi_rttmin = tp->t_rttlow; #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) { ti->tcpi_options |= TCPI_OPT_TOE; tcp_offload_tcp_info(tp, ti); } #endif /* * AccECN related counters. */ if ((tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT)) == (TF2_ECN_PERMIT | TF2_ACE_PERMIT)) /* * Internal counter starts at 5 for AccECN * but 0 for RFC3168 ECN. */ ti->tcpi_delivered_ce = tp->t_scep - 5; else ti->tcpi_delivered_ce = tp->t_scep; ti->tcpi_received_ce = tp->t_rcep; } /* * tcp_ctloutput() must drop the inpcb lock before performing copyin on * socket option arguments. When it re-acquires the lock after the copy, it * has to revalidate that the connection is still valid for the socket * option. */ #define INP_WLOCK_RECHECK_CLEANUP(inp, cleanup) do { \ INP_WLOCK(inp); \ if (inp->inp_flags & INP_DROPPED) { \ INP_WUNLOCK(inp); \ cleanup; \ return (ECONNRESET); \ } \ tp = intotcpcb(inp); \ } while(0) #define INP_WLOCK_RECHECK(inp) INP_WLOCK_RECHECK_CLEANUP((inp), /* noop */) int tcp_ctloutput_set(struct inpcb *inp, struct sockopt *sopt) { struct socket *so = inp->inp_socket; struct tcpcb *tp = intotcpcb(inp); int error = 0; MPASS(sopt->sopt_dir == SOPT_SET); INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("inp_flags == %x", inp->inp_flags)); KASSERT(so != NULL, ("inp_socket == NULL")); if (sopt->sopt_level != IPPROTO_TCP) { INP_WUNLOCK(inp); #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) error = ip6_ctloutput(so, sopt); #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET error = ip_ctloutput(so, sopt); #endif /* * When an IP-level socket option affects TCP, pass control * down to stack tfb_tcp_ctloutput, otherwise return what * IP level returned. */ switch (sopt->sopt_level) { #ifdef INET6 case IPPROTO_IPV6: if ((inp->inp_vflag & INP_IPV6PROTO) == 0) return (error); switch (sopt->sopt_name) { case IPV6_TCLASS: /* Notify tcp stacks that care (e.g. RACK). */ break; case IPV6_USE_MIN_MTU: /* Update t_maxseg accordingly. */ break; default: return (error); } break; #endif #ifdef INET case IPPROTO_IP: switch (sopt->sopt_name) { case IP_TOS: inp->inp_ip_tos &= ~IPTOS_ECN_MASK; break; case IP_TTL: /* Notify tcp stacks that care (e.g. RACK). */ break; default: return (error); } break; #endif default: return (error); } INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNRESET); } } else if (sopt->sopt_name == TCP_FUNCTION_BLK) { /* * Protect the TCP option TCP_FUNCTION_BLK so * that a sub-function can *never* overwrite this. */ struct tcp_function_set fsn; struct tcp_function_block *blk; void *ptr = NULL; INP_WUNLOCK(inp); error = sooptcopyin(sopt, &fsn, sizeof fsn, sizeof fsn); if (error) return (error); INP_WLOCK(inp); tp = intotcpcb(inp); blk = find_and_ref_tcp_functions(&fsn); if (blk == NULL) { INP_WUNLOCK(inp); return (ENOENT); } if (tp->t_fb == blk) { /* You already have this */ refcount_release(&blk->tfb_refcnt); INP_WUNLOCK(inp); return (0); } if (tp->t_state != TCPS_CLOSED) { /* * The user has advanced the state * past the initial point, we may not * be able to switch. */ if (blk->tfb_tcp_handoff_ok != NULL) { /* * Does the stack provide a * query mechanism, if so it may * still be possible? */ error = (*blk->tfb_tcp_handoff_ok)(tp); } else error = EINVAL; if (error) { refcount_release(&blk->tfb_refcnt); INP_WUNLOCK(inp); return(error); } } if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) { refcount_release(&blk->tfb_refcnt); INP_WUNLOCK(inp); return (ENOENT); } /* * Ensure the new stack takes ownership with a * clean slate on peak rate threshold. */ if (tp->t_fb->tfb_tcp_timer_stop_all != NULL) tp->t_fb->tfb_tcp_timer_stop_all(tp); if (blk->tfb_tcp_fb_init) { error = (*blk->tfb_tcp_fb_init)(tp, &ptr); if (error) { /* * Release the ref count the lookup * acquired. */ refcount_release(&blk->tfb_refcnt); /* * Now there is a chance that the * init() function mucked with some * things before it failed, such as * hpts or inp_flags2 or timer granularity. * It should not of, but lets give the old * stack a chance to reset to a known good state. */ if (tp->t_fb->tfb_switch_failed) { (*tp->t_fb->tfb_switch_failed)(tp); } goto err_out; } } if (tp->t_fb->tfb_tcp_fb_fini) { struct epoch_tracker et; /* * Tell the stack to cleanup with 0 i.e. * the tcb is not going away. */ NET_EPOCH_ENTER(et); (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); NET_EPOCH_EXIT(et); } /* * Release the old refcnt, the * lookup acquired a ref on the * new one already. */ refcount_release(&tp->t_fb->tfb_refcnt); /* * Set in the new stack. */ tp->t_fb = blk; tp->t_fb_ptr = ptr; #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) { tcp_offload_ctloutput(tp, sopt->sopt_dir, sopt->sopt_name); } #endif err_out: INP_WUNLOCK(inp); return (error); } /* Pass in the INP locked, callee must unlock it. */ return (tp->t_fb->tfb_tcp_ctloutput(tp, sopt)); } static int tcp_ctloutput_get(struct inpcb *inp, struct sockopt *sopt) { struct socket *so = inp->inp_socket; struct tcpcb *tp = intotcpcb(inp); int error = 0; MPASS(sopt->sopt_dir == SOPT_GET); INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("inp_flags == %x", inp->inp_flags)); KASSERT(so != NULL, ("inp_socket == NULL")); if (sopt->sopt_level != IPPROTO_TCP) { INP_WUNLOCK(inp); #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) error = ip6_ctloutput(so, sopt); #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET error = ip_ctloutput(so, sopt); #endif return (error); } if (((sopt->sopt_name == TCP_FUNCTION_BLK) || (sopt->sopt_name == TCP_FUNCTION_ALIAS))) { struct tcp_function_set fsn; if (sopt->sopt_name == TCP_FUNCTION_ALIAS) { memset(&fsn, 0, sizeof(fsn)); find_tcp_function_alias(tp->t_fb, &fsn); } else { strncpy(fsn.function_set_name, tp->t_fb->tfb_tcp_block_name, TCP_FUNCTION_NAME_LEN_MAX); fsn.function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; } fsn.pcbcnt = tp->t_fb->tfb_refcnt; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &fsn, sizeof fsn); return (error); } /* Pass in the INP locked, callee must unlock it. */ return (tp->t_fb->tfb_tcp_ctloutput(tp, sopt)); } int tcp_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNRESET); } if (sopt->sopt_dir == SOPT_SET) return (tcp_ctloutput_set(inp, sopt)); else if (sopt->sopt_dir == SOPT_GET) return (tcp_ctloutput_get(inp, sopt)); else panic("%s: sopt_dir $%d", __func__, sopt->sopt_dir); } /* * If this assert becomes untrue, we need to change the size of the buf * variable in tcp_default_ctloutput(). */ #ifdef CTASSERT CTASSERT(TCP_CA_NAME_MAX <= TCP_LOG_ID_LEN); CTASSERT(TCP_LOG_REASON_LEN <= TCP_LOG_ID_LEN); #endif extern struct cc_algo newreno_cc_algo; static int tcp_set_cc_mod(struct inpcb *inp, struct sockopt *sopt) { struct cc_algo *algo; void *ptr = NULL; struct tcpcb *tp; struct cc_var cc_mem; char buf[TCP_CA_NAME_MAX]; size_t mem_sz; int error; INP_WUNLOCK(inp); error = sooptcopyin(sopt, buf, TCP_CA_NAME_MAX - 1, 1); if (error) return(error); buf[sopt->sopt_valsize] = '\0'; CC_LIST_RLOCK(); STAILQ_FOREACH(algo, &cc_list, entries) { if (strncmp(buf, algo->name, TCP_CA_NAME_MAX) == 0) { if (algo->flags & CC_MODULE_BEING_REMOVED) { /* We can't "see" modules being unloaded */ continue; } break; } } if (algo == NULL) { CC_LIST_RUNLOCK(); return(ESRCH); } /* * With a reference the algorithm cannot be removed * so we hold a reference through the change process. */ cc_refer(algo); CC_LIST_RUNLOCK(); if (algo->cb_init != NULL) { /* We can now pre-get the memory for the CC */ mem_sz = (*algo->cc_data_sz)(); if (mem_sz == 0) { goto no_mem_needed; } ptr = malloc(mem_sz, M_CC_MEM, M_WAITOK); } else { no_mem_needed: mem_sz = 0; ptr = NULL; } /* * Make sure its all clean and zero and also get * back the inplock. */ memset(&cc_mem, 0, sizeof(cc_mem)); INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); if (ptr) free(ptr, M_CC_MEM); /* Release our temp reference */ CC_LIST_RLOCK(); cc_release(algo); CC_LIST_RUNLOCK(); return (ECONNRESET); } tp = intotcpcb(inp); if (ptr != NULL) memset(ptr, 0, mem_sz); cc_mem.ccvc.tcp = tp; /* * We once again hold a write lock over the tcb so it's * safe to do these things without ordering concerns. * Note here we init into stack memory. */ if (algo->cb_init != NULL) error = algo->cb_init(&cc_mem, ptr); else error = 0; /* * The CC algorithms, when given their memory * should not fail we could in theory have a * KASSERT here. */ if (error == 0) { /* * Touchdown, lets go ahead and move the * connection to the new CC module by * copying in the cc_mem after we call * the old ones cleanup (if any). */ if (CC_ALGO(tp)->cb_destroy != NULL) CC_ALGO(tp)->cb_destroy(&tp->t_ccv); /* Detach the old CC from the tcpcb */ cc_detach(tp); /* Copy in our temp memory that was inited */ memcpy(&tp->t_ccv, &cc_mem, sizeof(struct cc_var)); /* Now attach the new, which takes a reference */ cc_attach(tp, algo); /* Ok now are we where we have gotten past any conn_init? */ if (TCPS_HAVEESTABLISHED(tp->t_state) && (CC_ALGO(tp)->conn_init != NULL)) { /* Yep run the connection init for the new CC */ CC_ALGO(tp)->conn_init(&tp->t_ccv); } } else if (ptr) free(ptr, M_CC_MEM); INP_WUNLOCK(inp); /* Now lets release our temp reference */ CC_LIST_RLOCK(); cc_release(algo); CC_LIST_RUNLOCK(); return (error); } int tcp_default_ctloutput(struct tcpcb *tp, struct sockopt *sopt) { struct inpcb *inp = tptoinpcb(tp); int error, opt, optval; u_int ui; struct tcp_info ti; #ifdef KERN_TLS struct tls_enable tls; struct socket *so = inp->inp_socket; #endif char *pbuf, buf[TCP_LOG_ID_LEN]; #ifdef STATS struct statsblob *sbp; #endif size_t len; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("inp_flags == %x", inp->inp_flags)); KASSERT(inp->inp_socket != NULL, ("inp_socket == NULL")); switch (sopt->sopt_level) { #ifdef INET6 case IPPROTO_IPV6: MPASS(inp->inp_vflag & INP_IPV6PROTO); switch (sopt->sopt_name) { case IPV6_USE_MIN_MTU: tcp6_use_min_mtu(tp); /* FALLTHROUGH */ } INP_WUNLOCK(inp); return (0); #endif #ifdef INET case IPPROTO_IP: INP_WUNLOCK(inp); return (0); #endif } /* * For TCP_CCALGOOPT forward the control to CC module, for both * SOPT_SET and SOPT_GET. */ switch (sopt->sopt_name) { case TCP_CCALGOOPT: INP_WUNLOCK(inp); if (sopt->sopt_valsize > CC_ALGOOPT_LIMIT) return (EINVAL); pbuf = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK | M_ZERO); error = sooptcopyin(sopt, pbuf, sopt->sopt_valsize, sopt->sopt_valsize); if (error) { free(pbuf, M_TEMP); return (error); } INP_WLOCK_RECHECK_CLEANUP(inp, free(pbuf, M_TEMP)); if (CC_ALGO(tp)->ctl_output != NULL) error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, sopt, pbuf); else error = ENOENT; INP_WUNLOCK(inp); if (error == 0 && sopt->sopt_dir == SOPT_GET) error = sooptcopyout(sopt, pbuf, sopt->sopt_valsize); free(pbuf, M_TEMP); return (error); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) case TCP_MD5SIG: INP_WUNLOCK(inp); if (!TCPMD5_ENABLED()) return (ENOPROTOOPT); error = TCPMD5_PCBCTL(inp, sopt); if (error) return (error); INP_WLOCK_RECHECK(inp); goto unlock_and_done; #endif /* IPSEC */ case TCP_NODELAY: case TCP_NOOPT: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); switch (sopt->sopt_name) { case TCP_NODELAY: opt = TF_NODELAY; break; case TCP_NOOPT: opt = TF_NOOPT; break; default: opt = 0; /* dead code to fool gcc */ break; } if (optval) tp->t_flags |= opt; else tp->t_flags &= ~opt; unlock_and_done: #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) { tcp_offload_ctloutput(tp, sopt->sopt_dir, sopt->sopt_name); } #endif INP_WUNLOCK(inp); break; case TCP_NOPUSH: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); if (optval) tp->t_flags |= TF_NOPUSH; else if (tp->t_flags & TF_NOPUSH) { tp->t_flags &= ~TF_NOPUSH; if (TCPS_HAVEESTABLISHED(tp->t_state)) { struct epoch_tracker et; NET_EPOCH_ENTER(et); error = tcp_output_nodrop(tp); NET_EPOCH_EXIT(et); } } goto unlock_and_done; case TCP_REMOTE_UDP_ENCAPS_PORT: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); if ((optval < TCP_TUNNELING_PORT_MIN) || (optval > TCP_TUNNELING_PORT_MAX)) { /* Its got to be in range */ return (EINVAL); } if ((V_tcp_udp_tunneling_port == 0) && (optval != 0)) { /* You have to have enabled a UDP tunneling port first */ return (EINVAL); } INP_WLOCK_RECHECK(inp); if (tp->t_state != TCPS_CLOSED) { /* You can't change after you are connected */ error = EINVAL; } else { /* Ok we are all good set the port */ tp->t_port = htons(optval); } goto unlock_and_done; case TCP_MAXSEG: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); if (optval > 0 && optval <= tp->t_maxseg && optval + 40 >= V_tcp_minmss) tp->t_maxseg = optval; else error = EINVAL; goto unlock_and_done; case TCP_INFO: INP_WUNLOCK(inp); error = EINVAL; break; case TCP_STATS: INP_WUNLOCK(inp); #ifdef STATS error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); if (optval > 0) sbp = stats_blob_alloc( V_tcp_perconn_stats_dflt_tpl, 0); else sbp = NULL; INP_WLOCK_RECHECK(inp); if ((tp->t_stats != NULL && sbp == NULL) || (tp->t_stats == NULL && sbp != NULL)) { struct statsblob *t = tp->t_stats; tp->t_stats = sbp; sbp = t; } INP_WUNLOCK(inp); stats_blob_destroy(sbp); #else return (EOPNOTSUPP); #endif /* !STATS */ break; case TCP_CONGESTION: error = tcp_set_cc_mod(inp, sopt); break; case TCP_REUSPORT_LB_NUMA: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); INP_WLOCK_RECHECK(inp); if (!error) error = in_pcblbgroup_numa(inp, optval); INP_WUNLOCK(inp); break; #ifdef KERN_TLS case TCP_TXTLS_ENABLE: INP_WUNLOCK(inp); error = ktls_copyin_tls_enable(sopt, &tls); if (error != 0) break; error = ktls_enable_tx(so, &tls); ktls_cleanup_tls_enable(&tls); break; case TCP_TXTLS_MODE: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui)); if (error != 0) return (error); INP_WLOCK_RECHECK(inp); error = ktls_set_tx_mode(so, ui); INP_WUNLOCK(inp); break; case TCP_RXTLS_ENABLE: INP_WUNLOCK(inp); error = ktls_copyin_tls_enable(sopt, &tls); if (error != 0) break; error = ktls_enable_rx(so, &tls); ktls_cleanup_tls_enable(&tls); break; #endif case TCP_MAXUNACKTIME: case TCP_KEEPIDLE: case TCP_KEEPINTVL: case TCP_KEEPINIT: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui)); if (error) return (error); if (ui > (UINT_MAX / hz)) { error = EINVAL; break; } ui *= hz; INP_WLOCK_RECHECK(inp); switch (sopt->sopt_name) { case TCP_MAXUNACKTIME: tp->t_maxunacktime = ui; break; case TCP_KEEPIDLE: tp->t_keepidle = ui; /* * XXX: better check current remaining * timeout and "merge" it with new value. */ if ((tp->t_state > TCPS_LISTEN) && (tp->t_state <= TCPS_CLOSING)) tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); break; case TCP_KEEPINTVL: tp->t_keepintvl = ui; if ((tp->t_state == TCPS_FIN_WAIT_2) && (TP_MAXIDLE(tp) > 0)) tcp_timer_activate(tp, TT_2MSL, TP_MAXIDLE(tp)); break; case TCP_KEEPINIT: tp->t_keepinit = ui; if (tp->t_state == TCPS_SYN_RECEIVED || tp->t_state == TCPS_SYN_SENT) tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); break; } goto unlock_and_done; case TCP_KEEPCNT: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui)); if (error) return (error); INP_WLOCK_RECHECK(inp); tp->t_keepcnt = ui; if ((tp->t_state == TCPS_FIN_WAIT_2) && (TP_MAXIDLE(tp) > 0)) tcp_timer_activate(tp, TT_2MSL, TP_MAXIDLE(tp)); goto unlock_and_done; #ifdef TCPPCAP case TCP_PCAP_OUT: case TCP_PCAP_IN: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); if (optval >= 0) tcp_pcap_set_sock_max( (sopt->sopt_name == TCP_PCAP_OUT) ? &(tp->t_outpkts) : &(tp->t_inpkts), optval); else error = EINVAL; goto unlock_and_done; #endif case TCP_FASTOPEN: { struct tcp_fastopen tfo_optval; INP_WUNLOCK(inp); if (!V_tcp_fastopen_client_enable && !V_tcp_fastopen_server_enable) return (EPERM); error = sooptcopyin(sopt, &tfo_optval, sizeof(tfo_optval), sizeof(int)); if (error) return (error); INP_WLOCK_RECHECK(inp); if ((tp->t_state != TCPS_CLOSED) && (tp->t_state != TCPS_LISTEN)) { error = EINVAL; goto unlock_and_done; } if (tfo_optval.enable) { if (tp->t_state == TCPS_LISTEN) { if (!V_tcp_fastopen_server_enable) { error = EPERM; goto unlock_and_done; } if (tp->t_tfo_pending == NULL) tp->t_tfo_pending = tcp_fastopen_alloc_counter(); } else { /* * If a pre-shared key was provided, * stash it in the client cookie * field of the tcpcb for use during * connect. */ if (sopt->sopt_valsize == sizeof(tfo_optval)) { memcpy(tp->t_tfo_cookie.client, tfo_optval.psk, TCP_FASTOPEN_PSK_LEN); tp->t_tfo_client_cookie_len = TCP_FASTOPEN_PSK_LEN; } } tp->t_flags |= TF_FASTOPEN; } else tp->t_flags &= ~TF_FASTOPEN; goto unlock_and_done; } #ifdef TCP_BLACKBOX case TCP_LOG: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); error = tcp_log_state_change(tp, optval); goto unlock_and_done; case TCP_LOGBUF: INP_WUNLOCK(inp); error = EINVAL; break; case TCP_LOGID: INP_WUNLOCK(inp); error = sooptcopyin(sopt, buf, TCP_LOG_ID_LEN - 1, 0); if (error) break; buf[sopt->sopt_valsize] = '\0'; INP_WLOCK_RECHECK(inp); error = tcp_log_set_id(tp, buf); /* tcp_log_set_id() unlocks the INP. */ break; case TCP_LOGDUMP: case TCP_LOGDUMPID: INP_WUNLOCK(inp); error = sooptcopyin(sopt, buf, TCP_LOG_REASON_LEN - 1, 0); if (error) break; buf[sopt->sopt_valsize] = '\0'; INP_WLOCK_RECHECK(inp); if (sopt->sopt_name == TCP_LOGDUMP) { error = tcp_log_dump_tp_logbuf(tp, buf, M_WAITOK, true); INP_WUNLOCK(inp); } else { tcp_log_dump_tp_bucket_logbufs(tp, buf); /* * tcp_log_dump_tp_bucket_logbufs() drops the * INP lock. */ } break; #endif default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; case SOPT_GET: tp = intotcpcb(inp); switch (sopt->sopt_name) { #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) case TCP_MD5SIG: INP_WUNLOCK(inp); if (!TCPMD5_ENABLED()) return (ENOPROTOOPT); error = TCPMD5_PCBCTL(inp, sopt); break; #endif case TCP_NODELAY: optval = tp->t_flags & TF_NODELAY; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_MAXSEG: optval = tp->t_maxseg; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_REMOTE_UDP_ENCAPS_PORT: optval = ntohs(tp->t_port); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_NOOPT: optval = tp->t_flags & TF_NOOPT; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_NOPUSH: optval = tp->t_flags & TF_NOPUSH; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_INFO: tcp_fill_info(tp, &ti); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &ti, sizeof ti); break; case TCP_STATS: { #ifdef STATS int nheld; TYPEOF_MEMBER(struct statsblob, flags) sbflags = 0; error = 0; socklen_t outsbsz = sopt->sopt_valsize; if (tp->t_stats == NULL) error = ENOENT; else if (outsbsz >= tp->t_stats->cursz) outsbsz = tp->t_stats->cursz; else if (outsbsz >= sizeof(struct statsblob)) outsbsz = sizeof(struct statsblob); else error = EINVAL; INP_WUNLOCK(inp); if (error) break; sbp = sopt->sopt_val; nheld = atop(round_page(((vm_offset_t)sbp) + (vm_size_t)outsbsz) - trunc_page((vm_offset_t)sbp)); vm_page_t ma[nheld]; if (vm_fault_quick_hold_pages( &curproc->p_vmspace->vm_map, (vm_offset_t)sbp, outsbsz, VM_PROT_READ | VM_PROT_WRITE, ma, nheld) < 0) { error = EFAULT; break; } if ((error = copyin_nofault(&(sbp->flags), &sbflags, SIZEOF_MEMBER(struct statsblob, flags)))) goto unhold; INP_WLOCK_RECHECK(inp); error = stats_blob_snapshot(&sbp, outsbsz, tp->t_stats, sbflags | SB_CLONE_USRDSTNOFAULT); INP_WUNLOCK(inp); sopt->sopt_valsize = outsbsz; unhold: vm_page_unhold_pages(ma, nheld); #else INP_WUNLOCK(inp); error = EOPNOTSUPP; #endif /* !STATS */ break; } case TCP_CONGESTION: len = strlcpy(buf, CC_ALGO(tp)->name, TCP_CA_NAME_MAX); INP_WUNLOCK(inp); error = sooptcopyout(sopt, buf, len + 1); break; case TCP_MAXUNACKTIME: case TCP_KEEPIDLE: case TCP_KEEPINTVL: case TCP_KEEPINIT: case TCP_KEEPCNT: switch (sopt->sopt_name) { case TCP_MAXUNACKTIME: ui = TP_MAXUNACKTIME(tp) / hz; break; case TCP_KEEPIDLE: ui = TP_KEEPIDLE(tp) / hz; break; case TCP_KEEPINTVL: ui = TP_KEEPINTVL(tp) / hz; break; case TCP_KEEPINIT: ui = TP_KEEPINIT(tp) / hz; break; case TCP_KEEPCNT: ui = TP_KEEPCNT(tp); break; } INP_WUNLOCK(inp); error = sooptcopyout(sopt, &ui, sizeof(ui)); break; #ifdef TCPPCAP case TCP_PCAP_OUT: case TCP_PCAP_IN: optval = tcp_pcap_get_sock_max( (sopt->sopt_name == TCP_PCAP_OUT) ? &(tp->t_outpkts) : &(tp->t_inpkts)); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; #endif case TCP_FASTOPEN: optval = tp->t_flags & TF_FASTOPEN; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; #ifdef TCP_BLACKBOX case TCP_LOG: optval = tcp_get_bblog_state(tp); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case TCP_LOGBUF: /* tcp_log_getlogbuf() does INP_WUNLOCK(inp) */ error = tcp_log_getlogbuf(sopt, tp); break; case TCP_LOGID: len = tcp_log_get_id(tp, buf); INP_WUNLOCK(inp); error = sooptcopyout(sopt, buf, len + 1); break; case TCP_LOGDUMP: case TCP_LOGDUMPID: INP_WUNLOCK(inp); error = EINVAL; break; #endif #ifdef KERN_TLS case TCP_TXTLS_MODE: error = ktls_get_tx_mode(so, &optval); INP_WUNLOCK(inp); if (error == 0) error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case TCP_RXTLS_MODE: error = ktls_get_rx_mode(so, &optval); INP_WUNLOCK(inp); if (error == 0) error = sooptcopyout(sopt, &optval, sizeof(optval)); break; #endif default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; } return (error); } #undef INP_WLOCK_RECHECK #undef INP_WLOCK_RECHECK_CLEANUP /* * Initiate (or continue) disconnect. * If embryonic state, just send reset (once). * If in ``let data drain'' option and linger null, just drop. * Otherwise (hard), mark socket disconnecting and drop * current input data; switch states based on user close, and * send segment to peer (with FIN). */ static void tcp_disconnect(struct tcpcb *tp) { struct inpcb *inp = tptoinpcb(tp); struct socket *so = tptosocket(tp); NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); /* * Neither tcp_close() nor tcp_drop() should return NULL, as the * socket is still open. */ if (tp->t_state < TCPS_ESTABLISHED && !(tp->t_state > TCPS_LISTEN && IS_FASTOPEN(tp->t_flags))) { tp = tcp_close(tp); KASSERT(tp != NULL, ("tcp_disconnect: tcp_close() returned NULL")); } else if ((so->so_options & SO_LINGER) && so->so_linger == 0) { tp = tcp_drop(tp, 0); KASSERT(tp != NULL, ("tcp_disconnect: tcp_drop() returned NULL")); } else { soisdisconnecting(so); sbflush(&so->so_rcv); tcp_usrclosed(tp); if (!(inp->inp_flags & INP_DROPPED)) /* Ignore stack's drop request, we already at it. */ (void)tcp_output_nodrop(tp); } } /* * User issued close, and wish to trail through shutdown states: * if never received SYN, just forget it. If got a SYN from peer, * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. * If already got a FIN from peer, then almost done; go to LAST_ACK * state. In all other cases, have already sent FIN to peer (e.g. * after PRU_SHUTDOWN), and just have to play tedious game waiting * for peer to send FIN or not respond to keep-alives, etc. * We can let the user exit from the close as soon as the FIN is acked. */ static void tcp_usrclosed(struct tcpcb *tp) { NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(tptoinpcb(tp)); switch (tp->t_state) { case TCPS_LISTEN: #ifdef TCP_OFFLOAD tcp_offload_listen_stop(tp); #endif tcp_state_change(tp, TCPS_CLOSED); /* FALLTHROUGH */ case TCPS_CLOSED: tp = tcp_close(tp); /* * tcp_close() should never return NULL here as the socket is * still open. */ KASSERT(tp != NULL, ("tcp_usrclosed: tcp_close() returned NULL")); break; case TCPS_SYN_SENT: case TCPS_SYN_RECEIVED: tp->t_flags |= TF_NEEDFIN; break; case TCPS_ESTABLISHED: tcp_state_change(tp, TCPS_FIN_WAIT_1); break; case TCPS_CLOSE_WAIT: tcp_state_change(tp, TCPS_LAST_ACK); break; } if (tp->t_acktime == 0) tp->t_acktime = ticks; if (tp->t_state >= TCPS_FIN_WAIT_2) { tcp_free_sackholes(tp); soisdisconnected(tptosocket(tp)); /* Prevent the connection hanging in FIN_WAIT_2 forever. */ if (tp->t_state == TCPS_FIN_WAIT_2) { int timeout; timeout = (tcp_fast_finwait2_recycle) ? tcp_finwait2_timeout : TP_MAXIDLE(tp); tcp_timer_activate(tp, TT_2MSL, timeout); } } } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_tstate(int t_state) { switch (t_state) { case TCPS_CLOSED: db_printf("TCPS_CLOSED"); return; case TCPS_LISTEN: db_printf("TCPS_LISTEN"); return; case TCPS_SYN_SENT: db_printf("TCPS_SYN_SENT"); return; case TCPS_SYN_RECEIVED: db_printf("TCPS_SYN_RECEIVED"); return; case TCPS_ESTABLISHED: db_printf("TCPS_ESTABLISHED"); return; case TCPS_CLOSE_WAIT: db_printf("TCPS_CLOSE_WAIT"); return; case TCPS_FIN_WAIT_1: db_printf("TCPS_FIN_WAIT_1"); return; case TCPS_CLOSING: db_printf("TCPS_CLOSING"); return; case TCPS_LAST_ACK: db_printf("TCPS_LAST_ACK"); return; case TCPS_FIN_WAIT_2: db_printf("TCPS_FIN_WAIT_2"); return; case TCPS_TIME_WAIT: db_printf("TCPS_TIME_WAIT"); return; default: db_printf("unknown"); return; } } static void db_print_tflags(u_int t_flags) { int comma; comma = 0; if (t_flags & TF_ACKNOW) { db_printf("%sTF_ACKNOW", comma ? ", " : ""); comma = 1; } if (t_flags & TF_DELACK) { db_printf("%sTF_DELACK", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NODELAY) { db_printf("%sTF_NODELAY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NOOPT) { db_printf("%sTF_NOOPT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SENTFIN) { db_printf("%sTF_SENTFIN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_REQ_SCALE) { db_printf("%sTF_REQ_SCALE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RCVD_SCALE) { db_printf("%sTF_RECVD_SCALE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_REQ_TSTMP) { db_printf("%sTF_REQ_TSTMP", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RCVD_TSTMP) { db_printf("%sTF_RCVD_TSTMP", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SACK_PERMIT) { db_printf("%sTF_SACK_PERMIT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NEEDSYN) { db_printf("%sTF_NEEDSYN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NEEDFIN) { db_printf("%sTF_NEEDFIN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NOPUSH) { db_printf("%sTF_NOPUSH", comma ? ", " : ""); comma = 1; } if (t_flags & TF_PREVVALID) { db_printf("%sTF_PREVVALID", comma ? ", " : ""); comma = 1; } if (t_flags & TF_MORETOCOME) { db_printf("%sTF_MORETOCOME", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SONOTCONN) { db_printf("%sTF_SONOTCONN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_LASTIDLE) { db_printf("%sTF_LASTIDLE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RXWIN0SENT) { db_printf("%sTF_RXWIN0SENT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_FASTRECOVERY) { db_printf("%sTF_FASTRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_CONGRECOVERY) { db_printf("%sTF_CONGRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_WASFRECOVERY) { db_printf("%sTF_WASFRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_WASCRECOVERY) { db_printf("%sTF_WASCRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SIGNATURE) { db_printf("%sTF_SIGNATURE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_FORCEDATA) { db_printf("%sTF_FORCEDATA", comma ? ", " : ""); comma = 1; } if (t_flags & TF_TSO) { db_printf("%sTF_TSO", comma ? ", " : ""); comma = 1; } if (t_flags & TF_FASTOPEN) { db_printf("%sTF_FASTOPEN", comma ? ", " : ""); comma = 1; } } static void db_print_tflags2(u_int t_flags2) { int comma; comma = 0; if (t_flags2 & TF2_PLPMTU_BLACKHOLE) { db_printf("%sTF2_PLPMTU_BLACKHOLE", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_PLPMTU_PMTUD) { db_printf("%sTF2_PLPMTU_PMTUD", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_PLPMTU_MAXSEGSNT) { db_printf("%sTF2_PLPMTU_MAXSEGSNT", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_LOG_AUTO) { db_printf("%sTF2_LOG_AUTO", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_DROP_AF_DATA) { db_printf("%sTF2_DROP_AF_DATA", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_ECN_PERMIT) { db_printf("%sTF2_ECN_PERMIT", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_ECN_SND_CWR) { db_printf("%sTF2_ECN_SND_CWR", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_ECN_SND_ECE) { db_printf("%sTF2_ECN_SND_ECE", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_ACE_PERMIT) { db_printf("%sTF2_ACE_PERMIT", comma ? ", " : ""); comma = 1; } if (t_flags2 & TF2_FBYTES_COMPLETE) { db_printf("%sTF2_FBYTES_COMPLETE", comma ? ", " : ""); comma = 1; } } static void db_print_toobflags(char t_oobflags) { int comma; comma = 0; if (t_oobflags & TCPOOB_HAVEDATA) { db_printf("%sTCPOOB_HAVEDATA", comma ? ", " : ""); comma = 1; } if (t_oobflags & TCPOOB_HADDATA) { db_printf("%sTCPOOB_HADDATA", comma ? ", " : ""); comma = 1; } } static void db_print_tcpcb(struct tcpcb *tp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, tp); indent += 2; db_print_indent(indent); db_printf("t_segq first: %p t_segqlen: %d t_dupacks: %d\n", TAILQ_FIRST(&tp->t_segq), tp->t_segqlen, tp->t_dupacks); db_print_indent(indent); db_printf("t_callout: %p t_timers: %p\n", &tp->t_callout, &tp->t_timers); db_print_indent(indent); db_printf("t_state: %d (", tp->t_state); db_print_tstate(tp->t_state); db_printf(")\n"); db_print_indent(indent); db_printf("t_flags: 0x%x (", tp->t_flags); db_print_tflags(tp->t_flags); db_printf(")\n"); db_print_indent(indent); db_printf("t_flags2: 0x%x (", tp->t_flags2); db_print_tflags2(tp->t_flags2); db_printf(")\n"); db_print_indent(indent); db_printf("snd_una: 0x%08x snd_max: 0x%08x snd_nxt: 0x%08x\n", tp->snd_una, tp->snd_max, tp->snd_nxt); db_print_indent(indent); db_printf("snd_up: 0x%08x snd_wl1: 0x%08x snd_wl2: 0x%08x\n", tp->snd_up, tp->snd_wl1, tp->snd_wl2); db_print_indent(indent); db_printf("iss: 0x%08x irs: 0x%08x rcv_nxt: 0x%08x\n", tp->iss, tp->irs, tp->rcv_nxt); db_print_indent(indent); db_printf("rcv_adv: 0x%08x rcv_wnd: %u rcv_up: 0x%08x\n", tp->rcv_adv, tp->rcv_wnd, tp->rcv_up); db_print_indent(indent); db_printf("snd_wnd: %u snd_cwnd: %u\n", tp->snd_wnd, tp->snd_cwnd); db_print_indent(indent); db_printf("snd_ssthresh: %u snd_recover: " "0x%08x\n", tp->snd_ssthresh, tp->snd_recover); db_print_indent(indent); db_printf("t_rcvtime: %u t_startime: %u\n", tp->t_rcvtime, tp->t_starttime); db_print_indent(indent); db_printf("t_rttime: %u t_rtsq: 0x%08x\n", tp->t_rtttime, tp->t_rtseq); db_print_indent(indent); db_printf("t_rxtcur: %d t_maxseg: %u t_srtt: %d\n", tp->t_rxtcur, tp->t_maxseg, tp->t_srtt); db_print_indent(indent); db_printf("t_rttvar: %d t_rxtshift: %d t_rttmin: %u\n", tp->t_rttvar, tp->t_rxtshift, tp->t_rttmin); db_print_indent(indent); db_printf("t_rttupdated: %u max_sndwnd: %u t_softerror: %d\n", tp->t_rttupdated, tp->max_sndwnd, tp->t_softerror); db_print_indent(indent); db_printf("t_oobflags: 0x%x (", tp->t_oobflags); db_print_toobflags(tp->t_oobflags); db_printf(") t_iobc: 0x%02x\n", tp->t_iobc); db_print_indent(indent); db_printf("snd_scale: %u rcv_scale: %u request_r_scale: %u\n", tp->snd_scale, tp->rcv_scale, tp->request_r_scale); db_print_indent(indent); db_printf("ts_recent: %u ts_recent_age: %u\n", tp->ts_recent, tp->ts_recent_age); db_print_indent(indent); db_printf("ts_offset: %u last_ack_sent: 0x%08x snd_cwnd_prev: " "%u\n", tp->ts_offset, tp->last_ack_sent, tp->snd_cwnd_prev); db_print_indent(indent); db_printf("snd_ssthresh_prev: %u snd_recover_prev: 0x%08x " "t_badrxtwin: %u\n", tp->snd_ssthresh_prev, tp->snd_recover_prev, tp->t_badrxtwin); db_print_indent(indent); db_printf("snd_numholes: %d snd_holes first: %p\n", tp->snd_numholes, TAILQ_FIRST(&tp->snd_holes)); db_print_indent(indent); db_printf("snd_fack: 0x%08x rcv_numsacks: %d\n", tp->snd_fack, tp->rcv_numsacks); /* Skip sackblks, sackhint. */ db_print_indent(indent); db_printf("t_rttlow: %d rfbuf_ts: %u rfbuf_cnt: %d\n", tp->t_rttlow, tp->rfbuf_ts, tp->rfbuf_cnt); } DB_SHOW_COMMAND(tcpcb, db_show_tcpcb) { struct tcpcb *tp; if (!have_addr) { db_printf("usage: show tcpcb \n"); return; } tp = (struct tcpcb *)addr; db_print_tcpcb(tp, "tcpcb", 0); } #endif