/*- * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_tcpdebug.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #include #include #endif #ifdef TCP_RFC7413 #include #endif #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #ifdef TCPPCAP #include #endif #ifdef TCPDEBUG #include #endif #ifdef INET6 #include #endif #ifdef TCP_OFFLOAD #include #endif #ifdef IPSEC #include #include #ifdef INET6 #include #endif #include #include #endif /*IPSEC*/ #include #include #include VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; #ifdef INET6 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; #endif struct rwlock tcp_function_lock; static int sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) { int error, new; new = V_tcp_mssdflt; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr) { if (new < TCP_MINMSS) error = EINVAL; else V_tcp_mssdflt = new; } return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I", "Default TCP Maximum Segment Size"); #ifdef INET6 static int sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) { int error, new; new = V_tcp_v6mssdflt; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr) { if (new < TCP_MINMSS) error = EINVAL; else V_tcp_v6mssdflt = new; } return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I", "Default TCP Maximum Segment Size for IPv6"); #endif /* INET6 */ /* * Minimum MSS we accept and use. This prevents DoS attacks where * we are forced to a ridiculous low MSS like 20 and send hundreds * of packets instead of one. The effect scales with the available * bandwidth and quickly saturates the CPU and network interface * with packet generation and sending. Set to zero to disable MINMSS * checking. This setting prevents us from sending too small packets. */ VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_minmss), 0, "Minimum TCP Maximum Segment Size"); VNET_DEFINE(int, tcp_do_rfc1323) = 1; SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc1323), 0, "Enable rfc1323 (high performance TCP) extensions"); static int tcp_log_debug = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); static int tcp_tcbhashsize; SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); static int do_tcpdrain = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, "Enable tcp_drain routine for extra help when low on mbufs"); SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); static VNET_DEFINE(int, icmp_may_rst) = 1; #define V_icmp_may_rst VNET(icmp_may_rst) SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmp_may_rst), 0, "Certain ICMP unreachable messages may abort connections in SYN_SENT"); static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_isn_reseed_interval), 0, "Seconds between reseeding of ISN secret"); static int tcp_soreceive_stream; SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); #ifdef TCP_SIGNATURE static int tcp_sig_checksigs = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW, &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic"); #endif VNET_DEFINE(uma_zone_t, sack_hole_zone); #define V_sack_hole_zone VNET(sack_hole_zone) VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); static struct inpcb *tcp_notify(struct inpcb *, int); static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); static void tcp_mtudisc(struct inpcb *, int); static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr); static struct tcp_function_block tcp_def_funcblk = { "default", tcp_output, tcp_do_segment, tcp_default_ctloutput, NULL, NULL, NULL, NULL, NULL, NULL, 0, 0 }; int t_functions_inited = 0; struct tcp_funchead t_functions; static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk; static void init_tcp_functions(void) { if (t_functions_inited == 0) { TAILQ_INIT(&t_functions); rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0); t_functions_inited = 1; } } static struct tcp_function_block * find_tcp_functions_locked(struct tcp_function_set *fs) { struct tcp_function *f; struct tcp_function_block *blk=NULL; TAILQ_FOREACH(f, &t_functions, tf_next) { if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) { blk = f->tf_fb; break; } } return(blk); } static struct tcp_function_block * find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) { struct tcp_function_block *rblk=NULL; struct tcp_function *f; TAILQ_FOREACH(f, &t_functions, tf_next) { if (f->tf_fb == blk) { rblk = blk; if (s) { *s = f; } break; } } return (rblk); } struct tcp_function_block * find_and_ref_tcp_functions(struct tcp_function_set *fs) { struct tcp_function_block *blk; rw_rlock(&tcp_function_lock); blk = find_tcp_functions_locked(fs); if (blk) refcount_acquire(&blk->tfb_refcnt); rw_runlock(&tcp_function_lock); return(blk); } struct tcp_function_block * find_and_ref_tcp_fb(struct tcp_function_block *blk) { struct tcp_function_block *rblk; rw_rlock(&tcp_function_lock); rblk = find_tcp_fb_locked(blk, NULL); if (rblk) refcount_acquire(&rblk->tfb_refcnt); rw_runlock(&tcp_function_lock); return(rblk); } static int sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) { int error=ENOENT; struct tcp_function_set fs; struct tcp_function_block *blk; memset(&fs, 0, sizeof(fs)); rw_rlock(&tcp_function_lock); blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL); if (blk) { /* Found him */ strcpy(fs.function_set_name, blk->tfb_tcp_block_name); fs.pcbcnt = blk->tfb_refcnt; } rw_runlock(&tcp_function_lock); error = sysctl_handle_string(oidp, fs.function_set_name, sizeof(fs.function_set_name), req); /* Check for error or no change */ if (error != 0 || req->newptr == NULL) return(error); rw_wlock(&tcp_function_lock); blk = find_tcp_functions_locked(&fs); if ((blk == NULL) || (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { error = ENOENT; goto done; } tcp_func_set_ptr = blk; done: rw_wunlock(&tcp_function_lock); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, CTLTYPE_STRING | CTLFLAG_RW, NULL, 0, sysctl_net_inet_default_tcp_functions, "A", "Set/get the default TCP functions"); static int sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) { int error, cnt, linesz; struct tcp_function *f; char *buffer, *cp; size_t bufsz, outsz; cnt = 0; rw_rlock(&tcp_function_lock); TAILQ_FOREACH(f, &t_functions, tf_next) { cnt++; } rw_runlock(&tcp_function_lock); bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1; buffer = malloc(bufsz, M_TEMP, M_WAITOK); error = 0; cp = buffer; linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count"); cp += linesz; bufsz -= linesz; outsz = linesz; rw_rlock(&tcp_function_lock); TAILQ_FOREACH(f, &t_functions, tf_next) { linesz = snprintf(cp, bufsz, "%-32s%c %u\n", f->tf_fb->tfb_tcp_block_name, (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ', f->tf_fb->tfb_refcnt); if (linesz >= bufsz) { error = EOVERFLOW; break; } cp += linesz; bufsz -= linesz; outsz += linesz; } rw_runlock(&tcp_function_lock); if (error == 0) error = sysctl_handle_string(oidp, buffer, outsz + 1, req); free(buffer, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, CTLTYPE_STRING|CTLFLAG_RD, NULL, 0, sysctl_net_inet_list_available, "A", "list available TCP Function sets"); /* * Target size of TCP PCB hash tables. Must be a power of two. * * Note that this can be overridden by the kernel environment * variable net.inet.tcp.tcbhashsize */ #ifndef TCBHASHSIZE #define TCBHASHSIZE 0 #endif /* * XXX * Callouts should be moved into struct tcp directly. They are currently * separate because the tcpcb structure is exported to userland for sysctl * parsing purposes, which do not know about callouts. */ struct tcpcb_mem { struct tcpcb tcb; struct tcp_timer tt; struct cc_var ccv; struct osd osd; }; static VNET_DEFINE(uma_zone_t, tcpcb_zone); #define V_tcpcb_zone VNET(tcpcb_zone) MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); static struct mtx isn_mtx; #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) #define ISN_LOCK() mtx_lock(&isn_mtx) #define ISN_UNLOCK() mtx_unlock(&isn_mtx) /* * TCP initialization. */ static void tcp_zone_change(void *tag) { uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); uma_zone_set_max(V_tcpcb_zone, maxsockets); tcp_tw_zone_change(); } static int tcp_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp = mem; INP_LOCK_INIT(inp, "inp", "tcpinp"); return (0); } /* * Take a value and get the next power of 2 that doesn't overflow. * Used to size the tcp_inpcb hash buckets. */ static int maketcp_hashsize(int size) { int hashsize; /* * auto tune. * get the next power of 2 higher than maxsockets. */ hashsize = 1 << fls(size); /* catch overflow, and just go one power of 2 smaller */ if (hashsize < size) { hashsize = 1 << (fls(size) - 1); } return (hashsize); } int register_tcp_functions(struct tcp_function_block *blk, int wait) { struct tcp_function_block *lblk; struct tcp_function *n; struct tcp_function_set fs; if (t_functions_inited == 0) { init_tcp_functions(); } if ((blk->tfb_tcp_output == NULL) || (blk->tfb_tcp_do_segment == NULL) || (blk->tfb_tcp_ctloutput == NULL) || (strlen(blk->tfb_tcp_block_name) == 0)) { /* * These functions are required and you * need a name. */ return (EINVAL); } if (blk->tfb_tcp_timer_stop_all || blk->tfb_tcp_timer_activate || blk->tfb_tcp_timer_active || blk->tfb_tcp_timer_stop) { /* * If you define one timer function you * must have them all. */ if ((blk->tfb_tcp_timer_stop_all == NULL) || (blk->tfb_tcp_timer_activate == NULL) || (blk->tfb_tcp_timer_active == NULL) || (blk->tfb_tcp_timer_stop == NULL)) { return (EINVAL); } } n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); if (n == NULL) { return (ENOMEM); } n->tf_fb = blk; strcpy(fs.function_set_name, blk->tfb_tcp_block_name); rw_wlock(&tcp_function_lock); lblk = find_tcp_functions_locked(&fs); if (lblk) { /* Duplicate name space not allowed */ rw_wunlock(&tcp_function_lock); free(n, M_TCPFUNCTIONS); return (EALREADY); } refcount_init(&blk->tfb_refcnt, 0); blk->tfb_flags = 0; TAILQ_INSERT_TAIL(&t_functions, n, tf_next); rw_wunlock(&tcp_function_lock); return(0); } int deregister_tcp_functions(struct tcp_function_block *blk) { struct tcp_function_block *lblk; struct tcp_function *f; int error=ENOENT; if (strcmp(blk->tfb_tcp_block_name, "default") == 0) { /* You can't un-register the default */ return (EPERM); } rw_wlock(&tcp_function_lock); if (blk == tcp_func_set_ptr) { /* You can't free the current default */ rw_wunlock(&tcp_function_lock); return (EBUSY); } if (blk->tfb_refcnt) { /* Still tcb attached, mark it. */ blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; rw_wunlock(&tcp_function_lock); return (EBUSY); } lblk = find_tcp_fb_locked(blk, &f); if (lblk) { /* Found */ TAILQ_REMOVE(&t_functions, f, tf_next); f->tf_fb = NULL; free(f, M_TCPFUNCTIONS); error = 0; } rw_wunlock(&tcp_function_lock); return (error); } void tcp_init(void) { const char *tcbhash_tuneable; int hashsize; tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register helper hook\n", __func__); if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register helper hook\n", __func__); hashsize = TCBHASHSIZE; TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); if (hashsize == 0) { /* * Auto tune the hash size based on maxsockets. * A perfect hash would have a 1:1 mapping * (hashsize = maxsockets) however it's been * suggested that O(2) average is better. */ hashsize = maketcp_hashsize(maxsockets / 4); /* * Our historical default is 512, * do not autotune lower than this. */ if (hashsize < 512) hashsize = 512; if (bootverbose && IS_DEFAULT_VNET(curvnet)) printf("%s: %s auto tuned to %d\n", __func__, tcbhash_tuneable, hashsize); } /* * We require a hashsize to be a power of two. * Previously if it was not a power of two we would just reset it * back to 512, which could be a nasty surprise if you did not notice * the error message. * Instead what we do is clip it to the closest power of two lower * than the specified hash value. */ if (!powerof2(hashsize)) { int oldhashsize = hashsize; hashsize = maketcp_hashsize(hashsize); /* prevent absurdly low value */ if (hashsize < 16) hashsize = 16; printf("%s: WARNING: TCB hash size not a power of 2, " "clipped from %d to %d.\n", __func__, oldhashsize, hashsize); } in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, "tcp_inpcb", tcp_inpcb_init, NULL, 0, IPI_HASHFIELDS_4TUPLE); /* * These have to be type stable for the benefit of the timers. */ V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_set_max(V_tcpcb_zone, maxsockets); uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached"); tcp_tw_init(); syncache_init(); tcp_hc_init(); TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); /* Skip initialization of globals for non-default instances. */ if (!IS_DEFAULT_VNET(curvnet)) return; tcp_reass_global_init(); /* XXX virtualize those bellow? */ tcp_delacktime = TCPTV_DELACK; tcp_keepinit = TCPTV_KEEP_INIT; tcp_keepidle = TCPTV_KEEP_IDLE; tcp_keepintvl = TCPTV_KEEPINTVL; tcp_maxpersistidle = TCPTV_KEEP_IDLE; tcp_msl = TCPTV_MSL; tcp_rexmit_min = TCPTV_MIN; if (tcp_rexmit_min < 1) tcp_rexmit_min = 1; tcp_persmin = TCPTV_PERSMIN; tcp_persmax = TCPTV_PERSMAX; tcp_rexmit_slop = TCPTV_CPU_VAR; tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; tcp_tcbhashsize = hashsize; /* Setup the tcp function block list */ init_tcp_functions(); register_tcp_functions(&tcp_def_funcblk, M_WAITOK); if (tcp_soreceive_stream) { #ifdef INET tcp_usrreqs.pru_soreceive = soreceive_stream; #endif #ifdef INET6 tcp6_usrreqs.pru_soreceive = soreceive_stream; #endif /* INET6 */ } #ifdef INET6 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) #else /* INET6 */ #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) #endif /* INET6 */ if (max_protohdr < TCP_MINPROTOHDR) max_protohdr = TCP_MINPROTOHDR; if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) panic("tcp_init"); #undef TCP_MINPROTOHDR ISN_LOCK_INIT(); EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, SHUTDOWN_PRI_DEFAULT); EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, EVENTHANDLER_PRI_ANY); #ifdef TCPPCAP tcp_pcap_init(); #endif #ifdef TCP_RFC7413 tcp_fastopen_init(); #endif } #ifdef VIMAGE static void tcp_destroy(void *unused __unused) { int error, n; /* * All our processes are gone, all our sockets should be cleaned * up, which means, we should be past the tcp_discardcb() calls. * Sleep to let all tcpcb timers really disappear and cleanup. */ for (;;) { INP_LIST_RLOCK(&V_tcbinfo); n = V_tcbinfo.ipi_count; INP_LIST_RUNLOCK(&V_tcbinfo); if (n == 0) break; pause("tcpdes", hz / 10); } tcp_hc_destroy(); syncache_destroy(); tcp_tw_destroy(); in_pcbinfo_destroy(&V_tcbinfo); /* tcp_discardcb() clears the sack_holes up. */ uma_zdestroy(V_sack_hole_zone); uma_zdestroy(V_tcpcb_zone); #ifdef TCP_RFC7413 /* * Cannot free the zone until all tcpcbs are released as we attach * the allocations to them. */ tcp_fastopen_destroy(); #endif error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); if (error != 0) { printf("%s: WARNING: unable to deregister helper hook " "type=%d, id=%d: error %d returned\n", __func__, HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); } error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); if (error != 0) { printf("%s: WARNING: unable to deregister helper hook " "type=%d, id=%d: error %d returned\n", __func__, HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); } } VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); #endif void tcp_fini(void *xtp) { } /* * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. * tcp_template used to store this data in mbufs, but we now recopy it out * of the tcpcb each time to conserve mbufs. */ void tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) { struct tcphdr *th = (struct tcphdr *)tcp_ptr; INP_WLOCK_ASSERT(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) { struct ip6_hdr *ip6; ip6 = (struct ip6_hdr *)ip_ptr; ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | (inp->inp_flow & IPV6_FLOWINFO_MASK); ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | (IPV6_VERSION & IPV6_VERSION_MASK); ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_plen = htons(sizeof(struct tcphdr)); ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = inp->in6p_faddr; } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET { struct ip *ip; ip = (struct ip *)ip_ptr; ip->ip_v = IPVERSION; ip->ip_hl = 5; ip->ip_tos = inp->inp_ip_tos; ip->ip_len = 0; ip->ip_id = 0; ip->ip_off = 0; ip->ip_ttl = inp->inp_ip_ttl; ip->ip_sum = 0; ip->ip_p = IPPROTO_TCP; ip->ip_src = inp->inp_laddr; ip->ip_dst = inp->inp_faddr; } #endif /* INET */ th->th_sport = inp->inp_lport; th->th_dport = inp->inp_fport; th->th_seq = 0; th->th_ack = 0; th->th_x2 = 0; th->th_off = 5; th->th_flags = 0; th->th_win = 0; th->th_urp = 0; th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ } /* * Create template to be used to send tcp packets on a connection. * Allocates an mbuf and fills in a skeletal tcp/ip header. The only * use for this function is in keepalives, which use tcp_respond. */ struct tcptemp * tcpip_maketemplate(struct inpcb *inp) { struct tcptemp *t; t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); if (t == NULL) return (NULL); tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); return (t); } /* * Send a single message to the TCP at address specified by * the given TCP/IP header. If m == NULL, then we make a copy * of the tcpiphdr at th and send directly to the addressed host. * This is used to force keep alive messages out using the TCP * template for a connection. If flags are given then we send * a message back to the TCP which originated the segment th, * and discard the mbuf containing it and any other attached mbufs. * * In any case the ack and sequence number of the transmitted * segment are as specified by the parameters. * * NOTE: If m != NULL, then th must point to *inside* the mbuf. */ void tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags) { struct tcpopt to; struct inpcb *inp; struct ip *ip; struct mbuf *optm; struct tcphdr *nth; u_char *optp; #ifdef INET6 struct ip6_hdr *ip6; int isipv6; #endif /* INET6 */ int optlen, tlen, win; bool incl_opts; KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); #ifdef INET6 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); ip6 = ipgen; #endif /* INET6 */ ip = ipgen; if (tp != NULL) { inp = tp->t_inpcb; KASSERT(inp != NULL, ("tcp control block w/o inpcb")); INP_WLOCK_ASSERT(inp); } else inp = NULL; incl_opts = false; win = 0; if (tp != NULL) { if (!(flags & TH_RST)) { win = sbspace(&inp->inp_socket->so_rcv); if (win > (long)TCP_MAXWIN << tp->rcv_scale) win = (long)TCP_MAXWIN << tp->rcv_scale; } if ((tp->t_flags & TF_NOOPT) == 0) incl_opts = true; } if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return; m->m_data += max_linkhdr; #ifdef INET6 if (isipv6) { bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr)); ip6 = mtod(m, struct ip6_hdr *); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); ip = mtod(m, struct ip *); nth = (struct tcphdr *)(ip + 1); } bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); flags = TH_ACK; } else if (!M_WRITABLE(m)) { struct mbuf *n; /* Can't reuse 'm', allocate a new mbuf. */ n = m_gethdr(M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return; } if (!m_dup_pkthdr(n, m, M_NOWAIT)) { m_freem(m); m_freem(n); return; } n->m_data += max_linkhdr; /* m_len is set later */ #define xchg(a,b,type) { type t; t=a; a=b; b=t; } #ifdef INET6 if (isipv6) { bcopy((caddr_t)ip6, mtod(n, caddr_t), sizeof(struct ip6_hdr)); ip6 = mtod(n, struct ip6_hdr *); xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); ip = mtod(n, struct ip *); xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); nth = (struct tcphdr *)(ip + 1); } bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); xchg(nth->th_dport, nth->th_sport, uint16_t); th = nth; m_freem(m); m = n; } else { /* * reuse the mbuf. * XXX MRT We inherit the FIB, which is lucky. */ m_freem(m->m_next); m->m_next = NULL; m->m_data = (caddr_t)ipgen; /* m_len is set later */ #ifdef INET6 if (isipv6) { xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); nth = (struct tcphdr *)(ip6 + 1); } else #endif /* INET6 */ { xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); nth = (struct tcphdr *)(ip + 1); } if (th != nth) { /* * this is usually a case when an extension header * exists between the IPv6 header and the * TCP header. */ nth->th_sport = th->th_sport; nth->th_dport = th->th_dport; } xchg(nth->th_dport, nth->th_sport, uint16_t); #undef xchg } tlen = 0; #ifdef INET6 if (isipv6) tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tlen = sizeof (struct tcpiphdr); #endif #ifdef INVARIANTS m->m_len = 0; KASSERT(M_TRAILINGSPACE(m) >= tlen, ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", m, tlen, (long)M_TRAILINGSPACE(m))); #endif m->m_len = tlen; to.to_flags = 0; if (incl_opts) { /* Make sure we have room. */ if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { m->m_next = m_get(M_NOWAIT, MT_DATA); if (m->m_next) { optp = mtod(m->m_next, u_char *); optm = m->m_next; } else incl_opts = false; } else { optp = (u_char *) (nth + 1); optm = m; } } if (incl_opts) { /* Timestamps. */ if (tp->t_flags & TF_RCVD_TSTMP) { to.to_tsval = tcp_ts_getticks() + tp->ts_offset; to.to_tsecr = tp->ts_recent; to.to_flags |= TOF_TS; } #ifdef TCP_SIGNATURE /* TCP-MD5 (RFC2385). */ if (tp->t_flags & TF_SIGNATURE) to.to_flags |= TOF_SIGNATURE; #endif /* Add the options. */ tlen += optlen = tcp_addoptions(&to, optp); /* Update m_len in the correct mbuf. */ optm->m_len += optlen; } else optlen = 0; #ifdef INET6 if (isipv6) { ip6->ip6_flow = 0; ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_plen = htons(tlen - sizeof(*ip6)); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { ip->ip_len = htons(tlen); ip->ip_ttl = V_ip_defttl; if (V_path_mtu_discovery) ip->ip_off |= htons(IP_DF); } #endif m->m_pkthdr.len = tlen; m->m_pkthdr.rcvif = NULL; #ifdef MAC if (inp != NULL) { /* * Packet is associated with a socket, so allow the * label of the response to reflect the socket label. */ INP_WLOCK_ASSERT(inp); mac_inpcb_create_mbuf(inp, m); } else { /* * Packet is not associated with a socket, so possibly * update the label in place. */ mac_netinet_tcp_reply(m); } #endif nth->th_seq = htonl(seq); nth->th_ack = htonl(ack); nth->th_x2 = 0; nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; nth->th_flags = flags; if (tp != NULL) nth->th_win = htons((u_short) (win >> tp->rcv_scale)); else nth->th_win = htons((u_short)win); nth->th_urp = 0; #ifdef TCP_SIGNATURE if (to.to_flags & TOF_SIGNATURE) { tcp_signature_compute(m, 0, 0, optlen, to.to_signature, IPSEC_DIR_OUTBOUND); } #endif m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); #ifdef INET6 if (isipv6) { m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; nth->th_sum = in6_cksum_pseudo(ip6, tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : NULL, NULL); } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET { m->m_pkthdr.csum_flags = CSUM_TCP; nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); } #endif /* INET */ #ifdef TCPDEBUG if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); #endif TCP_PROBE3(debug__output, tp, th, mtod(m, const char *)); if (flags & TH_RST) TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *), tp, nth); TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth); #ifdef INET6 if (isipv6) (void) ip6_output(m, NULL, NULL, 0, NULL, NULL, inp); #endif /* INET6 */ #if defined(INET) && defined(INET6) else #endif #ifdef INET (void) ip_output(m, NULL, NULL, 0, NULL, inp); #endif } /* * Create a new TCP control block, making an * empty reassembly queue and hooking it to the argument * protocol control block. The `inp' parameter must have * come from the zone allocator set up in tcp_init(). */ struct tcpcb * tcp_newtcpcb(struct inpcb *inp) { struct tcpcb_mem *tm; struct tcpcb *tp; #ifdef INET6 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; #endif /* INET6 */ tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); if (tm == NULL) return (NULL); tp = &tm->tcb; /* Initialise cc_var struct for this tcpcb. */ tp->ccv = &tm->ccv; tp->ccv->type = IPPROTO_TCP; tp->ccv->ccvc.tcp = tp; rw_rlock(&tcp_function_lock); tp->t_fb = tcp_func_set_ptr; refcount_acquire(&tp->t_fb->tfb_refcnt); rw_runlock(&tcp_function_lock); if (tp->t_fb->tfb_tcp_fb_init) { (*tp->t_fb->tfb_tcp_fb_init)(tp); } /* * Use the current system default CC algorithm. */ CC_LIST_RLOCK(); KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); CC_ALGO(tp) = CC_DEFAULT(); CC_LIST_RUNLOCK(); if (CC_ALGO(tp)->cb_init != NULL) if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp); refcount_release(&tp->t_fb->tfb_refcnt); uma_zfree(V_tcpcb_zone, tm); return (NULL); } tp->osd = &tm->osd; if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp); refcount_release(&tp->t_fb->tfb_refcnt); uma_zfree(V_tcpcb_zone, tm); return (NULL); } #ifdef VIMAGE tp->t_vnet = inp->inp_vnet; #endif tp->t_timers = &tm->tt; /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ tp->t_maxseg = #ifdef INET6 isipv6 ? V_tcp_v6mssdflt : #endif /* INET6 */ V_tcp_mssdflt; /* Set up our timeouts. */ callout_init(&tp->t_timers->tt_rexmt, 1); callout_init(&tp->t_timers->tt_persist, 1); callout_init(&tp->t_timers->tt_keep, 1); callout_init(&tp->t_timers->tt_2msl, 1); callout_init(&tp->t_timers->tt_delack, 1); if (V_tcp_do_rfc1323) tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); if (V_tcp_do_sack) tp->t_flags |= TF_SACK_PERMIT; TAILQ_INIT(&tp->snd_holes); /* * The tcpcb will hold a reference on its inpcb until tcp_discardcb() * is called. */ in_pcbref(inp); /* Reference for tcpcb */ tp->t_inpcb = inp; /* * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives * reasonable initial retransmit time. */ tp->t_srtt = TCPTV_SRTTBASE; tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; tp->t_rttmin = tcp_rexmit_min; tp->t_rxtcur = TCPTV_RTOBASE; tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; tp->t_rcvtime = ticks; /* * IPv4 TTL initialization is necessary for an IPv6 socket as well, * because the socket may be bound to an IPv6 wildcard address, * which may match an IPv4-mapped IPv6 address. */ inp->inp_ip_ttl = V_ip_defttl; inp->inp_ppcb = tp; #ifdef TCPPCAP /* * Init the TCP PCAP queues. */ tcp_pcap_tcpcb_init(tp); #endif return (tp); /* XXX */ } /* * Switch the congestion control algorithm back to NewReno for any active * control blocks using an algorithm which is about to go away. * This ensures the CC framework can allow the unload to proceed without leaving * any dangling pointers which would trigger a panic. * Returning non-zero would inform the CC framework that something went wrong * and it would be unsafe to allow the unload to proceed. However, there is no * way for this to occur with this implementation so we always return zero. */ int tcp_ccalgounload(struct cc_algo *unload_algo) { struct cc_algo *tmpalgo; struct inpcb *inp; struct tcpcb *tp; VNET_ITERATOR_DECL(vnet_iter); /* * Check all active control blocks across all network stacks and change * any that are using "unload_algo" back to NewReno. If "unload_algo" * requires cleanup code to be run, call it. */ VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); INP_INFO_WLOCK(&V_tcbinfo); /* * New connections already part way through being initialised * with the CC algo we're removing will not race with this code * because the INP_INFO_WLOCK is held during initialisation. We * therefore don't enter the loop below until the connection * list has stabilised. */ LIST_FOREACH(inp, &V_tcb, inp_list) { INP_WLOCK(inp); /* Important to skip tcptw structs. */ if (!(inp->inp_flags & INP_TIMEWAIT) && (tp = intotcpcb(inp)) != NULL) { /* * By holding INP_WLOCK here, we are assured * that the connection is not currently * executing inside the CC module's functions * i.e. it is safe to make the switch back to * NewReno. */ if (CC_ALGO(tp) == unload_algo) { tmpalgo = CC_ALGO(tp); /* NewReno does not require any init. */ CC_ALGO(tp) = &newreno_cc_algo; if (tmpalgo->cb_destroy != NULL) tmpalgo->cb_destroy(tp->ccv); } } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); return (0); } /* * Drop a TCP connection, reporting * the specified error. If connection is synchronized, * then send a RST to peer. */ struct tcpcb * tcp_drop(struct tcpcb *tp, int errno) { struct socket *so = tp->t_inpcb->inp_socket; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(tp->t_inpcb); if (TCPS_HAVERCVDSYN(tp->t_state)) { tcp_state_change(tp, TCPS_CLOSED); (void) tp->t_fb->tfb_tcp_output(tp); TCPSTAT_INC(tcps_drops); } else TCPSTAT_INC(tcps_conndrops); if (errno == ETIMEDOUT && tp->t_softerror) errno = tp->t_softerror; so->so_error = errno; return (tcp_close(tp)); } void tcp_discardcb(struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; #ifdef INET6 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; #endif /* INET6 */ int released; INP_WLOCK_ASSERT(inp); /* * Make sure that all of our timers are stopped before we delete the * PCB. * * If stopping a timer fails, we schedule a discard function in same * callout, and the last discard function called will take care of * deleting the tcpcb. */ tp->t_timers->tt_draincnt = 0; tcp_timer_stop(tp, TT_REXMT); tcp_timer_stop(tp, TT_PERSIST); tcp_timer_stop(tp, TT_KEEP); tcp_timer_stop(tp, TT_2MSL); tcp_timer_stop(tp, TT_DELACK); if (tp->t_fb->tfb_tcp_timer_stop_all) { /* * Call the stop-all function of the methods, * this function should call the tcp_timer_stop() * method with each of the function specific timeouts. * That stop will be called via the tfb_tcp_timer_stop() * which should use the async drain function of the * callout system (see tcp_var.h). */ tp->t_fb->tfb_tcp_timer_stop_all(tp); } /* * If we got enough samples through the srtt filter, * save the rtt and rttvar in the routing entry. * 'Enough' is arbitrarily defined as 4 rtt samples. * 4 samples is enough for the srtt filter to converge * to within enough % of the correct value; fewer samples * and we could save a bogus rtt. The danger is not high * as tcp quickly recovers from everything. * XXX: Works very well but needs some more statistics! */ if (tp->t_rttupdated >= 4) { struct hc_metrics_lite metrics; u_long ssthresh; bzero(&metrics, sizeof(metrics)); /* * Update the ssthresh always when the conditions below * are satisfied. This gives us better new start value * for the congestion avoidance for new connections. * ssthresh is only set if packet loss occurred on a session. * * XXXRW: 'so' may be NULL here, and/or socket buffer may be * being torn down. Ideally this code would not use 'so'. */ ssthresh = tp->snd_ssthresh; if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { /* * convert the limit from user data bytes to * packets then to packet data bytes. */ ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; if (ssthresh < 2) ssthresh = 2; ssthresh *= (u_long)(tp->t_maxseg + #ifdef INET6 (isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : #endif sizeof (struct tcpiphdr) #ifdef INET6 ) #endif ); } else ssthresh = 0; metrics.rmx_ssthresh = ssthresh; metrics.rmx_rtt = tp->t_srtt; metrics.rmx_rttvar = tp->t_rttvar; metrics.rmx_cwnd = tp->snd_cwnd; metrics.rmx_sendpipe = 0; metrics.rmx_recvpipe = 0; tcp_hc_update(&inp->inp_inc, &metrics); } /* free the reassembly queue, if any */ tcp_reass_flush(tp); #ifdef TCP_OFFLOAD /* Disconnect offload device, if any. */ if (tp->t_flags & TF_TOE) tcp_offload_detach(tp); #endif tcp_free_sackholes(tp); #ifdef TCPPCAP /* Free the TCP PCAP queues. */ tcp_pcap_drain(&(tp->t_inpkts)); tcp_pcap_drain(&(tp->t_outpkts)); #endif /* Allow the CC algorithm to clean up after itself. */ if (CC_ALGO(tp)->cb_destroy != NULL) CC_ALGO(tp)->cb_destroy(tp->ccv); khelp_destroy_osd(tp->osd); CC_ALGO(tp) = NULL; inp->inp_ppcb = NULL; if (tp->t_timers->tt_draincnt == 0) { /* We own the last reference on tcpcb, let's free it. */ if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp); refcount_release(&tp->t_fb->tfb_refcnt); tp->t_inpcb = NULL; uma_zfree(V_tcpcb_zone, tp); released = in_pcbrele_wlocked(inp); KASSERT(!released, ("%s: inp %p should not have been released " "here", __func__, inp)); } } void tcp_timer_discard(void *ptp) { struct inpcb *inp; struct tcpcb *tp; tp = (struct tcpcb *)ptp; CURVNET_SET(tp->t_vnet); INP_INFO_RLOCK(&V_tcbinfo); inp = tp->t_inpcb; KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); INP_WLOCK(inp); KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0, ("%s: tcpcb has to be stopped here", __func__)); tp->t_timers->tt_draincnt--; if (tp->t_timers->tt_draincnt == 0) { /* We own the last reference on this tcpcb, let's free it. */ if (tp->t_fb->tfb_tcp_fb_fini) (*tp->t_fb->tfb_tcp_fb_fini)(tp); refcount_release(&tp->t_fb->tfb_refcnt); tp->t_inpcb = NULL; uma_zfree(V_tcpcb_zone, tp); if (in_pcbrele_wlocked(inp)) { INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); return; } } INP_WUNLOCK(inp); INP_INFO_RUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } /* * Attempt to close a TCP control block, marking it as dropped, and freeing * the socket if we hold the only reference. */ struct tcpcb * tcp_close(struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); #ifdef TCP_OFFLOAD if (tp->t_state == TCPS_LISTEN) tcp_offload_listen_stop(tp); #endif #ifdef TCP_RFC7413 /* * This releases the TFO pending counter resource for TFO listen * sockets as well as passively-created TFO sockets that transition * from SYN_RECEIVED to CLOSED. */ if (tp->t_tfo_pending) { tcp_fastopen_decrement_counter(tp->t_tfo_pending); tp->t_tfo_pending = NULL; } #endif in_pcbdrop(inp); TCPSTAT_INC(tcps_closed); TCPSTATES_DEC(tp->t_state); KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); so = inp->inp_socket; soisdisconnected(so); if (inp->inp_flags & INP_SOCKREF) { KASSERT(so->so_state & SS_PROTOREF, ("tcp_close: !SS_PROTOREF")); inp->inp_flags &= ~INP_SOCKREF; INP_WUNLOCK(inp); ACCEPT_LOCK(); SOCK_LOCK(so); so->so_state &= ~SS_PROTOREF; sofree(so); return (NULL); } return (tp); } void tcp_drain(void) { VNET_ITERATOR_DECL(vnet_iter); if (!do_tcpdrain) return; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); struct inpcb *inpb; struct tcpcb *tcpb; /* * Walk the tcpbs, if existing, and flush the reassembly queue, * if there is one... * XXX: The "Net/3" implementation doesn't imply that the TCP * reassembly queue should be flushed, but in a situation * where we're really low on mbufs, this is potentially * useful. */ INP_INFO_WLOCK(&V_tcbinfo); LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { if (inpb->inp_flags & INP_TIMEWAIT) continue; INP_WLOCK(inpb); if ((tcpb = intotcpcb(inpb)) != NULL) { tcp_reass_flush(tcpb); tcp_clean_sackreport(tcpb); #ifdef TCPPCAP if (tcp_pcap_aggressive_free) { /* Free the TCP PCAP queues. */ tcp_pcap_drain(&(tcpb->t_inpkts)); tcp_pcap_drain(&(tcpb->t_outpkts)); } #endif } INP_WUNLOCK(inpb); } INP_INFO_WUNLOCK(&V_tcbinfo); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Notify a tcp user of an asynchronous error; * store error as soft error, but wake up user * (for now, won't do anything until can select for soft error). * * Do not wake up user since there currently is no mechanism for * reporting soft errors (yet - a kqueue filter may be added). */ static struct inpcb * tcp_notify(struct inpcb *inp, int error) { struct tcpcb *tp; INP_INFO_LOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return (inp); tp = intotcpcb(inp); KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); /* * Ignore some errors if we are hooked up. * If connection hasn't completed, has retransmitted several times, * and receives a second error, give up now. This is better * than waiting a long time to establish a connection that * can never complete. */ if (tp->t_state == TCPS_ESTABLISHED && (error == EHOSTUNREACH || error == ENETUNREACH || error == EHOSTDOWN)) { if (inp->inp_route.ro_rt) { RTFREE(inp->inp_route.ro_rt); inp->inp_route.ro_rt = (struct rtentry *)NULL; } return (inp); } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && tp->t_softerror) { tp = tcp_drop(tp, error); if (tp != NULL) return (inp); else return (NULL); } else { tp->t_softerror = error; return (inp); } #if 0 wakeup( &so->so_timeo); sorwakeup(so); sowwakeup(so); #endif } static int tcp_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, m, n, pcb_count; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == NULL) { n = V_tcbinfo.ipi_count + counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); return (0); } if (req->newptr != NULL) return (EPERM); /* * OK, now we're committed to doing something. */ INP_LIST_RLOCK(&V_tcbinfo); gencnt = V_tcbinfo.ipi_gencnt; n = V_tcbinfo.ipi_count; INP_LIST_RUNLOCK(&V_tcbinfo); m = counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) + (n + m) * sizeof(struct xtcpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n + m; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); error = syncache_pcblist(req, m, &pcb_count); if (error) return (error); inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); INP_INFO_WLOCK(&V_tcbinfo); for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt) { /* * XXX: This use of cr_cansee(), introduced with * TCP state changes, is not quite right, but for * now, better than nothing. */ if (inp->inp_flags & INP_TIMEWAIT) { if (intotw(inp) != NULL) error = cr_cansee(req->td->td_ucred, intotw(inp)->tw_cred); else error = EINVAL; /* Skip this inp. */ } else error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) { in_pcbref(inp); inp_list[i++] = inp; } } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xtcpcb xt; void *inp_ppcb; bzero(&xt, sizeof(xt)); xt.xt_len = sizeof xt; /* XXX should avoid extra copy */ bcopy(inp, &xt.xt_inp, sizeof *inp); inp_ppcb = inp->inp_ppcb; if (inp_ppcb == NULL) bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); else if (inp->inp_flags & INP_TIMEWAIT) { bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); xt.xt_tp.t_state = TCPS_TIME_WAIT; } else { bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); if (xt.xt_tp.t_timers) tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); } if (inp->inp_socket != NULL) sotoxsocket(inp->inp_socket, &xt.xt_socket); else { bzero(&xt.xt_socket, sizeof xt.xt_socket); xt.xt_socket.xso_protocol = IPPROTO_TCP; } xt.xt_inp.inp_gencnt = inp->inp_gencnt; INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xt, sizeof xt); } else INP_RUNLOCK(inp); } INP_INFO_RLOCK(&V_tcbinfo); for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_RUNLOCK(&V_tcbinfo); if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ INP_LIST_RLOCK(&V_tcbinfo); xig.xig_gen = V_tcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_tcbinfo.ipi_count + pcb_count; INP_LIST_RUNLOCK(&V_tcbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); #ifdef INET static int tcp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct inpcb *inp; int error; error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); #endif /* INET */ #ifdef INET6 static int tcp6_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in6 addrs[2]; struct inpcb *inp; int error; #ifdef INET int mapped = 0; #endif error = priv_check(req->td, PRIV_NETINET_GETCRED); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { return (error); } if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { #ifdef INET if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) mapped = 1; else #endif return (EINVAL); } #ifdef INET if (mapped == 1) inp = in_pcblookup(&V_tcbinfo, *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], addrs[1].sin6_port, *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); else #endif inp = in6_pcblookup(&V_tcbinfo, &addrs[1].sin6_addr, addrs[1].sin6_port, &addrs[0].sin6_addr, addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); if (inp != NULL) { if (inp->inp_socket == NULL) error = ENOENT; if (error == 0) error = cr_canseeinpcb(req->td->td_ucred, inp); if (error == 0) cru2x(inp->inp_cred, &xuc); INP_RUNLOCK(inp); } else error = ENOENT; if (error == 0) error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); return (error); } SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); #endif /* INET6 */ #ifdef INET void tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct ip *ip = vip; struct tcphdr *th; struct in_addr faddr; struct inpcb *inp; struct tcpcb *tp; struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; struct icmp *icp; struct in_conninfo inc; tcp_seq icmp_tcp_seq; int mtu; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (cmd == PRC_MSGSIZE) notify = tcp_mtudisc_notify; else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) notify = tcp_drop_syn_sent; /* * Hostdead is ugly because it goes linearly through all PCBs. * XXX: We never get this from ICMP, otherwise it makes an * excellent DoS attack on machines with many connections. */ else if (cmd == PRC_HOSTDEAD) ip = NULL; else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) return; if (ip == NULL) { in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); return; } icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip)); th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); INP_INFO_RLOCK(&V_tcbinfo); inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL); if (inp != NULL && PRC_IS_REDIRECT(cmd)) { /* signal EHOSTDOWN, as it flushes the cached route */ inp = (*notify)(inp, EHOSTDOWN); if (inp != NULL) INP_WUNLOCK(inp); } else if (inp != NULL) { if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket == NULL)) { icmp_tcp_seq = ntohl(th->th_seq); tp = intotcpcb(inp); if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && SEQ_LT(icmp_tcp_seq, tp->snd_max)) { if (cmd == PRC_MSGSIZE) { /* * MTU discovery: * If we got a needfrag set the MTU * in the route to the suggested new * value (if given) and then notify. */ mtu = ntohs(icp->icmp_nextmtu); /* * If no alternative MTU was * proposed, try the next smaller * one. */ if (!mtu) mtu = ip_next_mtu( ntohs(ip->ip_len), 1); if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr)) mtu = V_tcp_minmss + sizeof(struct tcpiphdr); /* * Only process the offered MTU if it * is smaller than the current one. */ if (mtu < tp->t_maxseg + sizeof(struct tcpiphdr)) { bzero(&inc, sizeof(inc)); inc.inc_faddr = faddr; inc.inc_fibnum = inp->inp_inc.inc_fibnum; tcp_hc_updatemtu(&inc, mtu); tcp_mtudisc(inp, mtu); } } else inp = (*notify)(inp, inetctlerrmap[cmd]); } } if (inp != NULL) INP_WUNLOCK(inp); } else { bzero(&inc, sizeof(inc)); inc.inc_fport = th->th_dport; inc.inc_lport = th->th_sport; inc.inc_faddr = faddr; inc.inc_laddr = ip->ip_src; syncache_unreach(&inc, th); } INP_INFO_RUNLOCK(&V_tcbinfo); } #endif /* INET */ #ifdef INET6 void tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) { struct in6_addr *dst; struct tcphdr *th; struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; struct ip6_hdr *ip6; struct mbuf *m; struct inpcb *inp; struct tcpcb *tp; struct icmp6_hdr *icmp6; struct ip6ctlparam *ip6cp = NULL; const struct sockaddr_in6 *sa6_src = NULL; struct in_conninfo inc; tcp_seq icmp_tcp_seq; unsigned int mtu; unsigned int off; if (sa->sa_family != AF_INET6 || sa->sa_len != sizeof(struct sockaddr_in6)) return; /* if the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; icmp6 = ip6cp->ip6c_icmp6; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; sa6_src = ip6cp->ip6c_src; dst = ip6cp->ip6c_finaldst; } else { m = NULL; ip6 = NULL; off = 0; /* fool gcc */ sa6_src = &sa6_any; dst = NULL; } if (cmd == PRC_MSGSIZE) notify = tcp_mtudisc_notify; else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip6 != NULL) notify = tcp_drop_syn_sent; /* * Hostdead is ugly because it goes linearly through all PCBs. * XXX: We never get this from ICMP, otherwise it makes an * excellent DoS attack on machines with many connections. */ else if (cmd == PRC_HOSTDEAD) ip6 = NULL; else if ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0) return; if (ip6 == NULL) { in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify); return; } /* Check if we can safely get the ports from the tcp hdr */ if (m == NULL || (m->m_pkthdr.len < (int32_t) (off + offsetof(struct tcphdr, th_seq)))) { return; } th = (struct tcphdr *) mtodo(ip6cp->ip6c_m, ip6cp->ip6c_off); INP_INFO_RLOCK(&V_tcbinfo); inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, th->th_dport, &ip6->ip6_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL); if (inp != NULL && PRC_IS_REDIRECT(cmd)) { /* signal EHOSTDOWN, as it flushes the cached route */ inp = (*notify)(inp, EHOSTDOWN); if (inp != NULL) INP_WUNLOCK(inp); } else if (inp != NULL) { if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket == NULL)) { icmp_tcp_seq = ntohl(th->th_seq); tp = intotcpcb(inp); if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && SEQ_LT(icmp_tcp_seq, tp->snd_max)) { if (cmd == PRC_MSGSIZE) { /* * MTU discovery: * If we got a needfrag set the MTU * in the route to the suggested new * value (if given) and then notify. */ mtu = ntohl(icmp6->icmp6_mtu); /* * If no alternative MTU was * proposed, or the proposed * MTU was too small, set to * the min. */ if (mtu < IPV6_MMTU) mtu = IPV6_MMTU - 8; bzero(&inc, sizeof(inc)); inc.inc_fibnum = M_GETFIB(m); inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = *dst; if (in6_setscope(&inc.inc6_faddr, m->m_pkthdr.rcvif, NULL)) goto unlock_inp; /* * Only process the offered MTU if it * is smaller than the current one. */ if (mtu < tp->t_maxseg + (sizeof (*th) + sizeof (*ip6))) { tcp_hc_updatemtu(&inc, mtu); tcp_mtudisc(inp, mtu); ICMP6STAT_INC(icp6s_pmtuchg); } } else inp = (*notify)(inp, inet6ctlerrmap[cmd]); } } unlock_inp: if (inp != NULL) INP_WUNLOCK(inp); } else { bzero(&inc, sizeof(inc)); inc.inc_fibnum = M_GETFIB(m); inc.inc_flags |= INC_ISIPV6; inc.inc_fport = th->th_dport; inc.inc_lport = th->th_sport; inc.inc6_faddr = *dst; inc.inc6_laddr = ip6->ip6_src; syncache_unreach(&inc, th); } INP_INFO_RUNLOCK(&V_tcbinfo); } #endif /* INET6 */ /* * Following is where TCP initial sequence number generation occurs. * * There are two places where we must use initial sequence numbers: * 1. In SYN-ACK packets. * 2. In SYN packets. * * All ISNs for SYN-ACK packets are generated by the syncache. See * tcp_syncache.c for details. * * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling * depends on this property. In addition, these ISNs should be * unguessable so as to prevent connection hijacking. To satisfy * the requirements of this situation, the algorithm outlined in * RFC 1948 is used, with only small modifications. * * Implementation details: * * Time is based off the system timer, and is corrected so that it * increases by one megabyte per second. This allows for proper * recycling on high speed LANs while still leaving over an hour * before rollover. * * As reading the *exact* system time is too expensive to be done * whenever setting up a TCP connection, we increment the time * offset in two ways. First, a small random positive increment * is added to isn_offset for each connection that is set up. * Second, the function tcp_isn_tick fires once per clock tick * and increments isn_offset as necessary so that sequence numbers * are incremented at approximately ISN_BYTES_PER_SECOND. The * random positive increments serve only to ensure that the same * exact sequence number is never sent out twice (as could otherwise * happen when a port is recycled in less than the system tick * interval.) * * net.inet.tcp.isn_reseed_interval controls the number of seconds * between seeding of isn_secret. This is normally set to zero, * as reseeding should not be necessary. * * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In * general, this means holding an exclusive (write) lock. */ #define ISN_BYTES_PER_SECOND 1048576 #define ISN_STATIC_INCREMENT 4096 #define ISN_RANDOM_INCREMENT (4096 - 1) static VNET_DEFINE(u_char, isn_secret[32]); static VNET_DEFINE(int, isn_last); static VNET_DEFINE(int, isn_last_reseed); static VNET_DEFINE(u_int32_t, isn_offset); static VNET_DEFINE(u_int32_t, isn_offset_old); #define V_isn_secret VNET(isn_secret) #define V_isn_last VNET(isn_last) #define V_isn_last_reseed VNET(isn_last_reseed) #define V_isn_offset VNET(isn_offset) #define V_isn_offset_old VNET(isn_offset_old) tcp_seq tcp_new_isn(struct tcpcb *tp) { MD5_CTX isn_ctx; u_int32_t md5_buffer[4]; tcp_seq new_isn; u_int32_t projected_offset; INP_WLOCK_ASSERT(tp->t_inpcb); ISN_LOCK(); /* Seed if this is the first use, reseed if requested. */ if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) < (u_int)ticks))) { read_random(&V_isn_secret, sizeof(V_isn_secret)); V_isn_last_reseed = ticks; } /* Compute the md5 hash and return the ISN. */ MD5Init(&isn_ctx); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); #ifdef INET6 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, sizeof(struct in6_addr)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, sizeof(struct in6_addr)); } else #endif { MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, sizeof(struct in_addr)); MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, sizeof(struct in_addr)); } MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); MD5Final((u_char *) &md5_buffer, &isn_ctx); new_isn = (tcp_seq) md5_buffer[0]; V_isn_offset += ISN_STATIC_INCREMENT + (arc4random() & ISN_RANDOM_INCREMENT); if (ticks != V_isn_last) { projected_offset = V_isn_offset_old + ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); if (SEQ_GT(projected_offset, V_isn_offset)) V_isn_offset = projected_offset; V_isn_offset_old = V_isn_offset; V_isn_last = ticks; } new_isn += V_isn_offset; ISN_UNLOCK(); return (new_isn); } /* * When a specific ICMP unreachable message is received and the * connection state is SYN-SENT, drop the connection. This behavior * is controlled by the icmp_may_rst sysctl. */ struct inpcb * tcp_drop_syn_sent(struct inpcb *inp, int errno) { struct tcpcb *tp; INP_INFO_RLOCK_ASSERT(&V_tcbinfo); INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return (inp); tp = intotcpcb(inp); if (tp->t_state != TCPS_SYN_SENT) return (inp); tp = tcp_drop(tp, errno); if (tp != NULL) return (inp); else return (NULL); } /* * When `need fragmentation' ICMP is received, update our idea of the MSS * based on the new value. Also nudge TCP to send something, since we * know the packet we just sent was dropped. * This duplicates some code in the tcp_mss() function in tcp_input.c. */ static struct inpcb * tcp_mtudisc_notify(struct inpcb *inp, int error) { tcp_mtudisc(inp, -1); return (inp); } static void tcp_mtudisc(struct inpcb *inp, int mtuoffer) { struct tcpcb *tp; struct socket *so; INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) || (inp->inp_flags & INP_DROPPED)) return; tp = intotcpcb(inp); KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); so = inp->inp_socket; SOCKBUF_LOCK(&so->so_snd); /* If the mss is larger than the socket buffer, decrease the mss. */ if (so->so_snd.sb_hiwat < tp->t_maxseg) tp->t_maxseg = so->so_snd.sb_hiwat; SOCKBUF_UNLOCK(&so->so_snd); TCPSTAT_INC(tcps_mturesent); tp->t_rtttime = 0; tp->snd_nxt = tp->snd_una; tcp_free_sackholes(tp); tp->snd_recover = tp->snd_max; if (tp->t_flags & TF_SACK_PERMIT) EXIT_FASTRECOVERY(tp->t_flags); tp->t_fb->tfb_tcp_output(tp); } #ifdef INET /* * Look-up the routing entry to the peer of this inpcb. If no route * is found and it cannot be allocated, then return 0. This routine * is called by TCP routines that access the rmx structure and by * tcp_mss_update to get the peer/interface MTU. */ u_long tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) { struct nhop4_extended nh4; struct ifnet *ifp; u_long maxmtu = 0; KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); if (inc->inc_faddr.s_addr != INADDR_ANY) { if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr, NHR_REF, 0, &nh4) != 0) return (0); ifp = nh4.nh_ifp; maxmtu = nh4.nh_mtu; /* Report additional interface capabilities. */ if (cap != NULL) { if (ifp->if_capenable & IFCAP_TSO4 && ifp->if_hwassist & CSUM_TSO) { cap->ifcap |= CSUM_TSO; cap->tsomax = ifp->if_hw_tsomax; cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } fib4_free_nh_ext(inc->inc_fibnum, &nh4); } return (maxmtu); } #endif /* INET */ #ifdef INET6 u_long tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) { struct nhop6_extended nh6; struct in6_addr dst6; uint32_t scopeid; struct ifnet *ifp; u_long maxmtu = 0; KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0, 0, &nh6) != 0) return (0); ifp = nh6.nh_ifp; maxmtu = nh6.nh_mtu; /* Report additional interface capabilities. */ if (cap != NULL) { if (ifp->if_capenable & IFCAP_TSO6 && ifp->if_hwassist & CSUM_TSO) { cap->ifcap |= CSUM_TSO; cap->tsomax = ifp->if_hw_tsomax; cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } fib6_free_nh_ext(inc->inc_fibnum, &nh6); } return (maxmtu); } #endif /* INET6 */ /* * Calculate effective SMSS per RFC5681 definition for a given TCP * connection at its current state, taking into account SACK and etc. */ u_int tcp_maxseg(const struct tcpcb *tp) { u_int optlen; if (tp->t_flags & TF_NOOPT) return (tp->t_maxseg); /* * Here we have a simplified code from tcp_addoptions(), * without a proper loop, and having most of paddings hardcoded. * We might make mistakes with padding here in some edge cases, * but this is harmless, since result of tcp_maxseg() is used * only in cwnd and ssthresh estimations. */ #define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4) if (TCPS_HAVEESTABLISHED(tp->t_state)) { if (tp->t_flags & TF_RCVD_TSTMP) optlen = TCPOLEN_TSTAMP_APPA; else optlen = 0; #ifdef TCP_SIGNATURE if (tp->t_flags & TF_SIGNATURE) optlen += PAD(TCPOLEN_SIGNATURE); #endif if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { optlen += TCPOLEN_SACKHDR; optlen += tp->rcv_numsacks * TCPOLEN_SACK; optlen = PAD(optlen); } } else { if (tp->t_flags & TF_REQ_TSTMP) optlen = TCPOLEN_TSTAMP_APPA; else optlen = PAD(TCPOLEN_MAXSEG); if (tp->t_flags & TF_REQ_SCALE) optlen += PAD(TCPOLEN_WINDOW); #ifdef TCP_SIGNATURE if (tp->t_flags & TF_SIGNATURE) optlen += PAD(TCPOLEN_SIGNATURE); #endif if (tp->t_flags & TF_SACK_PERMIT) optlen += PAD(TCPOLEN_SACK_PERMITTED); } #undef PAD optlen = min(optlen, TCP_MAXOLEN); return (tp->t_maxseg - optlen); } #ifdef IPSEC /* compute ESP/AH header size for TCP, including outer IP header. */ size_t ipsec_hdrsiz_tcp(struct tcpcb *tp) { struct inpcb *inp; struct mbuf *m; size_t hdrsiz; struct ip *ip; #ifdef INET6 struct ip6_hdr *ip6; #endif struct tcphdr *th; if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) || (!key_havesp(IPSEC_DIR_OUTBOUND))) return (0); m = m_gethdr(M_NOWAIT, MT_DATA); if (!m) return (0); #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) { ip6 = mtod(m, struct ip6_hdr *); th = (struct tcphdr *)(ip6 + 1); m->m_pkthdr.len = m->m_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); tcpip_fillheaders(inp, ip6, th); hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); } else #endif /* INET6 */ { ip = mtod(m, struct ip *); th = (struct tcphdr *)(ip + 1); m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); tcpip_fillheaders(inp, ip, th); hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); } m_free(m); return (hdrsiz); } #endif /* IPSEC */ #ifdef TCP_SIGNATURE /* * Callback function invoked by m_apply() to digest TCP segment data * contained within an mbuf chain. */ static int tcp_signature_apply(void *fstate, void *data, u_int len) { MD5Update(fstate, (u_char *)data, len); return (0); } /* * XXX The key is retrieved from the system's PF_KEY SADB, by keying a * search with the destination IP address, and a 'magic SPI' to be * determined by the application. This is hardcoded elsewhere to 1179 */ struct secasvar * tcp_get_sav(struct mbuf *m, u_int direction) { union sockaddr_union dst; struct secasvar *sav; struct ip *ip; #ifdef INET6 struct ip6_hdr *ip6; char ip6buf[INET6_ADDRSTRLEN]; #endif /* Extract the destination from the IP header in the mbuf. */ bzero(&dst, sizeof(union sockaddr_union)); ip = mtod(m, struct ip *); #ifdef INET6 ip6 = NULL; /* Make the compiler happy. */ #endif switch (ip->ip_v) { #ifdef INET case IPVERSION: dst.sa.sa_len = sizeof(struct sockaddr_in); dst.sa.sa_family = AF_INET; dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? ip->ip_src : ip->ip_dst; break; #endif #ifdef INET6 case (IPV6_VERSION >> 4): ip6 = mtod(m, struct ip6_hdr *); dst.sa.sa_len = sizeof(struct sockaddr_in6); dst.sa.sa_family = AF_INET6; dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? ip6->ip6_src : ip6->ip6_dst; break; #endif default: return (NULL); /* NOTREACHED */ break; } /* Look up an SADB entry which matches the address of the peer. */ sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); if (sav == NULL) { ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : #ifdef INET6 (ip->ip_v == (IPV6_VERSION >> 4)) ? ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : #endif "(unsupported)")); } return (sav); } /* * Compute TCP-MD5 hash of a TCP segment. (RFC2385) * * Parameters: * m pointer to head of mbuf chain * len length of TCP segment data, excluding options * optlen length of TCP segment options * buf pointer to storage for computed MD5 digest * sav pointer to security assosiation * * We do this over ip, tcphdr, segment data, and the key in the SADB. * When called from tcp_input(), we can be sure that th_sum has been * zeroed out and verified already. * * Releases reference to SADB key before return. * * Return 0 if successful, otherwise return -1. * */ int tcp_signature_do_compute(struct mbuf *m, int len, int optlen, u_char *buf, struct secasvar *sav) { #ifdef INET struct ippseudo ippseudo; #endif MD5_CTX ctx; int doff; struct ip *ip; #ifdef INET struct ipovly *ipovly; #endif struct tcphdr *th; #ifdef INET6 struct ip6_hdr *ip6; struct in6_addr in6; uint32_t plen; uint16_t nhdr; #endif u_short savecsum; KASSERT(m != NULL, ("NULL mbuf chain")); KASSERT(buf != NULL, ("NULL signature pointer")); /* Extract the destination from the IP header in the mbuf. */ ip = mtod(m, struct ip *); #ifdef INET6 ip6 = NULL; /* Make the compiler happy. */ #endif MD5Init(&ctx); /* * Step 1: Update MD5 hash with IP(v6) pseudo-header. * * XXX The ippseudo header MUST be digested in network byte order, * or else we'll fail the regression test. Assume all fields we've * been doing arithmetic on have been in host byte order. * XXX One cannot depend on ipovly->ih_len here. When called from * tcp_output(), the underlying ip_len member has not yet been set. */ switch (ip->ip_v) { #ifdef INET case IPVERSION: ipovly = (struct ipovly *)ip; ippseudo.ippseudo_src = ipovly->ih_src; ippseudo.ippseudo_dst = ipovly->ih_dst; ippseudo.ippseudo_pad = 0; ippseudo.ippseudo_p = IPPROTO_TCP; ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen); MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; break; #endif #ifdef INET6 /* * RFC 2385, 2.0 Proposal * For IPv6, the pseudo-header is as described in RFC 2460, namely the * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- * extended next header value (to form 32 bits), and 32-bit segment * length. * Note: Upper-Layer Packet Length comes before Next Header. */ case (IPV6_VERSION >> 4): in6 = ip6->ip6_src; in6_clearscope(&in6); MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); in6 = ip6->ip6_dst; in6_clearscope(&in6); MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); plen = htonl(len + sizeof(struct tcphdr) + optlen); MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); nhdr = 0; MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); nhdr = IPPROTO_TCP; MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; break; #endif default: KEY_FREESAV(&sav); return (-1); /* NOTREACHED */ break; } /* * Step 2: Update MD5 hash with TCP header, excluding options. * The TCP checksum must be set to zero. */ savecsum = th->th_sum; th->th_sum = 0; MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); th->th_sum = savecsum; /* * Step 3: Update MD5 hash with TCP segment data. * Use m_apply() to avoid an early m_pullup(). */ if (len > 0) m_apply(m, doff, len, tcp_signature_apply, &ctx); /* * Step 4: Update MD5 hash with shared secret. */ MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); MD5Final(buf, &ctx); key_sa_recordxfer(sav, m); KEY_FREESAV(&sav); return (0); } /* * Compute TCP-MD5 hash of a TCP segment. (RFC2385) * * Return 0 if successful, otherwise return -1. */ int tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, u_char *buf, u_int direction) { struct secasvar *sav; if ((sav = tcp_get_sav(m, direction)) == NULL) return (-1); return (tcp_signature_do_compute(m, len, optlen, buf, sav)); } /* * Verify the TCP-MD5 hash of a TCP segment. (RFC2385) * * Parameters: * m pointer to head of mbuf chain * len length of TCP segment data, excluding options * optlen length of TCP segment options * buf pointer to storage for computed MD5 digest * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) * * Return 1 if successful, otherwise return 0. */ int tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen, struct tcpopt *to, struct tcphdr *th, u_int tcpbflag) { char tmpdigest[TCP_SIGLEN]; if (tcp_sig_checksigs == 0) return (1); if ((tcpbflag & TF_SIGNATURE) == 0) { if ((to->to_flags & TOF_SIGNATURE) != 0) { /* * If this socket is not expecting signature but * the segment contains signature just fail. */ TCPSTAT_INC(tcps_sig_err_sigopt); TCPSTAT_INC(tcps_sig_rcvbadsig); return (0); } /* Signature is not expected, and not present in segment. */ return (1); } /* * If this socket is expecting signature but the segment does not * contain any just fail. */ if ((to->to_flags & TOF_SIGNATURE) == 0) { TCPSTAT_INC(tcps_sig_err_nosigopt); TCPSTAT_INC(tcps_sig_rcvbadsig); return (0); } if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0], IPSEC_DIR_INBOUND) == -1) { TCPSTAT_INC(tcps_sig_err_buildsig); TCPSTAT_INC(tcps_sig_rcvbadsig); return (0); } if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) { TCPSTAT_INC(tcps_sig_rcvbadsig); return (0); } TCPSTAT_INC(tcps_sig_rcvgoodsig); return (1); } #endif /* TCP_SIGNATURE */ static int sysctl_drop(SYSCTL_HANDLER_ARGS) { /* addrs[0] is a foreign socket, addrs[1] is a local one. */ struct sockaddr_storage addrs[2]; struct inpcb *inp; struct tcpcb *tp; struct tcptw *tw; struct sockaddr_in *fin, *lin; #ifdef INET6 struct sockaddr_in6 *fin6, *lin6; #endif int error; inp = NULL; fin = lin = NULL; #ifdef INET6 fin6 = lin6 = NULL; #endif error = 0; if (req->oldptr != NULL || req->oldlen != 0) return (EINVAL); if (req->newptr == NULL) return (EPERM); if (req->newlen < sizeof(addrs)) return (ENOMEM); error = SYSCTL_IN(req, &addrs, sizeof(addrs)); if (error) return (error); switch (addrs[0].ss_family) { #ifdef INET6 case AF_INET6: fin6 = (struct sockaddr_in6 *)&addrs[0]; lin6 = (struct sockaddr_in6 *)&addrs[1]; if (fin6->sin6_len != sizeof(struct sockaddr_in6) || lin6->sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) return (EINVAL); in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); fin = (struct sockaddr_in *)&addrs[0]; lin = (struct sockaddr_in *)&addrs[1]; break; } error = sa6_embedscope(fin6, V_ip6_use_defzone); if (error) return (error); error = sa6_embedscope(lin6, V_ip6_use_defzone); if (error) return (error); break; #endif #ifdef INET case AF_INET: fin = (struct sockaddr_in *)&addrs[0]; lin = (struct sockaddr_in *)&addrs[1]; if (fin->sin_len != sizeof(struct sockaddr_in) || lin->sin_len != sizeof(struct sockaddr_in)) return (EINVAL); break; #endif default: return (EINVAL); } INP_INFO_RLOCK(&V_tcbinfo); switch (addrs[0].ss_family) { #ifdef INET6 case AF_INET6: inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, INPLOOKUP_WLOCKPCB, NULL); break; #endif #ifdef INET case AF_INET: inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); break; #endif } if (inp != NULL) { if (inp->inp_flags & INP_TIMEWAIT) { /* * XXXRW: There currently exists a state where an * inpcb is present, but its timewait state has been * discarded. For now, don't allow dropping of this * type of inpcb. */ tw = intotw(inp); if (tw != NULL) tcp_twclose(tw, 0); else INP_WUNLOCK(inp); } else if (!(inp->inp_flags & INP_DROPPED) && !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { tp = intotcpcb(inp); tp = tcp_drop(tp, ECONNABORTED); if (tp != NULL) INP_WUNLOCK(inp); } else INP_WUNLOCK(inp); } else error = ESRCH; INP_INFO_RUNLOCK(&V_tcbinfo); return (error); } SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL, 0, sysctl_drop, "", "Drop TCP connection"); /* * Generate a standardized TCP log line for use throughout the * tcp subsystem. Memory allocation is done with M_NOWAIT to * allow use in the interrupt context. * * NB: The caller MUST free(s, M_TCPLOG) the returned string. * NB: The function may return NULL if memory allocation failed. * * Due to header inclusion and ordering limitations the struct ip * and ip6_hdr pointers have to be passed as void pointers. */ char * tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { /* Is logging enabled? */ if (tcp_log_in_vain == 0) return (NULL); return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); } char * tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { /* Is logging enabled? */ if (tcp_log_debug == 0) return (NULL); return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); } static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, const void *ip6hdr) { char *s, *sp; size_t size; struct ip *ip; #ifdef INET6 const struct ip6_hdr *ip6; ip6 = (const struct ip6_hdr *)ip6hdr; #endif /* INET6 */ ip = (struct ip *)ip4hdr; /* * The log line looks like this: * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2" */ size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + sizeof(PRINT_TH_FLAGS) + 1 + #ifdef INET6 2 * INET6_ADDRSTRLEN; #else 2 * INET_ADDRSTRLEN; #endif /* INET6 */ s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); if (s == NULL) return (NULL); strcat(s, "TCP: ["); sp = s + strlen(s); if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { inet_ntoa_r(inc->inc_faddr, sp); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); sp = s + strlen(s); inet_ntoa_r(inc->inc_laddr, sp); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(inc->inc_lport)); #ifdef INET6 } else if (inc) { ip6_sprintf(sp, &inc->inc6_faddr); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); sp = s + strlen(s); ip6_sprintf(sp, &inc->inc6_laddr); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(inc->inc_lport)); } else if (ip6 && th) { ip6_sprintf(sp, &ip6->ip6_src); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(th->th_sport)); sp = s + strlen(s); ip6_sprintf(sp, &ip6->ip6_dst); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(th->th_dport)); #endif /* INET6 */ #ifdef INET } else if (ip && th) { inet_ntoa_r(ip->ip_src, sp); sp = s + strlen(s); sprintf(sp, "]:%i to [", ntohs(th->th_sport)); sp = s + strlen(s); inet_ntoa_r(ip->ip_dst, sp); sp = s + strlen(s); sprintf(sp, "]:%i", ntohs(th->th_dport)); #endif /* INET */ } else { free(s, M_TCPLOG); return (NULL); } sp = s + strlen(s); if (th) sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); if (*(s + size - 1) != '\0') panic("%s: string too long", __func__); return (s); } /* * A subroutine which makes it easy to track TCP state changes with DTrace. * This function shouldn't be called for t_state initializations that don't * correspond to actual TCP state transitions. */ void tcp_state_change(struct tcpcb *tp, int newstate) { #if defined(KDTRACE_HOOKS) int pstate = tp->t_state; #endif TCPSTATES_DEC(tp->t_state); TCPSTATES_INC(newstate); tp->t_state = newstate; TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); }