/*- * Copyright (c) 2016-2020 Netflix, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _NETINET_TCP_RACK_H_ #define _NETINET_TCP_RACK_H_ #define RACK_ACKED 0x0001/* The remote endpoint acked this */ #define RACK_TO_REXT 0x0002/* A timeout occured on this sendmap entry */ #define RACK_DEFERRED 0x0004/* We can't use this for RTT calc - not used */ #define RACK_OVERMAX 0x0008/* We have more retran's then we can fit */ #define RACK_SACK_PASSED 0x0010/* A sack was done above this block */ #define RACK_WAS_SACKPASS 0x0020/* We retransmitted due to SACK pass */ #define RACK_HAS_FIN 0x0040/* segment is sent with fin */ #define RACK_TLP 0x0080/* segment sent as tail-loss-probe */ #define RACK_RWND_COLLAPSED 0x0100/* The peer collapsed the rwnd on the segment */ #define RACK_APP_LIMITED 0x0200/* We went app limited after this send */ #define RACK_WAS_ACKED 0x0400/* a RTO undid the ack, but it already had a rtt calc done */ #define RACK_HAS_SYN 0x0800/* SYN is on this guy */ #define RACK_SENT_W_DSACK 0x1000/* Sent with a dsack */ #define RACK_SENT_SP 0x2000/* sent in slow path */ #define RACK_SENT_FP 0x4000/* sent in fast path */ #define RACK_HAD_PUSH 0x8000/* Push was sent on original send */ #define RACK_NUM_OF_RETRANS 3 #define RACK_INITIAL_RTO 1000000 /* 1 second in microseconds */ #define RACK_REQ_AVG 3 /* Must be less than 256 */ struct rack_sendmap { TAILQ_ENTRY(rack_sendmap) r_tnext; /* Time of transmit based next */ uint32_t r_start; /* Sequence number of the segment */ uint32_t r_end; /* End seq, this is 1 beyond actually */ uint32_t r_rtr_bytes; /* How many bytes have been retransmitted */ uint16_t r_rtr_cnt; /* Retran count, index this -1 to get time * sent */ uint16_t r_flags; /* Flags as defined above */ struct mbuf *m; uint32_t soff; uint32_t orig_m_len; uint32_t r_nseq_appl; /* If this one is app limited, this is the nxt seq limited */ uint8_t r_dupack; /* Dup ack count */ uint8_t r_in_tmap; /* Flag to see if its in the r_tnext array */ uint8_t r_limit_type; /* is this entry counted against a limit? */ uint8_t r_just_ret : 1, /* After sending, the next pkt was just returned, i.e. limited */ r_one_out_nr : 1, /* Special case 1 outstanding and not in recovery */ r_no_rtt_allowed : 1, /* No rtt measurement allowed */ r_hw_tls : 1, r_avail : 4; uint64_t r_tim_lastsent[RACK_NUM_OF_RETRANS]; uint64_t r_ack_arrival; /* This is the time of ack-arrival (if SACK'd) */ RB_ENTRY(rack_sendmap) r_next; /* RB Tree next */ }; struct deferred_opt_list { TAILQ_ENTRY(deferred_opt_list) next; int optname; uint64_t optval; }; /* * Timestamps in the rack sendmap are now moving to be * uint64_t's. This means that if you want a uint32_t * usec timestamp (the old usecond timestamp) you simply have * to cast it to uint32_t. The reason we do this is not for * wrap, but we need to get back, at times, to the millisecond * timestamp that is used in the TSTMP option. To do this we * can use the rack_ts_to_msec() inline below which can take * the 64bit ts and make into the correct timestamp millisecond * wise. Thats not possible with the 32bit usecond timestamp since * the seconds wrap too quickly to cover all bases. * * There are quite a few places in rack where I simply cast * back to uint32_t and then end up using the TSTMP_XX() * macros. This is ok, but we could do simple compares if * we ever decided to move all of those variables to 64 bits * as well. */ inline uint64_t rack_to_usec_ts(struct timeval *tv) { return ((tv->tv_sec * HPTS_USEC_IN_SEC) + tv->tv_usec); } inline uint32_t rack_ts_to_msec(uint64_t ts) { return((uint32_t)(ts / HPTS_MSEC_IN_SEC)); } RB_HEAD(rack_rb_tree_head, rack_sendmap); TAILQ_HEAD(rack_head, rack_sendmap); TAILQ_HEAD(def_opt_head, deferred_opt_list); /* Map change logging */ #define MAP_MERGE 0x01 #define MAP_SPLIT 0x02 #define MAP_NEW 0x03 #define MAP_SACK_M1 0x04 #define MAP_SACK_M2 0x05 #define MAP_SACK_M3 0x06 #define MAP_SACK_M4 0x07 #define MAP_SACK_M5 0x08 #define MAP_FREE 0x09 #define MAP_TRIM_HEAD 0x0a #define RACK_LIMIT_TYPE_SPLIT 1 /* * We use the rate sample structure to * assist in single sack/ack rate and rtt * calculation. In the future we will expand * this in BBR to do forward rate sample * b/w estimation. */ #define RACK_RTT_EMPTY 0x00000001 /* Nothing yet stored in RTT's */ #define RACK_RTT_VALID 0x00000002 /* We have at least one valid RTT */ struct rack_rtt_sample { uint32_t rs_flags; uint32_t rs_rtt_lowest; uint32_t rs_rtt_highest; uint32_t rs_rtt_cnt; uint32_t rs_us_rtt; int32_t confidence; uint64_t rs_rtt_tot; uint16_t rs_us_rtrcnt; }; #define RACK_LOG_TYPE_ACK 0x01 #define RACK_LOG_TYPE_OUT 0x02 #define RACK_LOG_TYPE_TO 0x03 #define RACK_LOG_TYPE_ALLOC 0x04 #define RACK_LOG_TYPE_FREE 0x05 struct rack_log { union { struct rack_sendmap *rsm; /* For alloc/free */ uint64_t sb_acc;/* For out/ack or t-o */ }; uint32_t th_seq; uint32_t th_ack; uint32_t snd_una; uint32_t snd_nxt; /* th_win for TYPE_ACK */ uint32_t snd_max; uint32_t blk_start[4]; uint32_t blk_end[4]; uint8_t type; uint8_t n_sackblks; uint16_t len; /* Timeout T3=1, TLP=2, RACK=3 */ }; /* * Magic numbers for logging timeout events if the * logging is enabled. */ #define RACK_TO_FRM_TMR 1 #define RACK_TO_FRM_TLP 2 #define RACK_TO_FRM_RACK 3 #define RACK_TO_FRM_KEEP 4 #define RACK_TO_FRM_PERSIST 5 #define RACK_TO_FRM_DELACK 6 struct rack_opts_stats { uint64_t tcp_rack_tlp_reduce; uint64_t tcp_rack_pace_always; uint64_t tcp_rack_pace_reduce; uint64_t tcp_rack_max_seg; uint64_t tcp_rack_prr_sendalot; uint64_t tcp_rack_min_to; uint64_t tcp_rack_early_seg; uint64_t tcp_rack_reord_thresh; uint64_t tcp_rack_reord_fade; uint64_t tcp_rack_tlp_thresh; uint64_t tcp_rack_pkt_delay; uint64_t tcp_rack_tlp_inc_var; uint64_t tcp_tlp_use; uint64_t tcp_rack_idle_reduce; uint64_t tcp_rack_idle_reduce_high; uint64_t rack_no_timer_in_hpts; uint64_t tcp_rack_min_pace_seg; uint64_t tcp_rack_pace_rate_ca; uint64_t tcp_rack_rr; uint64_t tcp_rack_do_detection; uint64_t tcp_rack_rrr_no_conf_rate; uint64_t tcp_initial_rate; uint64_t tcp_initial_win; uint64_t tcp_hdwr_pacing; uint64_t tcp_gp_inc_ss; uint64_t tcp_gp_inc_ca; uint64_t tcp_gp_inc_rec; uint64_t tcp_rack_force_max_seg; uint64_t tcp_rack_pace_rate_ss; uint64_t tcp_rack_pace_rate_rec; /* Temp counters for dsack */ uint64_t tcp_sack_path_1; uint64_t tcp_sack_path_2a; uint64_t tcp_sack_path_2b; uint64_t tcp_sack_path_3; uint64_t tcp_sack_path_4; /* non temp counters */ uint64_t tcp_rack_scwnd; uint64_t tcp_rack_noprr; uint64_t tcp_rack_cfg_rate; uint64_t tcp_timely_dyn; uint64_t tcp_rack_mbufq; uint64_t tcp_fillcw; uint64_t tcp_npush; uint64_t tcp_lscwnd; uint64_t tcp_profile; uint64_t tcp_hdwr_rate_cap; uint64_t tcp_pacing_rate_cap; uint64_t tcp_pacing_up_only; uint64_t tcp_use_cmp_acks; uint64_t tcp_rack_abc_val; uint64_t tcp_rec_abc_val; uint64_t tcp_rack_measure_cnt; uint64_t tcp_rack_delayed_ack; uint64_t tcp_rack_rtt_use; uint64_t tcp_data_after_close; uint64_t tcp_defer_opt; uint64_t tcp_rack_fastrsm_hack; uint64_t tcp_rack_beta; uint64_t tcp_rack_beta_ecn; uint64_t tcp_rack_timer_slop; }; /* RTT shrink reasons */ #define RACK_RTTS_INIT 0 #define RACK_RTTS_NEWRTT 1 #define RACK_RTTS_EXITPROBE 2 #define RACK_RTTS_ENTERPROBE 3 #define RACK_RTTS_REACHTARGET 4 #define RACK_RTTS_SEEHBP 5 #define RACK_RTTS_NOBACKOFF 6 #define RACK_RTTS_SAFETY 7 #define RACK_USE_BEG 1 #define RACK_USE_END 2 #define RACK_USE_END_OR_THACK 3 #define TLP_USE_ID 1 /* Internet draft behavior */ #define TLP_USE_TWO_ONE 2 /* Use 2.1 behavior */ #define TLP_USE_TWO_TWO 3 /* Use 2.2 behavior */ #define RACK_MIN_BW 8000 /* 64kbps in Bps */ #define MIN_GP_WIN 6 /* We need at least 6 MSS in a GP measurement */ #ifdef _KERNEL #define RACK_OPTS_SIZE (sizeof(struct rack_opts_stats)/sizeof(uint64_t)) extern counter_u64_t rack_opts_arry[RACK_OPTS_SIZE]; #define RACK_OPTS_ADD(name, amm) counter_u64_add(rack_opts_arry[(offsetof(struct rack_opts_stats, name)/sizeof(uint64_t))], (amm)) #define RACK_OPTS_INC(name) RACK_OPTS_ADD(name, 1) #endif /* * As we get each SACK we wade through the * rc_map and mark off what is acked. * We also increment rc_sacked as well. * * We also pay attention to missing entries * based on the time and possibly mark them * for retransmit. If we do and we are not already * in recovery we enter recovery. In doing * so we claer prr_delivered/holes_rxt and prr_sent_dur_rec. * We also setup rc_next/rc_snd_nxt/rc_send_end so * we will know where to send from. When not in * recovery rc_next will be NULL and rc_snd_nxt should * equal snd_max. * * Whenever we retransmit from recovery we increment * rc_holes_rxt as we retran a block and mark it as retransmitted * with the time it was sent. During non-recovery sending we * add to our map and note the time down of any send expanding * the rc_map at the tail and moving rc_snd_nxt up with snd_max. * * In recovery during SACK/ACK processing if a chunk has * been retransmitted and it is now acked, we decrement rc_holes_rxt. * When we retransmit from the scoreboard we use * rc_next and rc_snd_nxt/rc_send_end to help us * find what needs to be retran. * * To calculate pipe we simply take (snd_max - snd_una) + rc_holes_rxt * This gets us the effect of RFC6675 pipe, counting twice for * bytes retransmitted. */ #define TT_RACK_FR_TMR 0x2000 /* * Locking for the rack control block. * a) Locked by INP_WLOCK * b) Locked by the hpts-mutex * */ #define RACK_GP_HIST 4 /* How much goodput history do we maintain? */ #define RACK_NUM_FSB_DEBUG 16 struct rack_fast_send_blk { uint32_t left_to_send; uint16_t tcp_ip_hdr_len; uint8_t tcp_flags; uint8_t hoplimit; uint8_t *tcp_ip_hdr; uint32_t recwin; uint32_t off; struct tcphdr *th; struct udphdr *udp; struct mbuf *m; uint32_t o_m_len; uint32_t rfo_apply_push : 1, hw_tls : 1, unused : 30; }; struct rack_control { /* Second cache line 0x40 from tcp_rack */ struct rack_rb_tree_head rc_mtree; /* Tree of all segments Lock(a) */ struct rack_head rc_tmap; /* List in transmit order Lock(a) */ struct rack_sendmap *rc_tlpsend; /* Remembered place for * tlp_sending Lock(a) */ struct rack_sendmap *rc_resend; /* something we have been asked to * resend */ struct rack_fast_send_blk fsb; /* The fast-send block */ uint32_t timer_slop; uint32_t input_pkt; uint32_t saved_input_pkt; uint32_t rc_hpts_flags; uint32_t rc_fixed_pacing_rate_ca; uint32_t rc_fixed_pacing_rate_rec; uint32_t rc_fixed_pacing_rate_ss; uint32_t cwnd_to_use; /* The cwnd in use */ uint32_t rc_timer_exp; /* If a timer ticks of expiry */ uint32_t rc_rack_min_rtt; /* lowest RTT seen Lock(a) */ uint32_t rc_rack_largest_cwnd; /* Largest CWND we have seen Lock(a) */ /* Third Cache line 0x80 */ struct rack_head rc_free; /* Allocation array */ uint64_t last_hw_bw_req; uint64_t crte_prev_rate; uint64_t bw_rate_cap; uint32_t rc_time_last_sent; /* Time we last sent some data and * logged it Lock(a). */ uint32_t rc_reorder_ts; /* Last time we saw reordering Lock(a) */ uint32_t rc_tlp_new_data; /* we need to send new-data on a TLP * Lock(a) */ uint32_t rc_prr_out; /* bytes sent during recovery Lock(a) */ uint32_t rc_prr_recovery_fs; /* recovery fs point Lock(a) */ uint32_t rc_prr_sndcnt; /* Prr sndcnt Lock(a) */ uint32_t rc_sacked; /* Tot sacked on scoreboard Lock(a) */ uint32_t xxx_rc_last_tlp_seq; /* Last tlp sequence Lock(a) */ uint32_t rc_prr_delivered; /* during recovery prr var Lock(a) */ uint16_t rc_tlp_cnt_out; /* count of times we have sent a TLP without new data */ uint16_t xxx_rc_tlp_seg_send_cnt; /* Number of times we have TLP sent * rc_last_tlp_seq Lock(a) */ uint32_t rc_loss_count; /* How many bytes have been retransmitted * Lock(a) */ uint32_t rc_reorder_fade; /* Socket option value Lock(a) */ /* Forth cache line 0xc0 */ /* Times */ uint32_t rc_rack_tmit_time; /* Rack transmit time Lock(a) */ uint32_t rc_holes_rxt; /* Tot retraned from scoreboard Lock(a) */ /* Variables to track bad retransmits and recover */ uint32_t rc_rsm_start; /* RSM seq number we retransmitted Lock(a) */ uint32_t rc_cwnd_at; /* cwnd at the retransmit Lock(a) */ uint32_t rc_ssthresh_at;/* ssthresh at the retransmit Lock(a) */ uint32_t rc_num_maps_alloced; /* Number of map blocks (sacks) we * have allocated */ uint32_t rc_rcvtime; /* When we last received data */ uint32_t rc_num_split_allocs; /* num split map entries allocated */ uint32_t rc_last_output_to; uint32_t rc_went_idle_time; struct rack_sendmap *rc_sacklast; /* sack remembered place * Lock(a) */ struct rack_sendmap *rc_rsm_at_retran; /* Debug variable kept for * cache line alignment * Lock(a) */ struct rack_sendmap *rc_first_appl; /* Pointer to first app limited */ struct rack_sendmap *rc_end_appl; /* Pointer to last app limited */ /* Cache line split 0x100 */ struct sack_filter rack_sf; /* Cache line split 0x140 */ /* Flags for various things */ uint32_t last_pacing_time; uint32_t rc_pace_max_segs; uint32_t rc_pace_min_segs; uint32_t rc_app_limited_cnt; uint16_t rack_per_of_gp_ss; /* 100 = 100%, so from 65536 = 655 x bw */ uint16_t rack_per_of_gp_ca; /* 100 = 100%, so from 65536 = 655 x bw */ uint16_t rack_per_of_gp_rec; /* 100 = 100%, so from 65536 = 655 x bw, 0=off */ uint16_t rack_per_of_gp_probertt; /* 100 = 100%, so from 65536 = 655 x bw, 0=off */ uint32_t rc_high_rwnd; uint32_t ack_count; uint32_t sack_count; uint32_t sack_noextra_move; uint32_t sack_moved_extra; struct rack_rtt_sample rack_rs; const struct tcp_hwrate_limit_table *crte; uint32_t rc_agg_early; uint32_t rc_agg_delayed; uint32_t rc_tlp_rxt_last_time; uint32_t rc_saved_cwnd; uint64_t rc_gp_output_ts; /* chg*/ uint64_t rc_gp_cumack_ts; /* chg*/ struct timeval act_rcv_time; struct timeval rc_last_time_decay; /* SAD time decay happened here */ uint64_t gp_bw; uint64_t init_rate; #ifdef NETFLIX_SHARED_CWND struct shared_cwnd *rc_scw; #endif uint64_t last_gp_comp_bw; uint64_t last_max_bw; /* Our calculated max b/w last */ struct time_filter_small rc_gp_min_rtt; struct def_opt_head opt_list; int32_t rc_rtt_diff; /* Timely style rtt diff of our gp_srtt */ uint32_t rc_gp_srtt; /* Current GP srtt */ uint32_t rc_prev_gp_srtt; /* Previous RTT */ uint32_t rc_entry_gp_rtt; /* Entry to PRTT gp-rtt */ uint32_t rc_loss_at_start; /* At measurement window where was our lost value */ uint32_t forced_ack_ts; uint32_t rc_lower_rtt_us_cts; /* Time our GP rtt was last lowered */ uint32_t rc_time_probertt_entered; uint32_t rc_time_probertt_starts; uint32_t rc_lowest_us_rtt; uint32_t rc_highest_us_rtt; uint32_t rc_last_us_rtt; uint32_t rc_time_of_last_probertt; uint32_t rc_target_probertt_flight; uint32_t rc_probertt_sndmax_atexit; /* Highest sent to in probe-rtt */ uint32_t rc_cwnd_at_erec; uint32_t rc_ssthresh_at_erec; uint32_t dsack_byte_cnt; uint32_t retran_during_recovery; uint32_t rc_gp_lowrtt; /* Lowest rtt seen during GPUT measurement */ uint32_t rc_gp_high_rwnd; /* Highest rwnd seen during GPUT measurement */ uint32_t rc_snd_max_at_rto; /* For non-sack when the RTO occured what was snd-max */ uint32_t rc_out_at_rto; int32_t rc_scw_index; uint32_t rc_tlp_threshold; /* Socket option value Lock(a) */ uint32_t rc_last_timeout_snduna; uint32_t challenge_ack_ts; uint32_t challenge_ack_cnt; uint32_t rc_min_to; /* Socket option value Lock(a) */ uint32_t rc_pkt_delay; /* Socket option value Lock(a) */ struct newreno rc_saved_beta; /* * For newreno cc: * rc_saved_cc are the values we have had * set by the user, if pacing is not happening * (i.e. its early and we have not turned on yet * or it was turned off). The minute pacing * is turned on we pull out the values currently * being used by newreno and replace them with * these values, then save off the old values here, * we also set the flag (if ecn_beta is set) to make * new_reno do less of a backoff for ecn (think abe). */ uint16_t rc_early_recovery_segs; /* Socket option value Lock(a) */ uint16_t rc_reorder_shift; /* Socket option value Lock(a) */ uint8_t rc_no_push_at_mrtt; /* No push when we exceed max rtt */ uint8_t num_measurements; /* Number of measurements (up to 0xff, we freeze at 0xff) */ uint8_t req_measurements; /* How many measurements are required? */ uint8_t rc_tlp_cwnd_reduce; /* Socket option value Lock(a) */ uint8_t rc_prr_sendalot;/* Socket option value Lock(a) */ uint8_t rc_rate_sample_method; uint8_t rc_gp_hist_idx; }; #define RACK_TIMELY_CNT_BOOST 5 /* At 5th increase boost */ #define RACK_MINRTT_FILTER_TIM 10 /* Seconds */ #ifdef _KERNEL struct tcp_rack { /* First cache line 0x00 */ TAILQ_ENTRY(tcp_rack) r_hpts; /* hptsi queue next Lock(b) */ int32_t(*r_substate) (struct mbuf *, struct tcphdr *, struct socket *, struct tcpcb *, struct tcpopt *, int32_t, int32_t, uint32_t, int, int, uint8_t); /* Lock(a) */ struct tcpcb *rc_tp; /* The tcpcb Lock(a) */ struct inpcb *rc_inp; /* The inpcb Lock(a) */ uint8_t rc_free_cnt; /* Number of free entries on the rc_free list * Lock(a) */ uint8_t client_bufferlvl; /* 0 - 5 normaly, less than or at 2 means its real low */ uint8_t no_prr_addback : 1, gp_ready : 1, defer_options: 1, fast_rsm_hack: 1, rc_ack_can_sendout_data: 1, /* * If set it will override pacing restrictions on not sending * data when the pacing timer is running. I.e. you set this * and an ACK will send data. Default is off and its only used * without pacing when we are doing 5G speed up for there * ack filtering. */ rc_pacing_cc_set: 1, /* * If we are pacing (pace_always=1) and we have reached the * point where we start pacing (fixed or gp has reached its * magic gp_ready state) this flag indicates we have set in * values to effect CC's backoff's. If pacing is turned off * then we must restore the values saved in rc_saved_beta, * if its going to gp_ready we need to copy the values into * the CC module and set our flags. * * Note this only happens if the cc name is newreno (CCALGONAME_NEWRENO). */ avail :2; uint8_t avail_bytes; uint32_t rc_rack_rtt; /* RACK-RTT Lock(a) */ uint16_t r_mbuf_queue : 1, /* Do we do mbuf queue for non-paced */ rtt_limit_mul : 4, /* muliply this by low rtt */ r_limit_scw : 1, r_must_retran : 1, /* For non-sack customers we hit an RTO and new data should be resends */ r_use_cmp_ack: 1, /* Do we use compressed acks */ r_ent_rec_ns: 1, /* We entered recovery and have not sent */ r_might_revert: 1, /* Flag to find out if we might need to revert */ r_fast_output: 1, /* Fast output is in progress we can skip the bulk of rack_output */ r_fsb_inited: 1, r_rack_hw_rate_caps: 1, r_up_only: 1, r_via_fill_cw : 1, r_fill_less_agg : 1; uint8_t rc_user_set_max_segs; /* Socket option value Lock(a) */ uint8_t rc_labc; /* Appropriate Byte Counting Value */ uint16_t forced_ack : 1, rc_gp_incr : 1, rc_gp_bwred : 1, rc_gp_timely_inc_cnt : 3, rc_gp_timely_dec_cnt : 3, r_use_labc_for_rec: 1, rc_highly_buffered: 1, /* The path is highly buffered */ rc_dragged_bottom: 1, rc_dack_mode : 1, /* Mac O/S emulation of d-ack */ rc_dack_toggle : 1, /* For Mac O/S emulation of d-ack */ pacing_longer_than_rtt : 1, rc_gp_filled : 1; uint8_t r_state; /* Current rack state Lock(a) */ uint8_t rc_tmr_stopped : 7, t_timers_stopped : 1; uint8_t rc_enobuf : 7, /* count of enobufs on connection provides */ rc_on_min_to : 1; uint8_t r_timer_override : 1, /* hpts override Lock(a) */ r_is_v6 : 1, /* V6 pcb Lock(a) */ rc_in_persist : 1, rc_tlp_in_progress : 1, rc_always_pace : 1, /* Socket option value Lock(a) */ rc_pace_to_cwnd : 1, rc_pace_fill_if_rttin_range : 1, rc_srtt_measure_made : 1; uint8_t app_limited_needs_set : 1, use_fixed_rate : 1, rc_has_collapsed : 1, r_rep_attack : 1, r_rep_reverse : 1, rack_hdrw_pacing : 1, /* We are doing Hardware pacing */ rack_hdw_pace_ena : 1, /* Is hardware pacing enabled? */ rack_attempt_hdwr_pace : 1; /* Did we attempt hdwr pacing (if allowed) */ uint8_t rack_tlp_threshold_use : 3, /* only 1, 2 and 3 used so far */ rack_rec_nonrxt_use_cr : 1, rack_enable_scwnd : 1, rack_attempted_scwnd : 1, rack_no_prr : 1, rack_scwnd_is_idle : 1; uint8_t rc_allow_data_af_clo: 1, delayed_ack : 1, set_pacing_done_a_iw : 1, use_rack_rr : 1, alloc_limit_reported : 1, sack_attack_disable : 1, do_detection : 1, rc_force_max_seg : 1; uint8_t rack_cwnd_limited : 1, r_early : 1, r_late : 1, r_running_early : 1, r_running_late : 1, r_wanted_output: 1, r_rr_config : 2; uint16_t rc_init_win : 8, rc_gp_rtt_set : 1, rc_gp_dyn_mul : 1, rc_gp_saw_rec : 1, rc_gp_saw_ca : 1, rc_gp_saw_ss : 1, rc_gp_no_rec_chg : 1, in_probe_rtt : 1, measure_saw_probe_rtt : 1; /* Cache line 2 0x40 */ struct rack_control r_ctl; } __aligned(CACHE_LINE_SIZE); #endif #endif