/*- * Copyright (c) 2016-9 * Netflix Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /** * Author: Randall Stewart * This work is based on the ACM Queue paper * BBR - Congestion Based Congestion Control * and also numerous discussions with Neal, Yuchung and Van. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_tcpdebug.h" #include "opt_ratelimit.h" #include "opt_kern_tls.h" #include #include #include #include #ifdef TCP_HHOOK #include #endif #include #include #include #include #include #ifdef KERN_TLS #include #endif #include #include #ifdef STATS #include #include #include /* Must come after qmath.h and tree.h */ #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES /* for logging */ #include #include #include #include #include /* required for icmp_var.h */ #include /* for ICMP_BANDLIM */ #include #include #include #include #define TCPOUTFLAGS #include #include #include #include #include #include #include #include #include #include #include #ifdef TCPDEBUG #include #endif /* TCPDEBUG */ #ifdef TCP_OFFLOAD #include #endif #ifdef INET6 #include #endif #include #include #include #include #include #if defined(IPSEC) || defined(IPSEC_SUPPORT) #include #include #endif /* IPSEC */ #include #include #include #ifdef MAC #include #endif #include "sack_filter.h" #include "tcp_bbr.h" #include "rack_bbr_common.h" uma_zone_t bbr_zone; uma_zone_t bbr_pcb_zone; struct sysctl_ctx_list bbr_sysctl_ctx; struct sysctl_oid *bbr_sysctl_root; #define TCPT_RANGESET_NOSLOP(tv, value, tvmin, tvmax) do { \ (tv) = (value); \ if ((u_long)(tv) < (u_long)(tvmin)) \ (tv) = (tvmin); \ if ((u_long)(tv) > (u_long)(tvmax)) \ (tv) = (tvmax); \ } while(0) /*#define BBR_INVARIANT 1*/ /* * initial window */ static uint32_t bbr_def_init_win = 10; static int32_t bbr_persist_min = 250000; /* 250ms */ static int32_t bbr_persist_max = 1000000; /* 1 Second */ static int32_t bbr_cwnd_may_shrink = 0; static int32_t bbr_cwndtarget_rtt_touse = BBR_RTT_PROP; static int32_t bbr_num_pktepo_for_del_limit = BBR_NUM_RTTS_FOR_DEL_LIMIT; static int32_t bbr_hardware_pacing_limit = 8000; static int32_t bbr_quanta = 3; /* How much extra quanta do we get? */ static int32_t bbr_no_retran = 0; static int32_t bbr_error_base_paceout = 10000; /* usec to pace */ static int32_t bbr_max_net_error_cnt = 10; /* Should the following be dynamic too -- loss wise */ static int32_t bbr_rtt_gain_thresh = 0; /* Measurement controls */ static int32_t bbr_use_google_algo = 1; static int32_t bbr_ts_limiting = 1; static int32_t bbr_ts_can_raise = 0; static int32_t bbr_do_red = 600; static int32_t bbr_red_scale = 20000; static int32_t bbr_red_mul = 1; static int32_t bbr_red_div = 2; static int32_t bbr_red_growth_restrict = 1; static int32_t bbr_target_is_bbunit = 0; static int32_t bbr_drop_limit = 0; /* * How much gain do we need to see to * stay in startup? */ static int32_t bbr_marks_rxt_sack_passed = 0; static int32_t bbr_start_exit = 25; static int32_t bbr_low_start_exit = 25; /* When we are in reduced gain */ static int32_t bbr_startup_loss_thresh = 2000; /* 20.00% loss */ static int32_t bbr_hptsi_max_mul = 1; /* These two mul/div assure a min pacing */ static int32_t bbr_hptsi_max_div = 2; /* time, 0 means turned off. We need this * if we go back ever to where the pacer * has priority over timers. */ static int32_t bbr_policer_call_from_rack_to = 0; static int32_t bbr_policer_detection_enabled = 1; static int32_t bbr_min_measurements_req = 1; /* We need at least 2 * measurments before we are * "good" note that 2 == 1. * This is because we use a > * comparison. This means if * min_measure was 0, it takes * num-measures > min(0) and * you get 1 measurement and * you are good. Set to 1, you * have to have two * measurements (this is done * to prevent it from being ok * to have no measurements). */ static int32_t bbr_no_pacing_until = 4; static int32_t bbr_min_usec_delta = 20000; /* 20,000 usecs */ static int32_t bbr_min_peer_delta = 20; /* 20 units */ static int32_t bbr_delta_percent = 150; /* 15.0 % */ static int32_t bbr_target_cwnd_mult_limit = 8; /* * bbr_cwnd_min_val is the number of * segments we hold to in the RTT probe * state typically 4. */ static int32_t bbr_cwnd_min_val = BBR_PROBERTT_NUM_MSS; static int32_t bbr_cwnd_min_val_hs = BBR_HIGHSPEED_NUM_MSS; static int32_t bbr_gain_to_target = 1; static int32_t bbr_gain_gets_extra_too = 1; /* * bbr_high_gain is the 2/ln(2) value we need * to double the sending rate in startup. This * is used for both cwnd and hptsi gain's. */ static int32_t bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1; static int32_t bbr_startup_lower = BBR_UNIT * 1500 / 1000 + 1; static int32_t bbr_use_lower_gain_in_startup = 1; /* thresholds for reduction on drain in sub-states/drain */ static int32_t bbr_drain_rtt = BBR_SRTT; static int32_t bbr_drain_floor = 88; static int32_t google_allow_early_out = 1; static int32_t google_consider_lost = 1; static int32_t bbr_drain_drop_mul = 4; static int32_t bbr_drain_drop_div = 5; static int32_t bbr_rand_ot = 50; static int32_t bbr_can_force_probertt = 0; static int32_t bbr_can_adjust_probertt = 1; static int32_t bbr_probertt_sets_rtt = 0; static int32_t bbr_can_use_ts_for_rtt = 1; static int32_t bbr_is_ratio = 0; static int32_t bbr_sub_drain_app_limit = 1; static int32_t bbr_prtt_slam_cwnd = 1; static int32_t bbr_sub_drain_slam_cwnd = 1; static int32_t bbr_slam_cwnd_in_main_drain = 1; static int32_t bbr_filter_len_sec = 6; /* How long does the rttProp filter * hold */ static uint32_t bbr_rtt_probe_limit = (USECS_IN_SECOND * 4); /* * bbr_drain_gain is the reverse of the high_gain * designed to drain back out the standing queue * that is formed in startup by causing a larger * hptsi gain and thus drainging the packets * in flight. */ static int32_t bbr_drain_gain = BBR_UNIT * 1000 / 2885; static int32_t bbr_rttprobe_gain = 192; /* * The cwnd_gain is the default cwnd gain applied when * calculating a target cwnd. Note that the cwnd is * a secondary factor in the way BBR works (see the * paper and think about it, it will take some time). * Basically the hptsi_gain spreads the packets out * so you never get more than BDP to the peer even * if the cwnd is high. In our implemenation that * means in non-recovery/retransmission scenarios * cwnd will never be reached by the flight-size. */ static int32_t bbr_cwnd_gain = BBR_UNIT * 2; static int32_t bbr_tlp_type_to_use = BBR_SRTT; static int32_t bbr_delack_time = 100000; /* 100ms in useconds */ static int32_t bbr_sack_not_required = 0; /* set to one to allow non-sack to use bbr */ static int32_t bbr_initial_bw_bps = 62500; /* 500kbps in bytes ps */ static int32_t bbr_ignore_data_after_close = 1; static int16_t bbr_hptsi_gain[] = { (BBR_UNIT *5 / 4), (BBR_UNIT * 3 / 4), BBR_UNIT, BBR_UNIT, BBR_UNIT, BBR_UNIT, BBR_UNIT, BBR_UNIT }; int32_t bbr_use_rack_resend_cheat = 1; int32_t bbr_sends_full_iwnd = 1; #define BBR_HPTSI_GAIN_MAX 8 /* * The BBR module incorporates a number of * TCP ideas that have been put out into the IETF * over the last few years: * - Yuchung Cheng's RACK TCP (for which its named) that * will stop us using the number of dup acks and instead * use time as the gage of when we retransmit. * - Reorder Detection of RFC4737 and the Tail-Loss probe draft * of Dukkipati et.al. * - Van Jacobson's et.al BBR. * * RACK depends on SACK, so if an endpoint arrives that * cannot do SACK the state machine below will shuttle the * connection back to using the "default" TCP stack that is * in FreeBSD. * * To implement BBR and RACK the original TCP stack was first decomposed * into a functional state machine with individual states * for each of the possible TCP connection states. The do_segement * functions role in life is to mandate the connection supports SACK * initially and then assure that the RACK state matches the conenction * state before calling the states do_segment function. Data processing * of inbound segments also now happens in the hpts_do_segment in general * with only one exception. This is so we can keep the connection on * a single CPU. * * Each state is simplified due to the fact that the original do_segment * has been decomposed and we *know* what state we are in (no * switches on the state) and all tests for SACK are gone. This * greatly simplifies what each state does. * * TCP output is also over-written with a new version since it * must maintain the new rack scoreboard and has had hptsi * integrated as a requirment. Still todo is to eliminate the * use of the callout_() system and use the hpts for all * timers as well. */ static uint32_t bbr_rtt_probe_time = 200000; /* 200ms in micro seconds */ static uint32_t bbr_rtt_probe_cwndtarg = 4; /* How many mss's outstanding */ static const int32_t bbr_min_req_free = 2; /* The min we must have on the * free list */ static int32_t bbr_tlp_thresh = 1; static int32_t bbr_reorder_thresh = 2; static int32_t bbr_reorder_fade = 60000000; /* 0 - never fade, def * 60,000,000 - 60 seconds */ static int32_t bbr_pkt_delay = 1000; static int32_t bbr_min_to = 1000; /* Number of usec's minimum timeout */ static int32_t bbr_incr_timers = 1; static int32_t bbr_tlp_min = 10000; /* 10ms in usecs */ static int32_t bbr_delayed_ack_time = 200000; /* 200ms in usecs */ static int32_t bbr_exit_startup_at_loss = 1; /* * bbr_lt_bw_ratio is 1/8th * bbr_lt_bw_diff is < 4 Kbit/sec */ static uint64_t bbr_lt_bw_diff = 4000 / 8; /* In bytes per second */ static uint64_t bbr_lt_bw_ratio = 8; /* For 1/8th */ static uint32_t bbr_lt_bw_max_rtts = 48; /* How many rtt's do we use * the lt_bw for */ static uint32_t bbr_lt_intvl_min_rtts = 4; /* Min num of RTT's to measure * lt_bw */ static int32_t bbr_lt_intvl_fp = 0; /* False positive epoch diff */ static int32_t bbr_lt_loss_thresh = 196; /* Lost vs delivered % */ static int32_t bbr_lt_fd_thresh = 100; /* false detection % */ static int32_t bbr_verbose_logging = 0; /* * Currently regular tcp has a rto_min of 30ms * the backoff goes 12 times so that ends up * being a total of 122.850 seconds before a * connection is killed. */ static int32_t bbr_rto_min_ms = 30; /* 30ms same as main freebsd */ static int32_t bbr_rto_max_sec = 4; /* 4 seconds */ /****************************************************/ /* DEFAULT TSO SIZING (cpu performance impacting) */ /****************************************************/ /* What amount is our formula using to get TSO size */ static int32_t bbr_hptsi_per_second = 1000; /* * For hptsi under bbr_cross_over connections what is delay * target 7ms (in usec) combined with a seg_max of 2 * gets us close to identical google behavior in * TSO size selection (possibly more 1MSS sends). */ static int32_t bbr_hptsi_segments_delay_tar = 7000; /* Does pacing delay include overhead's in its time calculations? */ static int32_t bbr_include_enet_oh = 0; static int32_t bbr_include_ip_oh = 1; static int32_t bbr_include_tcp_oh = 1; static int32_t bbr_google_discount = 10; /* Do we use (nf mode) pkt-epoch to drive us or rttProp? */ static int32_t bbr_state_is_pkt_epoch = 0; static int32_t bbr_state_drain_2_tar = 1; /* What is the max the 0 - bbr_cross_over MBPS TSO target * can reach using our delay target. Note that this * value becomes the floor for the cross over * algorithm. */ static int32_t bbr_hptsi_segments_max = 2; static int32_t bbr_hptsi_segments_floor = 1; static int32_t bbr_hptsi_utter_max = 0; /* What is the min the 0 - bbr_cross-over MBPS TSO target can be */ static int32_t bbr_hptsi_bytes_min = 1460; static int32_t bbr_all_get_min = 0; /* Cross over point from algo-a to algo-b */ static uint32_t bbr_cross_over = TWENTY_THREE_MBPS; /* Do we deal with our restart state? */ static int32_t bbr_uses_idle_restart = 0; static int32_t bbr_idle_restart_threshold = 100000; /* 100ms in useconds */ /* Do we allow hardware pacing? */ static int32_t bbr_allow_hdwr_pacing = 0; static int32_t bbr_hdwr_pace_adjust = 2; /* multipler when we calc the tso size */ static int32_t bbr_hdwr_pace_floor = 1; static int32_t bbr_hdwr_pacing_delay_cnt = 10; /****************************************************/ static int32_t bbr_resends_use_tso = 0; static int32_t bbr_tlp_max_resend = 2; static int32_t bbr_sack_block_limit = 128; #define BBR_MAX_STAT 19 counter_u64_t bbr_state_time[BBR_MAX_STAT]; counter_u64_t bbr_state_lost[BBR_MAX_STAT]; counter_u64_t bbr_state_resend[BBR_MAX_STAT]; counter_u64_t bbr_stat_arry[BBR_STAT_SIZE]; counter_u64_t bbr_opts_arry[BBR_OPTS_SIZE]; counter_u64_t bbr_out_size[TCP_MSS_ACCT_SIZE]; counter_u64_t bbr_flows_whdwr_pacing; counter_u64_t bbr_flows_nohdwr_pacing; counter_u64_t bbr_nohdwr_pacing_enobuf; counter_u64_t bbr_hdwr_pacing_enobuf; static inline uint64_t bbr_get_bw(struct tcp_bbr *bbr); /* * Static defintions we need for forward declarations. */ static uint32_t bbr_get_pacing_length(struct tcp_bbr *bbr, uint16_t gain, uint32_t useconds_time, uint64_t bw); static uint32_t bbr_get_a_state_target(struct tcp_bbr *bbr, uint32_t gain); static void bbr_set_state(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t win); static void bbr_set_probebw_gains(struct tcp_bbr *bbr, uint32_t cts, uint32_t losses); static void bbr_substate_change(struct tcp_bbr *bbr, uint32_t cts, int line, int dolog); static uint32_t bbr_get_target_cwnd(struct tcp_bbr *bbr, uint64_t bw, uint32_t gain); static void bbr_state_change(struct tcp_bbr *bbr, uint32_t cts, int32_t epoch, int32_t pkt_epoch, uint32_t losses); static uint32_t bbr_calc_thresh_rack(struct tcp_bbr *bbr, uint32_t srtt, uint32_t cts, struct bbr_sendmap *rsm); static uint32_t bbr_initial_cwnd(struct tcp_bbr *bbr, struct tcpcb *tp); static uint32_t bbr_calc_thresh_tlp(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t srtt, uint32_t cts); static void bbr_exit_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, int32_t line); static void bbr_set_state_target(struct tcp_bbr *bbr, int line); static void bbr_enter_probe_rtt(struct tcp_bbr *bbr, uint32_t cts, int32_t line); static void bbr_log_progress_event(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t tick, int event, int line); static void tcp_bbr_tso_size_check(struct tcp_bbr *bbr, uint32_t cts); static void bbr_setup_red_bw(struct tcp_bbr *bbr, uint32_t cts); static void bbr_log_rtt_shrinks(struct tcp_bbr *bbr, uint32_t cts, uint32_t applied, uint32_t rtt, uint32_t line, uint8_t is_start, uint16_t set); static struct bbr_sendmap * bbr_find_lowest_rsm(struct tcp_bbr *bbr); static __inline uint32_t bbr_get_rtt(struct tcp_bbr *bbr, int32_t rtt_type); static void bbr_log_to_start(struct tcp_bbr *bbr, uint32_t cts, uint32_t to, int32_t slot, uint8_t which); static void bbr_log_timer_var(struct tcp_bbr *bbr, int mode, uint32_t cts, uint32_t time_since_sent, uint32_t srtt, uint32_t thresh, uint32_t to); static void bbr_log_hpts_diag(struct tcp_bbr *bbr, uint32_t cts, struct hpts_diag *diag); static void bbr_log_type_bbrsnd(struct tcp_bbr *bbr, uint32_t len, uint32_t slot, uint32_t del_by, uint32_t cts, uint32_t sloton, uint32_t prev_delay); static void bbr_enter_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, int32_t line); static void bbr_stop_all_timers(struct tcpcb *tp); static void bbr_exit_probe_rtt(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts); static void bbr_check_probe_rtt_limits(struct tcp_bbr *bbr, uint32_t cts); static void bbr_timer_cancel(struct tcp_bbr *bbr, int32_t line, uint32_t cts); static void bbr_log_pacing_delay_calc(struct tcp_bbr *bbr, uint16_t gain, uint32_t len, uint32_t cts, uint32_t usecs, uint64_t bw, uint32_t override, int mod); static inline uint8_t bbr_state_val(struct tcp_bbr *bbr) { return(bbr->rc_bbr_substate); } static inline uint32_t get_min_cwnd(struct tcp_bbr *bbr) { int mss; mss = min((bbr->rc_tp->t_maxseg - bbr->rc_last_options), bbr->r_ctl.rc_pace_max_segs); if (bbr_get_rtt(bbr, BBR_RTT_PROP) < BBR_HIGH_SPEED) return (bbr_cwnd_min_val_hs * mss); else return (bbr_cwnd_min_val * mss); } static uint32_t bbr_get_persists_timer_val(struct tcpcb *tp, struct tcp_bbr *bbr) { uint64_t srtt, var; uint64_t ret_val; bbr->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT; if (tp->t_srtt == 0) { srtt = (uint64_t)BBR_INITIAL_RTO; var = 0; } else { srtt = ((uint64_t)TICKS_2_USEC(tp->t_srtt) >> TCP_RTT_SHIFT); var = ((uint64_t)TICKS_2_USEC(tp->t_rttvar) >> TCP_RTT_SHIFT); } TCPT_RANGESET_NOSLOP(ret_val, ((srtt + var) * tcp_backoff[tp->t_rxtshift]), bbr_persist_min, bbr_persist_max); return ((uint32_t)ret_val); } static uint32_t bbr_timer_start(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { /* * Start the FR timer, we do this based on getting the first one in * the rc_tmap. Note that if its NULL we must stop the timer. in all * events we need to stop the running timer (if its running) before * starting the new one. */ uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse; int32_t idx; int32_t is_tlp_timer = 0; struct bbr_sendmap *rsm; if (bbr->rc_all_timers_stopped) { /* All timers have been stopped none are to run */ return (0); } if (bbr->rc_in_persist) { /* We can't start any timer in persists */ return (bbr_get_persists_timer_val(tp, bbr)); } rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap); if ((rsm == NULL) || ((tp->t_flags & TF_SACK_PERMIT) == 0) || (tp->t_state < TCPS_ESTABLISHED)) { /* Nothing on the send map */ activate_rxt: if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { uint64_t tov; time_since_sent = 0; rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap); if (rsm) { idx = rsm->r_rtr_cnt - 1; if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], bbr->r_ctl.rc_tlp_rxt_last_time)) tstmp_touse = rsm->r_tim_lastsent[idx]; else tstmp_touse = bbr->r_ctl.rc_tlp_rxt_last_time; if (TSTMP_GT(tstmp_touse, cts)) time_since_sent = cts - tstmp_touse; } bbr->r_ctl.rc_hpts_flags |= PACE_TMR_RXT; if (tp->t_srtt == 0) tov = BBR_INITIAL_RTO; else tov = ((uint64_t)(TICKS_2_USEC(tp->t_srtt) + ((uint64_t)TICKS_2_USEC(tp->t_rttvar) * (uint64_t)4)) >> TCP_RTT_SHIFT); if (tp->t_rxtshift) tov *= tcp_backoff[tp->t_rxtshift]; if (tov > time_since_sent) tov -= time_since_sent; else tov = bbr->r_ctl.rc_min_to; TCPT_RANGESET_NOSLOP(to, tov, (bbr->r_ctl.rc_min_rto_ms * MS_IN_USEC), (bbr->rc_max_rto_sec * USECS_IN_SECOND)); bbr_log_timer_var(bbr, 2, cts, 0, srtt, 0, to); return (to); } return (0); } if (rsm->r_flags & BBR_ACKED) { rsm = bbr_find_lowest_rsm(bbr); if (rsm == NULL) { /* No lowest? */ goto activate_rxt; } } /* Convert from ms to usecs */ if (rsm->r_flags & BBR_SACK_PASSED) { if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) == 1) && (rsm->r_flags & BBR_HAS_FIN)) { /* * We don't start a bbr rack timer if all we have is * a FIN outstanding. */ goto activate_rxt; } srtt = bbr_get_rtt(bbr, BBR_RTT_RACK); thresh = bbr_calc_thresh_rack(bbr, srtt, cts, rsm); idx = rsm->r_rtr_cnt - 1; exp = rsm->r_tim_lastsent[idx] + thresh; if (SEQ_GEQ(exp, cts)) { to = exp - cts; if (to < bbr->r_ctl.rc_min_to) { to = bbr->r_ctl.rc_min_to; } } else { to = bbr->r_ctl.rc_min_to; } } else { /* Ok we need to do a TLP not RACK */ if (bbr->rc_tlp_in_progress != 0) { /* * The previous send was a TLP. */ goto activate_rxt; } rsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_tmap, bbr_sendmap, r_tnext); if (rsm == NULL) { /* We found no rsm to TLP with. */ goto activate_rxt; } if (rsm->r_flags & BBR_HAS_FIN) { /* If its a FIN we don't do TLP */ rsm = NULL; goto activate_rxt; } time_since_sent = 0; idx = rsm->r_rtr_cnt - 1; if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], bbr->r_ctl.rc_tlp_rxt_last_time)) tstmp_touse = rsm->r_tim_lastsent[idx]; else tstmp_touse = bbr->r_ctl.rc_tlp_rxt_last_time; if (TSTMP_GT(tstmp_touse, cts)) time_since_sent = cts - tstmp_touse; is_tlp_timer = 1; srtt = bbr_get_rtt(bbr, bbr_tlp_type_to_use); thresh = bbr_calc_thresh_tlp(tp, bbr, rsm, srtt, cts); if (thresh > time_since_sent) to = thresh - time_since_sent; else to = bbr->r_ctl.rc_min_to; if (to > (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND)) { /* * If the TLP time works out to larger than the max * RTO lets not do TLP.. just RTO. */ goto activate_rxt; } if ((bbr->rc_tlp_rtx_out == 1) && (rsm->r_start == bbr->r_ctl.rc_last_tlp_seq)) { /* * Second retransmit of the same TLP * lets not. */ bbr->rc_tlp_rtx_out = 0; goto activate_rxt; } if (rsm->r_start != bbr->r_ctl.rc_last_tlp_seq) { /* * The tail is no longer the last one I did a probe * on */ bbr->r_ctl.rc_tlp_seg_send_cnt = 0; bbr->r_ctl.rc_last_tlp_seq = rsm->r_start; } } if (is_tlp_timer == 0) { BBR_STAT_INC(bbr_to_arm_rack); bbr->r_ctl.rc_hpts_flags |= PACE_TMR_RACK; } else { bbr_log_timer_var(bbr, 1, cts, time_since_sent, srtt, thresh, to); if (bbr->r_ctl.rc_tlp_seg_send_cnt > bbr_tlp_max_resend) { /* * We have exceeded how many times we can retran the * current TLP timer, switch to the RTO timer. */ goto activate_rxt; } else { BBR_STAT_INC(bbr_to_arm_tlp); bbr->r_ctl.rc_hpts_flags |= PACE_TMR_TLP; } } return (to); } static inline int32_t bbr_minseg(struct tcp_bbr *bbr) { return (bbr->r_ctl.rc_pace_min_segs - bbr->rc_last_options); } static void bbr_start_hpts_timer(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t cts, int32_t frm, int32_t slot, uint32_t tot_len) { struct inpcb *inp; struct hpts_diag diag; uint32_t delayed_ack = 0; uint32_t left = 0; uint32_t hpts_timeout; uint8_t stopped; int32_t delay_calc = 0; uint32_t prev_delay = 0; inp = tp->t_inpcb; if (inp->inp_in_hpts) { /* A previous call is already set up */ return; } if ((tp->t_state == TCPS_CLOSED) || (tp->t_state == TCPS_LISTEN)) { return; } stopped = bbr->rc_tmr_stopped; if (stopped && TSTMP_GT(bbr->r_ctl.rc_timer_exp, cts)) { left = bbr->r_ctl.rc_timer_exp - cts; } bbr->r_ctl.rc_hpts_flags = 0; bbr->r_ctl.rc_timer_exp = 0; prev_delay = bbr->r_ctl.rc_last_delay_val; if (bbr->r_ctl.rc_last_delay_val && (slot == 0)) { /* * If a previous pacer delay was in place we * are not coming from the output side (where * we calculate a delay, more likely a timer). */ slot = bbr->r_ctl.rc_last_delay_val; if (TSTMP_GT(cts, bbr->rc_pacer_started)) { /* Compensate for time passed */ delay_calc = cts - bbr->rc_pacer_started; if (delay_calc <= slot) slot -= delay_calc; } } /* Do we have early to make up for by pushing out the pacing time? */ if (bbr->r_agg_early_set) { bbr_log_pacing_delay_calc(bbr, 0, bbr->r_ctl.rc_agg_early, cts, slot, 0, bbr->r_agg_early_set, 2); slot += bbr->r_ctl.rc_agg_early; bbr->r_ctl.rc_agg_early = 0; bbr->r_agg_early_set = 0; } /* Are we running a total debt that needs to be compensated for? */ if (bbr->r_ctl.rc_hptsi_agg_delay) { if (slot > bbr->r_ctl.rc_hptsi_agg_delay) { /* We nuke the delay */ slot -= bbr->r_ctl.rc_hptsi_agg_delay; bbr->r_ctl.rc_hptsi_agg_delay = 0; } else { /* We nuke some of the delay, put in a minimal 100usecs */ bbr->r_ctl.rc_hptsi_agg_delay -= slot; bbr->r_ctl.rc_last_delay_val = slot = 100; } } bbr->r_ctl.rc_last_delay_val = slot; hpts_timeout = bbr_timer_start(tp, bbr, cts); if (tp->t_flags & TF_DELACK) { if (bbr->rc_in_persist == 0) { delayed_ack = bbr_delack_time; } else { /* * We are in persists and have * gotten a new data element. */ if (hpts_timeout > bbr_delack_time) { /* * Lets make the persists timer (which acks) * be the smaller of hpts_timeout and bbr_delack_time. */ hpts_timeout = bbr_delack_time; } } } if (delayed_ack && ((hpts_timeout == 0) || (delayed_ack < hpts_timeout))) { /* We need a Delayed ack timer */ bbr->r_ctl.rc_hpts_flags = PACE_TMR_DELACK; hpts_timeout = delayed_ack; } if (slot) { /* Mark that we have a pacing timer up */ BBR_STAT_INC(bbr_paced_segments); bbr->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT; } /* * If no timers are going to run and we will fall off thfe hptsi * wheel, we resort to a keep-alive timer if its configured. */ if ((hpts_timeout == 0) && (slot == 0)) { if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && (tp->t_state <= TCPS_CLOSING)) { /* * Ok we have no timer (persists, rack, tlp, rxt or * del-ack), we don't have segments being paced. So * all that is left is the keepalive timer. */ if (TCPS_HAVEESTABLISHED(tp->t_state)) { hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp)); } else { hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp)); } bbr->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP; } } if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) == (bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) { /* * RACK, TLP, persists and RXT timers all are restartable * based on actions input .. i.e we received a packet (ack * or sack) and that changes things (rw, or snd_una etc). * Thus we can restart them with a new value. For * keep-alive, delayed_ack we keep track of what was left * and restart the timer with a smaller value. */ if (left < hpts_timeout) hpts_timeout = left; } if (bbr->r_ctl.rc_incr_tmrs && slot && (bbr->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) { /* * If configured to do so, and the timer is either * the TLP or RXT timer, we need to increase the timeout * by the pacing time. Consider the bottleneck at my * machine as an example, we are sending something * to start a TLP on. The last packet won't be emitted * fully until the pacing time (the bottleneck will hold * the data in place). Once the packet is emitted that * is when we want to start waiting for the TLP. This * is most evident with hardware pacing (where the nic * is holding the packet(s) before emitting). But it * can also show up in the network so we do it for all * cases. Technically we would take off one packet from * this extra delay but this is easier and being more * conservative is probably better. */ hpts_timeout += slot; } if (hpts_timeout) { /* * Hack alert for now we can't time-out over 2147 seconds (a * bit more than 35min) */ if (hpts_timeout > 0x7ffffffe) hpts_timeout = 0x7ffffffe; bbr->r_ctl.rc_timer_exp = cts + hpts_timeout; } else bbr->r_ctl.rc_timer_exp = 0; if ((slot) && (bbr->rc_use_google || bbr->output_error_seen || (slot <= hpts_timeout)) ) { /* * Tell LRO that it can queue packets while * we pace. */ bbr->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY; if ((bbr->r_ctl.rc_hpts_flags & PACE_TMR_RACK) && (bbr->rc_cwnd_limited == 0)) { /* * If we are not cwnd limited and we * are running a rack timer we put on * the do not disturbe even for sack. */ inp->inp_flags2 |= INP_DONT_SACK_QUEUE; } else inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE; bbr->rc_pacer_started = cts; (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot), __LINE__, &diag); bbr->rc_timer_first = 0; bbr->bbr_timer_src = frm; bbr_log_to_start(bbr, cts, hpts_timeout, slot, 1); bbr_log_hpts_diag(bbr, cts, &diag); } else if (hpts_timeout) { (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), __LINE__, &diag); /* * We add the flag here as well if the slot is set, * since hpts will call in to clear the queue first before * calling the output routine (which does our timers). * We don't want to set the flag if its just a timer * else the arrival of data might (that causes us * to send more) might get delayed. Imagine being * on a keep-alive timer and a request comes in for * more data. */ if (slot) bbr->rc_pacer_started = cts; if ((bbr->r_ctl.rc_hpts_flags & PACE_TMR_RACK) && (bbr->rc_cwnd_limited == 0)) { /* * For a rack timer, don't wake us even * if a sack arrives as long as we are * not cwnd limited. */ bbr->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY; inp->inp_flags2 |= INP_DONT_SACK_QUEUE; } else { /* All other timers wake us up */ bbr->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY; inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE; } bbr->bbr_timer_src = frm; bbr_log_to_start(bbr, cts, hpts_timeout, slot, 0); bbr_log_hpts_diag(bbr, cts, &diag); bbr->rc_timer_first = 1; } bbr->rc_tmr_stopped = 0; bbr_log_type_bbrsnd(bbr, tot_len, slot, delay_calc, cts, frm, prev_delay); } static void bbr_timer_audit(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, struct sockbuf *sb) { /* * We received an ack, and then did not call send or were bounced * out due to the hpts was running. Now a timer is up as well, is it * the right timer? */ struct inpcb *inp; struct bbr_sendmap *rsm; uint32_t hpts_timeout; int tmr_up; tmr_up = bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK; if (bbr->rc_in_persist && (tmr_up == PACE_TMR_PERSIT)) return; rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap); if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) && (tmr_up == PACE_TMR_RXT)) { /* Should be an RXT */ return; } inp = bbr->rc_inp; if (rsm == NULL) { /* Nothing outstanding? */ if (tp->t_flags & TF_DELACK) { if (tmr_up == PACE_TMR_DELACK) /* * We are supposed to have delayed ack up * and we do */ return; } else if (sbavail(&inp->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) { /* * if we hit enobufs then we would expect the * possiblity of nothing outstanding and the RXT up * (and the hptsi timer). */ return; } else if (((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && (tp->t_state <= TCPS_CLOSING)) && (tmr_up == PACE_TMR_KEEP) && (tp->snd_max == tp->snd_una)) { /* We should have keep alive up and we do */ return; } } if (rsm && (rsm->r_flags & BBR_SACK_PASSED)) { if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) == 1) && (rsm->r_flags & BBR_HAS_FIN)) { /* needs to be a RXT */ if (tmr_up == PACE_TMR_RXT) return; else goto wrong_timer; } else if (tmr_up == PACE_TMR_RACK) return; else goto wrong_timer; } else if (rsm && (tmr_up == PACE_TMR_RACK)) { /* Rack timer has priority if we have data out */ return; } else if (SEQ_GT(tp->snd_max, tp->snd_una) && ((tmr_up == PACE_TMR_TLP) || (tmr_up == PACE_TMR_RXT))) { /* * Either a TLP or RXT is fine if no sack-passed is in place * and data is outstanding. */ return; } else if (tmr_up == PACE_TMR_DELACK) { /* * If the delayed ack was going to go off before the * rtx/tlp/rack timer were going to expire, then that would * be the timer in control. Note we don't check the time * here trusting the code is correct. */ return; } if (SEQ_GT(tp->snd_max, tp->snd_una) && ((tmr_up == PACE_TMR_RXT) || (tmr_up == PACE_TMR_TLP) || (tmr_up == PACE_TMR_RACK))) { /* * We have outstanding data and * we *do* have a RACK, TLP or RXT * timer running. We won't restart * anything here since thats probably ok we * will get called with some timer here shortly. */ return; } /* * Ok the timer originally started is not what we want now. We will * force the hpts to be stopped if any, and restart with the slot * set to what was in the saved slot. */ wrong_timer: if ((bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) { if (inp->inp_in_hpts) tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT); bbr_timer_cancel(bbr, __LINE__, cts); bbr_start_hpts_timer(bbr, tp, cts, 1, bbr->r_ctl.rc_last_delay_val, 0); } else { /* * Output is hptsi so we just need to switch the type of * timer. We don't bother with keep-alive, since when we * jump through the output, it will start the keep-alive if * nothing is sent. * * We only need a delayed-ack added and or the hpts_timeout. */ hpts_timeout = bbr_timer_start(tp, bbr, cts); if (tp->t_flags & TF_DELACK) { if (hpts_timeout == 0) { hpts_timeout = bbr_delack_time; bbr->r_ctl.rc_hpts_flags = PACE_TMR_DELACK; } else if (hpts_timeout > bbr_delack_time) { hpts_timeout = bbr_delack_time; bbr->r_ctl.rc_hpts_flags = PACE_TMR_DELACK; } } if (hpts_timeout) { if (hpts_timeout > 0x7ffffffe) hpts_timeout = 0x7ffffffe; bbr->r_ctl.rc_timer_exp = cts + hpts_timeout; } } } int32_t bbr_clear_lost = 0; /* * Considers the two time values now (cts) and earlier. * If cts is smaller than earlier, we could have * had a sequence wrap (our counter wraps every * 70 min or so) or it could be just clock skew * getting us two differnt time values. Clock skew * will show up within 10ms or so. So in such * a case (where cts is behind earlier time by * less than 10ms) we return 0. Otherwise we * return the true difference between them. */ static inline uint32_t bbr_calc_time(uint32_t cts, uint32_t earlier_time) { /* * Given two timestamps, the current time stamp cts, and some other * time-stamp taken in theory earlier return the difference. The * trick is here sometimes locking will get the other timestamp * after the cts. If this occurs we need to return 0. */ if (TSTMP_GEQ(cts, earlier_time)) return (cts - earlier_time); /* * cts is behind earlier_time if its less than 10ms consider it 0. * If its more than 10ms difference then we had a time wrap. Else * its just the normal locking foo. I wonder if we should not go to * 64bit TS and get rid of this issue. */ if (TSTMP_GEQ((cts + 10000), earlier_time)) return (0); /* * Ok the time must have wrapped. So we need to answer a large * amount of time, which the normal subtraction should do. */ return (cts - earlier_time); } static int sysctl_bbr_clear_lost(SYSCTL_HANDLER_ARGS) { uint32_t stat; int32_t error; error = SYSCTL_OUT(req, &bbr_clear_lost, sizeof(uint32_t)); if (error || req->newptr == NULL) return error; error = SYSCTL_IN(req, &stat, sizeof(uint32_t)); if (error) return (error); if (stat == 1) { #ifdef BBR_INVARIANTS printf("Clearing BBR lost counters\n"); #endif COUNTER_ARRAY_ZERO(bbr_state_lost, BBR_MAX_STAT); COUNTER_ARRAY_ZERO(bbr_state_time, BBR_MAX_STAT); COUNTER_ARRAY_ZERO(bbr_state_resend, BBR_MAX_STAT); } else if (stat == 2) { #ifdef BBR_INVARIANTS printf("Clearing BBR option counters\n"); #endif COUNTER_ARRAY_ZERO(bbr_opts_arry, BBR_OPTS_SIZE); } else if (stat == 3) { #ifdef BBR_INVARIANTS printf("Clearing BBR stats counters\n"); #endif COUNTER_ARRAY_ZERO(bbr_stat_arry, BBR_STAT_SIZE); } else if (stat == 4) { #ifdef BBR_INVARIANTS printf("Clearing BBR out-size counters\n"); #endif COUNTER_ARRAY_ZERO(bbr_out_size, TCP_MSS_ACCT_SIZE); } bbr_clear_lost = 0; return (0); } static void bbr_init_sysctls(void) { struct sysctl_oid *bbr_probertt; struct sysctl_oid *bbr_hptsi; struct sysctl_oid *bbr_measure; struct sysctl_oid *bbr_cwnd; struct sysctl_oid *bbr_timeout; struct sysctl_oid *bbr_states; struct sysctl_oid *bbr_startup; struct sysctl_oid *bbr_policer; /* Probe rtt controls */ bbr_probertt = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "probertt", CTLFLAG_RW, 0, ""); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "gain", CTLFLAG_RW, &bbr_rttprobe_gain, 192, "What is the filter gain drop in probe_rtt (0=disable)?"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "cwnd", CTLFLAG_RW, &bbr_rtt_probe_cwndtarg, 4, "How many mss's are outstanding during probe-rtt"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "int", CTLFLAG_RW, &bbr_rtt_probe_limit, 4000000, "If RTT has not shrank in this many micro-seconds enter probe-rtt"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "mintime", CTLFLAG_RW, &bbr_rtt_probe_time, 200000, "How many microseconds in probe-rtt"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "filter_len_sec", CTLFLAG_RW, &bbr_filter_len_sec, 6, "How long in seconds does the rttProp filter run?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "drain_rtt", CTLFLAG_RW, &bbr_drain_rtt, BBR_SRTT, "What is the drain rtt to use in probeRTT (rtt_prop=0, rtt_rack=1, rtt_pkt=2, rtt_srtt=3?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "can_force", CTLFLAG_RW, &bbr_can_force_probertt, 0, "If we keep setting new low rtt's but delay going in probe-rtt can we force in??"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "enter_sets_force", CTLFLAG_RW, &bbr_probertt_sets_rtt, 0, "In NF mode, do we imitate google_mode and set the rttProp on entry to probe-rtt?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "can_adjust", CTLFLAG_RW, &bbr_can_adjust_probertt, 1, "Can we dynamically adjust the probe-rtt limits and times?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "is_ratio", CTLFLAG_RW, &bbr_is_ratio, 0, "is the limit to filter a ratio?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "use_cwnd", CTLFLAG_RW, &bbr_prtt_slam_cwnd, 0, "Should we set/recover cwnd?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_probertt), OID_AUTO, "can_use_ts", CTLFLAG_RW, &bbr_can_use_ts_for_rtt, 1, "Can we use the ms timestamp if available for retransmistted rtt calculations?"); /* Pacing controls */ bbr_hptsi = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "pacing", CTLFLAG_RW, 0, ""); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "hw_pacing", CTLFLAG_RW, &bbr_allow_hdwr_pacing, 1, "Do we allow hardware pacing?"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "hw_pacing_limit", CTLFLAG_RW, &bbr_hardware_pacing_limit, 4000, "Do we have a limited number of connections for pacing chelsio (0=no limit)?"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "hw_pacing_adj", CTLFLAG_RW, &bbr_hdwr_pace_adjust, 2, "Multiplier to calculated tso size?"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "hw_pacing_floor", CTLFLAG_RW, &bbr_hdwr_pace_floor, 1, "Do we invoke the hardware pacing floor?"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "hw_pacing_delay_cnt", CTLFLAG_RW, &bbr_hdwr_pacing_delay_cnt, 10, "How many packets must be sent after hdwr pacing is enabled"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "bw_cross", CTLFLAG_RW, &bbr_cross_over, 3000000, "What is the point where we cross over to linux like TSO size set"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "seg_deltarg", CTLFLAG_RW, &bbr_hptsi_segments_delay_tar, 7000, "What is the worse case delay target for hptsi < 48Mbp connections"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "enet_oh", CTLFLAG_RW, &bbr_include_enet_oh, 0, "Do we include the ethernet overhead in calculating pacing delay?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "ip_oh", CTLFLAG_RW, &bbr_include_ip_oh, 1, "Do we include the IP overhead in calculating pacing delay?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "tcp_oh", CTLFLAG_RW, &bbr_include_tcp_oh, 0, "Do we include the TCP overhead in calculating pacing delay?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "google_discount", CTLFLAG_RW, &bbr_google_discount, 10, "What is the default google discount percentage wise for pacing (11 = 1.1%%)?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "all_get_min", CTLFLAG_RW, &bbr_all_get_min, 0, "If you are less than a MSS do you just get the min?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "tso_min", CTLFLAG_RW, &bbr_hptsi_bytes_min, 1460, "For 0 -> 24Mbps what is floor number of segments for TSO"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "seg_tso_max", CTLFLAG_RW, &bbr_hptsi_segments_max, 6, "For 0 -> 24Mbps what is top number of segments for TSO"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "seg_floor", CTLFLAG_RW, &bbr_hptsi_segments_floor, 1, "Minimum TSO size we will fall too in segments"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "utter_max", CTLFLAG_RW, &bbr_hptsi_utter_max, 0, "The absolute maximum that any pacing (outside of hardware) can be"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "seg_divisor", CTLFLAG_RW, &bbr_hptsi_per_second, 100, "What is the divisor in our hptsi TSO calculation 512Mbps < X > 24Mbps "); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "srtt_mul", CTLFLAG_RW, &bbr_hptsi_max_mul, 1, "The multiplier for pace len max"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_hptsi), OID_AUTO, "srtt_div", CTLFLAG_RW, &bbr_hptsi_max_div, 2, "The divisor for pace len max"); /* Measurement controls */ bbr_measure = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "measure", CTLFLAG_RW, 0, "Measurement controls"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "min_i_bw", CTLFLAG_RW, &bbr_initial_bw_bps, 62500, "Minimum initial b/w in bytes per second"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "no_sack_needed", CTLFLAG_RW, &bbr_sack_not_required, 0, "Do we allow bbr to run on connections not supporting SACK?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "use_google", CTLFLAG_RW, &bbr_use_google_algo, 0, "Use has close to google V1.0 has possible?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "ts_limiting", CTLFLAG_RW, &bbr_ts_limiting, 1, "Do we attempt to use the peers timestamp to limit b/w caculations?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "ts_can_raise", CTLFLAG_RW, &bbr_ts_can_raise, 0, "Can we raise the b/w via timestamp b/w calculation?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "ts_delta", CTLFLAG_RW, &bbr_min_usec_delta, 20000, "How long in usec between ts of our sends in ts validation code?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "ts_peer_delta", CTLFLAG_RW, &bbr_min_peer_delta, 20, "What min numerical value should be between the peer deltas?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "ts_delta_percent", CTLFLAG_RW, &bbr_delta_percent, 150, "What percentage (150 = 15.0) do we allow variance for?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "min_measure_good_bw", CTLFLAG_RW, &bbr_min_measurements_req, 1, "What is the minimum measurment count we need before we switch to our b/w estimate"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "min_measure_before_pace", CTLFLAG_RW, &bbr_no_pacing_until, 4, "How many pkt-epoch's (0 is off) do we need before pacing is on?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "quanta", CTLFLAG_RW, &bbr_quanta, 2, "Extra quanta to add when calculating the target (ID section 4.2.3.2)."); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_measure), OID_AUTO, "noretran", CTLFLAG_RW, &bbr_no_retran, 0, "Should google mode not use retransmission measurements for the b/w estimation?"); /* State controls */ bbr_states = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "states", CTLFLAG_RW, 0, "State controls"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "idle_restart", CTLFLAG_RW, &bbr_uses_idle_restart, 0, "Do we use a new special idle_restart state to ramp back up quickly?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "idle_restart_threshold", CTLFLAG_RW, &bbr_idle_restart_threshold, 100000, "How long must we be idle before we restart??"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "use_pkt_epoch", CTLFLAG_RW, &bbr_state_is_pkt_epoch, 0, "Do we use a pkt-epoch for substate if 0 rttProp?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "startup_rtt_gain", CTLFLAG_RW, &bbr_rtt_gain_thresh, 0, "What increase in RTT triggers us to stop ignoring no-loss and possibly exit startup?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "drain_floor", CTLFLAG_RW, &bbr_drain_floor, 88, "What is the lowest we can drain (pg) too?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "drain_2_target", CTLFLAG_RW, &bbr_state_drain_2_tar, 1, "Do we drain to target in drain substate?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "gain_2_target", CTLFLAG_RW, &bbr_gain_to_target, 1, "Does probe bw gain to target??"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "gain_extra_time", CTLFLAG_RW, &bbr_gain_gets_extra_too, 1, "Does probe bw gain get the extra time too?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "ld_div", CTLFLAG_RW, &bbr_drain_drop_div, 5, "Long drain drop divider?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "ld_mul", CTLFLAG_RW, &bbr_drain_drop_mul, 4, "Long drain drop multiplier?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "rand_ot_disc", CTLFLAG_RW, &bbr_rand_ot, 50, "Random discount of the ot?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "dr_filter_life", CTLFLAG_RW, &bbr_num_pktepo_for_del_limit, BBR_NUM_RTTS_FOR_DEL_LIMIT, "How many packet-epochs does the b/w delivery rate last?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "subdrain_applimited", CTLFLAG_RW, &bbr_sub_drain_app_limit, 0, "Does our sub-state drain invoke app limited if its long?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "use_cwnd_subdrain", CTLFLAG_RW, &bbr_sub_drain_slam_cwnd, 0, "Should we set/recover cwnd for sub-state drain?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "use_cwnd_maindrain", CTLFLAG_RW, &bbr_slam_cwnd_in_main_drain, 0, "Should we set/recover cwnd for main-state drain?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "google_gets_earlyout", CTLFLAG_RW, &google_allow_early_out, 1, "Should we allow google probe-bw/drain to exit early at flight target?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_states), OID_AUTO, "google_exit_loss", CTLFLAG_RW, &google_consider_lost, 1, "Should we have losses exit gain of probebw in google mode??"); /* Startup controls */ bbr_startup = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "startup", CTLFLAG_RW, 0, "Startup controls"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_startup), OID_AUTO, "cheat_iwnd", CTLFLAG_RW, &bbr_sends_full_iwnd, 1, "Do we not pace but burst out initial windows has our TSO size?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_startup), OID_AUTO, "loss_threshold", CTLFLAG_RW, &bbr_startup_loss_thresh, 2000, "In startup what is the loss threshold in a pe that will exit us from startup?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_startup), OID_AUTO, "use_lowerpg", CTLFLAG_RW, &bbr_use_lower_gain_in_startup, 1, "Should we use a lower hptsi gain if we see loss in startup?"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_startup), OID_AUTO, "gain", CTLFLAG_RW, &bbr_start_exit, 25, "What gain percent do we need to see to stay in startup??"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_startup), OID_AUTO, "low_gain", CTLFLAG_RW, &bbr_low_start_exit, 15, "What gain percent do we need to see to stay in the lower gain startup??"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_startup), OID_AUTO, "loss_exit", CTLFLAG_RW, &bbr_exit_startup_at_loss, 1, "Should we exit startup at loss in an epoch if we are not gaining?"); /* CWND controls */ bbr_cwnd = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "cwnd", CTLFLAG_RW, 0, "Cwnd controls"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "tar_rtt", CTLFLAG_RW, &bbr_cwndtarget_rtt_touse, 0, "Target cwnd rtt measurment to use (0=rtt_prop, 1=rtt_rack, 2=pkt_rtt, 3=srtt)?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "may_shrink", CTLFLAG_RW, &bbr_cwnd_may_shrink, 0, "Can the cwnd shrink if it would grow to more than the target?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "max_target_limit", CTLFLAG_RW, &bbr_target_cwnd_mult_limit, 8, "Do we limit the cwnd to some multiple of the cwnd target if cwnd can't shrink 0=no?"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "highspeed_min", CTLFLAG_RW, &bbr_cwnd_min_val_hs, BBR_HIGHSPEED_NUM_MSS, "What is the high-speed min cwnd (rttProp under 1ms)"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "lowspeed_min", CTLFLAG_RW, &bbr_cwnd_min_val, BBR_PROBERTT_NUM_MSS, "What is the min cwnd (rttProp > 1ms)"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "initwin", CTLFLAG_RW, &bbr_def_init_win, 10, "What is the BBR initial window, if 0 use tcp version"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "do_loss_red", CTLFLAG_RW, &bbr_do_red, 600, "Do we reduce the b/w at exit from recovery based on ratio of prop/srtt (800=80.0, 0=off)?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "red_scale", CTLFLAG_RW, &bbr_red_scale, 20000, "What RTT do we scale with?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "red_growslow", CTLFLAG_RW, &bbr_red_growth_restrict, 1, "Do we restrict cwnd growth for whats in flight?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "red_div", CTLFLAG_RW, &bbr_red_div, 2, "If we reduce whats the divisor?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "red_mul", CTLFLAG_RW, &bbr_red_mul, 1, "If we reduce whats the mulitiplier?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "target_is_unit", CTLFLAG_RW, &bbr_target_is_bbunit, 0, "Is the state target the pacing_gain or BBR_UNIT?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_cwnd), OID_AUTO, "drop_limit", CTLFLAG_RW, &bbr_drop_limit, 0, "Number of segments limit for drop (0=use min_cwnd w/flight)?"); /* Timeout controls */ bbr_timeout = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "timeout", CTLFLAG_RW, 0, "Time out controls"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "delack", CTLFLAG_RW, &bbr_delack_time, 100000, "BBR's delayed ack time"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "tlp_uses", CTLFLAG_RW, &bbr_tlp_type_to_use, 3, "RTT that TLP uses in its calculations, 0=rttProp, 1=Rack_rtt, 2=pkt_rtt and 3=srtt"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "persmin", CTLFLAG_RW, &bbr_persist_min, 250000, "What is the minimum time in microseconds between persists"); SYSCTL_ADD_U32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "persmax", CTLFLAG_RW, &bbr_persist_max, 1000000, "What is the largest delay in microseconds between persists"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "tlp_minto", CTLFLAG_RW, &bbr_tlp_min, 10000, "TLP Min timeout in usecs"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "tlp_dack_time", CTLFLAG_RW, &bbr_delayed_ack_time, 200000, "TLP delayed ack compensation value"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "minrto", CTLFLAG_RW, &bbr_rto_min_ms, 30, "Minimum RTO in ms"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "maxrto", CTLFLAG_RW, &bbr_rto_max_sec, 4, "Maxiumum RTO in seconds -- should be at least as large as min_rto"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "tlp_retry", CTLFLAG_RW, &bbr_tlp_max_resend, 2, "How many times does TLP retry a single segment or multiple with no ACK"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "minto", CTLFLAG_RW, &bbr_min_to, 1000, "Minimum rack timeout in useconds"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "pktdelay", CTLFLAG_RW, &bbr_pkt_delay, 1000, "Extra RACK time (in useconds) besides reordering thresh"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "incr_tmrs", CTLFLAG_RW, &bbr_incr_timers, 1, "Increase the RXT/TLP timer by the pacing time used?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_timeout), OID_AUTO, "rxtmark_sackpassed", CTLFLAG_RW, &bbr_marks_rxt_sack_passed, 0, "Mark sack passed on all those not ack'd when a RXT hits?"); /* Policer controls */ bbr_policer = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "policer", CTLFLAG_RW, 0, "Policer controls"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_policer), OID_AUTO, "detect_enable", CTLFLAG_RW, &bbr_policer_detection_enabled, 1, "Is policer detection enabled??"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_policer), OID_AUTO, "min_pes", CTLFLAG_RW, &bbr_lt_intvl_min_rtts, 4, "Minimum number of PE's?"); SYSCTL_ADD_U64(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_policer), OID_AUTO, "bwdiff", CTLFLAG_RW, &bbr_lt_bw_diff, (4000/8), "Minimal bw diff?"); SYSCTL_ADD_U64(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_policer), OID_AUTO, "bwratio", CTLFLAG_RW, &bbr_lt_bw_ratio, 8, "Minimal bw diff?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_policer), OID_AUTO, "from_rack_rxt", CTLFLAG_RW, &bbr_policer_call_from_rack_to, 0, "Do we call the policer detection code from a rack-timeout?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_policer), OID_AUTO, "false_postive", CTLFLAG_RW, &bbr_lt_intvl_fp, 0, "What packet epoch do we do false-postive detection at (0=no)?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_policer), OID_AUTO, "loss_thresh", CTLFLAG_RW, &bbr_lt_loss_thresh, 196, "Loss threshold 196 = 19.6%?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_policer), OID_AUTO, "false_postive_thresh", CTLFLAG_RW, &bbr_lt_fd_thresh, 100, "What percentage is the false detection threshold (150=15.0)?"); /* All the rest */ SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "cheat_rxt", CTLFLAG_RW, &bbr_use_rack_resend_cheat, 0, "Do we burst 1ms between sends on retransmissions (like rack)?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "error_paceout", CTLFLAG_RW, &bbr_error_base_paceout, 10000, "When we hit an error what is the min to pace out in usec's?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "kill_paceout", CTLFLAG_RW, &bbr_max_net_error_cnt, 10, "When we hit this many errors in a row, kill the session?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "data_after_close", CTLFLAG_RW, &bbr_ignore_data_after_close, 1, "Do we hold off sending a RST until all pending data is ack'd"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "resend_use_tso", CTLFLAG_RW, &bbr_resends_use_tso, 0, "Can resends use TSO?"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "sblklimit", CTLFLAG_RW, &bbr_sack_block_limit, 128, "When do we start ignoring small sack blocks"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "bb_verbose", CTLFLAG_RW, &bbr_verbose_logging, 0, "Should BBR black box logging be verbose"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "reorder_thresh", CTLFLAG_RW, &bbr_reorder_thresh, 2, "What factor for rack will be added when seeing reordering (shift right)"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "reorder_fade", CTLFLAG_RW, &bbr_reorder_fade, 0, "Does reorder detection fade, if so how many ms (0 means never)"); SYSCTL_ADD_S32(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW, &bbr_tlp_thresh, 1, "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)"); /* Stats and counters */ /* The pacing counters for hdwr/software can't be in the array */ bbr_nohdwr_pacing_enobuf = counter_u64_alloc(M_WAITOK); bbr_hdwr_pacing_enobuf = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "enob_hdwr_pacing", CTLFLAG_RD, &bbr_hdwr_pacing_enobuf, "Total number of enobufs for hardware paced flows"); SYSCTL_ADD_COUNTER_U64(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "enob_no_hdwr_pacing", CTLFLAG_RD, &bbr_nohdwr_pacing_enobuf, "Total number of enobufs for non-hardware paced flows"); bbr_flows_whdwr_pacing = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "hdwr_pacing", CTLFLAG_RD, &bbr_flows_whdwr_pacing, "Total number of hardware paced flows"); bbr_flows_nohdwr_pacing = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "software_pacing", CTLFLAG_RD, &bbr_flows_nohdwr_pacing, "Total number of software paced flows"); COUNTER_ARRAY_ALLOC(bbr_stat_arry, BBR_STAT_SIZE, M_WAITOK); SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "stats", CTLFLAG_RD, bbr_stat_arry, BBR_STAT_SIZE, "BBR Stats"); COUNTER_ARRAY_ALLOC(bbr_opts_arry, BBR_OPTS_SIZE, M_WAITOK); SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "opts", CTLFLAG_RD, bbr_opts_arry, BBR_OPTS_SIZE, "BBR Option Stats"); COUNTER_ARRAY_ALLOC(bbr_state_lost, BBR_MAX_STAT, M_WAITOK); SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "lost", CTLFLAG_RD, bbr_state_lost, BBR_MAX_STAT, "Stats of when losses occur"); COUNTER_ARRAY_ALLOC(bbr_state_resend, BBR_MAX_STAT, M_WAITOK); SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "stateresend", CTLFLAG_RD, bbr_state_resend, BBR_MAX_STAT, "Stats of what states resend"); COUNTER_ARRAY_ALLOC(bbr_state_time, BBR_MAX_STAT, M_WAITOK); SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "statetime", CTLFLAG_RD, bbr_state_time, BBR_MAX_STAT, "Stats of time spent in the states"); COUNTER_ARRAY_ALLOC(bbr_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK); SYSCTL_ADD_COUNTER_U64_ARRAY(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "outsize", CTLFLAG_RD, bbr_out_size, TCP_MSS_ACCT_SIZE, "Size of output calls"); SYSCTL_ADD_PROC(&bbr_sysctl_ctx, SYSCTL_CHILDREN(bbr_sysctl_root), OID_AUTO, "clrlost", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, &bbr_clear_lost, 0, sysctl_bbr_clear_lost, "IU", "Clear lost counters"); } static inline int32_t bbr_progress_timeout_check(struct tcp_bbr *bbr) { if (bbr->rc_tp->t_maxunacktime && bbr->rc_tp->t_acktime && TSTMP_GT(ticks, bbr->rc_tp->t_acktime)) { if ((((uint32_t)ticks - bbr->rc_tp->t_acktime)) >= bbr->rc_tp->t_maxunacktime) { /* * There is an assumption here that the caller will * drop the connection, so we increment the * statistics. */ bbr_log_progress_event(bbr, bbr->rc_tp, ticks, PROGRESS_DROP, __LINE__); BBR_STAT_INC(bbr_progress_drops); #ifdef NETFLIX_STATS TCPSTAT_INC(tcps_progdrops); #endif return (1); } } return (0); } static void bbr_counter_destroy(void) { COUNTER_ARRAY_FREE(bbr_stat_arry, BBR_STAT_SIZE); COUNTER_ARRAY_FREE(bbr_opts_arry, BBR_OPTS_SIZE); COUNTER_ARRAY_FREE(bbr_out_size, TCP_MSS_ACCT_SIZE); COUNTER_ARRAY_FREE(bbr_state_lost, BBR_MAX_STAT); COUNTER_ARRAY_FREE(bbr_state_time, BBR_MAX_STAT); COUNTER_ARRAY_FREE(bbr_state_resend, BBR_MAX_STAT); counter_u64_free(bbr_flows_whdwr_pacing); counter_u64_free(bbr_flows_nohdwr_pacing); } static __inline void bbr_fill_in_logging_data(struct tcp_bbr *bbr, struct tcp_log_bbr *l, uint32_t cts) { memset(l, 0, sizeof(union tcp_log_stackspecific)); l->cur_del_rate = bbr->r_ctl.rc_bbr_cur_del_rate; l->delRate = get_filter_value(&bbr->r_ctl.rc_delrate); l->rttProp = get_filter_value_small(&bbr->r_ctl.rc_rttprop); l->bw_inuse = bbr_get_bw(bbr); l->inflight = ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); l->applimited = bbr->r_ctl.r_app_limited_until; l->delivered = bbr->r_ctl.rc_delivered; l->timeStamp = cts; l->lost = bbr->r_ctl.rc_lost; l->bbr_state = bbr->rc_bbr_state; l->bbr_substate = bbr_state_val(bbr); l->epoch = bbr->r_ctl.rc_rtt_epoch; l->lt_epoch = bbr->r_ctl.rc_lt_epoch; l->pacing_gain = bbr->r_ctl.rc_bbr_hptsi_gain; l->cwnd_gain = bbr->r_ctl.rc_bbr_cwnd_gain; l->inhpts = bbr->rc_inp->inp_in_hpts; l->ininput = bbr->rc_inp->inp_in_input; l->use_lt_bw = bbr->rc_lt_use_bw; l->pkts_out = bbr->r_ctl.rc_flight_at_input; l->pkt_epoch = bbr->r_ctl.rc_pkt_epoch; } static void bbr_log_type_bw_reduce(struct tcp_bbr *bbr, int reason) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = 0; log.u_bbr.flex2 = 0; log.u_bbr.flex5 = 0; log.u_bbr.flex3 = 0; log.u_bbr.flex4 = bbr->r_ctl.rc_pkt_epoch_loss_rate; log.u_bbr.flex7 = reason; log.u_bbr.flex6 = bbr->r_ctl.rc_bbr_enters_probertt; log.u_bbr.flex8 = 0; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_BW_RED_EV, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_rwnd_collapse(struct tcp_bbr *bbr, int seq, int mode, uint32_t count) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = seq; log.u_bbr.flex2 = count; log.u_bbr.flex8 = mode; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_LOWGAIN, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_just_return(struct tcp_bbr *bbr, uint32_t cts, uint32_t tlen, uint8_t hpts_calling, uint8_t reason, uint32_t p_maxseg, int len) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = p_maxseg; log.u_bbr.flex2 = bbr->r_ctl.rc_hpts_flags; log.u_bbr.flex3 = bbr->r_ctl.rc_timer_exp; log.u_bbr.flex4 = reason; log.u_bbr.flex5 = bbr->rc_in_persist; log.u_bbr.flex6 = bbr->r_ctl.rc_last_delay_val; log.u_bbr.flex7 = p_maxseg; log.u_bbr.flex8 = bbr->rc_in_persist; log.u_bbr.pkts_out = 0; log.u_bbr.applimited = len; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_JUSTRET, 0, tlen, &log, false, &bbr->rc_tv); } } static void bbr_log_type_enter_rec(struct tcp_bbr *bbr, uint32_t seq) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = seq; log.u_bbr.flex2 = bbr->r_ctl.rc_cwnd_on_ent; log.u_bbr.flex3 = bbr->r_ctl.rc_recovery_start; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_ENTREC, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_msgsize_fail(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t len, uint32_t maxseg, uint32_t mtu, int32_t csum_flags, int32_t tso, uint32_t cts) { if (tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = tso; log.u_bbr.flex2 = maxseg; log.u_bbr.flex3 = mtu; log.u_bbr.flex4 = csum_flags; TCP_LOG_EVENTP(tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_MSGSIZE, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_flowend(struct tcp_bbr *bbr) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct sockbuf *r, *s; struct timeval tv; if (bbr->rc_inp->inp_socket) { r = &bbr->rc_inp->inp_socket->so_rcv; s = &bbr->rc_inp->inp_socket->so_snd; } else { r = s = NULL; } bbr_fill_in_logging_data(bbr, &log.u_bbr, tcp_get_usecs(&tv)); TCP_LOG_EVENTP(bbr->rc_tp, NULL, r, s, TCP_LOG_FLOWEND, 0, 0, &log, false, &tv); } } static void bbr_log_pkt_epoch(struct tcp_bbr *bbr, uint32_t cts, uint32_t line, uint32_t lost, uint32_t del) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = lost; log.u_bbr.flex2 = del; log.u_bbr.flex3 = bbr->r_ctl.rc_bbr_lastbtlbw; log.u_bbr.flex4 = bbr->r_ctl.rc_pkt_epoch_rtt; log.u_bbr.flex5 = bbr->r_ctl.rc_bbr_last_startup_epoch; log.u_bbr.flex6 = bbr->r_ctl.rc_lost_at_startup; log.u_bbr.flex7 = line; log.u_bbr.flex8 = 0; log.u_bbr.inflight = bbr->r_ctl.r_measurement_count; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_PKT_EPOCH, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_time_epoch(struct tcp_bbr *bbr, uint32_t cts, uint32_t line, uint32_t epoch_time) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = bbr->r_ctl.rc_lost; log.u_bbr.flex2 = bbr->rc_inp->inp_socket->so_snd.sb_lowat; log.u_bbr.flex3 = bbr->rc_inp->inp_socket->so_snd.sb_hiwat; log.u_bbr.flex7 = line; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_TIME_EPOCH, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_set_of_state_target(struct tcp_bbr *bbr, uint32_t new_tar, int line, int meth) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = bbr->r_ctl.rc_target_at_state; log.u_bbr.flex2 = new_tar; log.u_bbr.flex3 = line; log.u_bbr.flex4 = bbr->r_ctl.rc_pace_max_segs; log.u_bbr.flex5 = bbr_quanta; log.u_bbr.flex6 = bbr->r_ctl.rc_pace_min_segs; log.u_bbr.flex7 = bbr->rc_last_options; log.u_bbr.flex8 = meth; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_STATE_TARGET, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_statechange(struct tcp_bbr *bbr, uint32_t cts, int32_t line) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = line; log.u_bbr.flex2 = bbr->r_ctl.rc_rtt_shrinks; log.u_bbr.flex3 = bbr->r_ctl.rc_probertt_int; if (bbr_state_is_pkt_epoch) log.u_bbr.flex4 = bbr_get_rtt(bbr, BBR_RTT_PKTRTT); else log.u_bbr.flex4 = bbr_get_rtt(bbr, BBR_RTT_PROP); log.u_bbr.flex5 = bbr->r_ctl.rc_bbr_last_startup_epoch; log.u_bbr.flex6 = bbr->r_ctl.rc_lost_at_startup; log.u_bbr.flex7 = (bbr->r_ctl.rc_target_at_state/1000); log.u_bbr.lt_epoch = bbr->r_ctl.rc_level_state_extra; log.u_bbr.pkts_out = bbr->r_ctl.rc_target_at_state; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_STATE, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_rtt_shrinks(struct tcp_bbr *bbr, uint32_t cts, uint32_t applied, uint32_t rtt, uint32_t line, uint8_t reas, uint16_t cond) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = line; log.u_bbr.flex2 = bbr->r_ctl.rc_rtt_shrinks; log.u_bbr.flex3 = bbr->r_ctl.last_in_probertt; log.u_bbr.flex4 = applied; log.u_bbr.flex5 = rtt; log.u_bbr.flex6 = bbr->r_ctl.rc_target_at_state; log.u_bbr.flex7 = cond; log.u_bbr.flex8 = reas; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_RTT_SHRINKS, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_exit_rec(struct tcp_bbr *bbr) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = bbr->r_ctl.rc_recovery_start; log.u_bbr.flex2 = bbr->r_ctl.rc_cwnd_on_ent; log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_EXITREC, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_cwndupd(struct tcp_bbr *bbr, uint32_t bytes_this_ack, uint32_t chg, uint32_t prev_acked, int32_t meth, uint32_t target, uint32_t th_ack, int32_t line) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = line; log.u_bbr.flex2 = prev_acked; log.u_bbr.flex3 = bytes_this_ack; log.u_bbr.flex4 = chg; log.u_bbr.flex5 = th_ack; log.u_bbr.flex6 = target; log.u_bbr.flex8 = meth; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_CWND, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_rtt_sample(struct tcp_bbr *bbr, uint32_t rtt, uint32_t tsin) { /* * Log the rtt sample we are applying to the srtt algorithm in * useconds. */ if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = rtt; log.u_bbr.flex2 = bbr->r_ctl.rc_bbr_state_time; log.u_bbr.flex3 = bbr->r_ctl.rc_ack_hdwr_delay; log.u_bbr.flex4 = bbr->rc_tp->ts_offset; log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state; log.u_bbr.pkts_out = tcp_tv_to_mssectick(&bbr->rc_tv); log.u_bbr.flex6 = tsin; log.u_bbr.flex7 = 0; log.u_bbr.flex8 = bbr->rc_ack_was_delayed; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, TCP_LOG_RTT, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_pesist(struct tcp_bbr *bbr, uint32_t cts, uint32_t time_in, int32_t line, uint8_t enter_exit) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = time_in; log.u_bbr.flex2 = line; log.u_bbr.flex8 = enter_exit; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_PERSIST, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_ack_clear(struct tcp_bbr *bbr, uint32_t cts) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = bbr->rc_tp->ts_recent_age; log.u_bbr.flex2 = bbr->r_ctl.rc_rtt_shrinks; log.u_bbr.flex3 = bbr->r_ctl.rc_probertt_int; log.u_bbr.flex4 = bbr->r_ctl.rc_went_idle_time; log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_ACKCLEAR, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_ack_event(struct tcp_bbr *bbr, struct tcphdr *th, struct tcpopt *to, uint32_t tlen, uint16_t nsegs, uint32_t cts, int32_t nxt_pkt, struct mbuf *m) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = nsegs; log.u_bbr.flex2 = bbr->r_ctl.rc_lost_bytes; if (m) { struct timespec ts; log.u_bbr.flex3 = m->m_flags; if (m->m_flags & M_TSTMP) { mbuf_tstmp2timespec(m, &ts); tv.tv_sec = ts.tv_sec; tv.tv_usec = ts.tv_nsec / 1000; log.u_bbr.lt_epoch = tcp_tv_to_usectick(&tv); } else { log.u_bbr.lt_epoch = 0; } if (m->m_flags & M_TSTMP_LRO) { tv.tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000; tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000) / 1000; log.u_bbr.flex5 = tcp_tv_to_usectick(&tv); } else { /* No arrival timestamp */ log.u_bbr.flex5 = 0; } log.u_bbr.pkts_out = tcp_get_usecs(&tv); } else { log.u_bbr.flex3 = 0; log.u_bbr.flex5 = 0; log.u_bbr.flex6 = 0; log.u_bbr.pkts_out = 0; } log.u_bbr.flex4 = bbr->r_ctl.rc_target_at_state; log.u_bbr.flex7 = bbr->r_wanted_output; log.u_bbr.flex8 = bbr->rc_in_persist; TCP_LOG_EVENTP(bbr->rc_tp, th, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, TCP_LOG_IN, 0, tlen, &log, true, &bbr->rc_tv); } } static void bbr_log_doseg_done(struct tcp_bbr *bbr, uint32_t cts, int32_t nxt_pkt, int32_t did_out) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = did_out; log.u_bbr.flex2 = nxt_pkt; log.u_bbr.flex3 = bbr->r_ctl.rc_last_delay_val; log.u_bbr.flex4 = bbr->r_ctl.rc_hpts_flags; log.u_bbr.flex5 = bbr->r_ctl.rc_timer_exp; log.u_bbr.flex6 = bbr->r_ctl.rc_lost_bytes; log.u_bbr.flex7 = bbr->r_wanted_output; log.u_bbr.flex8 = bbr->rc_in_persist; log.u_bbr.pkts_out = bbr->r_ctl.highest_hdwr_delay; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_DOSEG_DONE, 0, 0, &log, true, &bbr->rc_tv); } } static void bbr_log_enobuf_jmp(struct tcp_bbr *bbr, uint32_t len, uint32_t cts, int32_t line, uint32_t o_len, uint32_t segcnt, uint32_t segsiz) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = line; log.u_bbr.flex2 = o_len; log.u_bbr.flex3 = segcnt; log.u_bbr.flex4 = segsiz; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_ENOBUF_JMP, ENOBUFS, len, &log, true, &bbr->rc_tv); } } static void bbr_log_to_processing(struct tcp_bbr *bbr, uint32_t cts, int32_t ret, int32_t timers, uint8_t hpts_calling) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = timers; log.u_bbr.flex2 = ret; log.u_bbr.flex3 = bbr->r_ctl.rc_timer_exp; log.u_bbr.flex4 = bbr->r_ctl.rc_hpts_flags; log.u_bbr.flex5 = cts; log.u_bbr.flex6 = bbr->r_ctl.rc_target_at_state; log.u_bbr.flex8 = hpts_calling; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_TO_PROCESS, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_to_event(struct tcp_bbr *bbr, uint32_t cts, int32_t to_num) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; uint64_t ar; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = bbr->bbr_timer_src; log.u_bbr.flex2 = 0; log.u_bbr.flex3 = bbr->r_ctl.rc_hpts_flags; ar = (uint64_t)(bbr->r_ctl.rc_resend); ar >>= 32; ar &= 0x00000000ffffffff; log.u_bbr.flex4 = (uint32_t)ar; ar = (uint64_t)bbr->r_ctl.rc_resend; ar &= 0x00000000ffffffff; log.u_bbr.flex5 = (uint32_t)ar; log.u_bbr.flex6 = TICKS_2_USEC(bbr->rc_tp->t_rxtcur); log.u_bbr.flex8 = to_num; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_RTO, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_startup_event(struct tcp_bbr *bbr, uint32_t cts, uint32_t flex1, uint32_t flex2, uint32_t flex3, uint8_t reason) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = flex1; log.u_bbr.flex2 = flex2; log.u_bbr.flex3 = flex3; log.u_bbr.flex4 = 0; log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state; log.u_bbr.flex6 = bbr->r_ctl.rc_lost_at_startup; log.u_bbr.flex8 = reason; log.u_bbr.cur_del_rate = bbr->r_ctl.rc_bbr_lastbtlbw; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_REDUCE, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_hpts_diag(struct tcp_bbr *bbr, uint32_t cts, struct hpts_diag *diag) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = diag->p_nxt_slot; log.u_bbr.flex2 = diag->p_cur_slot; log.u_bbr.flex3 = diag->slot_req; log.u_bbr.flex4 = diag->inp_hptsslot; log.u_bbr.flex5 = diag->slot_remaining; log.u_bbr.flex6 = diag->need_new_to; log.u_bbr.flex7 = diag->p_hpts_active; log.u_bbr.flex8 = diag->p_on_min_sleep; /* Hijack other fields as needed */ log.u_bbr.epoch = diag->have_slept; log.u_bbr.lt_epoch = diag->yet_to_sleep; log.u_bbr.pkts_out = diag->co_ret; log.u_bbr.applimited = diag->hpts_sleep_time; log.u_bbr.delivered = diag->p_prev_slot; log.u_bbr.inflight = diag->p_runningtick; log.u_bbr.bw_inuse = diag->wheel_tick; log.u_bbr.rttProp = diag->wheel_cts; log.u_bbr.delRate = diag->maxticks; log.u_bbr.cur_del_rate = diag->p_curtick; log.u_bbr.cur_del_rate <<= 32; log.u_bbr.cur_del_rate |= diag->p_lasttick; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_HPTSDIAG, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_timer_var(struct tcp_bbr *bbr, int mode, uint32_t cts, uint32_t time_since_sent, uint32_t srtt, uint32_t thresh, uint32_t to) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = bbr->rc_tp->t_rttvar; log.u_bbr.flex2 = time_since_sent; log.u_bbr.flex3 = srtt; log.u_bbr.flex4 = thresh; log.u_bbr.flex5 = to; log.u_bbr.flex6 = bbr->rc_tp->t_srtt; log.u_bbr.flex8 = mode; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_TIMERPREP, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_pacing_delay_calc(struct tcp_bbr *bbr, uint16_t gain, uint32_t len, uint32_t cts, uint32_t usecs, uint64_t bw, uint32_t override, int mod) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = usecs; log.u_bbr.flex2 = len; log.u_bbr.flex3 = (uint32_t)((bw >> 32) & 0x00000000ffffffff); log.u_bbr.flex4 = (uint32_t)(bw & 0x00000000ffffffff); if (override) log.u_bbr.flex5 = (1 << 2); else log.u_bbr.flex5 = 0; log.u_bbr.flex6 = override; log.u_bbr.flex7 = gain; log.u_bbr.flex8 = mod; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_HPTSI_CALC, 0, len, &log, false, &bbr->rc_tv); } } static void bbr_log_to_start(struct tcp_bbr *bbr, uint32_t cts, uint32_t to, int32_t slot, uint8_t which) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = bbr->bbr_timer_src; log.u_bbr.flex2 = to; log.u_bbr.flex3 = bbr->r_ctl.rc_hpts_flags; log.u_bbr.flex4 = slot; log.u_bbr.flex5 = bbr->rc_inp->inp_hptsslot; log.u_bbr.flex6 = TICKS_2_USEC(bbr->rc_tp->t_rxtcur); log.u_bbr.pkts_out = bbr->rc_inp->inp_flags2; log.u_bbr.flex8 = which; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_TIMERSTAR, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_thresh_choice(struct tcp_bbr *bbr, uint32_t cts, uint32_t thresh, uint32_t lro, uint32_t srtt, struct bbr_sendmap *rsm, uint8_t frm) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = thresh; log.u_bbr.flex2 = lro; log.u_bbr.flex3 = bbr->r_ctl.rc_reorder_ts; log.u_bbr.flex4 = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; log.u_bbr.flex5 = TICKS_2_USEC(bbr->rc_tp->t_rxtcur); log.u_bbr.flex6 = srtt; log.u_bbr.flex7 = bbr->r_ctl.rc_reorder_shift; log.u_bbr.flex8 = frm; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_THRESH_CALC, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_to_cancel(struct tcp_bbr *bbr, int32_t line, uint32_t cts, uint8_t hpts_removed) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = line; log.u_bbr.flex2 = bbr->bbr_timer_src; log.u_bbr.flex3 = bbr->r_ctl.rc_hpts_flags; log.u_bbr.flex4 = bbr->rc_in_persist; log.u_bbr.flex5 = bbr->r_ctl.rc_target_at_state; log.u_bbr.flex6 = TICKS_2_USEC(bbr->rc_tp->t_rxtcur); log.u_bbr.flex8 = hpts_removed; log.u_bbr.pkts_out = bbr->rc_pacer_started; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_TIMERCANC, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_tstmp_validation(struct tcp_bbr *bbr, uint64_t peer_delta, uint64_t delta) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = bbr->r_ctl.bbr_peer_tsratio; log.u_bbr.flex2 = (peer_delta >> 32); log.u_bbr.flex3 = (peer_delta & 0x00000000ffffffff); log.u_bbr.flex4 = (delta >> 32); log.u_bbr.flex5 = (delta & 0x00000000ffffffff); log.u_bbr.flex7 = bbr->rc_ts_clock_set; log.u_bbr.flex8 = bbr->rc_ts_cant_be_used; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_TSTMP_VAL, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_tsosize(struct tcp_bbr *bbr, uint32_t cts, uint32_t tsosz, uint32_t tls, uint32_t old_val, uint32_t maxseg, int hdwr) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = tsosz; log.u_bbr.flex2 = tls; log.u_bbr.flex3 = tcp_min_hptsi_time; log.u_bbr.flex4 = bbr->r_ctl.bbr_hptsi_bytes_min; log.u_bbr.flex5 = old_val; log.u_bbr.flex6 = maxseg; log.u_bbr.flex7 = bbr->rc_no_pacing; log.u_bbr.flex7 <<= 1; log.u_bbr.flex7 |= bbr->rc_past_init_win; if (hdwr) log.u_bbr.flex8 = 0x80 | bbr->rc_use_google; else log.u_bbr.flex8 = bbr->rc_use_google; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_BBRTSO, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_rsmclear(struct tcp_bbr *bbr, uint32_t cts, struct bbr_sendmap *rsm, uint32_t flags, uint32_t line) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = line; log.u_bbr.flex2 = rsm->r_start; log.u_bbr.flex3 = rsm->r_end; log.u_bbr.flex4 = rsm->r_delivered; log.u_bbr.flex5 = rsm->r_rtr_cnt; log.u_bbr.flex6 = rsm->r_dupack; log.u_bbr.flex7 = rsm->r_tim_lastsent[0]; log.u_bbr.flex8 = rsm->r_flags; /* Hijack the pkts_out fids */ log.u_bbr.applimited = flags; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_RSM_CLEARED, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_bbrupd(struct tcp_bbr *bbr, uint8_t flex8, uint32_t cts, uint32_t flex3, uint32_t flex2, uint32_t flex5, uint32_t flex6, uint32_t pkts_out, int flex7, uint32_t flex4, uint32_t flex1) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = flex1; log.u_bbr.flex2 = flex2; log.u_bbr.flex3 = flex3; log.u_bbr.flex4 = flex4; log.u_bbr.flex5 = flex5; log.u_bbr.flex6 = flex6; log.u_bbr.flex7 = flex7; /* Hijack the pkts_out fids */ log.u_bbr.pkts_out = pkts_out; log.u_bbr.flex8 = flex8; if (bbr->rc_ack_was_delayed) log.u_bbr.epoch = bbr->r_ctl.rc_ack_hdwr_delay; else log.u_bbr.epoch = 0; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_BBRUPD, 0, flex2, &log, false, &bbr->rc_tv); } } static void bbr_log_type_ltbw(struct tcp_bbr *bbr, uint32_t cts, int32_t reason, uint32_t newbw, uint32_t obw, uint32_t diff, uint32_t tim) { if (/*bbr_verbose_logging && */(bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = reason; log.u_bbr.flex2 = newbw; log.u_bbr.flex3 = obw; log.u_bbr.flex4 = diff; log.u_bbr.flex5 = bbr->r_ctl.rc_lt_lost; log.u_bbr.flex6 = bbr->r_ctl.rc_lt_del; log.u_bbr.flex7 = bbr->rc_lt_is_sampling; log.u_bbr.pkts_out = tim; log.u_bbr.bw_inuse = bbr->r_ctl.rc_lt_bw; if (bbr->rc_lt_use_bw == 0) log.u_bbr.epoch = bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_lt_epoch; else log.u_bbr.epoch = bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_lt_epoch_use; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_BWSAMP, 0, 0, &log, false, &bbr->rc_tv); } } static inline void bbr_log_progress_event(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t tick, int event, int line) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); log.u_bbr.flex1 = line; log.u_bbr.flex2 = tick; log.u_bbr.flex3 = tp->t_maxunacktime; log.u_bbr.flex4 = tp->t_acktime; log.u_bbr.flex8 = event; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_PROGRESS, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_type_log_hdwr_pacing(struct tcp_bbr *bbr, const struct ifnet *ifp, uint64_t rate, uint64_t hw_rate, int line, uint32_t cts, int error) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff); log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff); log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff); log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff); log.u_bbr.bw_inuse = rate; log.u_bbr.flex5 = line; log.u_bbr.flex6 = error; log.u_bbr.flex8 = bbr->skip_gain; log.u_bbr.flex8 <<= 1; log.u_bbr.flex8 |= bbr->gain_is_limited; log.u_bbr.flex8 <<= 1; log.u_bbr.flex8 |= bbr->bbr_hdrw_pacing; log.u_bbr.pkts_out = bbr->rc_tp->t_maxseg; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_HDWR_PACE, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_type_bbrsnd(struct tcp_bbr *bbr, uint32_t len, uint32_t slot, uint32_t del_by, uint32_t cts, uint32_t line, uint32_t prev_delay) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = slot; log.u_bbr.flex2 = del_by; log.u_bbr.flex3 = prev_delay; log.u_bbr.flex4 = line; log.u_bbr.flex5 = bbr->r_ctl.rc_last_delay_val; log.u_bbr.flex6 = bbr->r_ctl.rc_hptsi_agg_delay; log.u_bbr.flex7 = (0x0000ffff & bbr->r_ctl.rc_hpts_flags); log.u_bbr.flex8 = bbr->rc_in_persist; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_BBRSND, 0, len, &log, false, &bbr->rc_tv); } } static void bbr_log_type_bbrrttprop(struct tcp_bbr *bbr, uint32_t t, uint32_t end, uint32_t tsconv, uint32_t cts, int32_t match, uint32_t seq, uint8_t flags) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = bbr->r_ctl.rc_delivered; log.u_bbr.flex2 = 0; log.u_bbr.flex3 = bbr->r_ctl.rc_lowest_rtt; log.u_bbr.flex4 = end; log.u_bbr.flex5 = seq; log.u_bbr.flex6 = t; log.u_bbr.flex7 = match; log.u_bbr.flex8 = flags; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_BBRRTT, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_exit_gain(struct tcp_bbr *bbr, uint32_t cts, int32_t entry_method) { if (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = bbr->r_ctl.rc_target_at_state; log.u_bbr.flex2 = (bbr->rc_tp->t_maxseg - bbr->rc_last_options); log.u_bbr.flex3 = bbr->r_ctl.gain_epoch; log.u_bbr.flex4 = bbr->r_ctl.rc_pace_max_segs; log.u_bbr.flex5 = bbr->r_ctl.rc_pace_min_segs; log.u_bbr.flex6 = bbr->r_ctl.rc_bbr_state_atflight; log.u_bbr.flex7 = 0; log.u_bbr.flex8 = entry_method; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_EXIT_GAIN, 0, 0, &log, false, &bbr->rc_tv); } } static void bbr_log_settings_change(struct tcp_bbr *bbr, int settings_desired) { if (bbr_verbose_logging && (bbr->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, bbr->r_ctl.rc_rcvtime); /* R-HU */ log.u_bbr.flex1 = 0; log.u_bbr.flex2 = 0; log.u_bbr.flex3 = 0; log.u_bbr.flex4 = 0; log.u_bbr.flex7 = 0; log.u_bbr.flex8 = settings_desired; TCP_LOG_EVENTP(bbr->rc_tp, NULL, &bbr->rc_inp->inp_socket->so_rcv, &bbr->rc_inp->inp_socket->so_snd, BBR_LOG_SETTINGS_CHG, 0, 0, &log, false, &bbr->rc_tv); } } /* * Returns the bw from the our filter. */ static inline uint64_t bbr_get_full_bw(struct tcp_bbr *bbr) { uint64_t bw; bw = get_filter_value(&bbr->r_ctl.rc_delrate); return (bw); } static inline void bbr_set_pktepoch(struct tcp_bbr *bbr, uint32_t cts, int32_t line) { uint64_t calclr; uint32_t lost, del; if (bbr->r_ctl.rc_lost > bbr->r_ctl.rc_lost_at_pktepoch) lost = bbr->r_ctl.rc_lost - bbr->r_ctl.rc_lost_at_pktepoch; else lost = 0; del = bbr->r_ctl.rc_delivered - bbr->r_ctl.rc_pkt_epoch_del; if (lost == 0) { calclr = 0; } else if (del) { calclr = lost; calclr *= (uint64_t)1000; calclr /= (uint64_t)del; } else { /* Nothing delivered? 100.0% loss */ calclr = 1000; } bbr->r_ctl.rc_pkt_epoch_loss_rate = (uint32_t)calclr; if (IN_RECOVERY(bbr->rc_tp->t_flags)) bbr->r_ctl.recovery_lr += (uint32_t)calclr; bbr->r_ctl.rc_pkt_epoch++; if (bbr->rc_no_pacing && (bbr->r_ctl.rc_pkt_epoch >= bbr->no_pacing_until)) { bbr->rc_no_pacing = 0; tcp_bbr_tso_size_check(bbr, cts); } bbr->r_ctl.rc_pkt_epoch_rtt = bbr_calc_time(cts, bbr->r_ctl.rc_pkt_epoch_time); bbr->r_ctl.rc_pkt_epoch_time = cts; /* What was our loss rate */ bbr_log_pkt_epoch(bbr, cts, line, lost, del); bbr->r_ctl.rc_pkt_epoch_del = bbr->r_ctl.rc_delivered; bbr->r_ctl.rc_lost_at_pktepoch = bbr->r_ctl.rc_lost; } static inline void bbr_set_epoch(struct tcp_bbr *bbr, uint32_t cts, int32_t line) { uint32_t epoch_time; /* Tick the RTT clock */ bbr->r_ctl.rc_rtt_epoch++; epoch_time = cts - bbr->r_ctl.rc_rcv_epoch_start; bbr_log_time_epoch(bbr, cts, line, epoch_time); bbr->r_ctl.rc_rcv_epoch_start = cts; } static inline void bbr_isit_a_pkt_epoch(struct tcp_bbr *bbr, uint32_t cts, struct bbr_sendmap *rsm, int32_t line, int32_t cum_acked) { if (SEQ_GEQ(rsm->r_delivered, bbr->r_ctl.rc_pkt_epoch_del)) { bbr->rc_is_pkt_epoch_now = 1; } } /* * Returns the bw from either the b/w filter * or from the lt_bw (if the connection is being * policed). */ static inline uint64_t __bbr_get_bw(struct tcp_bbr *bbr) { uint64_t bw, min_bw; uint64_t rtt; int gm_measure_cnt = 1; /* * For startup we make, like google, a * minimum b/w. This is generated from the * IW and the rttProp. We do fall back to srtt * if for some reason (initial handshake) we don't * have a rttProp. We, in the worst case, fall back * to the configured min_bw (rc_initial_hptsi_bw). */ if (bbr->rc_bbr_state == BBR_STATE_STARTUP) { /* Attempt first to use rttProp */ rtt = (uint64_t)get_filter_value_small(&bbr->r_ctl.rc_rttprop); if (rtt && (rtt < 0xffffffff)) { measure: min_bw = (uint64_t)(bbr_initial_cwnd(bbr, bbr->rc_tp)) * ((uint64_t)1000000); min_bw /= rtt; if (min_bw < bbr->r_ctl.rc_initial_hptsi_bw) { min_bw = bbr->r_ctl.rc_initial_hptsi_bw; } } else if (bbr->rc_tp->t_srtt != 0) { /* No rttProp, use srtt? */ rtt = bbr_get_rtt(bbr, BBR_SRTT); goto measure; } else { min_bw = bbr->r_ctl.rc_initial_hptsi_bw; } } else min_bw = 0; if ((bbr->rc_past_init_win == 0) && (bbr->r_ctl.rc_delivered > bbr_initial_cwnd(bbr, bbr->rc_tp))) bbr->rc_past_init_win = 1; if ((bbr->rc_use_google) && (bbr->r_ctl.r_measurement_count >= 1)) gm_measure_cnt = 0; if (gm_measure_cnt && ((bbr->r_ctl.r_measurement_count < bbr_min_measurements_req) || (bbr->rc_past_init_win == 0))) { /* For google we use our guess rate until we get 1 measurement */ use_initial_window: rtt = (uint64_t)get_filter_value_small(&bbr->r_ctl.rc_rttprop); if (rtt && (rtt < 0xffffffff)) { /* * We have an RTT measurment. Use that in * combination with our initial window to calculate * a b/w. */ bw = (uint64_t)(bbr_initial_cwnd(bbr, bbr->rc_tp)) * ((uint64_t)1000000); bw /= rtt; if (bw < bbr->r_ctl.rc_initial_hptsi_bw) { bw = bbr->r_ctl.rc_initial_hptsi_bw; } } else { /* Drop back to the 40 and punt to a default */ bw = bbr->r_ctl.rc_initial_hptsi_bw; } if (bw < 1) /* Probably should panic */ bw = 1; if (bw > min_bw) return (bw); else return (min_bw); } if (bbr->rc_lt_use_bw) bw = bbr->r_ctl.rc_lt_bw; else if (bbr->r_recovery_bw && (bbr->rc_use_google == 0)) bw = bbr->r_ctl.red_bw; else bw = get_filter_value(&bbr->r_ctl.rc_delrate); if (bbr->rc_tp->t_peakrate_thr && (bbr->rc_use_google == 0)) { /* * Enforce user set rate limit, keep in mind that * t_peakrate_thr is in B/s already */ bw = uqmin((uint64_t)bbr->rc_tp->t_peakrate_thr, bw); } if (bw == 0) { /* We should not be at 0, go to the initial window then */ goto use_initial_window; } if (bw < 1) /* Probably should panic */ bw = 1; if (bw < min_bw) bw = min_bw; return (bw); } static inline uint64_t bbr_get_bw(struct tcp_bbr *bbr) { uint64_t bw; bw = __bbr_get_bw(bbr); return (bw); } static inline void bbr_reset_lt_bw_interval(struct tcp_bbr *bbr, uint32_t cts) { bbr->r_ctl.rc_lt_epoch = bbr->r_ctl.rc_pkt_epoch; bbr->r_ctl.rc_lt_time = bbr->r_ctl.rc_del_time; bbr->r_ctl.rc_lt_del = bbr->r_ctl.rc_delivered; bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost; } static inline void bbr_reset_lt_bw_sampling(struct tcp_bbr *bbr, uint32_t cts) { bbr->rc_lt_is_sampling = 0; bbr->rc_lt_use_bw = 0; bbr->r_ctl.rc_lt_bw = 0; bbr_reset_lt_bw_interval(bbr, cts); } static inline void bbr_lt_bw_samp_done(struct tcp_bbr *bbr, uint64_t bw, uint32_t cts, uint32_t timin) { uint64_t diff; /* Do we have a previous sample? */ if (bbr->r_ctl.rc_lt_bw) { /* Get the diff in bytes per second */ if (bbr->r_ctl.rc_lt_bw > bw) diff = bbr->r_ctl.rc_lt_bw - bw; else diff = bw - bbr->r_ctl.rc_lt_bw; if ((diff <= bbr_lt_bw_diff) || (diff <= (bbr->r_ctl.rc_lt_bw / bbr_lt_bw_ratio))) { /* Consider us policed */ uint32_t saved_bw; saved_bw = (uint32_t)bbr->r_ctl.rc_lt_bw; bbr->r_ctl.rc_lt_bw = (bw + bbr->r_ctl.rc_lt_bw) / 2; /* average of two */ bbr->rc_lt_use_bw = 1; bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT; /* * Use pkt based epoch for measuring length of * policer up */ bbr->r_ctl.rc_lt_epoch_use = bbr->r_ctl.rc_pkt_epoch; /* * reason 4 is we need to start consider being * policed */ bbr_log_type_ltbw(bbr, cts, 4, (uint32_t)bw, saved_bw, (uint32_t)diff, timin); return; } } bbr->r_ctl.rc_lt_bw = bw; bbr_reset_lt_bw_interval(bbr, cts); bbr_log_type_ltbw(bbr, cts, 5, 0, (uint32_t)bw, 0, timin); } /* * RRS: Copied from user space! * Calculate a uniformly distributed random number less than upper_bound * avoiding "modulo bias". * * Uniformity is achieved by generating new random numbers until the one * returned is outside the range [0, 2**32 % upper_bound). This * guarantees the selected random number will be inside * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound) * after reduction modulo upper_bound. */ static uint32_t arc4random_uniform(uint32_t upper_bound) { uint32_t r, min; if (upper_bound < 2) return 0; /* 2**32 % x == (2**32 - x) % x */ min = -upper_bound % upper_bound; /* * This could theoretically loop forever but each retry has * p > 0.5 (worst case, usually far better) of selecting a * number inside the range we need, so it should rarely need * to re-roll. */ for (;;) { r = arc4random(); if (r >= min) break; } return r % upper_bound; } static void bbr_randomize_extra_state_time(struct tcp_bbr *bbr) { uint32_t ran, deduct; ran = arc4random_uniform(bbr_rand_ot); if (ran) { deduct = bbr->r_ctl.rc_level_state_extra / ran; bbr->r_ctl.rc_level_state_extra -= deduct; } } /* * Return randomly the starting state * to use in probebw. */ static uint8_t bbr_pick_probebw_substate(struct tcp_bbr *bbr, uint32_t cts) { uint32_t ran; uint8_t ret_val; /* Initialize the offset to 0 */ bbr->r_ctl.rc_exta_time_gd = 0; bbr->rc_hit_state_1 = 0; bbr->r_ctl.rc_level_state_extra = 0; ran = arc4random_uniform((BBR_SUBSTATE_COUNT-1)); /* * The math works funny here :) the return value is used to set the * substate and then the state change is called which increments by * one. So if we return 1 (DRAIN) we will increment to 2 (LEVEL1) when * we fully enter the state. Note that the (8 - 1 - ran) assures that * we return 1 - 7, so we dont return 0 and end up starting in * state 1 (DRAIN). */ ret_val = BBR_SUBSTATE_COUNT - 1 - ran; /* Set an epoch */ if ((cts - bbr->r_ctl.rc_rcv_epoch_start) >= bbr_get_rtt(bbr, BBR_RTT_PROP)) bbr_set_epoch(bbr, cts, __LINE__); bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost; return (ret_val); } static void bbr_lt_bw_sampling(struct tcp_bbr *bbr, uint32_t cts, int32_t loss_detected) { uint32_t diff, d_time; uint64_t del_time, bw, lost, delivered; if (bbr->r_use_policer == 0) return; if (bbr->rc_lt_use_bw) { /* We are using lt bw do we stop yet? */ diff = bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_lt_epoch_use; if (diff > bbr_lt_bw_max_rtts) { /* Reset it all */ reset_all: bbr_reset_lt_bw_sampling(bbr, cts); if (bbr->rc_filled_pipe) { bbr_set_epoch(bbr, cts, __LINE__); bbr->rc_bbr_substate = bbr_pick_probebw_substate(bbr, cts); bbr_substate_change(bbr, cts, __LINE__, 0); bbr->rc_bbr_state = BBR_STATE_PROBE_BW; bbr_log_type_statechange(bbr, cts, __LINE__); } else { /* * This should not happen really * unless we remove the startup/drain * restrictions above. */ bbr->rc_bbr_state = BBR_STATE_STARTUP; bbr_set_epoch(bbr, cts, __LINE__); bbr->r_ctl.rc_bbr_state_time = cts; bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost; bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.rc_startup_pg; bbr->r_ctl.rc_bbr_cwnd_gain = bbr->r_ctl.rc_startup_pg; bbr_set_state_target(bbr, __LINE__); bbr_log_type_statechange(bbr, cts, __LINE__); } /* reason 0 is to stop using lt-bw */ bbr_log_type_ltbw(bbr, cts, 0, 0, 0, 0, 0); return; } if (bbr_lt_intvl_fp == 0) { /* Not doing false-postive detection */ return; } /* False positive detection */ if (diff == bbr_lt_intvl_fp) { /* At bbr_lt_intvl_fp we record the lost */ bbr->r_ctl.rc_lt_del = bbr->r_ctl.rc_delivered; bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost; } else if (diff > (bbr_lt_intvl_min_rtts + bbr_lt_intvl_fp)) { /* Now is our loss rate still high? */ lost = bbr->r_ctl.rc_lost - bbr->r_ctl.rc_lt_lost; delivered = bbr->r_ctl.rc_delivered - bbr->r_ctl.rc_lt_del; if ((delivered == 0) || (((lost * 1000)/delivered) < bbr_lt_fd_thresh)) { /* No still below our threshold */ bbr_log_type_ltbw(bbr, cts, 7, lost, delivered, 0, 0); } else { /* Yikes its still high, it must be a false positive */ bbr_log_type_ltbw(bbr, cts, 8, lost, delivered, 0, 0); goto reset_all; } } return; } /* * Wait for the first loss before sampling, to let the policer * exhaust its tokens and estimate the steady-state rate allowed by * the policer. Starting samples earlier includes bursts that * over-estimate the bw. */ if (bbr->rc_lt_is_sampling == 0) { /* reason 1 is to begin doing the sampling */ if (loss_detected == 0) return; bbr_reset_lt_bw_interval(bbr, cts); bbr->rc_lt_is_sampling = 1; bbr_log_type_ltbw(bbr, cts, 1, 0, 0, 0, 0); return; } /* Now how long were we delivering long term last> */ if (TSTMP_GEQ(bbr->r_ctl.rc_del_time, bbr->r_ctl.rc_lt_time)) d_time = bbr->r_ctl.rc_del_time - bbr->r_ctl.rc_lt_time; else d_time = 0; /* To avoid underestimates, reset sampling if we run out of data. */ if (bbr->r_ctl.r_app_limited_until) { /* Can not measure in app-limited state */ bbr_reset_lt_bw_sampling(bbr, cts); /* reason 2 is to reset sampling due to app limits */ bbr_log_type_ltbw(bbr, cts, 2, 0, 0, 0, d_time); return; } diff = bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_lt_epoch; if (diff < bbr_lt_intvl_min_rtts) { /* * need more samples (we don't * start on a round like linux so * we need 1 more). */ /* 6 is not_enough time or no-loss */ bbr_log_type_ltbw(bbr, cts, 6, 0, 0, 0, d_time); return; } if (diff > (4 * bbr_lt_intvl_min_rtts)) { /* * For now if we wait too long, reset all sampling. We need * to do some research here, its possible that we should * base this on how much loss as occurred.. something like * if its under 10% (or some thresh) reset all otherwise * don't. Thats for phase II I guess. */ bbr_reset_lt_bw_sampling(bbr, cts); /* reason 3 is to reset sampling due too long of sampling */ bbr_log_type_ltbw(bbr, cts, 3, 0, 0, 0, d_time); return; } /* * End sampling interval when a packet is lost, so we estimate the * policer tokens were exhausted. Stopping the sampling before the * tokens are exhausted under-estimates the policed rate. */ if (loss_detected == 0) { /* 6 is not_enough time or no-loss */ bbr_log_type_ltbw(bbr, cts, 6, 0, 0, 0, d_time); return; } /* Calculate packets lost and delivered in sampling interval. */ lost = bbr->r_ctl.rc_lost - bbr->r_ctl.rc_lt_lost; delivered = bbr->r_ctl.rc_delivered - bbr->r_ctl.rc_lt_del; if ((delivered == 0) || (((lost * 1000)/delivered) < bbr_lt_loss_thresh)) { bbr_log_type_ltbw(bbr, cts, 6, lost, delivered, 0, d_time); return; } if (d_time < 1000) { /* Not enough time. wait */ /* 6 is not_enough time or no-loss */ bbr_log_type_ltbw(bbr, cts, 6, 0, 0, 0, d_time); return; } if (d_time >= (0xffffffff / USECS_IN_MSEC)) { /* Too long */ bbr_reset_lt_bw_sampling(bbr, cts); /* reason 3 is to reset sampling due too long of sampling */ bbr_log_type_ltbw(bbr, cts, 3, 0, 0, 0, d_time); return; } del_time = d_time; bw = delivered; bw *= (uint64_t)USECS_IN_SECOND; bw /= del_time; bbr_lt_bw_samp_done(bbr, bw, cts, d_time); } /* * Allocate a sendmap from our zone. */ static struct bbr_sendmap * bbr_alloc(struct tcp_bbr *bbr) { struct bbr_sendmap *rsm; BBR_STAT_INC(bbr_to_alloc); rsm = uma_zalloc(bbr_zone, (M_NOWAIT | M_ZERO)); if (rsm) { bbr->r_ctl.rc_num_maps_alloced++; return (rsm); } if (bbr->r_ctl.rc_free_cnt) { BBR_STAT_INC(bbr_to_alloc_emerg); rsm = TAILQ_FIRST(&bbr->r_ctl.rc_free); TAILQ_REMOVE(&bbr->r_ctl.rc_free, rsm, r_next); bbr->r_ctl.rc_free_cnt--; return (rsm); } BBR_STAT_INC(bbr_to_alloc_failed); return (NULL); } static struct bbr_sendmap * bbr_alloc_full_limit(struct tcp_bbr *bbr) { if ((V_tcp_map_entries_limit > 0) && (bbr->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { BBR_STAT_INC(bbr_alloc_limited); if (!bbr->alloc_limit_reported) { bbr->alloc_limit_reported = 1; BBR_STAT_INC(bbr_alloc_limited_conns); } return (NULL); } return (bbr_alloc(bbr)); } /* wrapper to allocate a sendmap entry, subject to a specific limit */ static struct bbr_sendmap * bbr_alloc_limit(struct tcp_bbr *bbr, uint8_t limit_type) { struct bbr_sendmap *rsm; if (limit_type) { /* currently there is only one limit type */ if (V_tcp_map_split_limit > 0 && bbr->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) { BBR_STAT_INC(bbr_split_limited); if (!bbr->alloc_limit_reported) { bbr->alloc_limit_reported = 1; BBR_STAT_INC(bbr_alloc_limited_conns); } return (NULL); } } /* allocate and mark in the limit type, if set */ rsm = bbr_alloc(bbr); if (rsm != NULL && limit_type) { rsm->r_limit_type = limit_type; bbr->r_ctl.rc_num_split_allocs++; } return (rsm); } static void bbr_free(struct tcp_bbr *bbr, struct bbr_sendmap *rsm) { if (rsm->r_limit_type) { /* currently there is only one limit type */ bbr->r_ctl.rc_num_split_allocs--; } if (rsm->r_is_smallmap) bbr->r_ctl.rc_num_small_maps_alloced--; if (bbr->r_ctl.rc_tlp_send == rsm) bbr->r_ctl.rc_tlp_send = NULL; if (bbr->r_ctl.rc_resend == rsm) { bbr->r_ctl.rc_resend = NULL; } if (bbr->r_ctl.rc_next == rsm) bbr->r_ctl.rc_next = NULL; if (bbr->r_ctl.rc_sacklast == rsm) bbr->r_ctl.rc_sacklast = NULL; if (bbr->r_ctl.rc_free_cnt < bbr_min_req_free) { memset(rsm, 0, sizeof(struct bbr_sendmap)); TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_free, rsm, r_next); rsm->r_limit_type = 0; bbr->r_ctl.rc_free_cnt++; return; } bbr->r_ctl.rc_num_maps_alloced--; uma_zfree(bbr_zone, rsm); } /* * Returns the BDP. */ static uint64_t bbr_get_bw_delay_prod(uint64_t rtt, uint64_t bw) { /* * Calculate the bytes in flight needed given the bw (in bytes per * second) and the specifyed rtt in useconds. We need to put out the * returned value per RTT to match that rate. Gain will normaly * raise it up from there. * * This should not overflow as long as the bandwidth is below 1 * TByte per second (bw < 10**12 = 2**40) and the rtt is smaller * than 1000 seconds (rtt < 10**3 * 10**6 = 10**9 = 2**30). */ uint64_t usec_per_sec; usec_per_sec = USECS_IN_SECOND; return ((rtt * bw) / usec_per_sec); } /* * Return the initial cwnd. */ static uint32_t bbr_initial_cwnd(struct tcp_bbr *bbr, struct tcpcb *tp) { uint32_t i_cwnd; if (bbr->rc_init_win) { i_cwnd = bbr->rc_init_win * tp->t_maxseg; } else if (V_tcp_initcwnd_segments) i_cwnd = min((V_tcp_initcwnd_segments * tp->t_maxseg), max(2 * tp->t_maxseg, 14600)); else if (V_tcp_do_rfc3390) i_cwnd = min(4 * tp->t_maxseg, max(2 * tp->t_maxseg, 4380)); else { /* Per RFC5681 Section 3.1 */ if (tp->t_maxseg > 2190) i_cwnd = 2 * tp->t_maxseg; else if (tp->t_maxseg > 1095) i_cwnd = 3 * tp->t_maxseg; else i_cwnd = 4 * tp->t_maxseg; } return (i_cwnd); } /* * Given a specified gain, return the target * cwnd based on that gain. */ static uint32_t bbr_get_raw_target_cwnd(struct tcp_bbr *bbr, uint32_t gain, uint64_t bw) { uint64_t bdp, rtt; uint32_t cwnd; if ((get_filter_value_small(&bbr->r_ctl.rc_rttprop) == 0xffffffff) || (bbr_get_full_bw(bbr) == 0)) { /* No measurements yet */ return (bbr_initial_cwnd(bbr, bbr->rc_tp)); } /* * Get bytes per RTT needed (rttProp is normally in * bbr_cwndtarget_rtt_touse) */ rtt = bbr_get_rtt(bbr, bbr_cwndtarget_rtt_touse); /* Get the bdp from the two values */ bdp = bbr_get_bw_delay_prod(rtt, bw); /* Now apply the gain */ cwnd = (uint32_t)(((bdp * ((uint64_t)gain)) + (uint64_t)(BBR_UNIT - 1)) / ((uint64_t)BBR_UNIT)); return (cwnd); } static uint32_t bbr_get_target_cwnd(struct tcp_bbr *bbr, uint64_t bw, uint32_t gain) { uint32_t cwnd, mss; mss = min((bbr->rc_tp->t_maxseg - bbr->rc_last_options), bbr->r_ctl.rc_pace_max_segs); /* Get the base cwnd with gain rounded to a mss */ cwnd = roundup(bbr_get_raw_target_cwnd(bbr, bw, gain), mss); /* * Add in N (2 default since we do not have a * fq layer to trap packets in) quanta's per the I-D * section 4.2.3.2 quanta adjust. */ cwnd += (bbr_quanta * bbr->r_ctl.rc_pace_max_segs); if (bbr->rc_use_google) { if((bbr->rc_bbr_state == BBR_STATE_PROBE_BW) && (bbr_state_val(bbr) == BBR_SUB_GAIN)) { /* * The linux implementation adds * an extra 2 x mss in gain cycle which * is documented no-where except in the code. * so we add more for Neal undocumented feature */ cwnd += 2 * mss; } if ((cwnd / mss) & 0x1) { /* Round up for odd num mss */ cwnd += mss; } } /* Are we below the min cwnd? */ if (cwnd < get_min_cwnd(bbr)) return (get_min_cwnd(bbr)); return (cwnd); } static uint16_t bbr_gain_adjust(struct tcp_bbr *bbr, uint16_t gain) { if (gain < 1) gain = 1; return (gain); } static uint32_t bbr_get_header_oh(struct tcp_bbr *bbr) { int seg_oh; seg_oh = 0; if (bbr->r_ctl.rc_inc_tcp_oh) { /* Do we include TCP overhead? */ seg_oh = (bbr->rc_last_options + sizeof(struct tcphdr)); } if (bbr->r_ctl.rc_inc_ip_oh) { /* Do we include IP overhead? */ #ifdef INET6 if (bbr->r_is_v6) seg_oh += sizeof(struct ip6_hdr); else #endif #ifdef INET seg_oh += sizeof(struct ip); #endif } if (bbr->r_ctl.rc_inc_enet_oh) { /* Do we include the ethernet overhead? */ seg_oh += sizeof(struct ether_header); } return(seg_oh); } static uint32_t bbr_get_pacing_length(struct tcp_bbr *bbr, uint16_t gain, uint32_t useconds_time, uint64_t bw) { uint64_t divor, res, tim; if (useconds_time == 0) return (0); gain = bbr_gain_adjust(bbr, gain); divor = (uint64_t)USECS_IN_SECOND * (uint64_t)BBR_UNIT; tim = useconds_time; res = (tim * bw * gain) / divor; if (res == 0) res = 1; return ((uint32_t)res); } /* * Given a gain and a length return the delay in useconds that * should be used to evenly space out packets * on the connection (based on the gain factor). */ static uint32_t bbr_get_pacing_delay(struct tcp_bbr *bbr, uint16_t gain, int32_t len, uint32_t cts, int nolog) { uint64_t bw, lentim, res; uint32_t usecs, srtt, over = 0; uint32_t seg_oh, num_segs, maxseg; if (len == 0) return (0); maxseg = bbr->rc_tp->t_maxseg - bbr->rc_last_options; num_segs = (len + maxseg - 1) / maxseg; if (bbr->rc_use_google == 0) { seg_oh = bbr_get_header_oh(bbr); len += (num_segs * seg_oh); } gain = bbr_gain_adjust(bbr, gain); bw = bbr_get_bw(bbr); if (bbr->rc_use_google) { uint64_t cbw; /* * Reduce the b/w by the google discount * factor 10 = 1%. */ cbw = bw * (uint64_t)(1000 - bbr->r_ctl.bbr_google_discount); cbw /= (uint64_t)1000; /* We don't apply a discount if it results in 0 */ if (cbw > 0) bw = cbw; } lentim = ((uint64_t)len * (uint64_t)USECS_IN_SECOND * (uint64_t)BBR_UNIT); res = lentim / ((uint64_t)gain * bw); if (res == 0) res = 1; usecs = (uint32_t)res; srtt = bbr_get_rtt(bbr, BBR_SRTT); if (bbr_hptsi_max_mul && bbr_hptsi_max_div && (bbr->rc_use_google == 0) && (usecs > ((srtt * bbr_hptsi_max_mul) / bbr_hptsi_max_div))) { /* * We cannot let the delay be more than 1/2 the srtt time. * Otherwise we cannot pace out or send properly. */ over = usecs = (srtt * bbr_hptsi_max_mul) / bbr_hptsi_max_div; BBR_STAT_INC(bbr_hpts_min_time); } if (!nolog) bbr_log_pacing_delay_calc(bbr, gain, len, cts, usecs, bw, over, 1); return (usecs); } static void bbr_ack_received(struct tcpcb *tp, struct tcp_bbr *bbr, struct tcphdr *th, uint32_t bytes_this_ack, uint32_t sack_changed, uint32_t prev_acked, int32_t line, uint32_t losses) { INP_WLOCK_ASSERT(tp->t_inpcb); uint64_t bw; uint32_t cwnd, target_cwnd, saved_bytes, maxseg; int32_t meth; #ifdef STATS if ((tp->t_flags & TF_GPUTINPROG) && SEQ_GEQ(th->th_ack, tp->gput_ack)) { /* * Strech acks and compressed acks will cause this to * oscillate but we are doing it the same way as the main * stack so it will be compariable (though possibly not * ideal). */ int32_t cgput; int64_t gput, time_stamp; gput = (int64_t) (th->th_ack - tp->gput_seq) * 8; time_stamp = max(1, ((bbr->r_ctl.rc_rcvtime - tp->gput_ts) / 1000)); cgput = gput / time_stamp; stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, cgput); if (tp->t_stats_gput_prev > 0) stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_GPUT_ND, ((gput - tp->t_stats_gput_prev) * 100) / tp->t_stats_gput_prev); tp->t_flags &= ~TF_GPUTINPROG; tp->t_stats_gput_prev = cgput; } #endif if ((bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) && ((bbr->r_ctl.bbr_rttprobe_gain_val == 0) || bbr->rc_use_google)) { /* We don't change anything in probe-rtt */ return; } maxseg = tp->t_maxseg - bbr->rc_last_options; saved_bytes = bytes_this_ack; bytes_this_ack += sack_changed; if (bytes_this_ack > prev_acked) { bytes_this_ack -= prev_acked; /* * A byte ack'd gives us a full mss * to be like linux i.e. they count packets. */ if ((bytes_this_ack < maxseg) && bbr->rc_use_google) bytes_this_ack = maxseg; } else { /* Unlikely */ bytes_this_ack = 0; } cwnd = tp->snd_cwnd; bw = get_filter_value(&bbr->r_ctl.rc_delrate); if (bw) target_cwnd = bbr_get_target_cwnd(bbr, bw, (uint32_t)bbr->r_ctl.rc_bbr_cwnd_gain); else target_cwnd = bbr_initial_cwnd(bbr, bbr->rc_tp); if (IN_RECOVERY(tp->t_flags) && (bbr->bbr_prev_in_rec == 0)) { /* * We are entering recovery and * thus packet conservation. */ bbr->pkt_conservation = 1; bbr->r_ctl.rc_recovery_start = bbr->r_ctl.rc_rcvtime; cwnd = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) + bytes_this_ack; } if (IN_RECOVERY(tp->t_flags)) { uint32_t flight; bbr->bbr_prev_in_rec = 1; if (cwnd > losses) { cwnd -= losses; if (cwnd < maxseg) cwnd = maxseg; } else cwnd = maxseg; flight = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); bbr_log_type_cwndupd(bbr, flight, 0, losses, 10, 0, 0, line); if (bbr->pkt_conservation) { uint32_t time_in; if (TSTMP_GEQ(bbr->r_ctl.rc_rcvtime, bbr->r_ctl.rc_recovery_start)) time_in = bbr->r_ctl.rc_rcvtime - bbr->r_ctl.rc_recovery_start; else time_in = 0; if (time_in >= bbr_get_rtt(bbr, BBR_RTT_PROP)) { /* Clear packet conservation after an rttProp */ bbr->pkt_conservation = 0; } else { if ((flight + bytes_this_ack) > cwnd) cwnd = flight + bytes_this_ack; if (cwnd < get_min_cwnd(bbr)) cwnd = get_min_cwnd(bbr); tp->snd_cwnd = cwnd; bbr_log_type_cwndupd(bbr, saved_bytes, sack_changed, prev_acked, 1, target_cwnd, th->th_ack, line); return; } } } else bbr->bbr_prev_in_rec = 0; if ((bbr->rc_use_google == 0) && bbr->r_ctl.restrict_growth) { bbr->r_ctl.restrict_growth--; if (bytes_this_ack > maxseg) bytes_this_ack = maxseg; } if (bbr->rc_filled_pipe) { /* * Here we have exited startup and filled the pipe. We will * thus allow the cwnd to shrink to the target. We hit here * mostly. */ uint32_t s_cwnd; meth = 2; s_cwnd = min((cwnd + bytes_this_ack), target_cwnd); if (s_cwnd > cwnd) cwnd = s_cwnd; else if (bbr_cwnd_may_shrink || bbr->rc_use_google || bbr->rc_no_pacing) cwnd = s_cwnd; } else { /* * Here we are still in startup, we increase cwnd by what * has been acked. */ if ((cwnd < target_cwnd) || (bbr->rc_past_init_win == 0)) { meth = 3; cwnd += bytes_this_ack; } else { /* * Method 4 means we are at target so no gain in * startup and past the initial window. */ meth = 4; } } tp->snd_cwnd = max(cwnd, get_min_cwnd(bbr)); bbr_log_type_cwndupd(bbr, saved_bytes, sack_changed, prev_acked, meth, target_cwnd, th->th_ack, line); } static void tcp_bbr_partialack(struct tcpcb *tp) { struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; INP_WLOCK_ASSERT(tp->t_inpcb); if (ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) <= tp->snd_cwnd) { bbr->r_wanted_output = 1; } } static void bbr_post_recovery(struct tcpcb *tp) { struct tcp_bbr *bbr; uint32_t flight; INP_WLOCK_ASSERT(tp->t_inpcb); bbr = (struct tcp_bbr *)tp->t_fb_ptr; /* * Here we just exit recovery. */ EXIT_RECOVERY(tp->t_flags); /* Lock in our b/w reduction for the specified number of pkt-epochs */ bbr->r_recovery_bw = 0; tp->snd_recover = tp->snd_una; tcp_bbr_tso_size_check(bbr, bbr->r_ctl.rc_rcvtime); bbr->pkt_conservation = 0; if (bbr->rc_use_google == 0) { /* * For non-google mode lets * go ahead and make sure we clear * the recovery state so if we * bounce back in to recovery we * will do PC. */ bbr->bbr_prev_in_rec = 0; } bbr_log_type_exit_rec(bbr); if (bbr->rc_bbr_state != BBR_STATE_PROBE_RTT) { tp->snd_cwnd = max(tp->snd_cwnd, bbr->r_ctl.rc_cwnd_on_ent); bbr_log_type_cwndupd(bbr, 0, 0, 0, 15, 0, 0, __LINE__); } else { /* For probe-rtt case lets fix up its saved_cwnd */ if (bbr->r_ctl.rc_saved_cwnd < bbr->r_ctl.rc_cwnd_on_ent) { bbr->r_ctl.rc_saved_cwnd = bbr->r_ctl.rc_cwnd_on_ent; bbr_log_type_cwndupd(bbr, 0, 0, 0, 16, 0, 0, __LINE__); } } flight = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); if ((bbr->rc_use_google == 0) && bbr_do_red) { uint64_t val, lr2use; uint32_t maxseg, newcwnd, acks_inflight, ratio, cwnd; uint32_t *cwnd_p; if (bbr_get_rtt(bbr, BBR_SRTT)) { val = ((uint64_t)bbr_get_rtt(bbr, BBR_RTT_PROP) * (uint64_t)1000); val /= bbr_get_rtt(bbr, BBR_SRTT); ratio = (uint32_t)val; } else ratio = 1000; bbr_log_type_cwndupd(bbr, bbr_red_mul, bbr_red_div, bbr->r_ctl.recovery_lr, 21, ratio, bbr->r_ctl.rc_red_cwnd_pe, __LINE__); if ((ratio < bbr_do_red) || (bbr_do_red == 0)) goto done; if (((bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) && bbr_prtt_slam_cwnd) || (bbr_sub_drain_slam_cwnd && (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) && bbr->rc_hit_state_1 && (bbr_state_val(bbr) == BBR_SUB_DRAIN)) || ((bbr->rc_bbr_state == BBR_STATE_DRAIN) && bbr_slam_cwnd_in_main_drain)) { /* * Here we must poke at the saved cwnd * as well as the cwnd. */ cwnd = bbr->r_ctl.rc_saved_cwnd; cwnd_p = &bbr->r_ctl.rc_saved_cwnd; } else { cwnd = tp->snd_cwnd; cwnd_p = &tp->snd_cwnd; } maxseg = tp->t_maxseg - bbr->rc_last_options; /* Add the overall lr with the recovery lr */ if (bbr->r_ctl.rc_lost == 0) lr2use = 0; else if (bbr->r_ctl.rc_delivered == 0) lr2use = 1000; else { lr2use = bbr->r_ctl.rc_lost * 1000; lr2use /= bbr->r_ctl.rc_delivered; } lr2use += bbr->r_ctl.recovery_lr; acks_inflight = (flight / (maxseg * 2)); if (bbr_red_scale) { lr2use *= bbr_get_rtt(bbr, BBR_SRTT); lr2use /= bbr_red_scale; if ((bbr_red_growth_restrict) && ((bbr_get_rtt(bbr, BBR_SRTT)/bbr_red_scale) > 1)) bbr->r_ctl.restrict_growth += acks_inflight; } if (lr2use) { val = (uint64_t)cwnd * lr2use; val /= 1000; if (cwnd > val) newcwnd = roundup((cwnd - val), maxseg); else newcwnd = maxseg; } else { val = (uint64_t)cwnd * (uint64_t)bbr_red_mul; val /= (uint64_t)bbr_red_div; newcwnd = roundup((uint32_t)val, maxseg); } /* with standard delayed acks how many acks can I expect? */ if (bbr_drop_limit == 0) { /* * Anticpate how much we will * raise the cwnd based on the acks. */ if ((newcwnd + (acks_inflight * maxseg)) < get_min_cwnd(bbr)) { /* We do enforce the min (with the acks) */ newcwnd = (get_min_cwnd(bbr) - acks_inflight); } } else { /* * A strict drop limit of N is is inplace */ if (newcwnd < (bbr_drop_limit * maxseg)) { newcwnd = bbr_drop_limit * maxseg; } } /* For the next N acks do we restrict the growth */ *cwnd_p = newcwnd; if (tp->snd_cwnd > newcwnd) tp->snd_cwnd = newcwnd; bbr_log_type_cwndupd(bbr, bbr_red_mul, bbr_red_div, val, 22, (uint32_t)lr2use, bbr_get_rtt(bbr, BBR_SRTT), __LINE__); bbr->r_ctl.rc_red_cwnd_pe = bbr->r_ctl.rc_pkt_epoch; } done: bbr->r_ctl.recovery_lr = 0; if (flight <= tp->snd_cwnd) { bbr->r_wanted_output = 1; } tcp_bbr_tso_size_check(bbr, bbr->r_ctl.rc_rcvtime); } static void bbr_setup_red_bw(struct tcp_bbr *bbr, uint32_t cts) { bbr->r_ctl.red_bw = get_filter_value(&bbr->r_ctl.rc_delrate); /* Limit the drop in b/w to 1/2 our current filter. */ if (bbr->r_ctl.red_bw > bbr->r_ctl.rc_bbr_cur_del_rate) bbr->r_ctl.red_bw = bbr->r_ctl.rc_bbr_cur_del_rate; if (bbr->r_ctl.red_bw < (get_filter_value(&bbr->r_ctl.rc_delrate) / 2)) bbr->r_ctl.red_bw = get_filter_value(&bbr->r_ctl.rc_delrate) / 2; tcp_bbr_tso_size_check(bbr, cts); } static void bbr_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type, struct bbr_sendmap *rsm) { struct tcp_bbr *bbr; INP_WLOCK_ASSERT(tp->t_inpcb); bbr = (struct tcp_bbr *)tp->t_fb_ptr; switch (type) { case CC_NDUPACK: if (!IN_RECOVERY(tp->t_flags)) { tp->snd_recover = tp->snd_max; /* Start a new epoch */ bbr_set_pktepoch(bbr, bbr->r_ctl.rc_rcvtime, __LINE__); if (bbr->rc_lt_is_sampling || bbr->rc_lt_use_bw) { /* * Move forward the lt epoch * so it won't count the truncated * epoch. */ bbr->r_ctl.rc_lt_epoch++; } if (bbr->rc_bbr_state == BBR_STATE_STARTUP) { /* * Just like the policer detection code * if we are in startup we must push * forward the last startup epoch * to hide the truncated PE. */ bbr->r_ctl.rc_bbr_last_startup_epoch++; } bbr->r_ctl.rc_cwnd_on_ent = tp->snd_cwnd; ENTER_RECOVERY(tp->t_flags); bbr->rc_tlp_rtx_out = 0; bbr->r_ctl.recovery_lr = bbr->r_ctl.rc_pkt_epoch_loss_rate; tcp_bbr_tso_size_check(bbr, bbr->r_ctl.rc_rcvtime); if (bbr->rc_inp->inp_in_hpts && ((bbr->r_ctl.rc_hpts_flags & PACE_TMR_RACK) == 0)) { /* * When we enter recovery, we need to restart * any timers. This may mean we gain an agg * early, which will be made up for at the last * rxt out. */ bbr->rc_timer_first = 1; bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime); } /* * Calculate a new cwnd based on to the current * delivery rate with no gain. We get the bdp * without gaining it up like we normally would and * we use the last cur_del_rate. */ if ((bbr->rc_use_google == 0) && (bbr->r_ctl.bbr_rttprobe_gain_val || (bbr->rc_bbr_state != BBR_STATE_PROBE_RTT))) { tp->snd_cwnd = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) + (tp->t_maxseg - bbr->rc_last_options); if (tp->snd_cwnd < get_min_cwnd(bbr)) { /* We always gate to min cwnd */ tp->snd_cwnd = get_min_cwnd(bbr); } bbr_log_type_cwndupd(bbr, 0, 0, 0, 14, 0, 0, __LINE__); } bbr_log_type_enter_rec(bbr, rsm->r_start); } break; case CC_RTO_ERR: TCPSTAT_INC(tcps_sndrexmitbad); /* RTO was unnecessary, so reset everything. */ bbr_reset_lt_bw_sampling(bbr, bbr->r_ctl.rc_rcvtime); if (bbr->rc_bbr_state != BBR_STATE_PROBE_RTT) { tp->snd_cwnd = tp->snd_cwnd_prev; tp->snd_ssthresh = tp->snd_ssthresh_prev; tp->snd_recover = tp->snd_recover_prev; tp->snd_cwnd = max(tp->snd_cwnd, bbr->r_ctl.rc_cwnd_on_ent); bbr_log_type_cwndupd(bbr, 0, 0, 0, 13, 0, 0, __LINE__); } tp->t_badrxtwin = 0; break; } } /* * Indicate whether this ack should be delayed. We can delay the ack if * following conditions are met: * - There is no delayed ack timer in progress. * - Our last ack wasn't a 0-sized window. We never want to delay * the ack that opens up a 0-sized window. * - LRO wasn't used for this segment. We make sure by checking that the * segment size is not larger than the MSS. * - Delayed acks are enabled or this is a half-synchronized T/TCP * connection. * - The data being acked is less than a full segment (a stretch ack * of more than a segment we should ack. * - nsegs is 1 (if its more than that we received more than 1 ack). */ #define DELAY_ACK(tp, bbr, nsegs) \ (((tp->t_flags & TF_RXWIN0SENT) == 0) && \ ((bbr->bbr_segs_rcvd + nsegs) < tp->t_delayed_ack) && \ (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN))) /* * Return the lowest RSM in the map of * packets still in flight that is not acked. * This should normally find on the first one * since we remove packets from the send * map after they are marked ACKED. */ static struct bbr_sendmap * bbr_find_lowest_rsm(struct tcp_bbr *bbr) { struct bbr_sendmap *rsm; /* * Walk the time-order transmitted list looking for an rsm that is * not acked. This will be the one that was sent the longest time * ago that is still outstanding. */ TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_tmap, r_tnext) { if (rsm->r_flags & BBR_ACKED) { continue; } goto finish; } finish: return (rsm); } static struct bbr_sendmap * bbr_find_high_nonack(struct tcp_bbr *bbr, struct bbr_sendmap *rsm) { struct bbr_sendmap *prsm; /* * Walk the sequence order list backward until we hit and arrive at * the highest seq not acked. In theory when this is called it * should be the last segment (which it was not). */ prsm = rsm; TAILQ_FOREACH_REVERSE_FROM(prsm, &bbr->r_ctl.rc_map, bbr_head, r_next) { if (prsm->r_flags & (BBR_ACKED | BBR_HAS_FIN)) { continue; } return (prsm); } return (NULL); } /* * Returns to the caller the number of microseconds that * the packet can be outstanding before we think we * should have had an ack returned. */ static uint32_t bbr_calc_thresh_rack(struct tcp_bbr *bbr, uint32_t srtt, uint32_t cts, struct bbr_sendmap *rsm) { /* * lro is the flag we use to determine if we have seen reordering. * If it gets set we have seen reordering. The reorder logic either * works in one of two ways: * * If reorder-fade is configured, then we track the last time we saw * re-ordering occur. If we reach the point where enough time as * passed we no longer consider reordering has occuring. * * Or if reorder-face is 0, then once we see reordering we consider * the connection to alway be subject to reordering and just set lro * to 1. * * In the end if lro is non-zero we add the extra time for * reordering in. */ int32_t lro; uint32_t thresh, t_rxtcur; if (srtt == 0) srtt = 1; if (bbr->r_ctl.rc_reorder_ts) { if (bbr->r_ctl.rc_reorder_fade) { if (SEQ_GEQ(cts, bbr->r_ctl.rc_reorder_ts)) { lro = cts - bbr->r_ctl.rc_reorder_ts; if (lro == 0) { /* * No time as passed since the last * reorder, mark it as reordering. */ lro = 1; } } else { /* Negative time? */ lro = 0; } if (lro > bbr->r_ctl.rc_reorder_fade) { /* Turn off reordering seen too */ bbr->r_ctl.rc_reorder_ts = 0; lro = 0; } } else { /* Reodering does not fade */ lro = 1; } } else { lro = 0; } thresh = srtt + bbr->r_ctl.rc_pkt_delay; if (lro) { /* It must be set, if not you get 1/4 rtt */ if (bbr->r_ctl.rc_reorder_shift) thresh += (srtt >> bbr->r_ctl.rc_reorder_shift); else thresh += (srtt >> 2); } else { thresh += 1000; } /* We don't let the rack timeout be above a RTO */ if ((bbr->rc_tp)->t_srtt == 0) t_rxtcur = BBR_INITIAL_RTO; else t_rxtcur = TICKS_2_USEC(bbr->rc_tp->t_rxtcur); if (thresh > t_rxtcur) { thresh = t_rxtcur; } /* And we don't want it above the RTO max either */ if (thresh > (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND)) { thresh = (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND); } bbr_log_thresh_choice(bbr, cts, thresh, lro, srtt, rsm, BBR_TO_FRM_RACK); return (thresh); } /* * Return to the caller the amount of time in mico-seconds * that should be used for the TLP timer from the last * send time of this packet. */ static uint32_t bbr_calc_thresh_tlp(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t srtt, uint32_t cts) { uint32_t thresh, len, maxseg, t_rxtcur; struct bbr_sendmap *prsm; if (srtt == 0) srtt = 1; if (bbr->rc_tlp_threshold) thresh = srtt + (srtt / bbr->rc_tlp_threshold); else thresh = (srtt * 2); maxseg = tp->t_maxseg - bbr->rc_last_options; /* Get the previous sent packet, if any */ len = rsm->r_end - rsm->r_start; /* 2.1 behavior */ prsm = TAILQ_PREV(rsm, bbr_head, r_tnext); if (prsm && (len <= maxseg)) { /* * Two packets outstanding, thresh should be (2*srtt) + * possible inter-packet delay (if any). */ uint32_t inter_gap = 0; int idx, nidx; idx = rsm->r_rtr_cnt - 1; nidx = prsm->r_rtr_cnt - 1; if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) { /* Yes it was sent later (or at the same time) */ inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx]; } thresh += inter_gap; } else if (len <= maxseg) { /* * Possibly compensate for delayed-ack. */ uint32_t alt_thresh; alt_thresh = srtt + (srtt / 2) + bbr_delayed_ack_time; if (alt_thresh > thresh) thresh = alt_thresh; } /* Not above the current RTO */ if (tp->t_srtt == 0) t_rxtcur = BBR_INITIAL_RTO; else t_rxtcur = TICKS_2_USEC(tp->t_rxtcur); bbr_log_thresh_choice(bbr, cts, thresh, t_rxtcur, srtt, rsm, BBR_TO_FRM_TLP); /* Not above an RTO */ if (thresh > t_rxtcur) { thresh = t_rxtcur; } /* Not above a RTO max */ if (thresh > (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND)) { thresh = (((uint32_t)bbr->rc_max_rto_sec) * USECS_IN_SECOND); } /* And now apply the user TLP min */ if (thresh < bbr_tlp_min) { thresh = bbr_tlp_min; } return (thresh); } /* * Return one of three RTTs to use (in microseconds). */ static __inline uint32_t bbr_get_rtt(struct tcp_bbr *bbr, int32_t rtt_type) { uint32_t f_rtt; uint32_t srtt; f_rtt = get_filter_value_small(&bbr->r_ctl.rc_rttprop); if (get_filter_value_small(&bbr->r_ctl.rc_rttprop) == 0xffffffff) { /* We have no rtt at all */ if (bbr->rc_tp->t_srtt == 0) f_rtt = BBR_INITIAL_RTO; else f_rtt = (TICKS_2_USEC(bbr->rc_tp->t_srtt) >> TCP_RTT_SHIFT); /* * Since we don't know how good the rtt is apply a * delayed-ack min */ if (f_rtt < bbr_delayed_ack_time) { f_rtt = bbr_delayed_ack_time; } } /* Take the filter version or last measured pkt-rtt */ if (rtt_type == BBR_RTT_PROP) { srtt = f_rtt; } else if (rtt_type == BBR_RTT_PKTRTT) { if (bbr->r_ctl.rc_pkt_epoch_rtt) { srtt = bbr->r_ctl.rc_pkt_epoch_rtt; } else { /* No pkt rtt yet */ srtt = f_rtt; } } else if (rtt_type == BBR_RTT_RACK) { srtt = bbr->r_ctl.rc_last_rtt; /* We need to add in any internal delay for our timer */ if (bbr->rc_ack_was_delayed) srtt += bbr->r_ctl.rc_ack_hdwr_delay; } else if (rtt_type == BBR_SRTT) { srtt = (TICKS_2_USEC(bbr->rc_tp->t_srtt) >> TCP_RTT_SHIFT); } else { /* TSNH */ srtt = f_rtt; #ifdef BBR_INVARIANTS panic("Unknown rtt request type %d", rtt_type); #endif } return (srtt); } static int bbr_is_lost(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t cts) { uint32_t thresh; thresh = bbr_calc_thresh_rack(bbr, bbr_get_rtt(bbr, BBR_RTT_RACK), cts, rsm); if ((cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]) >= thresh) { /* It is lost (past time) */ return (1); } return (0); } /* * Return a sendmap if we need to retransmit something. */ static struct bbr_sendmap * bbr_check_recovery_mode(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { /* * Check to see that we don't need to fall into recovery. We will * need to do so if our oldest transmit is past the time we should * have had an ack. */ struct bbr_sendmap *rsm; int32_t idx; if (TAILQ_EMPTY(&bbr->r_ctl.rc_map)) { /* Nothing outstanding that we know of */ return (NULL); } rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap); if (rsm == NULL) { /* Nothing in the transmit map */ return (NULL); } if (tp->t_flags & TF_SENTFIN) { /* Fin restricted, don't find anything once a fin is sent */ return (NULL); } if (rsm->r_flags & BBR_ACKED) { /* * Ok the first one is acked (this really should not happen * since we remove the from the tmap once they are acked) */ rsm = bbr_find_lowest_rsm(bbr); if (rsm == NULL) return (NULL); } idx = rsm->r_rtr_cnt - 1; if (SEQ_LEQ(cts, rsm->r_tim_lastsent[idx])) { /* Send timestamp is the same or less? can't be ready */ return (NULL); } /* Get our RTT time */ if (bbr_is_lost(bbr, rsm, cts) && ((rsm->r_dupack >= DUP_ACK_THRESHOLD) || (rsm->r_flags & BBR_SACK_PASSED))) { if ((rsm->r_flags & BBR_MARKED_LOST) == 0) { rsm->r_flags |= BBR_MARKED_LOST; bbr->r_ctl.rc_lost += rsm->r_end - rsm->r_start; bbr->r_ctl.rc_lost_bytes += rsm->r_end - rsm->r_start; } bbr_cong_signal(tp, NULL, CC_NDUPACK, rsm); #ifdef BBR_INVARIANTS if ((rsm->r_end - rsm->r_start) == 0) panic("tp:%p bbr:%p rsm:%p length is 0?", tp, bbr, rsm); #endif return (rsm); } return (NULL); } /* * RACK Timer, here we simply do logging and house keeping. * the normal bbr_output_wtime() function will call the * appropriate thing to check if we need to do a RACK retransmit. * We return 1, saying don't proceed with bbr_output_wtime only * when all timers have been stopped (destroyed PCB?). */ static int bbr_timeout_rack(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { /* * This timer simply provides an internal trigger to send out data. * The check_recovery_mode call will see if there are needed * retransmissions, if so we will enter fast-recovery. The output * call may or may not do the same thing depending on sysctl * settings. */ uint32_t lost; if (bbr->rc_all_timers_stopped) { return (1); } if (TSTMP_LT(cts, bbr->r_ctl.rc_timer_exp)) { /* Its not time yet */ return (0); } BBR_STAT_INC(bbr_to_tot); lost = bbr->r_ctl.rc_lost; if (bbr->r_state && (bbr->r_state != tp->t_state)) bbr_set_state(tp, bbr, 0); bbr_log_to_event(bbr, cts, BBR_TO_FRM_RACK); if (bbr->r_ctl.rc_resend == NULL) { /* Lets do the check here */ bbr->r_ctl.rc_resend = bbr_check_recovery_mode(tp, bbr, cts); } if (bbr_policer_call_from_rack_to) bbr_lt_bw_sampling(bbr, cts, (bbr->r_ctl.rc_lost > lost)); bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK; return (0); } static __inline void bbr_clone_rsm(struct tcp_bbr *bbr, struct bbr_sendmap *nrsm, struct bbr_sendmap *rsm, uint32_t start) { int idx; nrsm->r_start = start; nrsm->r_end = rsm->r_end; nrsm->r_rtr_cnt = rsm->r_rtr_cnt; nrsm->r_flags = rsm->r_flags; /* We don't transfer forward the SYN flag */ nrsm->r_flags &= ~BBR_HAS_SYN; /* We move forward the FIN flag, not that this should happen */ rsm->r_flags &= ~BBR_HAS_FIN; nrsm->r_dupack = rsm->r_dupack; nrsm->r_rtr_bytes = 0; nrsm->r_is_gain = rsm->r_is_gain; nrsm->r_is_drain = rsm->r_is_drain; nrsm->r_delivered = rsm->r_delivered; nrsm->r_ts_valid = rsm->r_ts_valid; nrsm->r_del_ack_ts = rsm->r_del_ack_ts; nrsm->r_del_time = rsm->r_del_time; nrsm->r_app_limited = rsm->r_app_limited; nrsm->r_first_sent_time = rsm->r_first_sent_time; nrsm->r_flight_at_send = rsm->r_flight_at_send; /* We split a piece the lower section looses any just_ret flag. */ nrsm->r_bbr_state = rsm->r_bbr_state; for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) { nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx]; } rsm->r_end = nrsm->r_start; idx = min((bbr->rc_tp->t_maxseg - bbr->rc_last_options), bbr->r_ctl.rc_pace_max_segs); idx /= 8; /* Check if we got too small */ if ((rsm->r_is_smallmap == 0) && ((rsm->r_end - rsm->r_start) <= idx)) { bbr->r_ctl.rc_num_small_maps_alloced++; rsm->r_is_smallmap = 1; } /* Check the new one as well */ if ((nrsm->r_end - nrsm->r_start) <= idx) { bbr->r_ctl.rc_num_small_maps_alloced++; nrsm->r_is_smallmap = 1; } } static int bbr_sack_mergable(struct bbr_sendmap *at, uint32_t start, uint32_t end) { /* * Given a sack block defined by * start and end, and a current postion * at. Return 1 if either side of at * would show that the block is mergable * to that side. A block to be mergable * must have overlap with the start/end * and be in the SACK'd state. */ struct bbr_sendmap *l_rsm; struct bbr_sendmap *r_rsm; /* first get the either side blocks */ l_rsm = TAILQ_PREV(at, bbr_head, r_next); r_rsm = TAILQ_NEXT(at, r_next); if (l_rsm && (l_rsm->r_flags & BBR_ACKED)) { /* Potentially mergeable */ if ((l_rsm->r_end == start) || (SEQ_LT(start, l_rsm->r_end) && SEQ_GT(end, l_rsm->r_end))) { /* * map blk |------| * sack blk |------| * * map blk |------| * sack blk |------| */ return (1); } } if (r_rsm && (r_rsm->r_flags & BBR_ACKED)) { /* Potentially mergeable */ if ((r_rsm->r_start == end) || (SEQ_LT(start, r_rsm->r_start) && SEQ_GT(end, r_rsm->r_start))) { /* * map blk |---------| * sack blk |----| * * map blk |---------| * sack blk |-------| */ return (1); } } return (0); } static struct bbr_sendmap * bbr_merge_rsm(struct tcp_bbr *bbr, struct bbr_sendmap *l_rsm, struct bbr_sendmap *r_rsm) { /* * We are merging two ack'd RSM's, * the l_rsm is on the left (lower seq * values) and the r_rsm is on the right * (higher seq value). The simplest way * to merge these is to move the right * one into the left. I don't think there * is any reason we need to try to find * the oldest (or last oldest retransmitted). */ l_rsm->r_end = r_rsm->r_end; if (l_rsm->r_dupack < r_rsm->r_dupack) l_rsm->r_dupack = r_rsm->r_dupack; if (r_rsm->r_rtr_bytes) l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes; if (r_rsm->r_in_tmap) { /* This really should not happen */ TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, r_rsm, r_tnext); } if (r_rsm->r_app_limited) l_rsm->r_app_limited = r_rsm->r_app_limited; /* Now the flags */ if (r_rsm->r_flags & BBR_HAS_FIN) l_rsm->r_flags |= BBR_HAS_FIN; if (r_rsm->r_flags & BBR_TLP) l_rsm->r_flags |= BBR_TLP; if (r_rsm->r_flags & BBR_RWND_COLLAPSED) l_rsm->r_flags |= BBR_RWND_COLLAPSED; if (r_rsm->r_flags & BBR_MARKED_LOST) { /* This really should not happen */ bbr->r_ctl.rc_lost_bytes -= r_rsm->r_end - r_rsm->r_start; } TAILQ_REMOVE(&bbr->r_ctl.rc_map, r_rsm, r_next); if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) { /* Transfer the split limit to the map we free */ r_rsm->r_limit_type = l_rsm->r_limit_type; l_rsm->r_limit_type = 0; } bbr_free(bbr, r_rsm); return(l_rsm); } /* * TLP Timer, here we simply setup what segment we want to * have the TLP expire on, the normal bbr_output_wtime() will then * send it out. * * We return 1, saying don't proceed with bbr_output_wtime only * when all timers have been stopped (destroyed PCB?). */ static int bbr_timeout_tlp(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { /* * Tail Loss Probe. */ struct bbr_sendmap *rsm = NULL; struct socket *so; uint32_t amm; uint32_t out, avail; uint32_t maxseg; int collapsed_win = 0; if (bbr->rc_all_timers_stopped) { return (1); } if (TSTMP_LT(cts, bbr->r_ctl.rc_timer_exp)) { /* Its not time yet */ return (0); } if (bbr_progress_timeout_check(bbr)) { tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT); return (1); } /* Did we somehow get into persists? */ if (bbr->rc_in_persist) { return (0); } if (bbr->r_state && (bbr->r_state != tp->t_state)) bbr_set_state(tp, bbr, 0); BBR_STAT_INC(bbr_tlp_tot); maxseg = tp->t_maxseg - bbr->rc_last_options; #ifdef KERN_TLS if (bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) { /* * For hardware TLS we do *not* want to send * new data. */ goto need_retran; } #endif /* * A TLP timer has expired. We have been idle for 2 rtts. So we now * need to figure out how to force a full MSS segment out. */ so = tp->t_inpcb->inp_socket; avail = sbavail(&so->so_snd); out = ctf_outstanding(tp); if (out > tp->snd_wnd) { /* special case, we need a retransmission */ collapsed_win = 1; goto need_retran; } if (avail > out) { /* New data is available */ amm = avail - out; if (amm > maxseg) { amm = maxseg; } else if ((amm < maxseg) && ((tp->t_flags & TF_NODELAY) == 0)) { /* not enough to fill a MTU and no-delay is off */ goto need_retran; } /* Set the send-new override */ if ((out + amm) <= tp->snd_wnd) { bbr->rc_tlp_new_data = 1; } else { goto need_retran; } bbr->r_ctl.rc_tlp_seg_send_cnt = 0; bbr->r_ctl.rc_last_tlp_seq = tp->snd_max; bbr->r_ctl.rc_tlp_send = NULL; /* cap any slots */ BBR_STAT_INC(bbr_tlp_newdata); goto send; } need_retran: /* * Ok we need to arrange the last un-acked segment to be re-sent, or * optionally the first un-acked segment. */ if (collapsed_win == 0) { rsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_map, bbr_sendmap, r_next); if (rsm && (BBR_ACKED | BBR_HAS_FIN)) { rsm = bbr_find_high_nonack(bbr, rsm); } if (rsm == NULL) { goto restore; } } else { /* * We must find the last segment * that was acceptable by the client. */ TAILQ_FOREACH_REVERSE(rsm, &bbr->r_ctl.rc_map, bbr_head, r_next) { if ((rsm->r_flags & BBR_RWND_COLLAPSED) == 0) { /* Found one */ break; } } if (rsm == NULL) { /* None? if so send the first */ rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); if (rsm == NULL) goto restore; } } if ((rsm->r_end - rsm->r_start) > maxseg) { /* * We need to split this the last segment in two. */ struct bbr_sendmap *nrsm; nrsm = bbr_alloc_full_limit(bbr); if (nrsm == NULL) { /* * We can't get memory to split, we can either just * not split it. Or retransmit the whole piece, lets * do the large send (BTLP :-) ). */ goto go_for_it; } bbr_clone_rsm(bbr, nrsm, rsm, (rsm->r_end - maxseg)); TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next); if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } rsm->r_flags &= (~BBR_HAS_FIN); rsm = nrsm; } go_for_it: bbr->r_ctl.rc_tlp_send = rsm; bbr->rc_tlp_rtx_out = 1; if (rsm->r_start == bbr->r_ctl.rc_last_tlp_seq) { bbr->r_ctl.rc_tlp_seg_send_cnt++; tp->t_rxtshift++; } else { bbr->r_ctl.rc_last_tlp_seq = rsm->r_start; bbr->r_ctl.rc_tlp_seg_send_cnt = 1; } send: if (bbr->r_ctl.rc_tlp_seg_send_cnt > bbr_tlp_max_resend) { /* * Can't [re]/transmit a segment we have retranmitted the * max times. We need the retransmit timer to take over. */ restore: bbr->rc_tlp_new_data = 0; bbr->r_ctl.rc_tlp_send = NULL; if (rsm) rsm->r_flags &= ~BBR_TLP; BBR_STAT_INC(bbr_tlp_retran_fail); return (0); } else if (rsm) { rsm->r_flags |= BBR_TLP; } if (rsm && (rsm->r_start == bbr->r_ctl.rc_last_tlp_seq) && (bbr->r_ctl.rc_tlp_seg_send_cnt > bbr_tlp_max_resend)) { /* * We have retransmitted to many times for TLP. Switch to * the regular RTO timer */ goto restore; } bbr_log_to_event(bbr, cts, BBR_TO_FRM_TLP); bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; return (0); } /* * Delayed ack Timer, here we simply need to setup the * ACK_NOW flag and remove the DELACK flag. From there * the output routine will send the ack out. * * We only return 1, saying don't proceed, if all timers * are stopped (destroyed PCB?). */ static int bbr_timeout_delack(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { if (bbr->rc_all_timers_stopped) { return (1); } bbr_log_to_event(bbr, cts, BBR_TO_FRM_DELACK); tp->t_flags &= ~TF_DELACK; tp->t_flags |= TF_ACKNOW; TCPSTAT_INC(tcps_delack); bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; return (0); } /* * Persists timer, here we simply need to setup the * FORCE-DATA flag the output routine will send * the one byte send. * * We only return 1, saying don't proceed, if all timers * are stopped (destroyed PCB?). */ static int bbr_timeout_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { struct tcptemp *t_template; int32_t retval = 1; if (bbr->rc_all_timers_stopped) { return (1); } if (bbr->rc_in_persist == 0) return (0); KASSERT(tp->t_inpcb != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); /* * Persistence timer into zero window. Force a byte to be output, if * possible. */ bbr_log_to_event(bbr, cts, BBR_TO_FRM_PERSIST); bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT; TCPSTAT_INC(tcps_persisttimeo); /* * Have we exceeded the user specified progress time? */ if (bbr_progress_timeout_check(bbr)) { tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT); goto out; } /* * Hack: if the peer is dead/unreachable, we do not time out if the * window is closed. After a full backoff, drop the connection if * the idle time (no responses to probes) reaches the maximum * backoff that we would use if retransmitting. */ if (tp->t_rxtshift == TCP_MAXRXTSHIFT && (ticks - tp->t_rcvtime >= tcp_maxpersistidle || ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) { TCPSTAT_INC(tcps_persistdrop); tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT); goto out; } if ((sbavail(&bbr->rc_inp->inp_socket->so_snd) == 0) && tp->snd_una == tp->snd_max) { bbr_exit_persist(tp, bbr, cts, __LINE__); retval = 0; goto out; } /* * If the user has closed the socket then drop a persisting * connection after a much reduced timeout. */ if (tp->t_state > TCPS_CLOSE_WAIT && (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) { TCPSTAT_INC(tcps_persistdrop); tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT); goto out; } t_template = tcpip_maketemplate(bbr->rc_inp); if (t_template) { tcp_respond(tp, t_template->tt_ipgen, &t_template->tt_t, (struct mbuf *)NULL, tp->rcv_nxt, tp->snd_una - 1, 0); /* This sends an ack */ if (tp->t_flags & TF_DELACK) tp->t_flags &= ~TF_DELACK; free(t_template, M_TEMP); } if (tp->t_rxtshift < TCP_MAXRXTSHIFT) tp->t_rxtshift++; bbr_start_hpts_timer(bbr, tp, cts, 3, 0, 0); out: return (retval); } /* * If a keepalive goes off, we had no other timers * happening. We always return 1 here since this * routine either drops the connection or sends * out a segment with respond. */ static int bbr_timeout_keepalive(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { struct tcptemp *t_template; struct inpcb *inp; if (bbr->rc_all_timers_stopped) { return (1); } bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP; inp = tp->t_inpcb; bbr_log_to_event(bbr, cts, BBR_TO_FRM_KEEP); /* * Keep-alive timer went off; send something or drop connection if * idle for too long. */ TCPSTAT_INC(tcps_keeptimeo); if (tp->t_state < TCPS_ESTABLISHED) goto dropit; if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && tp->t_state <= TCPS_CLOSING) { if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp)) goto dropit; /* * Send a packet designed to force a response if the peer is * up and reachable: either an ACK if the connection is * still alive, or an RST if the peer has closed the * connection due to timeout or reboot. Using sequence * number tp->snd_una-1 causes the transmitted zero-length * segment to lie outside the receive window; by the * protocol spec, this requires the correspondent TCP to * respond. */ TCPSTAT_INC(tcps_keepprobe); t_template = tcpip_maketemplate(inp); if (t_template) { tcp_respond(tp, t_template->tt_ipgen, &t_template->tt_t, (struct mbuf *)NULL, tp->rcv_nxt, tp->snd_una - 1, 0); free(t_template, M_TEMP); } } bbr_start_hpts_timer(bbr, tp, cts, 4, 0, 0); return (1); dropit: TCPSTAT_INC(tcps_keepdrops); tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT); return (1); } /* * Retransmit helper function, clear up all the ack * flags and take care of important book keeping. */ static void bbr_remxt_tmr(struct tcpcb *tp) { /* * The retransmit timer went off, all sack'd blocks must be * un-acked. */ struct bbr_sendmap *rsm, *trsm = NULL; struct tcp_bbr *bbr; uint32_t cts, lost; bbr = (struct tcp_bbr *)tp->t_fb_ptr; cts = tcp_get_usecs(&bbr->rc_tv); lost = bbr->r_ctl.rc_lost; if (bbr->r_state && (bbr->r_state != tp->t_state)) bbr_set_state(tp, bbr, 0); TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) { if (rsm->r_flags & BBR_ACKED) { uint32_t old_flags; rsm->r_dupack = 0; if (rsm->r_in_tmap == 0) { /* We must re-add it back to the tlist */ if (trsm == NULL) { TAILQ_INSERT_HEAD(&bbr->r_ctl.rc_tmap, rsm, r_tnext); } else { TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, trsm, rsm, r_tnext); } rsm->r_in_tmap = 1; } old_flags = rsm->r_flags; rsm->r_flags |= BBR_RXT_CLEARED; rsm->r_flags &= ~(BBR_ACKED | BBR_SACK_PASSED | BBR_WAS_SACKPASS); bbr_log_type_rsmclear(bbr, cts, rsm, old_flags, __LINE__); } else { if ((rsm->r_flags & BBR_MARKED_LOST) == 0) { bbr->r_ctl.rc_lost += rsm->r_end - rsm->r_start; bbr->r_ctl.rc_lost_bytes += rsm->r_end - rsm->r_start; } if (bbr_marks_rxt_sack_passed) { /* * With this option, we will rack out * in 1ms increments the rest of the packets. */ rsm->r_flags |= BBR_SACK_PASSED | BBR_MARKED_LOST; rsm->r_flags &= ~BBR_WAS_SACKPASS; } else { /* * With this option we only mark them lost * and remove all sack'd markings. We will run * another RXT or a TLP. This will cause * us to eventually send more based on what * ack's come in. */ rsm->r_flags |= BBR_MARKED_LOST; rsm->r_flags &= ~BBR_WAS_SACKPASS; rsm->r_flags &= ~BBR_SACK_PASSED; } } trsm = rsm; } bbr->r_ctl.rc_resend = TAILQ_FIRST(&bbr->r_ctl.rc_map); /* Clear the count (we just un-acked them) */ bbr_log_to_event(bbr, cts, BBR_TO_FRM_TMR); bbr->rc_tlp_new_data = 0; bbr->r_ctl.rc_tlp_seg_send_cnt = 0; /* zap the behindness on a rxt */ bbr->r_ctl.rc_hptsi_agg_delay = 0; bbr->r_agg_early_set = 0; bbr->r_ctl.rc_agg_early = 0; bbr->rc_tlp_rtx_out = 0; bbr->r_ctl.rc_sacked = 0; bbr->r_ctl.rc_sacklast = NULL; bbr->r_timer_override = 1; bbr_lt_bw_sampling(bbr, cts, (bbr->r_ctl.rc_lost > lost)); } /* * Re-transmit timeout! If we drop the PCB we will return 1, otherwise * we will setup to retransmit the lowest seq number outstanding. */ static int bbr_timeout_rxt(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { int32_t rexmt; int32_t retval = 0; bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT; if (bbr->rc_all_timers_stopped) { return (1); } if (TCPS_HAVEESTABLISHED(tp->t_state) && (tp->snd_una == tp->snd_max)) { /* Nothing outstanding .. nothing to do */ return (0); } /* * Retransmission timer went off. Message has not been acked within * retransmit interval. Back off to a longer retransmit interval * and retransmit one segment. */ if (bbr_progress_timeout_check(bbr)) { retval = 1; tcp_set_inp_to_drop(bbr->rc_inp, ETIMEDOUT); goto out; } bbr_remxt_tmr(tp); if ((bbr->r_ctl.rc_resend == NULL) || ((bbr->r_ctl.rc_resend->r_flags & BBR_RWND_COLLAPSED) == 0)) { /* * If the rwnd collapsed on * the one we are retransmitting * it does not count against the * rxt count. */ tp->t_rxtshift++; } if (tp->t_rxtshift > TCP_MAXRXTSHIFT) { tp->t_rxtshift = TCP_MAXRXTSHIFT; TCPSTAT_INC(tcps_timeoutdrop); retval = 1; tcp_set_inp_to_drop(bbr->rc_inp, (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT)); goto out; } if (tp->t_state == TCPS_SYN_SENT) { /* * If the SYN was retransmitted, indicate CWND to be limited * to 1 segment in cc_conn_init(). */ tp->snd_cwnd = 1; } else if (tp->t_rxtshift == 1) { /* * first retransmit; record ssthresh and cwnd so they can be * recovered if this turns out to be a "bad" retransmit. A * retransmit is considered "bad" if an ACK for this segment * is received within RTT/2 interval; the assumption here is * that the ACK was already in flight. See "On Estimating * End-to-End Network Path Properties" by Allman and Paxson * for more details. */ tp->snd_cwnd = tp->t_maxseg - bbr->rc_last_options; if (!IN_RECOVERY(tp->t_flags)) { tp->snd_cwnd_prev = tp->snd_cwnd; tp->snd_ssthresh_prev = tp->snd_ssthresh; tp->snd_recover_prev = tp->snd_recover; tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1)); tp->t_flags |= TF_PREVVALID; } else { tp->t_flags &= ~TF_PREVVALID; } tp->snd_cwnd = tp->t_maxseg - bbr->rc_last_options; } else { tp->snd_cwnd = tp->t_maxseg - bbr->rc_last_options; tp->t_flags &= ~TF_PREVVALID; } TCPSTAT_INC(tcps_rexmttimeo); if ((tp->t_state == TCPS_SYN_SENT) || (tp->t_state == TCPS_SYN_RECEIVED)) rexmt = USEC_2_TICKS(BBR_INITIAL_RTO) * tcp_backoff[tp->t_rxtshift]; else rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]; TCPT_RANGESET(tp->t_rxtcur, rexmt, MSEC_2_TICKS(bbr->r_ctl.rc_min_rto_ms), MSEC_2_TICKS(((uint32_t)bbr->rc_max_rto_sec) * 1000)); /* * We enter the path for PLMTUD if connection is established or, if * connection is FIN_WAIT_1 status, reason for the last is that if * amount of data we send is very small, we could send it in couple * of packets and process straight to FIN. In that case we won't * catch ESTABLISHED state. */ if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED)) || (tp->t_state == TCPS_FIN_WAIT_1))) { #ifdef INET6 int32_t isipv6; #endif /* * Idea here is that at each stage of mtu probe (usually, * 1448 -> 1188 -> 524) should be given 2 chances to recover * before further clamping down. 'tp->t_rxtshift % 2 == 0' * should take care of that. */ if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) == (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) && (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 && tp->t_rxtshift % 2 == 0)) { /* * Enter Path MTU Black-hole Detection mechanism: - * Disable Path MTU Discovery (IP "DF" bit). - * Reduce MTU to lower value than what we negotiated * with peer. */ if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) { /* * Record that we may have found a black * hole. */ tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE; /* Keep track of previous MSS. */ tp->t_pmtud_saved_maxseg = tp->t_maxseg; } /* * Reduce the MSS to blackhole value or to the * default in an attempt to retransmit. */ #ifdef INET6 isipv6 = bbr->r_is_v6; if (isipv6 && tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) { /* Use the sysctl tuneable blackhole MSS. */ tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss; TCPSTAT_INC(tcps_pmtud_blackhole_activated); } else if (isipv6) { /* Use the default MSS. */ tp->t_maxseg = V_tcp_v6mssdflt; /* * Disable Path MTU Discovery when we switch * to minmss. */ tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) { /* Use the sysctl tuneable blackhole MSS. */ tp->t_maxseg = V_tcp_pmtud_blackhole_mss; TCPSTAT_INC(tcps_pmtud_blackhole_activated); } else { /* Use the default MSS. */ tp->t_maxseg = V_tcp_mssdflt; /* * Disable Path MTU Discovery when we switch * to minmss. */ tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); } #endif } else { /* * If further retransmissions are still unsuccessful * with a lowered MTU, maybe this isn't a blackhole * and we restore the previous MSS and blackhole * detection flags. The limit '6' is determined by * giving each probe stage (1448, 1188, 524) 2 * chances to recover. */ if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) && (tp->t_rxtshift >= 6)) { tp->t_flags2 |= TF2_PLPMTU_PMTUD; tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE; tp->t_maxseg = tp->t_pmtud_saved_maxseg; TCPSTAT_INC(tcps_pmtud_blackhole_failed); } } } /* * Disable RFC1323 and SACK if we haven't got any response to our * third SYN to work-around some broken terminal servers (most of * which have hopefully been retired) that have bad VJ header * compression code which trashes TCP segments containing * unknown-to-them TCP options. */ if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) && (tp->t_rxtshift == 3)) tp->t_flags &= ~(TF_REQ_SCALE | TF_REQ_TSTMP | TF_SACK_PERMIT); /* * If we backed off this far, our srtt estimate is probably bogus. * Clobber it so we'll take the next rtt measurement as our srtt; * move the current srtt into rttvar to keep the current retransmit * times until then. */ if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { #ifdef INET6 if (bbr->r_is_v6) in6_losing(tp->t_inpcb); else #endif in_losing(tp->t_inpcb); tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT); tp->t_srtt = 0; } sack_filter_clear(&bbr->r_ctl.bbr_sf, tp->snd_una); tp->snd_recover = tp->snd_max; tp->t_flags |= TF_ACKNOW; tp->t_rtttime = 0; out: return (retval); } static int bbr_process_timers(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, uint8_t hpts_calling) { int32_t ret = 0; int32_t timers = (bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK); if (timers == 0) { return (0); } if (tp->t_state == TCPS_LISTEN) { /* no timers on listen sockets */ if (bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) return (0); return (1); } if (TSTMP_LT(cts, bbr->r_ctl.rc_timer_exp)) { uint32_t left; if (bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { ret = -1; bbr_log_to_processing(bbr, cts, ret, 0, hpts_calling); return (0); } if (hpts_calling == 0) { ret = -2; bbr_log_to_processing(bbr, cts, ret, 0, hpts_calling); return (0); } /* * Ok our timer went off early and we are not paced false * alarm, go back to sleep. */ left = bbr->r_ctl.rc_timer_exp - cts; ret = -3; bbr_log_to_processing(bbr, cts, ret, left, hpts_calling); tcp_hpts_insert(tp->t_inpcb, HPTS_USEC_TO_SLOTS(left)); return (1); } bbr->rc_tmr_stopped = 0; bbr->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK; if (timers & PACE_TMR_DELACK) { ret = bbr_timeout_delack(tp, bbr, cts); } else if (timers & PACE_TMR_PERSIT) { ret = bbr_timeout_persist(tp, bbr, cts); } else if (timers & PACE_TMR_RACK) { bbr->r_ctl.rc_tlp_rxt_last_time = cts; ret = bbr_timeout_rack(tp, bbr, cts); } else if (timers & PACE_TMR_TLP) { bbr->r_ctl.rc_tlp_rxt_last_time = cts; ret = bbr_timeout_tlp(tp, bbr, cts); } else if (timers & PACE_TMR_RXT) { bbr->r_ctl.rc_tlp_rxt_last_time = cts; ret = bbr_timeout_rxt(tp, bbr, cts); } else if (timers & PACE_TMR_KEEP) { ret = bbr_timeout_keepalive(tp, bbr, cts); } bbr_log_to_processing(bbr, cts, ret, timers, hpts_calling); return (ret); } static void bbr_timer_cancel(struct tcp_bbr *bbr, int32_t line, uint32_t cts) { if (bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { uint8_t hpts_removed = 0; if (bbr->rc_inp->inp_in_hpts && (bbr->rc_timer_first == 1)) { /* * If we are canceling timer's when we have the * timer ahead of the output being paced. We also * must remove ourselves from the hpts. */ hpts_removed = 1; tcp_hpts_remove(bbr->rc_inp, HPTS_REMOVE_OUTPUT); if (bbr->r_ctl.rc_last_delay_val) { /* Update the last hptsi delay too */ uint32_t time_since_send; if (TSTMP_GT(cts, bbr->rc_pacer_started)) time_since_send = cts - bbr->rc_pacer_started; else time_since_send = 0; if (bbr->r_ctl.rc_last_delay_val > time_since_send) { /* Cut down our slot time */ bbr->r_ctl.rc_last_delay_val -= time_since_send; } else { bbr->r_ctl.rc_last_delay_val = 0; } bbr->rc_pacer_started = cts; } } bbr->rc_timer_first = 0; bbr_log_to_cancel(bbr, line, cts, hpts_removed); bbr->rc_tmr_stopped = bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK; bbr->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK); } } static void bbr_timer_stop(struct tcpcb *tp, uint32_t timer_type) { struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; bbr->rc_all_timers_stopped = 1; return; } /* * stop all timers always returning 0. */ static int bbr_stopall(struct tcpcb *tp) { return (0); } static void bbr_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta) { return; } /* * return true if a bbr timer (rack or tlp) is active. */ static int bbr_timer_active(struct tcpcb *tp, uint32_t timer_type) { return (0); } static uint32_t bbr_get_earliest_send_outstanding(struct tcp_bbr *bbr, struct bbr_sendmap *u_rsm, uint32_t cts) { struct bbr_sendmap *rsm; rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap); if ((rsm == NULL) || (u_rsm == rsm)) return (cts); return(rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]); } static void bbr_update_rsm(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t cts, uint32_t pacing_time) { int32_t idx; rsm->r_rtr_cnt++; rsm->r_dupack = 0; if (rsm->r_rtr_cnt > BBR_NUM_OF_RETRANS) { rsm->r_rtr_cnt = BBR_NUM_OF_RETRANS; rsm->r_flags |= BBR_OVERMAX; } if (rsm->r_flags & BBR_RWND_COLLAPSED) { /* Take off the collapsed flag at rxt */ rsm->r_flags &= ~BBR_RWND_COLLAPSED; } if (rsm->r_flags & BBR_MARKED_LOST) { /* We have retransmitted, its no longer lost */ rsm->r_flags &= ~BBR_MARKED_LOST; bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start; } if (rsm->r_flags & BBR_RXT_CLEARED) { /* * We hit a RXT timer on it and * we cleared the "acked" flag. * We now have it going back into * flight, we can remove the cleared * flag and possibly do accounting on * this piece. */ rsm->r_flags &= ~BBR_RXT_CLEARED; } if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & BBR_TLP) == 0)) { bbr->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start); rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start); } idx = rsm->r_rtr_cnt - 1; rsm->r_tim_lastsent[idx] = cts; rsm->r_pacing_delay = pacing_time; rsm->r_delivered = bbr->r_ctl.rc_delivered; rsm->r_ts_valid = bbr->rc_ts_valid; if (bbr->rc_ts_valid) rsm->r_del_ack_ts = bbr->r_ctl.last_inbound_ts; if (bbr->r_ctl.r_app_limited_until) rsm->r_app_limited = 1; else rsm->r_app_limited = 0; if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) rsm->r_bbr_state = bbr_state_val(bbr); else rsm->r_bbr_state = 8; if (rsm->r_flags & BBR_ACKED) { /* Problably MTU discovery messing with us */ uint32_t old_flags; old_flags = rsm->r_flags; rsm->r_flags &= ~BBR_ACKED; bbr_log_type_rsmclear(bbr, cts, rsm, old_flags, __LINE__); bbr->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); if (bbr->r_ctl.rc_sacked == 0) bbr->r_ctl.rc_sacklast = NULL; } if (rsm->r_in_tmap) { TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext); } TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 1; if (rsm->r_flags & BBR_SACK_PASSED) { /* We have retransmitted due to the SACK pass */ rsm->r_flags &= ~BBR_SACK_PASSED; rsm->r_flags |= BBR_WAS_SACKPASS; } rsm->r_first_sent_time = bbr_get_earliest_send_outstanding(bbr, rsm, cts); rsm->r_flight_at_send = ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); bbr->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next); if (bbr->r_ctl.rc_bbr_hptsi_gain > BBR_UNIT) { rsm->r_is_gain = 1; rsm->r_is_drain = 0; } else if (bbr->r_ctl.rc_bbr_hptsi_gain < BBR_UNIT) { rsm->r_is_drain = 1; rsm->r_is_gain = 0; } else { rsm->r_is_drain = 0; rsm->r_is_gain = 0; } rsm->r_del_time = bbr->r_ctl.rc_del_time; /* TEMP GOOGLE CODE */ } /* * Returns 0, or the sequence where we stopped * updating. We also update the lenp to be the amount * of data left. */ static uint32_t bbr_update_entry(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t cts, int32_t *lenp, uint32_t pacing_time) { /* * We (re-)transmitted starting at rsm->r_start for some length * (possibly less than r_end. */ struct bbr_sendmap *nrsm; uint32_t c_end; int32_t len; len = *lenp; c_end = rsm->r_start + len; if (SEQ_GEQ(c_end, rsm->r_end)) { /* * We retransmitted the whole piece or more than the whole * slopping into the next rsm. */ bbr_update_rsm(tp, bbr, rsm, cts, pacing_time); if (c_end == rsm->r_end) { *lenp = 0; return (0); } else { int32_t act_len; /* Hangs over the end return whats left */ act_len = rsm->r_end - rsm->r_start; *lenp = (len - act_len); return (rsm->r_end); } /* We don't get out of this block. */ } /* * Here we retransmitted less than the whole thing which means we * have to split this into what was transmitted and what was not. */ nrsm = bbr_alloc_full_limit(bbr); if (nrsm == NULL) { *lenp = 0; return (0); } /* * So here we are going to take the original rsm and make it what we * retransmitted. nrsm will be the tail portion we did not * retransmit. For example say the chunk was 1, 11 (10 bytes). And * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to * 1, 6 and the new piece will be 6, 11. */ bbr_clone_rsm(bbr, nrsm, rsm, c_end); TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next); nrsm->r_dupack = 0; if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } rsm->r_flags &= (~BBR_HAS_FIN); bbr_update_rsm(tp, bbr, rsm, cts, pacing_time); *lenp = 0; return (0); } static uint64_t bbr_get_hardware_rate(struct tcp_bbr *bbr) { uint64_t bw; bw = bbr_get_bw(bbr); bw *= (uint64_t)bbr_hptsi_gain[BBR_SUB_GAIN]; bw /= (uint64_t)BBR_UNIT; return(bw); } static void bbr_setup_less_of_rate(struct tcp_bbr *bbr, uint32_t cts, uint64_t act_rate, uint64_t rate_wanted) { /* * We could not get a full gains worth * of rate. */ if (get_filter_value(&bbr->r_ctl.rc_delrate) >= act_rate) { /* we can't even get the real rate */ uint64_t red; bbr->skip_gain = 1; bbr->gain_is_limited = 0; red = get_filter_value(&bbr->r_ctl.rc_delrate) - act_rate; if (red) filter_reduce_by(&bbr->r_ctl.rc_delrate, red, cts); } else { /* We can use a lower gain */ bbr->skip_gain = 0; bbr->gain_is_limited = 1; } } static void bbr_update_hardware_pacing_rate(struct tcp_bbr *bbr, uint32_t cts) { const struct tcp_hwrate_limit_table *nrte; int error, rate = -1; if (bbr->r_ctl.crte == NULL) return; if ((bbr->rc_inp->inp_route.ro_rt == NULL) || (bbr->rc_inp->inp_route.ro_rt->rt_ifp == NULL)) { /* Lost our routes? */ /* Clear the way for a re-attempt */ bbr->bbr_attempt_hdwr_pace = 0; lost_rate: bbr->gain_is_limited = 0; bbr->skip_gain = 0; bbr->bbr_hdrw_pacing = 0; counter_u64_add(bbr_flows_whdwr_pacing, -1); counter_u64_add(bbr_flows_nohdwr_pacing, 1); tcp_bbr_tso_size_check(bbr, cts); return; } rate = bbr_get_hardware_rate(bbr); nrte = tcp_chg_pacing_rate(bbr->r_ctl.crte, bbr->rc_tp, bbr->rc_inp->inp_route.ro_rt->rt_ifp, rate, (RS_PACING_GEQ|RS_PACING_SUB_OK), &error); if (nrte == NULL) { goto lost_rate; } if (nrte != bbr->r_ctl.crte) { bbr->r_ctl.crte = nrte; if (error == 0) { BBR_STAT_INC(bbr_hdwr_rl_mod_ok); if (bbr->r_ctl.crte->rate < rate) { /* We have a problem */ bbr_setup_less_of_rate(bbr, cts, bbr->r_ctl.crte->rate, rate); } else { /* We are good */ bbr->gain_is_limited = 0; bbr->skip_gain = 0; } } else { /* A failure should release the tag */ BBR_STAT_INC(bbr_hdwr_rl_mod_fail); bbr->gain_is_limited = 0; bbr->skip_gain = 0; bbr->bbr_hdrw_pacing = 0; } bbr_type_log_hdwr_pacing(bbr, bbr->r_ctl.crte->ptbl->rs_ifp, rate, ((bbr->r_ctl.crte == NULL) ? 0 : bbr->r_ctl.crte->rate), __LINE__, cts, error); } } static void bbr_adjust_for_hw_pacing(struct tcp_bbr *bbr, uint32_t cts) { /* * If we have hardware pacing support * we need to factor that in for our * TSO size. */ const struct tcp_hwrate_limit_table *rlp; uint32_t cur_delay, seg_sz, maxseg, new_tso, delta, hdwr_delay; if ((bbr->bbr_hdrw_pacing == 0) || (IN_RECOVERY(bbr->rc_tp->t_flags)) || (bbr->r_ctl.crte == NULL)) return; if (bbr->hw_pacing_set == 0) { /* Not yet by the hdwr pacing count delay */ return; } if (bbr_hdwr_pace_adjust == 0) { /* No adjustment */ return; } rlp = bbr->r_ctl.crte; if (bbr->rc_tp->t_maxseg > bbr->rc_last_options) maxseg = bbr->rc_tp->t_maxseg - bbr->rc_last_options; else maxseg = BBR_MIN_SEG - bbr->rc_last_options; /* * So lets first get the * time we will take between * TSO sized sends currently without * hardware help. */ cur_delay = bbr_get_pacing_delay(bbr, BBR_UNIT, bbr->r_ctl.rc_pace_max_segs, cts, 1); hdwr_delay = bbr->r_ctl.rc_pace_max_segs / maxseg; hdwr_delay *= rlp->time_between; if (cur_delay > hdwr_delay) delta = cur_delay - hdwr_delay; else delta = 0; bbr_log_type_tsosize(bbr, cts, delta, cur_delay, hdwr_delay, (bbr->r_ctl.rc_pace_max_segs / maxseg), 1); if (delta && (delta < (max(rlp->time_between, bbr->r_ctl.bbr_hptsi_segments_delay_tar)))) { /* * Now lets divide by the pacing * time between each segment the * hardware sends rounding up and * derive a bytes from that. We multiply * that by bbr_hdwr_pace_adjust to get * more bang for our buck. * * The goal is to have the software pacer * waiting no more than an additional * pacing delay if we can (without the * compensation i.e. x bbr_hdwr_pace_adjust). */ seg_sz = max(((cur_delay + rlp->time_between)/rlp->time_between), (bbr->r_ctl.rc_pace_max_segs/maxseg)); seg_sz *= bbr_hdwr_pace_adjust; if (bbr_hdwr_pace_floor && (seg_sz < bbr->r_ctl.crte->ptbl->rs_min_seg)) { /* Currently hardware paces * out rs_min_seg segments at a time. * We need to make sure we always send at least * a full burst of bbr_hdwr_pace_floor down. */ seg_sz = bbr->r_ctl.crte->ptbl->rs_min_seg; } seg_sz *= maxseg; } else if (delta == 0) { /* * The highest pacing rate is * above our b/w gained. This means * we probably are going quite fast at * the hardware highest rate. Lets just multiply * the calculated TSO size by the * multiplier factor (its probably * 4 segments in the default config for * mlx). */ seg_sz = bbr->r_ctl.rc_pace_max_segs * bbr_hdwr_pace_adjust; if (bbr_hdwr_pace_floor && (seg_sz < bbr->r_ctl.crte->ptbl->rs_min_seg)) { /* Currently hardware paces * out rs_min_seg segments at a time. * We need to make sure we always send at least * a full burst of bbr_hdwr_pace_floor down. */ seg_sz = bbr->r_ctl.crte->ptbl->rs_min_seg; } } else { /* * The pacing time difference is so * big that the hardware will * pace out more rapidly then we * really want and then we * will have a long delay. Lets just keep * the same TSO size so its as if * we were not using hdwr pacing (we * just gain a bit of spacing from the * hardware if seg_sz > 1). */ seg_sz = bbr->r_ctl.rc_pace_max_segs; } if (seg_sz > bbr->r_ctl.rc_pace_max_segs) new_tso = seg_sz; else new_tso = bbr->r_ctl.rc_pace_max_segs; if (new_tso >= (PACE_MAX_IP_BYTES-maxseg)) new_tso = PACE_MAX_IP_BYTES - maxseg; if (new_tso != bbr->r_ctl.rc_pace_max_segs) { bbr_log_type_tsosize(bbr, cts, new_tso, 0, bbr->r_ctl.rc_pace_max_segs, maxseg, 0); bbr->r_ctl.rc_pace_max_segs = new_tso; } } static void tcp_bbr_tso_size_check(struct tcp_bbr *bbr, uint32_t cts) { uint64_t bw; uint32_t old_tso = 0, new_tso; uint32_t maxseg, bytes; uint32_t tls_seg=0; /* * Google/linux uses the following algorithm to determine * the TSO size based on the b/w of the link (from Neal Cardwell email 9/27/18): * * bytes = bw_in_bytes_per_second / 1000 * bytes = min(bytes, 64k) * tso_segs = bytes / MSS * if (bw < 1.2Mbs) * min_tso_segs = 1 * else * min_tso_segs = 2 * tso_segs = max(tso_segs, min_tso_segs) * * * Note apply a device specific limit (we apply this in the * tcp_m_copym). * Note that before the initial measurement is made google bursts out * a full iwnd just like new-reno/cubic. * * We do not use this algorithm. Instead we * use a two phased approach: * * if ( bw <= per-tcb-cross-over) * goal_tso = calculate how much with this bw we * can send in goal-time seconds. * if (goal_tso > mss) * seg = goal_tso / mss * tso = seg * mss * else * tso = mss * if (tso > per-tcb-max) * tso = per-tcb-max * else if ( bw > 512Mbps) * tso = max-tso (64k/mss) * else * goal_tso = bw / per-tcb-divsor * seg = (goal_tso + mss-1)/mss * tso = seg * mss * * if (tso < per-tcb-floor) * tso = per-tcb-floor * if (tso > per-tcb-utter_max) * tso = per-tcb-utter_max * * Note the default per-tcb-divisor is 1000 (same as google). * the goal cross over is 30Mbps however. To recreate googles * algorithm you need to set: * * cross-over = 23,168,000 bps * goal-time = 18000 * per-tcb-max = 2 * per-tcb-divisor = 1000 * per-tcb-floor = 1 * * This will get you "google bbr" behavior with respect to tso size. * * Note we do set anything TSO size until we are past the initial * window. Before that we gnerally use either a single MSS * or we use the full IW size (so we burst a IW at a time) * Also note that Hardware-TLS is special and does alternate * things to minimize PCI Bus Bandwidth use. */ if (bbr->rc_tp->t_maxseg > bbr->rc_last_options) { maxseg = bbr->rc_tp->t_maxseg - bbr->rc_last_options; } else { maxseg = BBR_MIN_SEG - bbr->rc_last_options; } #ifdef KERN_TLS if (bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) { tls_seg = ctf_get_opt_tls_size(bbr->rc_inp->inp_socket, bbr->rc_tp->snd_wnd); bbr->r_ctl.rc_pace_min_segs = (tls_seg + bbr->rc_last_options); } #endif old_tso = bbr->r_ctl.rc_pace_max_segs; if (bbr->rc_past_init_win == 0) { /* * Not enough data has been acknowledged to make a * judgement unless we are hardware TLS. Set up * the inital TSO based on if we are sending a * full IW at once or not. */ if (bbr->rc_use_google) bbr->r_ctl.rc_pace_max_segs = ((bbr->rc_tp->t_maxseg - bbr->rc_last_options) * 2); else if (bbr->bbr_init_win_cheat) bbr->r_ctl.rc_pace_max_segs = bbr_initial_cwnd(bbr, bbr->rc_tp); else bbr->r_ctl.rc_pace_max_segs = bbr->rc_tp->t_maxseg - bbr->rc_last_options; if (bbr->r_ctl.rc_pace_min_segs != bbr->rc_tp->t_maxseg) bbr->r_ctl.rc_pace_min_segs = bbr->rc_tp->t_maxseg; #ifdef KERN_TLS if ((bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) && tls_seg) { /* * For hardware TLS we set our min to the tls_seg size. */ bbr->r_ctl.rc_pace_max_segs = tls_seg; bbr->r_ctl.rc_pace_min_segs = tls_seg + bbr->rc_last_options; } #endif if (bbr->r_ctl.rc_pace_max_segs == 0) { bbr->r_ctl.rc_pace_max_segs = maxseg; } bbr_log_type_tsosize(bbr, cts, bbr->r_ctl.rc_pace_max_segs, tls_seg, old_tso, maxseg, 0); #ifdef KERN_TLS if ((bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) == 0) #endif bbr_adjust_for_hw_pacing(bbr, cts); return; } /** * Now lets set the TSO goal based on our delivery rate in * bytes per second. Note we only do this if * we have acked at least the initial cwnd worth of data. */ bw = bbr_get_bw(bbr); if (IN_RECOVERY(bbr->rc_tp->t_flags) && (bbr->rc_use_google == 0)) { /* We clamp to one MSS in recovery */ new_tso = maxseg; } else if (bbr->rc_use_google) { int min_tso_segs; /* Google considers the gain too */ if (bbr->r_ctl.rc_bbr_hptsi_gain != BBR_UNIT) { bw *= bbr->r_ctl.rc_bbr_hptsi_gain; bw /= BBR_UNIT; } bytes = bw / 1024; if (bytes > (64 * 1024)) bytes = 64 * 1024; new_tso = bytes / maxseg; if (bw < ONE_POINT_TWO_MEG) min_tso_segs = 1; else min_tso_segs = 2; if (new_tso < min_tso_segs) new_tso = min_tso_segs; new_tso *= maxseg; } else if (bbr->rc_no_pacing) { new_tso = (PACE_MAX_IP_BYTES / maxseg) * maxseg; } else if (bw <= bbr->r_ctl.bbr_cross_over) { /* * Calculate the worse case b/w TSO if we are inserting no * more than a delay_target number of TSO's. */ uint32_t tso_len, min_tso; tso_len = bbr_get_pacing_length(bbr, BBR_UNIT, bbr->r_ctl.bbr_hptsi_segments_delay_tar, bw); if (tso_len > maxseg) { new_tso = tso_len / maxseg; if (new_tso > bbr->r_ctl.bbr_hptsi_segments_max) new_tso = bbr->r_ctl.bbr_hptsi_segments_max; new_tso *= maxseg; } else { /* * less than a full sized frame yikes.. long rtt or * low bw? */ min_tso = bbr_minseg(bbr); if ((tso_len > min_tso) && (bbr_all_get_min == 0)) new_tso = rounddown(tso_len, min_tso); else new_tso = min_tso; } } else if (bw > FIVETWELVE_MBPS) { /* * This guy is so fast b/w wise that we can TSO as large as * possible of segments that the NIC will allow. */ new_tso = rounddown(PACE_MAX_IP_BYTES, maxseg); } else { /* * This formula is based on attempting to send a segment or * more every bbr_hptsi_per_second. The default is 1000 * which means you are targeting what you can send every 1ms * based on the peers bw. * * If the number drops to say 500, then you are looking more * at 2ms and you will raise how much we send in a single * TSO thus saving CPU (less bbr_output_wtime() calls). The * trade off of course is you will send more at once and * thus tend to clump up the sends into larger "bursts" * building a queue. */ bw /= bbr->r_ctl.bbr_hptsi_per_second; new_tso = roundup(bw, (uint64_t)maxseg); /* * Gate the floor to match what our lower than 48Mbps * algorithm does. The ceiling (bbr_hptsi_segments_max) thus * becomes the floor for this calculation. */ if (new_tso < (bbr->r_ctl.bbr_hptsi_segments_max * maxseg)) new_tso = (bbr->r_ctl.bbr_hptsi_segments_max * maxseg); } if (bbr->r_ctl.bbr_hptsi_segments_floor && (new_tso < (maxseg * bbr->r_ctl.bbr_hptsi_segments_floor))) new_tso = maxseg * bbr->r_ctl.bbr_hptsi_segments_floor; if (new_tso > PACE_MAX_IP_BYTES) new_tso = rounddown(PACE_MAX_IP_BYTES, maxseg); /* Enforce an utter maximum if we are not HW-TLS */ #ifdef KERN_TLS if ((bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) == 0) #endif if (bbr->r_ctl.bbr_utter_max && (new_tso > (bbr->r_ctl.bbr_utter_max * maxseg))) { new_tso = bbr->r_ctl.bbr_utter_max * maxseg; } #ifdef KERN_TLS if (tls_seg) { /* * Lets move the output size * up to 1 or more TLS record sizes. */ uint32_t temp; temp = roundup(new_tso, tls_seg); new_tso = temp; /* Back down if needed to under a full frame */ while (new_tso > PACE_MAX_IP_BYTES) new_tso -= tls_seg; } #endif if (old_tso != new_tso) { /* Only log changes */ bbr_log_type_tsosize(bbr, cts, new_tso, tls_seg, old_tso, maxseg, 0); bbr->r_ctl.rc_pace_max_segs = new_tso; } #ifdef KERN_TLS if ((bbr->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) && tls_seg) { bbr->r_ctl.rc_pace_min_segs = tls_seg + bbr->rc_last_options; } else #endif /* We have hardware pacing and not hardware TLS! */ bbr_adjust_for_hw_pacing(bbr, cts); } static void bbr_log_output(struct tcp_bbr *bbr, struct tcpcb *tp, struct tcpopt *to, int32_t len, uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t cts, struct mbuf *mb, int32_t * abandon, struct bbr_sendmap *hintrsm, uint32_t delay_calc, struct sockbuf *sb) { struct bbr_sendmap *rsm, *nrsm; register uint32_t snd_max, snd_una; uint32_t pacing_time; /* * Add to the RACK log of packets in flight or retransmitted. If * there is a TS option we will use the TS echoed, if not we will * grab a TS. * * Retransmissions will increment the count and move the ts to its * proper place. Note that if options do not include TS's then we * won't be able to effectively use the ACK for an RTT on a retran. * * Notes about r_start and r_end. Lets consider a send starting at * sequence 1 for 10 bytes. In such an example the r_start would be * 1 (starting sequence) but the r_end would be r_start+len i.e. 11. * This means that r_end is actually the first sequence for the next * slot (11). * */ INP_WLOCK_ASSERT(tp->t_inpcb); if (err) { /* * We don't log errors -- we could but snd_max does not * advance in this case either. */ return; } if (th_flags & TH_RST) { /* * We don't log resets and we return immediately from * sending */ *abandon = 1; return; } snd_una = tp->snd_una; if (th_flags & (TH_SYN | TH_FIN) && (hintrsm == NULL)) { /* * The call to bbr_log_output is made before bumping * snd_max. This means we can record one extra byte on a SYN * or FIN if seq_out is adding more on and a FIN is present * (and we are not resending). */ if (th_flags & TH_SYN) len++; if (th_flags & TH_FIN) len++; } if (SEQ_LEQ((seq_out + len), snd_una)) { /* Are sending an old segment to induce an ack (keep-alive)? */ return; } if (SEQ_LT(seq_out, snd_una)) { /* huh? should we panic? */ uint32_t end; end = seq_out + len; seq_out = snd_una; len = end - seq_out; } snd_max = tp->snd_max; if (len == 0) { /* We don't log zero window probes */ return; } pacing_time = bbr_get_pacing_delay(bbr, bbr->r_ctl.rc_bbr_hptsi_gain, len, cts, 1); /* First question is it a retransmission? */ if (seq_out == snd_max) { again: rsm = bbr_alloc(bbr); if (rsm == NULL) { return; } rsm->r_flags = 0; if (th_flags & TH_SYN) rsm->r_flags |= BBR_HAS_SYN; if (th_flags & TH_FIN) rsm->r_flags |= BBR_HAS_FIN; rsm->r_tim_lastsent[0] = cts; rsm->r_rtr_cnt = 1; rsm->r_rtr_bytes = 0; rsm->r_start = seq_out; rsm->r_end = rsm->r_start + len; rsm->r_dupack = 0; rsm->r_delivered = bbr->r_ctl.rc_delivered; rsm->r_pacing_delay = pacing_time; rsm->r_ts_valid = bbr->rc_ts_valid; if (bbr->rc_ts_valid) rsm->r_del_ack_ts = bbr->r_ctl.last_inbound_ts; rsm->r_del_time = bbr->r_ctl.rc_del_time; if (bbr->r_ctl.r_app_limited_until) rsm->r_app_limited = 1; else rsm->r_app_limited = 0; rsm->r_first_sent_time = bbr_get_earliest_send_outstanding(bbr, rsm, cts); rsm->r_flight_at_send = ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); /* * Here we must also add in this rsm since snd_max * is updated after we return from a new send. */ rsm->r_flight_at_send += len; TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_map, rsm, r_next); TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 1; if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) rsm->r_bbr_state = bbr_state_val(bbr); else rsm->r_bbr_state = 8; if (bbr->r_ctl.rc_bbr_hptsi_gain > BBR_UNIT) { rsm->r_is_gain = 1; rsm->r_is_drain = 0; } else if (bbr->r_ctl.rc_bbr_hptsi_gain < BBR_UNIT) { rsm->r_is_drain = 1; rsm->r_is_gain = 0; } else { rsm->r_is_drain = 0; rsm->r_is_gain = 0; } return; } /* * If we reach here its a retransmission and we need to find it. */ more: if (hintrsm && (hintrsm->r_start == seq_out)) { rsm = hintrsm; hintrsm = NULL; } else if (bbr->r_ctl.rc_next) { /* We have a hint from a previous run */ rsm = bbr->r_ctl.rc_next; } else { /* No hints sorry */ rsm = NULL; } if ((rsm) && (rsm->r_start == seq_out)) { /* * We used rc_next or hintrsm to retransmit, hopefully the * likely case. */ seq_out = bbr_update_entry(tp, bbr, rsm, cts, &len, pacing_time); if (len == 0) { return; } else { goto more; } } /* Ok it was not the last pointer go through it the hard way. */ TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) { if (rsm->r_start == seq_out) { seq_out = bbr_update_entry(tp, bbr, rsm, cts, &len, pacing_time); bbr->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next); if (len == 0) { return; } else { continue; } } if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) { /* Transmitted within this piece */ /* * Ok we must split off the front and then let the * update do the rest */ nrsm = bbr_alloc_full_limit(bbr); if (nrsm == NULL) { bbr_update_rsm(tp, bbr, rsm, cts, pacing_time); return; } /* * copy rsm to nrsm and then trim the front of rsm * to not include this part. */ bbr_clone_rsm(bbr, nrsm, rsm, seq_out); TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next); if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } rsm->r_flags &= (~BBR_HAS_FIN); seq_out = bbr_update_entry(tp, bbr, nrsm, cts, &len, pacing_time); if (len == 0) { return; } } } /* * Hmm not found in map did they retransmit both old and on into the * new? */ if (seq_out == tp->snd_max) { goto again; } else if (SEQ_LT(seq_out, tp->snd_max)) { #ifdef BBR_INVARIANTS printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n", seq_out, len, tp->snd_una, tp->snd_max); printf("Starting Dump of all rack entries\n"); TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) { printf("rsm:%p start:%u end:%u\n", rsm, rsm->r_start, rsm->r_end); } printf("Dump complete\n"); panic("seq_out not found rack:%p tp:%p", bbr, tp); #endif } else { #ifdef BBR_INVARIANTS /* * Hmm beyond sndmax? (only if we are using the new rtt-pack * flag) */ panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p", seq_out, len, tp->snd_max, tp); #endif } } static void bbr_collapse_rtt(struct tcpcb *tp, struct tcp_bbr *bbr, int32_t rtt) { /* * Collapse timeout back the cum-ack moved. */ tp->t_rxtshift = 0; tp->t_softerror = 0; } static void tcp_bbr_xmit_timer(struct tcp_bbr *bbr, uint32_t rtt_usecs, uint32_t rsm_send_time, uint32_t r_start, uint32_t tsin) { bbr->rtt_valid = 1; bbr->r_ctl.cur_rtt = rtt_usecs; bbr->r_ctl.ts_in = tsin; if (rsm_send_time) bbr->r_ctl.cur_rtt_send_time = rsm_send_time; } static void bbr_make_timestamp_determination(struct tcp_bbr *bbr) { /** * We have in our bbr control: * 1) The timestamp we started observing cum-acks (bbr->r_ctl.bbr_ts_check_tstmp). * 2) Our timestamp indicating when we sent that packet (bbr->r_ctl.rsm->bbr_ts_check_our_cts). * 3) The current timestamp that just came in (bbr->r_ctl.last_inbound_ts) * 4) The time that the packet that generated that ack was sent (bbr->r_ctl.cur_rtt_send_time) * * Now we can calculate the time between the sends by doing: * * delta = bbr->r_ctl.cur_rtt_send_time - bbr->r_ctl.bbr_ts_check_our_cts * * And the peer's time between receiving them by doing: * * peer_delta = bbr->r_ctl.last_inbound_ts - bbr->r_ctl.bbr_ts_check_tstmp * * We want to figure out if the timestamp values are in msec, 10msec or usec. * We also may find that we can't use the timestamps if say we see * that the peer_delta indicates that though we may have taken 10ms to * pace out the data, it only saw 1ms between the two packets. This would * indicate that somewhere on the path is a batching entity that is giving * out time-slices of the actual b/w. This would mean we could not use * reliably the peers timestamps. * * We expect delta > peer_delta initially. Until we figure out the * timestamp difference which we will store in bbr->r_ctl.bbr_peer_tsratio. * If we place 1000 there then its a ms vs our usec. If we place 10000 there * then its 10ms vs our usec. If the peer is running a usec clock we would * put a 1 there. If the value is faster then ours, we will disable the * use of timestamps (though we could revist this later if we find it to be not * just an isolated one or two flows)). * * To detect the batching middle boxes we will come up with our compensation and * if with it in place, we find the peer is drastically off (by some margin) in * the smaller direction, then we will assume the worst case and disable use of timestamps. * */ uint64_t delta, peer_delta, delta_up; delta = bbr->r_ctl.cur_rtt_send_time - bbr->r_ctl.bbr_ts_check_our_cts; if (delta < bbr_min_usec_delta) { /* * Have not seen a min amount of time * between our send times so we can * make a determination of the timestamp * yet. */ return; } peer_delta = bbr->r_ctl.last_inbound_ts - bbr->r_ctl.bbr_ts_check_tstmp; if (peer_delta < bbr_min_peer_delta) { /* * We may have enough in the form of * our delta but the peers number * has not changed that much. It could * be its clock ratio is such that * we need more data (10ms tick) or * there may be other compression scenarios * going on. In any event we need the * spread to be larger. */ return; } /* Ok lets first see which way our delta is going */ if (peer_delta > delta) { /* Very unlikely, the peer without * compensation shows that it saw * the two sends arrive further apart * then we saw then in micro-seconds. */ if (peer_delta < (delta + ((delta * (uint64_t)1000)/ (uint64_t)bbr_delta_percent))) { /* well it looks like the peer is a micro-second clock. */ bbr->rc_ts_clock_set = 1; bbr->r_ctl.bbr_peer_tsratio = 1; } else { bbr->rc_ts_cant_be_used = 1; bbr->rc_ts_clock_set = 1; } return; } /* Ok we know that the peer_delta is smaller than our send distance */ bbr->rc_ts_clock_set = 1; /* First question is it within the percentage that they are using usec time? */ delta_up = (peer_delta * 1000) / (uint64_t)bbr_delta_percent; if ((peer_delta + delta_up) >= delta) { /* Its a usec clock */ bbr->r_ctl.bbr_peer_tsratio = 1; bbr_log_tstmp_validation(bbr, peer_delta, delta); return; } /* Ok if not usec, what about 10usec (though unlikely)? */ delta_up = (peer_delta * 1000 * 10) / (uint64_t)bbr_delta_percent; if (((peer_delta * 10) + delta_up) >= delta) { bbr->r_ctl.bbr_peer_tsratio = 10; bbr_log_tstmp_validation(bbr, peer_delta, delta); return; } /* And what about 100usec (though again unlikely)? */ delta_up = (peer_delta * 1000 * 100) / (uint64_t)bbr_delta_percent; if (((peer_delta * 100) + delta_up) >= delta) { bbr->r_ctl.bbr_peer_tsratio = 100; bbr_log_tstmp_validation(bbr, peer_delta, delta); return; } /* And how about 1 msec (the most likely one)? */ delta_up = (peer_delta * 1000 * 1000) / (uint64_t)bbr_delta_percent; if (((peer_delta * 1000) + delta_up) >= delta) { bbr->r_ctl.bbr_peer_tsratio = 1000; bbr_log_tstmp_validation(bbr, peer_delta, delta); return; } /* Ok if not msec could it be 10 msec? */ delta_up = (peer_delta * 1000 * 10000) / (uint64_t)bbr_delta_percent; if (((peer_delta * 10000) + delta_up) >= delta) { bbr->r_ctl.bbr_peer_tsratio = 10000; return; } /* If we fall down here the clock tick so slowly we can't use it */ bbr->rc_ts_cant_be_used = 1; bbr->r_ctl.bbr_peer_tsratio = 0; bbr_log_tstmp_validation(bbr, peer_delta, delta); } /* * Collect new round-trip time estimate * and update averages and current timeout. */ static void tcp_bbr_xmit_timer_commit(struct tcp_bbr *bbr, struct tcpcb *tp, uint32_t cts) { int32_t delta; uint32_t rtt, tsin; int32_t rtt_ticks; if (bbr->rtt_valid == 0) /* No valid sample */ return; rtt = bbr->r_ctl.cur_rtt; tsin = bbr->r_ctl.ts_in; if (bbr->rc_prtt_set_ts) { /* * We are to force feed the rttProp filter due * to an entry into PROBE_RTT. This assures * that the times are sync'd between when we * go into PROBE_RTT and the filter expiration. * * Google does not use a true filter, so they do * this implicitly since they only keep one value * and when they enter probe-rtt they update the * value to the newest rtt. */ uint32_t rtt_prop; bbr->rc_prtt_set_ts = 0; rtt_prop = get_filter_value_small(&bbr->r_ctl.rc_rttprop); if (rtt > rtt_prop) filter_increase_by_small(&bbr->r_ctl.rc_rttprop, (rtt - rtt_prop), cts); else apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, cts); } if (bbr->rc_ack_was_delayed) rtt += bbr->r_ctl.rc_ack_hdwr_delay; if (rtt < bbr->r_ctl.rc_lowest_rtt) bbr->r_ctl.rc_lowest_rtt = rtt; bbr_log_rtt_sample(bbr, rtt, tsin); if (bbr->r_init_rtt) { /* * The initial rtt is not-trusted, nuke it and lets get * our first valid measurement in. */ bbr->r_init_rtt = 0; tp->t_srtt = 0; } if ((bbr->rc_ts_clock_set == 0) && bbr->rc_ts_valid) { /* * So we have not yet figured out * what the peers TSTMP value is * in (most likely ms). We need a * series of cum-ack's to determine * this reliably. */ if (bbr->rc_ack_is_cumack) { if (bbr->rc_ts_data_set) { /* Lets attempt to determine the timestamp granularity. */ bbr_make_timestamp_determination(bbr); } else { bbr->rc_ts_data_set = 1; bbr->r_ctl.bbr_ts_check_tstmp = bbr->r_ctl.last_inbound_ts; bbr->r_ctl.bbr_ts_check_our_cts = bbr->r_ctl.cur_rtt_send_time; } } else { /* * We have to have consecutive acks * reset any "filled" state to none. */ bbr->rc_ts_data_set = 0; } } /* Round it up */ rtt_ticks = USEC_2_TICKS((rtt + (USECS_IN_MSEC - 1))); if (rtt_ticks == 0) rtt_ticks = 1; if (tp->t_srtt != 0) { /* * srtt is stored as fixed point with 5 bits after the * binary point (i.e., scaled by 8). The following magic is * equivalent to the smoothing algorithm in rfc793 with an * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point). * Adjust rtt to origin 0. */ delta = ((rtt_ticks - 1) << TCP_DELTA_SHIFT) - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); tp->t_srtt += delta; if (tp->t_srtt <= 0) tp->t_srtt = 1; /* * We accumulate a smoothed rtt variance (actually, a * smoothed mean difference), then set the retransmit timer * to smoothed rtt + 4 times the smoothed variance. rttvar * is stored as fixed point with 4 bits after the binary * point (scaled by 16). The following is equivalent to * rfc793 smoothing with an alpha of .75 (rttvar = * rttvar*3/4 + |delta| / 4). This replaces rfc793's * wired-in beta. */ if (delta < 0) delta = -delta; delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); tp->t_rttvar += delta; if (tp->t_rttvar <= 0) tp->t_rttvar = 1; if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) tp->t_rttbest = tp->t_srtt + tp->t_rttvar; } else { /* * No rtt measurement yet - use the unsmoothed rtt. Set the * variance to half the rtt (so our first retransmit happens * at 3*rtt). */ tp->t_srtt = rtt_ticks << TCP_RTT_SHIFT; tp->t_rttvar = rtt_ticks << (TCP_RTTVAR_SHIFT - 1); tp->t_rttbest = tp->t_srtt + tp->t_rttvar; } TCPSTAT_INC(tcps_rttupdated); tp->t_rttupdated++; #ifdef STATS stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt_ticks)); #endif /* * the retransmit should happen at rtt + 4 * rttvar. Because of the * way we do the smoothing, srtt and rttvar will each average +1/2 * tick of bias. When we compute the retransmit timer, we want 1/2 * tick of rounding and 1 extra tick because of +-1/2 tick * uncertainty in the firing of the timer. The bias will give us * exactly the 1.5 tick we need. But, because the bias is * statistical, we have to test that we don't drop below the minimum * feasible timer (which is 2 ticks). */ TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), max(MSEC_2_TICKS(bbr->r_ctl.rc_min_rto_ms), rtt_ticks + 2), MSEC_2_TICKS(((uint32_t)bbr->rc_max_rto_sec) * 1000)); /* * We received an ack for a packet that wasn't retransmitted; it is * probably safe to discard any error indications we've received * recently. This isn't quite right, but close enough for now (a * route might have failed after we sent a segment, and the return * path might not be symmetrical). */ tp->t_softerror = 0; rtt = (TICKS_2_USEC(bbr->rc_tp->t_srtt) >> TCP_RTT_SHIFT); if (bbr->r_ctl.bbr_smallest_srtt_this_state > rtt) bbr->r_ctl.bbr_smallest_srtt_this_state = rtt; } static void bbr_earlier_retran(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t t, uint32_t cts, int ack_type) { /* * For this RSM, we acknowledged the data from a previous * transmission, not the last one we made. This means we did a false * retransmit. */ if (rsm->r_flags & BBR_HAS_FIN) { /* * The sending of the FIN often is multiple sent when we * have everything outstanding ack'd. We ignore this case * since its over now. */ return; } if (rsm->r_flags & BBR_TLP) { /* * We expect TLP's to have this occur often */ bbr->rc_tlp_rtx_out = 0; return; } if (ack_type != BBR_CUM_ACKED) { /* * If it was not a cum-ack we * don't really know for sure since * the timestamp could be from some * other transmission. */ return; } if (rsm->r_flags & BBR_WAS_SACKPASS) { /* * We retransmitted based on a sack and the earlier * retransmission ack'd it - re-ordering is occuring. */ BBR_STAT_INC(bbr_reorder_seen); bbr->r_ctl.rc_reorder_ts = cts; } /* Back down the loss count */ if (rsm->r_flags & BBR_MARKED_LOST) { bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start; bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start; rsm->r_flags &= ~BBR_MARKED_LOST; if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost)) /* LT sampling also needs adjustment */ bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost; } /***** RRS HERE ************************/ /* Do we need to do this??? */ /* bbr_reset_lt_bw_sampling(bbr, cts); */ /***** RRS HERE ************************/ BBR_STAT_INC(bbr_badfr); BBR_STAT_ADD(bbr_badfr_bytes, (rsm->r_end - rsm->r_start)); } static void bbr_set_reduced_rtt(struct tcp_bbr *bbr, uint32_t cts, uint32_t line) { bbr->r_ctl.rc_rtt_shrinks = cts; if (bbr_can_force_probertt && (TSTMP_GT(cts, bbr->r_ctl.last_in_probertt)) && ((cts - bbr->r_ctl.last_in_probertt) > bbr->r_ctl.rc_probertt_int)) { /* * We should enter probe-rtt its been too long * since we have been there. */ bbr_enter_probe_rtt(bbr, cts, __LINE__); } else bbr_check_probe_rtt_limits(bbr, cts); } static void tcp_bbr_commit_bw(struct tcp_bbr *bbr, uint32_t cts) { uint64_t orig_bw; if (bbr->r_ctl.rc_bbr_cur_del_rate == 0) { /* We never apply a zero measurment */ bbr_log_type_bbrupd(bbr, 20, cts, 0, 0, 0, 0, 0, 0, 0, 0); return; } if (bbr->r_ctl.r_measurement_count < 0xffffffff) bbr->r_ctl.r_measurement_count++; orig_bw = get_filter_value(&bbr->r_ctl.rc_delrate); apply_filter_max(&bbr->r_ctl.rc_delrate, bbr->r_ctl.rc_bbr_cur_del_rate, bbr->r_ctl.rc_pkt_epoch); bbr_log_type_bbrupd(bbr, 21, cts, (uint32_t)orig_bw, (uint32_t)get_filter_value(&bbr->r_ctl.rc_delrate), 0, 0, 0, 0, 0, 0); if (orig_bw && (orig_bw != get_filter_value(&bbr->r_ctl.rc_delrate))) { if (bbr->bbr_hdrw_pacing) { /* * Apply a new rate to the hardware * possibly. */ bbr_update_hardware_pacing_rate(bbr, cts); } bbr_set_state_target(bbr, __LINE__); tcp_bbr_tso_size_check(bbr, cts); if (bbr->r_recovery_bw) { bbr_setup_red_bw(bbr, cts); bbr_log_type_bw_reduce(bbr, BBR_RED_BW_USELRBW); } } else if ((orig_bw == 0) && get_filter_value(&bbr->r_ctl.rc_delrate)) tcp_bbr_tso_size_check(bbr, cts); } static void bbr_nf_measurement(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t rtt, uint32_t cts) { if (bbr->rc_in_persist == 0) { /* We log only when not in persist */ /* Translate to a Bytes Per Second */ uint64_t tim, bw, ts_diff, ts_bw; uint32_t upper, lower, delivered; if (TSTMP_GT(bbr->r_ctl.rc_del_time, rsm->r_del_time)) tim = (uint64_t)(bbr->r_ctl.rc_del_time - rsm->r_del_time); else tim = 1; /* * Now that we have processed the tim (skipping the sample * or possibly updating the time, go ahead and * calculate the cdr. */ delivered = (bbr->r_ctl.rc_delivered - rsm->r_delivered); bw = (uint64_t)delivered; bw *= (uint64_t)USECS_IN_SECOND; bw /= tim; if (bw == 0) { /* We must have a calculatable amount */ return; } upper = (bw >> 32) & 0x00000000ffffffff; lower = bw & 0x00000000ffffffff; /* * If we are using this b/w shove it in now so we * can see in the trace viewer if it gets over-ridden. */ if (rsm->r_ts_valid && bbr->rc_ts_valid && bbr->rc_ts_clock_set && (bbr->rc_ts_cant_be_used == 0) && bbr->rc_use_ts_limit) { ts_diff = max((bbr->r_ctl.last_inbound_ts - rsm->r_del_ack_ts), 1); ts_diff *= bbr->r_ctl.bbr_peer_tsratio; if ((delivered == 0) || (rtt < 1000)) { /* Can't use the ts */ bbr_log_type_bbrupd(bbr, 61, cts, ts_diff, bbr->r_ctl.last_inbound_ts, rsm->r_del_ack_ts, 0, 0, 0, 0, delivered); } else { ts_bw = (uint64_t)delivered; ts_bw *= (uint64_t)USECS_IN_SECOND; ts_bw /= ts_diff; bbr_log_type_bbrupd(bbr, 62, cts, (ts_bw >> 32), (ts_bw & 0xffffffff), 0, 0, 0, 0, ts_diff, delivered); if ((bbr->ts_can_raise) && (ts_bw > bw)) { bbr_log_type_bbrupd(bbr, 8, cts, delivered, ts_diff, (bw >> 32), (bw & 0x00000000ffffffff), 0, 0, 0, 0); bw = ts_bw; } else if (ts_bw && (ts_bw < bw)) { bbr_log_type_bbrupd(bbr, 7, cts, delivered, ts_diff, (bw >> 32), (bw & 0x00000000ffffffff), 0, 0, 0, 0); bw = ts_bw; } } } if (rsm->r_first_sent_time && TSTMP_GT(rsm->r_tim_lastsent[(rsm->r_rtr_cnt -1)],rsm->r_first_sent_time)) { uint64_t sbw, sti; /* * We use what was in flight at the time of our * send and the size of this send to figure * out what we have been sending at (amount). * For the time we take from the time of * the send of the first send outstanding * until this send plus this sends pacing * time. This gives us a good calculation * as to the rate we have been sending at. */ sbw = (uint64_t)(rsm->r_flight_at_send); sbw *= (uint64_t)USECS_IN_SECOND; sti = rsm->r_tim_lastsent[(rsm->r_rtr_cnt -1)] - rsm->r_first_sent_time; sti += rsm->r_pacing_delay; sbw /= sti; if (sbw < bw) { bbr_log_type_bbrupd(bbr, 6, cts, delivered, (uint32_t)sti, (bw >> 32), (uint32_t)bw, rsm->r_first_sent_time, 0, (sbw >> 32), (uint32_t)sbw); bw = sbw; } } /* Use the google algorithm for b/w measurements */ bbr->r_ctl.rc_bbr_cur_del_rate = bw; if ((rsm->r_app_limited == 0) || (bw > get_filter_value(&bbr->r_ctl.rc_delrate))) { tcp_bbr_commit_bw(bbr, cts); bbr_log_type_bbrupd(bbr, 10, cts, (uint32_t)tim, delivered, 0, 0, 0, 0, bbr->r_ctl.rc_del_time, rsm->r_del_time); } } } static void bbr_google_measurement(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t rtt, uint32_t cts) { if (bbr->rc_in_persist == 0) { /* We log only when not in persist */ /* Translate to a Bytes Per Second */ uint64_t tim, bw; uint32_t upper, lower, delivered; int no_apply = 0; if (TSTMP_GT(bbr->r_ctl.rc_del_time, rsm->r_del_time)) tim = (uint64_t)(bbr->r_ctl.rc_del_time - rsm->r_del_time); else tim = 1; /* * Now that we have processed the tim (skipping the sample * or possibly updating the time, go ahead and * calculate the cdr. */ delivered = (bbr->r_ctl.rc_delivered - rsm->r_delivered); bw = (uint64_t)delivered; bw *= (uint64_t)USECS_IN_SECOND; bw /= tim; if (tim < bbr->r_ctl.rc_lowest_rtt) { bbr_log_type_bbrupd(bbr, 99, cts, (uint32_t)tim, delivered, tim, bbr->r_ctl.rc_lowest_rtt, 0, 0, 0, 0); no_apply = 1; } upper = (bw >> 32) & 0x00000000ffffffff; lower = bw & 0x00000000ffffffff; /* * If we are using this b/w shove it in now so we * can see in the trace viewer if it gets over-ridden. */ bbr->r_ctl.rc_bbr_cur_del_rate = bw; /* Gate by the sending rate */ if (rsm->r_first_sent_time && TSTMP_GT(rsm->r_tim_lastsent[(rsm->r_rtr_cnt -1)],rsm->r_first_sent_time)) { uint64_t sbw, sti; /* * We use what was in flight at the time of our * send and the size of this send to figure * out what we have been sending at (amount). * For the time we take from the time of * the send of the first send outstanding * until this send plus this sends pacing * time. This gives us a good calculation * as to the rate we have been sending at. */ sbw = (uint64_t)(rsm->r_flight_at_send); sbw *= (uint64_t)USECS_IN_SECOND; sti = rsm->r_tim_lastsent[(rsm->r_rtr_cnt -1)] - rsm->r_first_sent_time; sti += rsm->r_pacing_delay; sbw /= sti; if (sbw < bw) { bbr_log_type_bbrupd(bbr, 6, cts, delivered, (uint32_t)sti, (bw >> 32), (uint32_t)bw, rsm->r_first_sent_time, 0, (sbw >> 32), (uint32_t)sbw); bw = sbw; } if ((sti > tim) && (sti < bbr->r_ctl.rc_lowest_rtt)) { bbr_log_type_bbrupd(bbr, 99, cts, (uint32_t)tim, delivered, (uint32_t)sti, bbr->r_ctl.rc_lowest_rtt, 0, 0, 0, 0); no_apply = 1; } else no_apply = 0; } bbr->r_ctl.rc_bbr_cur_del_rate = bw; if ((no_apply == 0) && ((rsm->r_app_limited == 0) || (bw > get_filter_value(&bbr->r_ctl.rc_delrate)))) { tcp_bbr_commit_bw(bbr, cts); bbr_log_type_bbrupd(bbr, 10, cts, (uint32_t)tim, delivered, 0, 0, 0, 0, bbr->r_ctl.rc_del_time, rsm->r_del_time); } } } static void bbr_update_bbr_info(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, uint32_t rtt, uint32_t cts, uint32_t tsin, uint32_t uts, int32_t match, uint32_t rsm_send_time, int32_t ack_type, struct tcpopt *to) { uint64_t old_rttprop; /* Update our delivery time and amount */ bbr->r_ctl.rc_delivered += (rsm->r_end - rsm->r_start); bbr->r_ctl.rc_del_time = cts; if (rtt == 0) { /* * 0 means its a retransmit, for now we don't use these for * the rest of BBR. */ return; } if ((bbr->rc_use_google == 0) && (match != BBR_RTT_BY_EXACTMATCH) && (match != BBR_RTT_BY_TIMESTAMP)){ /* * We get a lot of rtt updates, lets not pay attention to * any that are not an exact match. That way we don't have * to worry about timestamps and the whole nonsense of * unsure if its a retransmission etc (if we ever had the * timestamp fixed to always have the last thing sent this * would not be a issue). */ return; } if ((bbr_no_retran && bbr->rc_use_google) && (match != BBR_RTT_BY_EXACTMATCH) && (match != BBR_RTT_BY_TIMESTAMP)){ /* * We only do measurements in google mode * with bbr_no_retran on for sure things. */ return; } /* Only update srtt if we know by exact match */ tcp_bbr_xmit_timer(bbr, rtt, rsm_send_time, rsm->r_start, tsin); if (ack_type == BBR_CUM_ACKED) bbr->rc_ack_is_cumack = 1; else bbr->rc_ack_is_cumack = 0; old_rttprop = bbr_get_rtt(bbr, BBR_RTT_PROP); /* * Note the following code differs to the original * BBR spec. It calls for <= not <. However after a * long discussion in email with Neal, he acknowledged * that it should be < than so that we will have flows * going into probe-rtt (we were seeing cases where that * did not happen and caused ugly things to occur). We * have added this agreed upon fix to our code base. */ if (rtt < old_rttprop) { /* Update when we last saw a rtt drop */ bbr_log_rtt_shrinks(bbr, cts, 0, rtt, __LINE__, BBR_RTTS_NEWRTT, 0); bbr_set_reduced_rtt(bbr, cts, __LINE__); } bbr_log_type_bbrrttprop(bbr, rtt, (rsm ? rsm->r_end : 0), uts, cts, match, rsm->r_start, rsm->r_flags); apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, cts); if (old_rttprop != bbr_get_rtt(bbr, BBR_RTT_PROP)) { /* * The RTT-prop moved, reset the target (may be a * nop for some states). */ bbr_set_state_target(bbr, __LINE__); if (bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_NEW_TARGET, 0); else if (old_rttprop < bbr_get_rtt(bbr, BBR_RTT_PROP)) /* It went up */ bbr_check_probe_rtt_limits(bbr, cts); } if ((bbr->rc_use_google == 0) && (match == BBR_RTT_BY_TIMESTAMP)) { /* * We don't do b/w update with * these since they are not really * reliable. */ return; } if (bbr->r_ctl.r_app_limited_until && (bbr->r_ctl.rc_delivered >= bbr->r_ctl.r_app_limited_until)) { /* We are no longer app-limited */ bbr->r_ctl.r_app_limited_until = 0; } if (bbr->rc_use_google) { bbr_google_measurement(bbr, rsm, rtt, cts); } else { bbr_nf_measurement(bbr, rsm, rtt, cts); } } /* * Convert a timestamp that the main stack * uses (milliseconds) into one that bbr uses * (microseconds). Return that converted timestamp. */ static uint32_t bbr_ts_convert(uint32_t cts) { uint32_t sec, msec; sec = cts / MS_IN_USEC; msec = cts - (MS_IN_USEC * sec); return ((sec * USECS_IN_SECOND) + (msec * MS_IN_USEC)); } /* * Return 0 if we did not update the RTT time, return * 1 if we did. */ static int bbr_update_rtt(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, uint32_t th_ack) { int32_t i; uint32_t t, uts = 0; if ((rsm->r_flags & BBR_ACKED) || (rsm->r_flags & BBR_WAS_RENEGED) || (rsm->r_flags & BBR_RXT_CLEARED)) { /* Already done */ return (0); } if (rsm->r_rtr_cnt == 1) { /* * Only one transmit. Hopefully the normal case. */ if (TSTMP_GT(cts, rsm->r_tim_lastsent[0])) t = cts - rsm->r_tim_lastsent[0]; else t = 1; if ((int)t <= 0) t = 1; bbr->r_ctl.rc_last_rtt = t; bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, 0, BBR_RTT_BY_EXACTMATCH, rsm->r_tim_lastsent[0], ack_type, to); return (1); } /* Convert to usecs */ if ((bbr_can_use_ts_for_rtt == 1) && (bbr->rc_use_google == 1) && (ack_type == BBR_CUM_ACKED) && (to->to_flags & TOF_TS) && (to->to_tsecr != 0)) { t = tcp_tv_to_mssectick(&bbr->rc_tv) - to->to_tsecr; if (t < 1) t = 1; t *= MS_IN_USEC; bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, 0, BBR_RTT_BY_TIMESTAMP, rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)], ack_type, to); return (1); } uts = bbr_ts_convert(to->to_tsecr); if ((to->to_flags & TOF_TS) && (to->to_tsecr != 0) && (ack_type == BBR_CUM_ACKED) && ((rsm->r_flags & BBR_OVERMAX) == 0)) { /* * Now which timestamp does it match? In this block the ACK * may be coming from a previous transmission. */ uint32_t fudge; fudge = BBR_TIMER_FUDGE; for (i = 0; i < rsm->r_rtr_cnt; i++) { if ((SEQ_GEQ(uts, (rsm->r_tim_lastsent[i] - fudge))) && (SEQ_LEQ(uts, (rsm->r_tim_lastsent[i] + fudge)))) { if (TSTMP_GT(cts, rsm->r_tim_lastsent[i])) t = cts - rsm->r_tim_lastsent[i]; else t = 1; if ((int)t <= 0) t = 1; bbr->r_ctl.rc_last_rtt = t; bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, uts, BBR_RTT_BY_TSMATCHING, rsm->r_tim_lastsent[i], ack_type, to); if ((i + 1) < rsm->r_rtr_cnt) { /* Likely */ bbr_earlier_retran(tp, bbr, rsm, t, cts, ack_type); } else if (rsm->r_flags & BBR_TLP) { bbr->rc_tlp_rtx_out = 0; } return (1); } } /* Fall through if we can't find a matching timestamp */ } /* * Ok its a SACK block that we retransmitted. or a windows * machine without timestamps. We can tell nothing from the * time-stamp since its not there or the time the peer last * recieved a segment that moved forward its cum-ack point. * * Lets look at the last retransmit and see what we can tell * (with BBR for space we only keep 2 note we have to keep * at least 2 so the map can not be condensed more). */ i = rsm->r_rtr_cnt - 1; if (TSTMP_GT(cts, rsm->r_tim_lastsent[i])) t = cts - rsm->r_tim_lastsent[i]; else goto not_sure; if (t < bbr->r_ctl.rc_lowest_rtt) { /* * We retransmitted and the ack came back in less * than the smallest rtt we have observed in the * windowed rtt. We most likey did an improper * retransmit as outlined in 4.2 Step 3 point 2 in * the rack-draft. * * Use the prior transmission to update all the * information as long as there is only one prior * transmission. */ if ((rsm->r_flags & BBR_OVERMAX) == 0) { #ifdef BBR_INVARIANTS if (rsm->r_rtr_cnt == 1) panic("rsm:%p bbr:%p rsm has overmax and only 1 retranmit flags:%x?", rsm, bbr, rsm->r_flags); #endif i = rsm->r_rtr_cnt - 2; if (TSTMP_GT(cts, rsm->r_tim_lastsent[i])) t = cts - rsm->r_tim_lastsent[i]; else t = 1; bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, uts, BBR_RTT_BY_EARLIER_RET, rsm->r_tim_lastsent[i], ack_type, to); bbr_earlier_retran(tp, bbr, rsm, t, cts, ack_type); } else { /* * Too many prior transmissions, just * updated BBR delivered */ not_sure: bbr_update_bbr_info(bbr, rsm, 0, cts, to->to_tsecr, uts, BBR_RTT_BY_SOME_RETRAN, 0, ack_type, to); } } else { /* * We retransmitted it and the retransmit did the * job. */ if (rsm->r_flags & BBR_TLP) bbr->rc_tlp_rtx_out = 0; if ((rsm->r_flags & BBR_OVERMAX) == 0) bbr_update_bbr_info(bbr, rsm, t, cts, to->to_tsecr, uts, BBR_RTT_BY_THIS_RETRAN, 0, ack_type, to); else bbr_update_bbr_info(bbr, rsm, 0, cts, to->to_tsecr, uts, BBR_RTT_BY_SOME_RETRAN, 0, ack_type, to); return (1); } return (0); } /* * Mark the SACK_PASSED flag on all entries prior to rsm send wise. */ static void bbr_log_sack_passed(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm) { struct bbr_sendmap *nrsm; nrsm = rsm; TAILQ_FOREACH_REVERSE_FROM(nrsm, &bbr->r_ctl.rc_tmap, bbr_head, r_tnext) { if (nrsm == rsm) { /* Skip orginal segment he is acked */ continue; } if (nrsm->r_flags & BBR_ACKED) { /* Skip ack'd segments */ continue; } if (nrsm->r_flags & BBR_SACK_PASSED) { /* * We found one that is already marked * passed, we have been here before and * so all others below this are marked. */ break; } BBR_STAT_INC(bbr_sack_passed); nrsm->r_flags |= BBR_SACK_PASSED; if (((nrsm->r_flags & BBR_MARKED_LOST) == 0) && bbr_is_lost(bbr, nrsm, bbr->r_ctl.rc_rcvtime)) { bbr->r_ctl.rc_lost += nrsm->r_end - nrsm->r_start; bbr->r_ctl.rc_lost_bytes += nrsm->r_end - nrsm->r_start; nrsm->r_flags |= BBR_MARKED_LOST; } nrsm->r_flags &= ~BBR_WAS_SACKPASS; } } /* * Returns the number of bytes that were * newly ack'd by sack blocks. */ static uint32_t bbr_proc_sack_blk(struct tcpcb *tp, struct tcp_bbr *bbr, struct sackblk *sack, struct tcpopt *to, struct bbr_sendmap **prsm, uint32_t cts) { int32_t times = 0; uint32_t start, end, maxseg, changed = 0; struct bbr_sendmap *rsm, *nrsm; int32_t used_ref = 1; uint8_t went_back = 0, went_fwd = 0; maxseg = tp->t_maxseg - bbr->rc_last_options; start = sack->start; end = sack->end; rsm = *prsm; if (rsm == NULL) used_ref = 0; /* Do we locate the block behind where we last were? */ if (rsm && SEQ_LT(start, rsm->r_start)) { went_back = 1; TAILQ_FOREACH_REVERSE_FROM(rsm, &bbr->r_ctl.rc_map, bbr_head, r_next) { if (SEQ_GEQ(start, rsm->r_start) && SEQ_LT(start, rsm->r_end)) { goto do_rest_ofb; } } } start_at_beginning: went_fwd = 1; /* * Ok lets locate the block where this guy is fwd from rsm (if its * set) */ TAILQ_FOREACH_FROM(rsm, &bbr->r_ctl.rc_map, r_next) { if (SEQ_GEQ(start, rsm->r_start) && SEQ_LT(start, rsm->r_end)) { break; } } do_rest_ofb: if (rsm == NULL) { /* * This happens when we get duplicate sack blocks with the * same end. For example SACK 4: 100 SACK 3: 100 The sort * will not change there location so we would just start at * the end of the first one and get lost. */ if (tp->t_flags & TF_SENTFIN) { /* * Check to see if we have not logged the FIN that * went out. */ nrsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_map, bbr_sendmap, r_next); if (nrsm && (nrsm->r_end + 1) == tp->snd_max) { /* * Ok we did not get the FIN logged. */ nrsm->r_end++; rsm = nrsm; goto do_rest_ofb; } } if (times == 1) { #ifdef BBR_INVARIANTS panic("tp:%p bbr:%p sack:%p to:%p prsm:%p", tp, bbr, sack, to, prsm); #else goto out; #endif } times++; BBR_STAT_INC(bbr_sack_proc_restart); rsm = NULL; goto start_at_beginning; } /* Ok we have an ACK for some piece of rsm */ if (rsm->r_start != start) { /* * Need to split this in two pieces the before and after. */ if (bbr_sack_mergable(rsm, start, end)) nrsm = bbr_alloc_full_limit(bbr); else nrsm = bbr_alloc_limit(bbr, BBR_LIMIT_TYPE_SPLIT); if (nrsm == NULL) { /* We could not allocate ignore the sack */ struct sackblk blk; blk.start = start; blk.end = end; sack_filter_reject(&bbr->r_ctl.bbr_sf, &blk); goto out; } bbr_clone_rsm(bbr, nrsm, rsm, start); TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next); if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } rsm->r_flags &= (~BBR_HAS_FIN); rsm = nrsm; } if (SEQ_GEQ(end, rsm->r_end)) { /* * The end of this block is either beyond this guy or right * at this guy. */ if ((rsm->r_flags & BBR_ACKED) == 0) { bbr_update_rtt(tp, bbr, rsm, to, cts, BBR_SACKED, 0); changed += (rsm->r_end - rsm->r_start); bbr->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); bbr_log_sack_passed(tp, bbr, rsm); if (rsm->r_flags & BBR_MARKED_LOST) { bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start; } /* Is Reordering occuring? */ if (rsm->r_flags & BBR_SACK_PASSED) { BBR_STAT_INC(bbr_reorder_seen); bbr->r_ctl.rc_reorder_ts = cts; if (rsm->r_flags & BBR_MARKED_LOST) { bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start; if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost)) /* LT sampling also needs adjustment */ bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost; } } rsm->r_flags |= BBR_ACKED; rsm->r_flags &= ~(BBR_TLP|BBR_WAS_RENEGED|BBR_RXT_CLEARED|BBR_MARKED_LOST); if (rsm->r_in_tmap) { TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 0; } } bbr_isit_a_pkt_epoch(bbr, cts, rsm, __LINE__, BBR_SACKED); if (end == rsm->r_end) { /* This block only - done */ goto out; } /* There is more not coverend by this rsm move on */ start = rsm->r_end; nrsm = TAILQ_NEXT(rsm, r_next); rsm = nrsm; times = 0; goto do_rest_ofb; } if (rsm->r_flags & BBR_ACKED) { /* Been here done that */ goto out; } /* Ok we need to split off this one at the tail */ if (bbr_sack_mergable(rsm, start, end)) nrsm = bbr_alloc_full_limit(bbr); else nrsm = bbr_alloc_limit(bbr, BBR_LIMIT_TYPE_SPLIT); if (nrsm == NULL) { /* failed XXXrrs what can we do but loose the sack info? */ struct sackblk blk; blk.start = start; blk.end = end; sack_filter_reject(&bbr->r_ctl.bbr_sf, &blk); goto out; } /* Clone it */ bbr_clone_rsm(bbr, nrsm, rsm, end); /* The sack block does not cover this guy fully */ rsm->r_flags &= (~BBR_HAS_FIN); TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next); if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } nrsm->r_dupack = 0; bbr_update_rtt(tp, bbr, rsm, to, cts, BBR_SACKED, 0); bbr_isit_a_pkt_epoch(bbr, cts, rsm, __LINE__, BBR_SACKED); changed += (rsm->r_end - rsm->r_start); bbr->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); bbr_log_sack_passed(tp, bbr, rsm); /* Is Reordering occuring? */ if (rsm->r_flags & BBR_MARKED_LOST) { bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start; } if (rsm->r_flags & BBR_SACK_PASSED) { BBR_STAT_INC(bbr_reorder_seen); bbr->r_ctl.rc_reorder_ts = cts; if (rsm->r_flags & BBR_MARKED_LOST) { bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start; if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost)) /* LT sampling also needs adjustment */ bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost; } } rsm->r_flags &= ~(BBR_TLP|BBR_WAS_RENEGED|BBR_RXT_CLEARED|BBR_MARKED_LOST); rsm->r_flags |= BBR_ACKED; if (rsm->r_in_tmap) { TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 0; } out: if (rsm && (rsm->r_flags & BBR_ACKED)) { /* * Now can we merge this newly acked * block with either the previous or * next block? */ nrsm = TAILQ_NEXT(rsm, r_next); if (nrsm && (nrsm->r_flags & BBR_ACKED)) { /* yep this and next can be merged */ rsm = bbr_merge_rsm(bbr, rsm, nrsm); } /* Now what about the previous? */ nrsm = TAILQ_PREV(rsm, bbr_head, r_next); if (nrsm && (nrsm->r_flags & BBR_ACKED)) { /* yep the previous and this can be merged */ rsm = bbr_merge_rsm(bbr, nrsm, rsm); } } if (used_ref == 0) { BBR_STAT_INC(bbr_sack_proc_all); } else { BBR_STAT_INC(bbr_sack_proc_short); } if (went_fwd && went_back) { BBR_STAT_INC(bbr_sack_search_both); } else if (went_fwd) { BBR_STAT_INC(bbr_sack_search_fwd); } else if (went_back) { BBR_STAT_INC(bbr_sack_search_back); } /* Save off where the next seq is */ if (rsm) bbr->r_ctl.rc_sacklast = TAILQ_NEXT(rsm, r_next); else bbr->r_ctl.rc_sacklast = NULL; *prsm = rsm; return (changed); } static void inline bbr_peer_reneges(struct tcp_bbr *bbr, struct bbr_sendmap *rsm, tcp_seq th_ack) { struct bbr_sendmap *tmap; BBR_STAT_INC(bbr_reneges_seen); tmap = NULL; while (rsm && (rsm->r_flags & BBR_ACKED)) { /* Its no longer sacked, mark it so */ uint32_t oflags; bbr->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); #ifdef BBR_INVARIANTS if (rsm->r_in_tmap) { panic("bbr:%p rsm:%p flags:0x%x in tmap?", bbr, rsm, rsm->r_flags); } #endif oflags = rsm->r_flags; if (rsm->r_flags & BBR_MARKED_LOST) { bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start; bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start; if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost)) /* LT sampling also needs adjustment */ bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost; } rsm->r_flags &= ~(BBR_ACKED | BBR_SACK_PASSED | BBR_WAS_SACKPASS | BBR_MARKED_LOST); rsm->r_flags |= BBR_WAS_RENEGED; rsm->r_flags |= BBR_RXT_CLEARED; bbr_log_type_rsmclear(bbr, bbr->r_ctl.rc_rcvtime, rsm, oflags, __LINE__); /* Rebuild it into our tmap */ if (tmap == NULL) { TAILQ_INSERT_HEAD(&bbr->r_ctl.rc_tmap, rsm, r_tnext); tmap = rsm; } else { TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, tmap, rsm, r_tnext); tmap = rsm; } tmap->r_in_tmap = 1; /* * XXXrrs Delivered? Should we do anything here? * * Of course we don't on a rxt timeout so maybe its ok that * we don't? * * For now lets not. */ rsm = TAILQ_NEXT(rsm, r_next); } /* * Now lets possibly clear the sack filter so we start recognizing * sacks that cover this area. */ sack_filter_clear(&bbr->r_ctl.bbr_sf, th_ack); } static void bbr_log_syn(struct tcpcb *tp, struct tcpopt *to) { struct tcp_bbr *bbr; struct bbr_sendmap *rsm; uint32_t cts; bbr = (struct tcp_bbr *)tp->t_fb_ptr; cts = bbr->r_ctl.rc_rcvtime; rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); if (rsm && (rsm->r_flags & BBR_HAS_SYN)) { if ((rsm->r_end - rsm->r_start) <= 1) { /* Log out the SYN completely */ bbr->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; rsm->r_rtr_bytes = 0; TAILQ_REMOVE(&bbr->r_ctl.rc_map, rsm, r_next); if (rsm->r_in_tmap) { TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 0; } if (bbr->r_ctl.rc_next == rsm) { /* scoot along the marker */ bbr->r_ctl.rc_next = TAILQ_FIRST(&bbr->r_ctl.rc_map); } if (to != NULL) bbr_update_rtt(tp, bbr, rsm, to, cts, BBR_CUM_ACKED, 0); bbr_free(bbr, rsm); } else { /* There is more (Fast open)? strip out SYN. */ rsm->r_flags &= ~BBR_HAS_SYN; rsm->r_start++; } } } /* * Returns the number of bytes that were * acknowledged by SACK blocks. */ static uint32_t bbr_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, uint32_t *prev_acked) { uint32_t changed, last_seq, entered_recovery = 0; struct tcp_bbr *bbr; struct bbr_sendmap *rsm; struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1]; register uint32_t th_ack; int32_t i, j, k, new_sb, num_sack_blks = 0; uint32_t cts, acked, ack_point, sack_changed = 0; uint32_t p_maxseg, maxseg, p_acked = 0; INP_WLOCK_ASSERT(tp->t_inpcb); if (th->th_flags & TH_RST) { /* We don't log resets */ return (0); } bbr = (struct tcp_bbr *)tp->t_fb_ptr; cts = bbr->r_ctl.rc_rcvtime; rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); changed = 0; maxseg = tp->t_maxseg - bbr->rc_last_options; p_maxseg = min(bbr->r_ctl.rc_pace_max_segs, maxseg); th_ack = th->th_ack; if (SEQ_GT(th_ack, tp->snd_una)) { acked = th_ack - tp->snd_una; bbr_log_progress_event(bbr, tp, ticks, PROGRESS_UPDATE, __LINE__); bbr->rc_tp->t_acktime = ticks; } else acked = 0; if (SEQ_LEQ(th_ack, tp->snd_una)) { /* Only sent here for sack processing */ goto proc_sack; } if (rsm && SEQ_GT(th_ack, rsm->r_start)) { changed = th_ack - rsm->r_start; } else if ((rsm == NULL) && ((th_ack - 1) == tp->iss)) { /* * For the SYN incoming case we will not have called * tcp_output for the sending of the SYN, so there will be * no map. All other cases should probably be a panic. */ if ((to->to_flags & TOF_TS) && (to->to_tsecr != 0)) { /* * We have a timestamp that can be used to generate * an initial RTT. */ uint32_t ts, now, rtt; ts = bbr_ts_convert(to->to_tsecr); now = bbr_ts_convert(tcp_tv_to_mssectick(&bbr->rc_tv)); rtt = now - ts; if (rtt < 1) rtt = 1; bbr_log_type_bbrrttprop(bbr, rtt, tp->iss, 0, cts, BBR_RTT_BY_TIMESTAMP, tp->iss, 0); apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, cts); changed = 1; bbr->r_wanted_output = 1; goto out; } goto proc_sack; } else if (rsm == NULL) { goto out; } if (changed) { /* * The ACK point is advancing to th_ack, we must drop off * the packets in the rack log and calculate any eligble * RTT's. */ bbr->r_wanted_output = 1; more: if (rsm == NULL) { if (tp->t_flags & TF_SENTFIN) { /* if we send a FIN we will not hav a map */ goto proc_sack; } #ifdef BBR_INVARIANTS panic("No rack map tp:%p for th:%p state:%d bbr:%p snd_una:%u snd_max:%u chg:%d\n", tp, th, tp->t_state, bbr, tp->snd_una, tp->snd_max, changed); #endif goto proc_sack; } } if (SEQ_LT(th_ack, rsm->r_start)) { /* Huh map is missing this */ #ifdef BBR_INVARIANTS printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d bbr:%p\n", rsm->r_start, th_ack, tp->t_state, bbr->r_state, bbr); panic("th-ack is bad bbr:%p tp:%p", bbr, tp); #endif goto proc_sack; } else if (th_ack == rsm->r_start) { /* None here to ack */ goto proc_sack; } /* * Clear the dup ack counter, it will * either be freed or if there is some * remaining we need to start it at zero. */ rsm->r_dupack = 0; /* Now do we consume the whole thing? */ if (SEQ_GEQ(th_ack, rsm->r_end)) { /* Its all consumed. */ uint32_t left; if (rsm->r_flags & BBR_ACKED) { /* * It was acked on the scoreboard -- remove it from * total */ p_acked += (rsm->r_end - rsm->r_start); bbr->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); if (bbr->r_ctl.rc_sacked == 0) bbr->r_ctl.rc_sacklast = NULL; } else { bbr_update_rtt(tp, bbr, rsm, to, cts, BBR_CUM_ACKED, th_ack); if (rsm->r_flags & BBR_MARKED_LOST) { bbr->r_ctl.rc_lost_bytes -= rsm->r_end - rsm->r_start; } if (rsm->r_flags & BBR_SACK_PASSED) { /* * There are acked segments ACKED on the * scoreboard further up. We are seeing * reordering. */ BBR_STAT_INC(bbr_reorder_seen); bbr->r_ctl.rc_reorder_ts = cts; if (rsm->r_flags & BBR_MARKED_LOST) { bbr->r_ctl.rc_lost -= rsm->r_end - rsm->r_start; if (SEQ_GT(bbr->r_ctl.rc_lt_lost, bbr->r_ctl.rc_lost)) /* LT sampling also needs adjustment */ bbr->r_ctl.rc_lt_lost = bbr->r_ctl.rc_lost; } } rsm->r_flags &= ~BBR_MARKED_LOST; } bbr->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; rsm->r_rtr_bytes = 0; TAILQ_REMOVE(&bbr->r_ctl.rc_map, rsm, r_next); if (rsm->r_in_tmap) { TAILQ_REMOVE(&bbr->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 0; } if (bbr->r_ctl.rc_next == rsm) { /* scoot along the marker */ bbr->r_ctl.rc_next = TAILQ_FIRST(&bbr->r_ctl.rc_map); } bbr_isit_a_pkt_epoch(bbr, cts, rsm, __LINE__, BBR_CUM_ACKED); /* Adjust the packet counts */ left = th_ack - rsm->r_end; /* Free back to zone */ bbr_free(bbr, rsm); if (left) { rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); goto more; } goto proc_sack; } if (rsm->r_flags & BBR_ACKED) { /* * It was acked on the scoreboard -- remove it from total * for the part being cum-acked. */ p_acked += (rsm->r_end - rsm->r_start); bbr->r_ctl.rc_sacked -= (th_ack - rsm->r_start); if (bbr->r_ctl.rc_sacked == 0) bbr->r_ctl.rc_sacklast = NULL; } else { /* * It was acked up to th_ack point for the first time */ struct bbr_sendmap lrsm; memcpy(&lrsm, rsm, sizeof(struct bbr_sendmap)); lrsm.r_end = th_ack; bbr_update_rtt(tp, bbr, &lrsm, to, cts, BBR_CUM_ACKED, th_ack); } if ((rsm->r_flags & BBR_MARKED_LOST) && ((rsm->r_flags & BBR_ACKED) == 0)) { /* * It was marked lost and partly ack'd now * for the first time. We lower the rc_lost_bytes * and still leave it MARKED. */ bbr->r_ctl.rc_lost_bytes -= th_ack - rsm->r_start; } bbr_isit_a_pkt_epoch(bbr, cts, rsm, __LINE__, BBR_CUM_ACKED); bbr->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; rsm->r_rtr_bytes = 0; /* adjust packet count */ rsm->r_start = th_ack; proc_sack: /* Check for reneging */ rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); if (rsm && (rsm->r_flags & BBR_ACKED) && (th_ack == rsm->r_start)) { /* * The peer has moved snd_una up to the edge of this send, * i.e. one that it had previously acked. The only way that * can be true if the peer threw away data (space issues) * that it had previously sacked (else it would have given * us snd_una up to (rsm->r_end). We need to undo the acked * markings here. * * Note we have to look to make sure th_ack is our * rsm->r_start in case we get an old ack where th_ack is * behind snd_una. */ bbr_peer_reneges(bbr, rsm, th->th_ack); } if ((to->to_flags & TOF_SACK) == 0) { /* We are done nothing left to log */ goto out; } rsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_map, bbr_sendmap, r_next); if (rsm) { last_seq = rsm->r_end; } else { last_seq = tp->snd_max; } /* Sack block processing */ if (SEQ_GT(th_ack, tp->snd_una)) ack_point = th_ack; else ack_point = tp->snd_una; for (i = 0; i < to->to_nsacks; i++) { bcopy((to->to_sacks + i * TCPOLEN_SACK), &sack, sizeof(sack)); sack.start = ntohl(sack.start); sack.end = ntohl(sack.end); if (SEQ_GT(sack.end, sack.start) && SEQ_GT(sack.start, ack_point) && SEQ_LT(sack.start, tp->snd_max) && SEQ_GT(sack.end, ack_point) && SEQ_LEQ(sack.end, tp->snd_max)) { if ((bbr->r_ctl.rc_num_small_maps_alloced > bbr_sack_block_limit) && (SEQ_LT(sack.end, last_seq)) && ((sack.end - sack.start) < (p_maxseg / 8))) { /* * Not the last piece and its smaller than * 1/8th of a p_maxseg. We ignore this. */ BBR_STAT_INC(bbr_runt_sacks); continue; } sack_blocks[num_sack_blks] = sack; num_sack_blks++; #ifdef NETFLIX_STATS } else if (SEQ_LEQ(sack.start, th_ack) && SEQ_LEQ(sack.end, th_ack)) { /* * Its a D-SACK block. */ tcp_record_dsack(sack.start, sack.end); #endif } } if (num_sack_blks == 0) goto out; /* * Sort the SACK blocks so we can update the rack scoreboard with * just one pass. */ new_sb = sack_filter_blks(&bbr->r_ctl.bbr_sf, sack_blocks, num_sack_blks, th->th_ack); ctf_log_sack_filter(bbr->rc_tp, new_sb, sack_blocks); BBR_STAT_ADD(bbr_sack_blocks, num_sack_blks); BBR_STAT_ADD(bbr_sack_blocks_skip, (num_sack_blks - new_sb)); num_sack_blks = new_sb; if (num_sack_blks < 2) { goto do_sack_work; } /* Sort the sacks */ for (i = 0; i < num_sack_blks; i++) { for (j = i + 1; j < num_sack_blks; j++) { if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) { sack = sack_blocks[i]; sack_blocks[i] = sack_blocks[j]; sack_blocks[j] = sack; } } } /* * Now are any of the sack block ends the same (yes some * implememtations send these)? */ again: if (num_sack_blks > 1) { for (i = 0; i < num_sack_blks; i++) { for (j = i + 1; j < num_sack_blks; j++) { if (sack_blocks[i].end == sack_blocks[j].end) { /* * Ok these two have the same end we * want the smallest end and then * throw away the larger and start * again. */ if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) { /* * The second block covers * more area use that */ sack_blocks[i].start = sack_blocks[j].start; } /* * Now collapse out the dup-sack and * lower the count */ for (k = (j + 1); k < num_sack_blks; k++) { sack_blocks[j].start = sack_blocks[k].start; sack_blocks[j].end = sack_blocks[k].end; j++; } num_sack_blks--; goto again; } } } } do_sack_work: rsm = bbr->r_ctl.rc_sacklast; for (i = 0; i < num_sack_blks; i++) { acked = bbr_proc_sack_blk(tp, bbr, &sack_blocks[i], to, &rsm, cts); if (acked) { bbr->r_wanted_output = 1; changed += acked; sack_changed += acked; } } out: *prev_acked = p_acked; if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) { /* * Ok we have a high probability that we need to go in to * recovery since we have data sack'd */ struct bbr_sendmap *rsm; rsm = bbr_check_recovery_mode(tp, bbr, cts); if (rsm) { /* Enter recovery */ entered_recovery = 1; bbr->r_wanted_output = 1; /* * When we enter recovery we need to assure we send * one packet. */ if (bbr->r_ctl.rc_resend == NULL) { bbr->r_ctl.rc_resend = rsm; } } } if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) { /* * See if we need to rack-retransmit anything if so set it * up as the thing to resend assuming something else is not * already in that position. */ if (bbr->r_ctl.rc_resend == NULL) { bbr->r_ctl.rc_resend = bbr_check_recovery_mode(tp, bbr, cts); } } /* * We return the amount that changed via sack, this is used by the * ack-received code to augment what was changed between th_ack <-> * snd_una. */ return (sack_changed); } static void bbr_strike_dupack(struct tcp_bbr *bbr) { struct bbr_sendmap *rsm; rsm = TAILQ_FIRST(&bbr->r_ctl.rc_tmap); if (rsm && (rsm->r_dupack < 0xff)) { rsm->r_dupack++; if (rsm->r_dupack >= DUP_ACK_THRESHOLD) bbr->r_wanted_output = 1; } } /* * Return value of 1, we do not need to call bbr_process_data(). * return value of 0, bbr_process_data can be called. * For ret_val if its 0 the TCB is locked and valid, if its non-zero * its unlocked and probably unsafe to touch the TCB. */ static int bbr_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val) { int32_t ourfinisacked = 0; int32_t acked_amount; uint16_t nsegs; int32_t acked; uint32_t lost, sack_changed = 0; struct mbuf *mfree; struct tcp_bbr *bbr; uint32_t prev_acked = 0; bbr = (struct tcp_bbr *)tp->t_fb_ptr; lost = bbr->r_ctl.rc_lost; nsegs = max(1, m->m_pkthdr.lro_nsegs); if (SEQ_GT(th->th_ack, tp->snd_max)) { ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val); bbr->r_wanted_output = 1; return (1); } if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) { /* Process the ack */ if (bbr->rc_in_persist) tp->t_rxtshift = 0; if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd)) bbr_strike_dupack(bbr); sack_changed = bbr_log_ack(tp, to, th, &prev_acked); } bbr_lt_bw_sampling(bbr, bbr->r_ctl.rc_rcvtime, (bbr->r_ctl.rc_lost > lost)); if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { /* * Old ack, behind the last one rcv'd or a duplicate ack * with SACK info. */ if (th->th_ack == tp->snd_una) { bbr_ack_received(tp, bbr, th, 0, sack_changed, prev_acked, __LINE__, 0); if (bbr->r_state == TCPS_SYN_SENT) { /* * Special case on where we sent SYN. When * the SYN-ACK is processed in syn_sent * state it bumps the snd_una. This causes * us to hit here even though we did ack 1 * byte. * * Go through the nothing left case so we * send data. */ goto nothing_left; } } return (0); } /* * If we reach this point, ACK is not a duplicate, i.e., it ACKs * something we sent. */ if (tp->t_flags & TF_NEEDSYN) { /* * T/TCP: Connection was half-synchronized, and our SYN has * been ACK'd (so connection is now fully synchronized). Go * to non-starred state, increment snd_una for ACK of SYN, * and check if we can do window scaling. */ tp->t_flags &= ~TF_NEEDSYN; tp->snd_una++; /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; /* Send window already scaled. */ } } INP_WLOCK_ASSERT(tp->t_inpcb); acked = BYTES_THIS_ACK(tp, th); TCPSTAT_ADD(tcps_rcvackpack, (int)nsegs); TCPSTAT_ADD(tcps_rcvackbyte, acked); /* * If we just performed our first retransmit, and the ACK arrives * within our recovery window, then it was a mistake to do the * retransmit in the first place. Recover our original cwnd and * ssthresh, and proceed to transmit where we left off. */ if (tp->t_flags & TF_PREVVALID) { tp->t_flags &= ~TF_PREVVALID; if (tp->t_rxtshift == 1 && (int)(ticks - tp->t_badrxtwin) < 0) bbr_cong_signal(tp, th, CC_RTO_ERR, NULL); } SOCKBUF_LOCK(&so->so_snd); acked_amount = min(acked, (int)sbavail(&so->so_snd)); tp->snd_wnd -= acked_amount; mfree = sbcut_locked(&so->so_snd, acked_amount); /* NB: sowwakeup_locked() does an implicit unlock. */ sowwakeup_locked(so); m_freem(mfree); if (SEQ_GT(th->th_ack, tp->snd_una)) { bbr_collapse_rtt(tp, bbr, TCP_REXMTVAL(tp)); } tp->snd_una = th->th_ack; bbr_ack_received(tp, bbr, th, acked, sack_changed, prev_acked, __LINE__, (bbr->r_ctl.rc_lost - lost)); if (IN_RECOVERY(tp->t_flags)) { if (SEQ_LT(th->th_ack, tp->snd_recover) && (SEQ_LT(th->th_ack, tp->snd_max))) { tcp_bbr_partialack(tp); } else { bbr_post_recovery(tp); } } if (SEQ_GT(tp->snd_una, tp->snd_recover)) { tp->snd_recover = tp->snd_una; } if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { tp->snd_nxt = tp->snd_max; } if (tp->snd_una == tp->snd_max) { /* Nothing left outstanding */ nothing_left: bbr_log_progress_event(bbr, tp, ticks, PROGRESS_CLEAR, __LINE__); if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) bbr->rc_tp->t_acktime = 0; if ((sbused(&so->so_snd) == 0) && (tp->t_flags & TF_SENTFIN)) { ourfinisacked = 1; } bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime); if (bbr->rc_in_persist == 0) { bbr->r_ctl.rc_went_idle_time = bbr->r_ctl.rc_rcvtime; } sack_filter_clear(&bbr->r_ctl.bbr_sf, tp->snd_una); bbr_log_ack_clear(bbr, bbr->r_ctl.rc_rcvtime); /* * We invalidate the last ack here since we * don't want to transfer forward the time * for our sum's calculations. */ if ((tp->t_state >= TCPS_FIN_WAIT_1) && (sbavail(&so->so_snd) == 0) && (tp->t_flags2 & TF2_DROP_AF_DATA)) { /* * The socket was gone and the peer sent data, time * to reset him. */ *ret_val = 1; tp = tcp_close(tp); ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen); BBR_STAT_INC(bbr_dropped_af_data); return (1); } /* Set need output so persist might get set */ bbr->r_wanted_output = 1; } if (ofia) *ofia = ourfinisacked; return (0); } static void bbr_enter_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, int32_t line) { if (bbr->rc_in_persist == 0) { bbr_timer_cancel(bbr, __LINE__, cts); bbr->r_ctl.rc_last_delay_val = 0; tp->t_rxtshift = 0; bbr->rc_in_persist = 1; bbr->r_ctl.rc_went_idle_time = cts; /* We should be capped when rw went to 0 but just in case */ bbr_log_type_pesist(bbr, cts, 0, line, 1); /* Time freezes for the state, so do the accounting now */ if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) { uint32_t time_in; time_in = cts - bbr->r_ctl.rc_bbr_state_time; if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) { int32_t idx; idx = bbr_state_val(bbr); counter_u64_add(bbr_state_time[(idx + 5)], time_in); } else { counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in); } } bbr->r_ctl.rc_bbr_state_time = cts; } } static void bbr_restart_after_idle(struct tcp_bbr *bbr, uint32_t cts, uint32_t idle_time) { /* * Note that if idle time does not exceed our * threshold, we do nothing continuing the state * transitions we were last walking through. */ if (idle_time >= bbr_idle_restart_threshold) { if (bbr->rc_use_idle_restart) { bbr->rc_bbr_state = BBR_STATE_IDLE_EXIT; /* * Set our target using BBR_UNIT, so * we increase at a dramatic rate but * we stop when we get the pipe * full again for our current b/w estimate. */ bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT; bbr->r_ctl.rc_bbr_cwnd_gain = BBR_UNIT; bbr_set_state_target(bbr, __LINE__); /* Now setup our gains to ramp up */ bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.rc_startup_pg; bbr->r_ctl.rc_bbr_cwnd_gain = bbr->r_ctl.rc_startup_pg; bbr_log_type_statechange(bbr, cts, __LINE__); } else { bbr_substate_change(bbr, cts, __LINE__, 1); } } } static void bbr_exit_persist(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts, int32_t line) { uint32_t idle_time; if (bbr->rc_in_persist == 0) return; idle_time = bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time); bbr->rc_in_persist = 0; bbr->rc_hit_state_1 = 0; tp->t_flags &= ~TF_FORCEDATA; bbr->r_ctl.rc_del_time = cts; /* * We invalidate the last ack here since we * don't want to transfer forward the time * for our sum's calculations. */ if (bbr->rc_inp->inp_in_hpts) { tcp_hpts_remove(bbr->rc_inp, HPTS_REMOVE_OUTPUT); bbr->rc_timer_first = 0; bbr->r_ctl.rc_hpts_flags = 0; bbr->r_ctl.rc_last_delay_val = 0; bbr->r_ctl.rc_hptsi_agg_delay = 0; bbr->r_agg_early_set = 0; bbr->r_ctl.rc_agg_early = 0; } bbr_log_type_pesist(bbr, cts, idle_time, line, 0); if (idle_time >= bbr_rtt_probe_time) { /* * This qualifies as a RTT_PROBE session since we drop the * data outstanding to nothing and waited more than * bbr_rtt_probe_time. */ bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_PERSIST, 0); bbr->r_ctl.last_in_probertt = bbr->r_ctl.rc_rtt_shrinks = cts; } tp->t_rxtshift = 0; /* * If in probeBW and we have persisted more than an RTT lets do * special handling. */ /* Force a time based epoch */ bbr_set_epoch(bbr, cts, __LINE__); /* * Setup the lost so we don't count anything against the guy * we have been stuck with during persists. */ bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost; /* Time un-freezes for the state */ bbr->r_ctl.rc_bbr_state_time = cts; if ((bbr->rc_bbr_state == BBR_STATE_PROBE_BW) || (bbr->rc_bbr_state == BBR_STATE_PROBE_RTT)) { /* * If we are going back to probe-bw * or probe_rtt, we may need to possibly * do a fast restart. */ bbr_restart_after_idle(bbr, cts, idle_time); } } static void bbr_collapsed_window(struct tcp_bbr *bbr) { /* * Now we must walk the * send map and divide the * ones left stranded. These * guys can't cause us to abort * the connection and are really * "unsent". However if a buggy * client actually did keep some * of the data i.e. collapsed the win * and refused to ack and then opened * the win and acked that data. We would * get into an ack war, the simplier * method then of just pretending we * did not send those segments something * won't work. */ struct bbr_sendmap *rsm, *nrsm; tcp_seq max_seq; uint32_t maxseg; int can_split = 0; int fnd = 0; maxseg = bbr->rc_tp->t_maxseg - bbr->rc_last_options; max_seq = bbr->rc_tp->snd_una + bbr->rc_tp->snd_wnd; bbr_log_type_rwnd_collapse(bbr, max_seq, 1, 0); TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) { /* Find the first seq past or at maxseq */ if (rsm->r_flags & BBR_RWND_COLLAPSED) rsm->r_flags &= ~BBR_RWND_COLLAPSED; if (SEQ_GEQ(max_seq, rsm->r_start) && SEQ_GEQ(rsm->r_end, max_seq)) { fnd = 1; break; } } bbr->rc_has_collapsed = 0; if (!fnd) { /* Nothing to do strange */ return; } /* * Now can we split? * * We don't want to split if splitting * would generate too many small segments * less we let an attacker fragment our * send_map and leave us out of memory. */ if ((max_seq != rsm->r_start) && (max_seq != rsm->r_end)){ /* can we split? */ int res1, res2; res1 = max_seq - rsm->r_start; res2 = rsm->r_end - max_seq; if ((res1 >= (maxseg/8)) && (res2 >= (maxseg/8))) { /* No small pieces here */ can_split = 1; } else if (bbr->r_ctl.rc_num_small_maps_alloced < bbr_sack_block_limit) { /* We are under the limit */ can_split = 1; } } /* Ok do we need to split this rsm? */ if (max_seq == rsm->r_start) { /* It's this guy no split required */ nrsm = rsm; } else if (max_seq == rsm->r_end) { /* It's the next one no split required. */ nrsm = TAILQ_NEXT(rsm, r_next); if (nrsm == NULL) { /* Huh? */ return; } } else if (can_split && SEQ_LT(max_seq, rsm->r_end)) { /* yep we need to split it */ nrsm = bbr_alloc_limit(bbr, BBR_LIMIT_TYPE_SPLIT); if (nrsm == NULL) { /* failed XXXrrs what can we do mark the whole? */ nrsm = rsm; goto no_split; } /* Clone it */ bbr_log_type_rwnd_collapse(bbr, max_seq, 3, 0); bbr_clone_rsm(bbr, nrsm, rsm, max_seq); TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_map, rsm, nrsm, r_next); if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&bbr->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } } else { /* * Split not allowed just start here just * use this guy. */ nrsm = rsm; } no_split: BBR_STAT_INC(bbr_collapsed_win); /* reuse fnd as a count */ fnd = 0; TAILQ_FOREACH_FROM(nrsm, &bbr->r_ctl.rc_map, r_next) { nrsm->r_flags |= BBR_RWND_COLLAPSED; fnd++; bbr->rc_has_collapsed = 1; } bbr_log_type_rwnd_collapse(bbr, max_seq, 4, fnd); } static void bbr_un_collapse_window(struct tcp_bbr *bbr) { struct bbr_sendmap *rsm; int cleared = 0; TAILQ_FOREACH_REVERSE(rsm, &bbr->r_ctl.rc_map, bbr_head, r_next) { if (rsm->r_flags & BBR_RWND_COLLAPSED) { /* Clear the flag */ rsm->r_flags &= ~BBR_RWND_COLLAPSED; cleared++; } else break; } bbr_log_type_rwnd_collapse(bbr, (bbr->rc_tp->snd_una + bbr->rc_tp->snd_wnd), 0, cleared); bbr->rc_has_collapsed = 0; } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { /* * Update window information. Don't look at window if no ACK: TAC's * send garbage on first SYN. */ uint16_t nsegs; int32_t tfo_syn; struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; INP_WLOCK_ASSERT(tp->t_inpcb); nsegs = max(1, m->m_pkthdr.lro_nsegs); if ((thflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { /* keep track of pure window updates */ if (tlen == 0 && tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) TCPSTAT_INC(tcps_rcvwinupd); tp->snd_wnd = tiwin; tp->snd_wl1 = th->th_seq; tp->snd_wl2 = th->th_ack; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; bbr->r_wanted_output = 1; } else if (thflags & TH_ACK) { if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) { tp->snd_wnd = tiwin; tp->snd_wl1 = th->th_seq; tp->snd_wl2 = th->th_ack; } } if (tp->snd_wnd < ctf_outstanding(tp)) /* The peer collapsed its window on us */ bbr_collapsed_window(bbr); else if (bbr->rc_has_collapsed) bbr_un_collapse_window(bbr); /* Was persist timer active and now we have window space? */ if ((bbr->rc_in_persist != 0) && (tp->snd_wnd >= min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr)))) { /* * Make the rate persist at end of persist mode if idle long * enough */ bbr_exit_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__); /* Make sure we output to start the timer */ bbr->r_wanted_output = 1; } /* Do we need to enter persist? */ if ((bbr->rc_in_persist == 0) && (tp->snd_wnd < min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) && TCPS_HAVEESTABLISHED(tp->t_state) && (tp->snd_max == tp->snd_una) && sbavail(&tp->t_inpcb->inp_socket->so_snd) && (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { /* No send window.. we must enter persist */ bbr_enter_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__); } if (tp->t_flags2 & TF2_DROP_AF_DATA) { m_freem(m); return (0); } /* * Process segments with URG. */ if ((thflags & TH_URG) && th->th_urp && TCPS_HAVERCVDFIN(tp->t_state) == 0) { /* * This is a kludge, but if we receive and accept random * urgent pointers, we'll crash in soreceive. It's hard to * imagine someone actually wanting to send this much urgent * data. */ SOCKBUF_LOCK(&so->so_rcv); if (th->th_urp + sbavail(&so->so_rcv) > sb_max) { th->th_urp = 0; /* XXX */ thflags &= ~TH_URG; /* XXX */ SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */ goto dodata; /* XXX */ } /* * If this segment advances the known urgent pointer, then * mark the data stream. This should not happen in * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a * FIN has been received from the remote side. In these * states we ignore the URG. * * According to RFC961 (Assigned Protocols), the urgent * pointer points to the last octet of urgent data. We * continue, however, to consider it to indicate the first * octet of data past the urgent section as the original * spec states (in one of two places). */ if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) { tp->rcv_up = th->th_seq + th->th_urp; so->so_oobmark = sbavail(&so->so_rcv) + (tp->rcv_up - tp->rcv_nxt) - 1; if (so->so_oobmark == 0) so->so_rcv.sb_state |= SBS_RCVATMARK; sohasoutofband(so); tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); } SOCKBUF_UNLOCK(&so->so_rcv); /* * Remove out of band data so doesn't get presented to user. * This can happen independent of advancing the URG pointer, * but if two URG's are pending at once, some out-of-band * data may creep in... ick. */ if (th->th_urp <= (uint32_t)tlen && !(so->so_options & SO_OOBINLINE)) { /* hdr drop is delayed */ tcp_pulloutofband(so, th, m, drop_hdrlen); } } else { /* * If no out of band data is expected, pull receive urgent * pointer along with the receive window. */ if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) tp->rcv_up = tp->rcv_nxt; } dodata: /* XXX */ INP_WLOCK_ASSERT(tp->t_inpcb); /* * Process the segment text, merging it into the TCP sequencing * queue, and arranging for acknowledgment of receipt if necessary. * This process logically involves adjusting tp->rcv_wnd as data is * presented to the user (this happens in tcp_usrreq.c, case * PRU_RCVD). If a FIN has already been received on this connection * then we just ignore the text. */ tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && IS_FASTOPEN(tp->t_flags)); if ((tlen || (thflags & TH_FIN) || tfo_syn) && TCPS_HAVERCVDFIN(tp->t_state) == 0) { tcp_seq save_start = th->th_seq; tcp_seq save_rnxt = tp->rcv_nxt; int save_tlen = tlen; m_adj(m, drop_hdrlen); /* delayed header drop */ /* * Insert segment which includes th into TCP reassembly * queue with control block tp. Set thflags to whether * reassembly now includes a segment with FIN. This handles * the common case inline (segment is the next to be * received on an established connection, and the queue is * empty), avoiding linkage into and removal from the queue * and repetition of various conversions. Set DELACK for * segments received in order, but ack immediately when * segments are out of order (so fast retransmit can work). */ if (th->th_seq == tp->rcv_nxt && SEGQ_EMPTY(tp) && (TCPS_HAVEESTABLISHED(tp->t_state) || tfo_syn)) { #ifdef NETFLIX_SB_LIMITS u_int mcnt, appended; if (so->so_rcv.sb_shlim) { mcnt = m_memcnt(m); appended = 0; if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, CFO_NOSLEEP, NULL) == false) { counter_u64_add(tcp_sb_shlim_fails, 1); m_freem(m); return (0); } } #endif if (DELAY_ACK(tp, bbr, nsegs) || tfo_syn) { bbr->bbr_segs_rcvd += max(1, nsegs); tp->t_flags |= TF_DELACK; bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime); } else { bbr->r_wanted_output = 1; tp->t_flags |= TF_ACKNOW; } tp->rcv_nxt += tlen; thflags = th->th_flags & TH_FIN; TCPSTAT_ADD(tcps_rcvpack, (int)nsegs); TCPSTAT_ADD(tcps_rcvbyte, tlen); SOCKBUF_LOCK(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) m_freem(m); else #ifdef NETFLIX_SB_LIMITS appended = #endif sbappendstream_locked(&so->so_rcv, m, 0); /* NB: sorwakeup_locked() does an implicit unlock. */ sorwakeup_locked(so); #ifdef NETFLIX_SB_LIMITS if (so->so_rcv.sb_shlim && appended != mcnt) counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); #endif } else { /* * XXX: Due to the header drop above "th" is * theoretically invalid by now. Fortunately * m_adj() doesn't actually frees any mbufs when * trimming from the head. */ tcp_seq temp = save_start; thflags = tcp_reass(tp, th, &temp, &tlen, m); tp->t_flags |= TF_ACKNOW; } if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) { if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { /* * DSACK actually handled in the fastpath * above. */ tcp_update_sack_list(tp, save_start, save_start + save_tlen); } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { if ((tp->rcv_numsacks >= 1) && (tp->sackblks[0].end == save_start)) { /* * Partial overlap, recorded at todrop * above. */ tcp_update_sack_list(tp, tp->sackblks[0].start, tp->sackblks[0].end); } else { tcp_update_dsack_list(tp, save_start, save_start + save_tlen); } } else if (tlen >= save_tlen) { /* Update of sackblks. */ tcp_update_dsack_list(tp, save_start, save_start + save_tlen); } else if (tlen > 0) { tcp_update_dsack_list(tp, save_start, save_start + tlen); } } } else { m_freem(m); thflags &= ~TH_FIN; } /* * If FIN is received ACK the FIN and let the user know that the * connection is closing. */ if (thflags & TH_FIN) { if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { socantrcvmore(so); /* * If connection is half-synchronized (ie NEEDSYN * flag on) then delay ACK, so it may be piggybacked * when SYN is sent. Otherwise, since we received a * FIN then no more input can be expected, send ACK * now. */ if (tp->t_flags & TF_NEEDSYN) { tp->t_flags |= TF_DELACK; bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime); } else { tp->t_flags |= TF_ACKNOW; } tp->rcv_nxt++; } switch (tp->t_state) { /* * In SYN_RECEIVED and ESTABLISHED STATES enter the * CLOSE_WAIT state. */ case TCPS_SYN_RECEIVED: tp->t_starttime = ticks; /* FALLTHROUGH */ case TCPS_ESTABLISHED: tcp_state_change(tp, TCPS_CLOSE_WAIT); break; /* * If still in FIN_WAIT_1 STATE FIN has not been * acked so enter the CLOSING state. */ case TCPS_FIN_WAIT_1: tcp_state_change(tp, TCPS_CLOSING); break; /* * In FIN_WAIT_2 state enter the TIME_WAIT state, * starting the time-wait timer, turning off the * other standard timers. */ case TCPS_FIN_WAIT_2: bbr->rc_timer_first = 1; bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime); INP_WLOCK_ASSERT(tp->t_inpcb); tcp_twstart(tp); return (1); } } /* * Return any desired output. */ if ((tp->t_flags & TF_ACKNOW) || (sbavail(&so->so_snd) > ctf_outstanding(tp))) { bbr->r_wanted_output = 1; } INP_WLOCK_ASSERT(tp->t_inpcb); return (0); } /* * Here nothing is really faster, its just that we * have broken out the fast-data path also just like * the fast-ack. Return 1 if we processed the packet * return 0 if you need to take the "slow-path". */ static int bbr_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t nxt_pkt) { uint16_t nsegs; int32_t newsize = 0; /* automatic sockbuf scaling */ struct tcp_bbr *bbr; #ifdef NETFLIX_SB_LIMITS u_int mcnt, appended; #endif #ifdef TCPDEBUG /* * The size of tcp_saveipgen must be the size of the max ip header, * now IPv6. */ u_char tcp_saveipgen[IP6_HDR_LEN]; struct tcphdr tcp_savetcp; short ostate = 0; #endif /* On the hpts and we would have called output */ bbr = (struct tcp_bbr *)tp->t_fb_ptr; /* * If last ACK falls within this segment's sequence numbers, record * the timestamp. NOTE that the test is modified according to the * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). */ if (bbr->r_ctl.rc_resend != NULL) { return (0); } if (tiwin && tiwin != tp->snd_wnd) { return (0); } if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) { return (0); } if (__predict_false((to->to_flags & TOF_TS) && (TSTMP_LT(to->to_tsval, tp->ts_recent)))) { return (0); } if (__predict_false((th->th_ack != tp->snd_una))) { return (0); } if (__predict_false(tlen > sbspace(&so->so_rcv))) { return (0); } if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); tp->ts_recent = to->to_tsval; } /* * This is a pure, in-sequence data packet with nothing on the * reassembly queue and we have enough buffer space to take it. */ nsegs = max(1, m->m_pkthdr.lro_nsegs); #ifdef NETFLIX_SB_LIMITS if (so->so_rcv.sb_shlim) { mcnt = m_memcnt(m); appended = 0; if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, CFO_NOSLEEP, NULL) == false) { counter_u64_add(tcp_sb_shlim_fails, 1); m_freem(m); return (1); } } #endif /* Clean receiver SACK report if present */ if (tp->rcv_numsacks) tcp_clean_sackreport(tp); TCPSTAT_INC(tcps_preddat); tp->rcv_nxt += tlen; /* * Pull snd_wl1 up to prevent seq wrap relative to th_seq. */ tp->snd_wl1 = th->th_seq; /* * Pull rcv_up up to prevent seq wrap relative to rcv_nxt. */ tp->rcv_up = tp->rcv_nxt; TCPSTAT_ADD(tcps_rcvpack, (int)nsegs); TCPSTAT_ADD(tcps_rcvbyte, tlen); #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif newsize = tcp_autorcvbuf(m, th, so, tp, tlen); /* Add data to socket buffer. */ SOCKBUF_LOCK(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { m_freem(m); } else { /* * Set new socket buffer size. Give up when limit is * reached. */ if (newsize) if (!sbreserve_locked(&so->so_rcv, newsize, so, NULL)) so->so_rcv.sb_flags &= ~SB_AUTOSIZE; m_adj(m, drop_hdrlen); /* delayed header drop */ #ifdef NETFLIX_SB_LIMITS appended = #endif sbappendstream_locked(&so->so_rcv, m, 0); ctf_calc_rwin(so, tp); } /* NB: sorwakeup_locked() does an implicit unlock. */ sorwakeup_locked(so); #ifdef NETFLIX_SB_LIMITS if (so->so_rcv.sb_shlim && mcnt != appended) counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); #endif if (DELAY_ACK(tp, bbr, nsegs)) { bbr->bbr_segs_rcvd += max(1, nsegs); tp->t_flags |= TF_DELACK; bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime); } else { bbr->r_wanted_output = 1; tp->t_flags |= TF_ACKNOW; } return (1); } /* * This subfunction is used to try to highly optimize the * fast path. We again allow window updates that are * in sequence to remain in the fast-path. We also add * in the __predict's to attempt to help the compiler. * Note that if we return a 0, then we can *not* process * it and the caller should push the packet into the * slow-path. If we return 1, then all is well and * the packet is fully processed. */ static int bbr_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t nxt_pkt) { int32_t acked; uint16_t nsegs; uint32_t sack_changed; #ifdef TCPDEBUG /* * The size of tcp_saveipgen must be the size of the max ip header, * now IPv6. */ u_char tcp_saveipgen[IP6_HDR_LEN]; struct tcphdr tcp_savetcp; short ostate = 0; #endif uint32_t prev_acked = 0; struct tcp_bbr *bbr; if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { /* Old ack, behind (or duplicate to) the last one rcv'd */ return (0); } if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) { /* Above what we have sent? */ return (0); } if (__predict_false(tiwin == 0)) { /* zero window */ return (0); } if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) { /* We need a SYN or a FIN, unlikely.. */ return (0); } if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) { /* Timestamp is behind .. old ack with seq wrap? */ return (0); } if (__predict_false(IN_RECOVERY(tp->t_flags))) { /* Still recovering */ return (0); } bbr = (struct tcp_bbr *)tp->t_fb_ptr; if (__predict_false(bbr->r_ctl.rc_resend != NULL)) { /* We are retransmitting */ return (0); } if (__predict_false(bbr->rc_in_persist != 0)) { /* In persist mode */ return (0); } if (bbr->r_ctl.rc_sacked) { /* We have sack holes on our scoreboard */ return (0); } /* Ok if we reach here, we can process a fast-ack */ nsegs = max(1, m->m_pkthdr.lro_nsegs); sack_changed = bbr_log_ack(tp, to, th, &prev_acked); /* * We never detect loss in fast ack [we can't * have a sack and can't be in recovery so * we always pass 0 (nothing detected)]. */ bbr_lt_bw_sampling(bbr, bbr->r_ctl.rc_rcvtime, 0); /* Did the window get updated? */ if (tiwin != tp->snd_wnd) { tp->snd_wnd = tiwin; tp->snd_wl1 = th->th_seq; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; } /* Do we need to exit persists? */ if ((bbr->rc_in_persist != 0) && (tp->snd_wnd >= min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr)))) { bbr_exit_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__); bbr->r_wanted_output = 1; } /* Do we need to enter persists? */ if ((bbr->rc_in_persist == 0) && (tp->snd_wnd < min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) && TCPS_HAVEESTABLISHED(tp->t_state) && (tp->snd_max == tp->snd_una) && sbavail(&tp->t_inpcb->inp_socket->so_snd) && (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { /* No send window.. we must enter persist */ bbr_enter_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__); } /* * If last ACK falls within this segment's sequence numbers, record * the timestamp. NOTE that the test is modified according to the * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { tp->ts_recent_age = bbr->r_ctl.rc_rcvtime; tp->ts_recent = to->to_tsval; } /* * This is a pure ack for outstanding data. */ TCPSTAT_INC(tcps_predack); /* * "bad retransmit" recovery. */ if (tp->t_flags & TF_PREVVALID) { tp->t_flags &= ~TF_PREVVALID; if (tp->t_rxtshift == 1 && (int)(ticks - tp->t_badrxtwin) < 0) bbr_cong_signal(tp, th, CC_RTO_ERR, NULL); } /* * Recalculate the transmit timer / rtt. * * Some boxes send broken timestamp replies during the SYN+ACK * phase, ignore timestamps of 0 or we could calculate a huge RTT * and blow up the retransmit timer. */ acked = BYTES_THIS_ACK(tp, th); #ifdef TCP_HHOOK /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ hhook_run_tcp_est_in(tp, th, to); #endif TCPSTAT_ADD(tcps_rcvackpack, (int)nsegs); TCPSTAT_ADD(tcps_rcvackbyte, acked); sbdrop(&so->so_snd, acked); if (SEQ_GT(th->th_ack, tp->snd_una)) bbr_collapse_rtt(tp, bbr, TCP_REXMTVAL(tp)); tp->snd_una = th->th_ack; if (tp->snd_wnd < ctf_outstanding(tp)) /* The peer collapsed its window on us */ bbr_collapsed_window(bbr); else if (bbr->rc_has_collapsed) bbr_un_collapse_window(bbr); if (SEQ_GT(tp->snd_una, tp->snd_recover)) { tp->snd_recover = tp->snd_una; } bbr_ack_received(tp, bbr, th, acked, sack_changed, prev_acked, __LINE__, 0); /* * Pull snd_wl2 up to prevent seq wrap relative to th_ack. */ tp->snd_wl2 = th->th_ack; m_freem(m); /* * If all outstanding data are acked, stop retransmit timer, * otherwise restart timer using current (possibly backed-off) * value. If process is waiting for space, wakeup/selwakeup/signal. * If data are ready to send, let tcp_output decide between more * output or persist. */ #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif /* Wake up the socket if we have room to write more */ sowwakeup(so); if (tp->snd_una == tp->snd_max) { /* Nothing left outstanding */ bbr_log_progress_event(bbr, tp, ticks, PROGRESS_CLEAR, __LINE__); if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) bbr->rc_tp->t_acktime = 0; bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime); if (bbr->rc_in_persist == 0) { bbr->r_ctl.rc_went_idle_time = bbr->r_ctl.rc_rcvtime; } sack_filter_clear(&bbr->r_ctl.bbr_sf, tp->snd_una); bbr_log_ack_clear(bbr, bbr->r_ctl.rc_rcvtime); /* * We invalidate the last ack here since we * don't want to transfer forward the time * for our sum's calculations. */ bbr->r_wanted_output = 1; } if (sbavail(&so->so_snd)) { bbr->r_wanted_output = 1; } return (1); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { int32_t todrop; int32_t ourfinisacked = 0; struct tcp_bbr *bbr; int32_t ret_val = 0; bbr = (struct tcp_bbr *)tp->t_fb_ptr; ctf_calc_rwin(so, tp); /* * If the state is SYN_SENT: if seg contains an ACK, but not for our * SYN, drop the input. if seg contains a RST, then drop the * connection. if seg does not contain SYN, then drop it. Otherwise * this is an acceptable SYN segment initialize tp->rcv_nxt and * tp->irs if seg contains ack then advance tp->snd_una. BRR does * not support ECN so we will not say we are capable. if SYN has * been acked change to ESTABLISHED else SYN_RCVD state arrange for * segment to be acked (eventually) continue processing rest of * data/controls, beginning with URG */ if ((thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) { TCP_PROBE5(connect__refused, NULL, tp, mtod(m, const char *), tp, th); tp = tcp_drop(tp, ECONNREFUSED); ctf_do_drop(m, tp); return (1); } if (thflags & TH_RST) { ctf_do_drop(m, tp); return (1); } if (!(thflags & TH_SYN)) { ctf_do_drop(m, tp); return (1); } tp->irs = th->th_seq; tcp_rcvseqinit(tp); if (thflags & TH_ACK) { int tfo_partial = 0; TCPSTAT_INC(tcps_connects); soisconnected(so); #ifdef MAC mac_socketpeer_set_from_mbuf(m, so); #endif /* Do window scaling on this connection? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; } tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale); /* * If not all the data that was sent in the TFO SYN * has been acked, resend the remainder right away. */ if (IS_FASTOPEN(tp->t_flags) && (tp->snd_una != tp->snd_max)) { tp->snd_nxt = th->th_ack; tfo_partial = 1; } /* * If there's data, delay ACK; if there's also a FIN ACKNOW * will be turned on later. */ if (DELAY_ACK(tp, bbr, 1) && tlen != 0 && (tfo_partial == 0)) { bbr->bbr_segs_rcvd += 1; tp->t_flags |= TF_DELACK; bbr_timer_cancel(bbr, __LINE__, bbr->r_ctl.rc_rcvtime); } else { bbr->r_wanted_output = 1; tp->t_flags |= TF_ACKNOW; } if (SEQ_GT(th->th_ack, tp->iss)) { /* * The SYN is acked * handle it specially. */ bbr_log_syn(tp, to); } if (SEQ_GT(th->th_ack, tp->snd_una)) { /* * We advance snd_una for the * fast open case. If th_ack is * acknowledging data beyond * snd_una we can't just call * ack-processing since the * data stream in our send-map * will start at snd_una + 1 (one * beyond the SYN). If its just * equal we don't need to do that * and there is no send_map. */ tp->snd_una++; } /* * Received in SYN_SENT[*] state. Transitions: * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1 */ tp->t_starttime = ticks; if (tp->t_flags & TF_NEEDFIN) { tcp_state_change(tp, TCPS_FIN_WAIT_1); tp->t_flags &= ~TF_NEEDFIN; thflags &= ~TH_SYN; } else { tcp_state_change(tp, TCPS_ESTABLISHED); TCP_PROBE5(connect__established, NULL, tp, mtod(m, const char *), tp, th); cc_conn_init(tp); } } else { /* * Received initial SYN in SYN-SENT[*] state => simultaneous * open. If segment contains CC option and there is a * cached CC, apply TAO test. If it succeeds, connection is * * half-synchronized. Otherwise, do 3-way handshake: * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If * there was no CC option, clear cached CC value. */ tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); tcp_state_change(tp, TCPS_SYN_RECEIVED); } INP_WLOCK_ASSERT(tp->t_inpcb); /* * Advance th->th_seq to correspond to first data byte. If data, * trim to stay within window, dropping FIN if necessary. */ th->th_seq++; if (tlen > tp->rcv_wnd) { todrop = tlen - tp->rcv_wnd; m_adj(m, -todrop); tlen = tp->rcv_wnd; thflags &= ~TH_FIN; TCPSTAT_INC(tcps_rcvpackafterwin); TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); } tp->snd_wl1 = th->th_seq - 1; tp->rcv_up = th->th_seq; /* * Client side of transaction: already sent SYN and data. If the * remote host used T/TCP to validate the SYN, our data will be * ACK'd; if so, enter normal data segment processing in the middle * of step 5, ack processing. Otherwise, goto step 6. */ if (thflags & TH_ACK) { if ((to->to_flags & TOF_TS) != 0) { uint32_t t, rtt; t = tcp_tv_to_mssectick(&bbr->rc_tv); if (TSTMP_GEQ(t, to->to_tsecr)) { rtt = t - to->to_tsecr; if (rtt == 0) { rtt = 1; } rtt *= MS_IN_USEC; tcp_bbr_xmit_timer(bbr, rtt, 0, 0, 0); apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, bbr->r_ctl.rc_rcvtime); } } if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) return (ret_val); /* We may have changed to FIN_WAIT_1 above */ if (tp->t_state == TCPS_FIN_WAIT_1) { /* * In FIN_WAIT_1 STATE in addition to the processing * for the ESTABLISHED state if our FIN is now * acknowledged then enter FIN_WAIT_2. */ if (ourfinisacked) { /* * If we can't receive any more data, then * closing user can proceed. Starting the * timer is contrary to the specification, * but if we don't get a FIN we'll hang * forever. * * XXXjl: we should release the tp also, and * use a compressed state. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { soisdisconnected(so); tcp_timer_activate(tp, TT_2MSL, (tcp_fast_finwait2_recycle ? tcp_finwait2_timeout : TP_MAXIDLE(tp))); } tcp_state_change(tp, TCPS_FIN_WAIT_2); } } } return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { int32_t ourfinisacked = 0; int32_t ret_val; struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; ctf_calc_rwin(so, tp); if ((thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->snd_una) || SEQ_GT(th->th_ack, tp->snd_max))) { ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } if (IS_FASTOPEN(tp->t_flags)) { /* * When a TFO connection is in SYN_RECEIVED, the only valid * packets are the initial SYN, a retransmit/copy of the * initial SYN (possibly with a subset of the original * data), a valid ACK, a FIN, or a RST. */ if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) { ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } else if (thflags & TH_SYN) { /* non-initial SYN is ignored */ if ((bbr->r_ctl.rc_hpts_flags & PACE_TMR_RXT) || (bbr->r_ctl.rc_hpts_flags & PACE_TMR_TLP) || (bbr->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) { ctf_do_drop(m, NULL); return (0); } } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) { ctf_do_drop(m, NULL); return (0); } } if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } /* * In the SYN-RECEIVED state, validate that the packet belongs to * this connection before trimming the data to fit the receive * window. Check the sequence number versus IRS since we know the * sequence numbers haven't wrapped. This is a partial fix for the * "LAND" DoS attack. */ if (SEQ_LT(th->th_seq, tp->irs)) { ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } INP_WLOCK_ASSERT(tp->t_inpcb); if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); tp->ts_recent = to->to_tsval; } tp->snd_wnd = tiwin; /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (IS_FASTOPEN(tp->t_flags)) { cc_conn_init(tp); } return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } TCPSTAT_INC(tcps_connects); soisconnected(so); /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; } /* * ok for the first time in lets see if we can use the ts to figure * out what the initial RTT was. */ if ((to->to_flags & TOF_TS) != 0) { uint32_t t, rtt; t = tcp_tv_to_mssectick(&bbr->rc_tv); if (TSTMP_GEQ(t, to->to_tsecr)) { rtt = t - to->to_tsecr; if (rtt == 0) { rtt = 1; } rtt *= MS_IN_USEC; tcp_bbr_xmit_timer(bbr, rtt, 0, 0, 0); apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, bbr->r_ctl.rc_rcvtime); } } /* Drop off any SYN in the send map (probably not there) */ if (thflags & TH_ACK) bbr_log_syn(tp, to); if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { tcp_fastopen_decrement_counter(tp->t_tfo_pending); tp->t_tfo_pending = NULL; /* * Account for the ACK of our SYN prior to regular * ACK processing below. */ tp->snd_una++; } /* * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* -> * FIN-WAIT-1 */ tp->t_starttime = ticks; if (tp->t_flags & TF_NEEDFIN) { tcp_state_change(tp, TCPS_FIN_WAIT_1); tp->t_flags &= ~TF_NEEDFIN; } else { tcp_state_change(tp, TCPS_ESTABLISHED); TCP_PROBE5(accept__established, NULL, tp, mtod(m, const char *), tp, th); /* * TFO connections call cc_conn_init() during SYN * processing. Calling it again here for such connections * is not harmless as it would undo the snd_cwnd reduction * that occurs when a TFO SYN|ACK is retransmitted. */ if (!IS_FASTOPEN(tp->t_flags)) cc_conn_init(tp); } /* * If segment contains data or ACK, will call tcp_reass() later; if * not, do so now to pass queued data to user. */ if (tlen == 0 && (thflags & TH_FIN) == 0) (void)tcp_reass(tp, (struct tcphdr *)0, NULL, 0, (struct mbuf *)0); tp->snd_wl1 = th->th_seq - 1; if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (tp->t_state == TCPS_FIN_WAIT_1) { /* We could have went to FIN_WAIT_1 (or EST) above */ /* * In FIN_WAIT_1 STATE in addition to the processing for the * ESTABLISHED state if our FIN is now acknowledged then * enter FIN_WAIT_2. */ if (ourfinisacked) { /* * If we can't receive any more data, then closing * user can proceed. Starting the timer is contrary * to the specification, but if we don't get a FIN * we'll hang forever. * * XXXjl: we should release the tp also, and use a * compressed state. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { soisdisconnected(so); tcp_timer_activate(tp, TT_2MSL, (tcp_fast_finwait2_recycle ? tcp_finwait2_timeout : TP_MAXIDLE(tp))); } tcp_state_change(tp, TCPS_FIN_WAIT_2); } } return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { struct tcp_bbr *bbr; int32_t ret_val; /* * Header prediction: check for the two common cases of a * uni-directional data xfer. If the packet has no control flags, * is in-sequence, the window didn't change and we're not * retransmitting, it's a candidate. If the length is zero and the * ack moved forward, we're the sender side of the xfer. Just free * the data acked & wake any higher level process that was blocked * waiting for space. If the length is non-zero and the ack didn't * move, we're the receiver side. If we're getting packets in-order * (the reassembly queue is empty), add the data toc The socket * buffer and note that we need a delayed ack. Make sure that the * hidden state-flags are also off. Since we check for * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN. */ bbr = (struct tcp_bbr *)tp->t_fb_ptr; if (bbr->r_ctl.rc_delivered < (4 * tp->t_maxseg)) { /* * If we have delived under 4 segments increase the initial * window if raised by the peer. We use this to determine * dynamic and static rwnd's at the end of a connection. */ bbr->r_ctl.rc_init_rwnd = max(tiwin, tp->snd_wnd); } if (__predict_true(((to->to_flags & TOF_SACK) == 0)) && __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) && __predict_true(SEGQ_EMPTY(tp)) && __predict_true(th->th_seq == tp->rcv_nxt)) { if (tlen == 0) { if (bbr_fastack(m, th, so, tp, to, drop_hdrlen, tlen, tiwin, nxt_pkt)) { return (0); } } else { if (bbr_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen, tiwin, nxt_pkt)) { return (0); } } } ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } INP_WLOCK_ASSERT(tp->t_inpcb); if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); bbr->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { return (ret_val); } if (sbavail(&so->so_snd)) { if (bbr_progress_timeout_check(bbr)) { ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } /* State changes only happen in bbr_process_data() */ return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { struct tcp_bbr *bbr; int32_t ret_val; bbr = (struct tcp_bbr *)tp->t_fb_ptr; ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } INP_WLOCK_ASSERT(tp->t_inpcb); if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); bbr->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { return (ret_val); } if (sbavail(&so->so_snd)) { if (bbr_progress_timeout_check(bbr)) { ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } static int bbr_check_data_after_close(struct mbuf *m, struct tcp_bbr *bbr, struct tcpcb *tp, int32_t * tlen, struct tcphdr *th, struct socket *so) { if (bbr->rc_allow_data_af_clo == 0) { close_now: tp = tcp_close(tp); TCPSTAT_INC(tcps_rcvafterclose); ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen)); return (1); } if (sbavail(&so->so_snd) == 0) goto close_now; /* Ok we allow data that is ignored and a followup reset */ tp->rcv_nxt = th->th_seq + *tlen; tp->t_flags2 |= TF2_DROP_AF_DATA; bbr->r_wanted_output = 1; *tlen = 0; return (0); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { int32_t ourfinisacked = 0; int32_t ret_val; struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } INP_WLOCK_ASSERT(tp->t_inpcb); if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If new data are received on a connection after the user processes * are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tlen) { /* * We call a new function now so we might continue and setup * to reset at all data being ack'd. */ if (bbr_check_data_after_close(m, bbr, tp, &tlen, th, so)) return (1); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); bbr->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (ourfinisacked) { /* * If we can't receive any more data, then closing user can * proceed. Starting the timer is contrary to the * specification, but if we don't get a FIN we'll hang * forever. * * XXXjl: we should release the tp also, and use a * compressed state. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { soisdisconnected(so); tcp_timer_activate(tp, TT_2MSL, (tcp_fast_finwait2_recycle ? tcp_finwait2_timeout : TP_MAXIDLE(tp))); } tcp_state_change(tp, TCPS_FIN_WAIT_2); } if (sbavail(&so->so_snd)) { if (bbr_progress_timeout_check(bbr)) { ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { int32_t ourfinisacked = 0; int32_t ret_val; struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } INP_WLOCK_ASSERT(tp->t_inpcb); if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If new data are received on a connection after the user processes * are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tlen) { /* * We call a new function now so we might continue and setup * to reset at all data being ack'd. */ if (bbr_check_data_after_close(m, bbr, tp, &tlen, th, so)) return (1); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); bbr->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (ourfinisacked) { tcp_twstart(tp); m_freem(m); return (1); } if (sbavail(&so->so_snd)) { if (bbr_progress_timeout_check(bbr)) { ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { int32_t ourfinisacked = 0; int32_t ret_val; struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } INP_WLOCK_ASSERT(tp->t_inpcb); if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If new data are received on a connection after the user processes * are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tlen) { /* * We call a new function now so we might continue and setup * to reset at all data being ack'd. */ if (bbr_check_data_after_close(m, bbr, tp, &tlen, th, so)) return (1); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); bbr->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * case TCPS_LAST_ACK: Ack processing. */ if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (ourfinisacked) { tp = tcp_close(tp); ctf_do_drop(m, tp); return (1); } if (sbavail(&so->so_snd)) { if (bbr_progress_timeout_check(bbr)) { ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCB is still * locked. */ static int bbr_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { int32_t ourfinisacked = 0; int32_t ret_val; struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; ctf_calc_rwin(so, tp); /* Reset receive buffer auto scaling when not in bulk receive mode. */ if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } INP_WLOCK_ASSERT(tp->t_inpcb); /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } INP_WLOCK_ASSERT(tp->t_inpcb); if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If new data are received on a connection after the user processes * are gone, then we may RST the other end depending on the outcome * of bbr_check_data_after_close. */ if ((so->so_state & SS_NOFDREF) && tlen) { /* * We call a new function now so we might continue and setup * to reset at all data being ack'd. */ if (bbr_check_data_after_close(m, bbr, tp, &tlen, th, so)) return (1); } INP_WLOCK_ASSERT(tp->t_inpcb); /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ INP_WLOCK_ASSERT(tp->t_inpcb); if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); bbr->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ INP_WLOCK_ASSERT(tp->t_inpcb); if (bbr_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (sbavail(&so->so_snd)) { if (bbr_progress_timeout_check(bbr)) { ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } INP_WLOCK_ASSERT(tp->t_inpcb); return (bbr_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } static void bbr_stop_all_timers(struct tcpcb *tp) { struct tcp_bbr *bbr; /* * Assure no timers are running. */ if (tcp_timer_active(tp, TT_PERSIST)) { /* We enter in persists, set the flag appropriately */ bbr = (struct tcp_bbr *)tp->t_fb_ptr; bbr->rc_in_persist = 1; } tcp_timer_suspend(tp, TT_PERSIST); tcp_timer_suspend(tp, TT_REXMT); tcp_timer_suspend(tp, TT_KEEP); tcp_timer_suspend(tp, TT_DELACK); } static void bbr_google_mode_on(struct tcp_bbr *bbr) { bbr->rc_use_google = 1; bbr->rc_no_pacing = 0; bbr->r_ctl.bbr_google_discount = bbr_google_discount; bbr->r_use_policer = bbr_policer_detection_enabled; bbr->r_ctl.rc_probertt_int = (USECS_IN_SECOND * 10); bbr->bbr_use_rack_cheat = 0; bbr->r_ctl.rc_incr_tmrs = 0; bbr->r_ctl.rc_inc_tcp_oh = 0; bbr->r_ctl.rc_inc_ip_oh = 0; bbr->r_ctl.rc_inc_enet_oh = 0; reset_time(&bbr->r_ctl.rc_delrate, BBR_NUM_RTTS_FOR_GOOG_DEL_LIMIT); reset_time_small(&bbr->r_ctl.rc_rttprop, (11 * USECS_IN_SECOND)); tcp_bbr_tso_size_check(bbr, tcp_get_usecs(&bbr->rc_tv)); } static void bbr_google_mode_off(struct tcp_bbr *bbr) { bbr->rc_use_google = 0; bbr->r_ctl.bbr_google_discount = 0; bbr->no_pacing_until = bbr_no_pacing_until; bbr->r_use_policer = 0; if (bbr->no_pacing_until) bbr->rc_no_pacing = 1; else bbr->rc_no_pacing = 0; if (bbr_use_rack_resend_cheat) bbr->bbr_use_rack_cheat = 1; else bbr->bbr_use_rack_cheat = 0; if (bbr_incr_timers) bbr->r_ctl.rc_incr_tmrs = 1; else bbr->r_ctl.rc_incr_tmrs = 0; if (bbr_include_tcp_oh) bbr->r_ctl.rc_inc_tcp_oh = 1; else bbr->r_ctl.rc_inc_tcp_oh = 0; if (bbr_include_ip_oh) bbr->r_ctl.rc_inc_ip_oh = 1; else bbr->r_ctl.rc_inc_ip_oh = 0; if (bbr_include_enet_oh) bbr->r_ctl.rc_inc_enet_oh = 1; else bbr->r_ctl.rc_inc_enet_oh = 0; bbr->r_ctl.rc_probertt_int = bbr_rtt_probe_limit; reset_time(&bbr->r_ctl.rc_delrate, bbr_num_pktepo_for_del_limit); reset_time_small(&bbr->r_ctl.rc_rttprop, (bbr_filter_len_sec * USECS_IN_SECOND)); tcp_bbr_tso_size_check(bbr, tcp_get_usecs(&bbr->rc_tv)); } /* * Return 0 on success, non-zero on failure * which indicates the error (usually no memory). */ static int bbr_init(struct tcpcb *tp) { struct tcp_bbr *bbr = NULL; struct inpcb *inp; uint32_t cts; tp->t_fb_ptr = uma_zalloc(bbr_pcb_zone, (M_NOWAIT | M_ZERO)); if (tp->t_fb_ptr == NULL) { /* * We need to allocate memory but cant. The INP and INP_INFO * locks and they are recusive (happens during setup. So a * scheme to drop the locks fails :( * */ return (ENOMEM); } bbr = (struct tcp_bbr *)tp->t_fb_ptr; bbr->rtt_valid = 0; inp = tp->t_inpcb; inp->inp_flags2 |= INP_CANNOT_DO_ECN; inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; TAILQ_INIT(&bbr->r_ctl.rc_map); TAILQ_INIT(&bbr->r_ctl.rc_free); TAILQ_INIT(&bbr->r_ctl.rc_tmap); bbr->rc_tp = tp; if (tp->t_inpcb) { bbr->rc_inp = tp->t_inpcb; } cts = tcp_get_usecs(&bbr->rc_tv); tp->t_acktime = 0; bbr->rc_allow_data_af_clo = bbr_ignore_data_after_close; bbr->r_ctl.rc_reorder_fade = bbr_reorder_fade; bbr->rc_tlp_threshold = bbr_tlp_thresh; bbr->r_ctl.rc_reorder_shift = bbr_reorder_thresh; bbr->r_ctl.rc_pkt_delay = bbr_pkt_delay; bbr->r_ctl.rc_min_to = bbr_min_to; bbr->rc_bbr_state = BBR_STATE_STARTUP; bbr->r_ctl.bbr_lost_at_state = 0; bbr->r_ctl.rc_lost_at_startup = 0; bbr->rc_all_timers_stopped = 0; bbr->r_ctl.rc_bbr_lastbtlbw = 0; bbr->r_ctl.rc_pkt_epoch_del = 0; bbr->r_ctl.rc_pkt_epoch = 0; bbr->r_ctl.rc_lowest_rtt = 0xffffffff; bbr->r_ctl.rc_bbr_hptsi_gain = bbr_high_gain; bbr->r_ctl.rc_bbr_cwnd_gain = bbr_high_gain; bbr->r_ctl.rc_went_idle_time = cts; bbr->rc_pacer_started = cts; bbr->r_ctl.rc_pkt_epoch_time = cts; bbr->r_ctl.rc_rcvtime = cts; bbr->r_ctl.rc_bbr_state_time = cts; bbr->r_ctl.rc_del_time = cts; bbr->r_ctl.rc_tlp_rxt_last_time = cts; bbr->r_ctl.last_in_probertt = cts; bbr->skip_gain = 0; bbr->gain_is_limited = 0; bbr->no_pacing_until = bbr_no_pacing_until; if (bbr->no_pacing_until) bbr->rc_no_pacing = 1; if (bbr_use_google_algo) { bbr->rc_no_pacing = 0; bbr->rc_use_google = 1; bbr->r_ctl.bbr_google_discount = bbr_google_discount; bbr->r_use_policer = bbr_policer_detection_enabled; } else { bbr->rc_use_google = 0; bbr->r_ctl.bbr_google_discount = 0; bbr->r_use_policer = 0; } if (bbr_ts_limiting) bbr->rc_use_ts_limit = 1; else bbr->rc_use_ts_limit = 0; if (bbr_ts_can_raise) bbr->ts_can_raise = 1; else bbr->ts_can_raise = 0; if (V_tcp_delack_enabled == 1) tp->t_delayed_ack = 2; else if (V_tcp_delack_enabled == 0) tp->t_delayed_ack = 0; else if (V_tcp_delack_enabled < 100) tp->t_delayed_ack = V_tcp_delack_enabled; else tp->t_delayed_ack = 2; if (bbr->rc_use_google == 0) bbr->r_ctl.rc_probertt_int = bbr_rtt_probe_limit; else bbr->r_ctl.rc_probertt_int = (USECS_IN_SECOND * 10); bbr->r_ctl.rc_min_rto_ms = bbr_rto_min_ms; bbr->rc_max_rto_sec = bbr_rto_max_sec; bbr->rc_init_win = bbr_def_init_win; if (tp->t_flags & TF_REQ_TSTMP) bbr->rc_last_options = TCP_TS_OVERHEAD; bbr->r_ctl.rc_pace_max_segs = tp->t_maxseg - bbr->rc_last_options; bbr->r_ctl.rc_high_rwnd = tp->snd_wnd; bbr->r_init_rtt = 1; counter_u64_add(bbr_flows_nohdwr_pacing, 1); if (bbr_allow_hdwr_pacing) bbr->bbr_hdw_pace_ena = 1; else bbr->bbr_hdw_pace_ena = 0; if (bbr_sends_full_iwnd) bbr->bbr_init_win_cheat = 1; else bbr->bbr_init_win_cheat = 0; bbr->r_ctl.bbr_utter_max = bbr_hptsi_utter_max; bbr->r_ctl.rc_drain_pg = bbr_drain_gain; bbr->r_ctl.rc_startup_pg = bbr_high_gain; bbr->rc_loss_exit = bbr_exit_startup_at_loss; bbr->r_ctl.bbr_rttprobe_gain_val = bbr_rttprobe_gain; bbr->r_ctl.bbr_hptsi_per_second = bbr_hptsi_per_second; bbr->r_ctl.bbr_hptsi_segments_delay_tar = bbr_hptsi_segments_delay_tar; bbr->r_ctl.bbr_hptsi_segments_max = bbr_hptsi_segments_max; bbr->r_ctl.bbr_hptsi_segments_floor = bbr_hptsi_segments_floor; bbr->r_ctl.bbr_hptsi_bytes_min = bbr_hptsi_bytes_min; bbr->r_ctl.bbr_cross_over = bbr_cross_over; bbr->r_ctl.rc_rtt_shrinks = cts; if (bbr->rc_use_google) { setup_time_filter(&bbr->r_ctl.rc_delrate, FILTER_TYPE_MAX, BBR_NUM_RTTS_FOR_GOOG_DEL_LIMIT); setup_time_filter_small(&bbr->r_ctl.rc_rttprop, FILTER_TYPE_MIN, (11 * USECS_IN_SECOND)); } else { setup_time_filter(&bbr->r_ctl.rc_delrate, FILTER_TYPE_MAX, bbr_num_pktepo_for_del_limit); setup_time_filter_small(&bbr->r_ctl.rc_rttprop, FILTER_TYPE_MIN, (bbr_filter_len_sec * USECS_IN_SECOND)); } bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_INIT, 0); if (bbr_uses_idle_restart) bbr->rc_use_idle_restart = 1; else bbr->rc_use_idle_restart = 0; bbr->r_ctl.rc_bbr_cur_del_rate = 0; bbr->r_ctl.rc_initial_hptsi_bw = bbr_initial_bw_bps; if (bbr_resends_use_tso) bbr->rc_resends_use_tso = 1; #ifdef NETFLIX_PEAKRATE tp->t_peakrate_thr = tp->t_maxpeakrate; #endif if (tp->snd_una != tp->snd_max) { /* Create a send map for the current outstanding data */ struct bbr_sendmap *rsm; rsm = bbr_alloc(bbr); if (rsm == NULL) { uma_zfree(bbr_pcb_zone, tp->t_fb_ptr); tp->t_fb_ptr = NULL; return (ENOMEM); } rsm->r_flags = BBR_OVERMAX; rsm->r_tim_lastsent[0] = cts; rsm->r_rtr_cnt = 1; rsm->r_rtr_bytes = 0; rsm->r_start = tp->snd_una; rsm->r_end = tp->snd_max; rsm->r_dupack = 0; rsm->r_delivered = bbr->r_ctl.rc_delivered; rsm->r_ts_valid = 0; rsm->r_del_ack_ts = tp->ts_recent; rsm->r_del_time = cts; if (bbr->r_ctl.r_app_limited_until) rsm->r_app_limited = 1; else rsm->r_app_limited = 0; TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_map, rsm, r_next); TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 1; if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) rsm->r_bbr_state = bbr_state_val(bbr); else rsm->r_bbr_state = 8; } if (bbr_use_rack_resend_cheat && (bbr->rc_use_google == 0)) bbr->bbr_use_rack_cheat = 1; if (bbr_incr_timers && (bbr->rc_use_google == 0)) bbr->r_ctl.rc_incr_tmrs = 1; if (bbr_include_tcp_oh && (bbr->rc_use_google == 0)) bbr->r_ctl.rc_inc_tcp_oh = 1; if (bbr_include_ip_oh && (bbr->rc_use_google == 0)) bbr->r_ctl.rc_inc_ip_oh = 1; if (bbr_include_enet_oh && (bbr->rc_use_google == 0)) bbr->r_ctl.rc_inc_enet_oh = 1; bbr_log_type_statechange(bbr, cts, __LINE__); if (TCPS_HAVEESTABLISHED(tp->t_state) && (tp->t_srtt)) { uint32_t rtt; rtt = (TICKS_2_USEC(tp->t_srtt) >> TCP_RTT_SHIFT); apply_filter_min_small(&bbr->r_ctl.rc_rttprop, rtt, cts); } /* announce the settings and state */ bbr_log_settings_change(bbr, BBR_RECOVERY_LOWRTT); tcp_bbr_tso_size_check(bbr, cts); /* * Now call the generic function to start a timer. This will place * the TCB on the hptsi wheel if a timer is needed with appropriate * flags. */ bbr_stop_all_timers(tp); bbr_start_hpts_timer(bbr, tp, cts, 5, 0, 0); return (0); } /* * Return 0 if we can accept the connection. Return * non-zero if we can't handle the connection. A EAGAIN * means you need to wait until the connection is up. * a EADDRNOTAVAIL means we can never handle the connection * (no SACK). */ static int bbr_handoff_ok(struct tcpcb *tp) { if ((tp->t_state == TCPS_CLOSED) || (tp->t_state == TCPS_LISTEN)) { /* Sure no problem though it may not stick */ return (0); } if ((tp->t_state == TCPS_SYN_SENT) || (tp->t_state == TCPS_SYN_RECEIVED)) { /* * We really don't know you have to get to ESTAB or beyond * to tell. */ return (EAGAIN); } if ((tp->t_flags & TF_SACK_PERMIT) || bbr_sack_not_required) { return (0); } /* * If we reach here we don't do SACK on this connection so we can * never do rack. */ return (EINVAL); } static void bbr_fini(struct tcpcb *tp, int32_t tcb_is_purged) { if (tp->t_fb_ptr) { uint32_t calc; struct tcp_bbr *bbr; struct bbr_sendmap *rsm; bbr = (struct tcp_bbr *)tp->t_fb_ptr; if (bbr->r_ctl.crte) tcp_rel_pacing_rate(bbr->r_ctl.crte, bbr->rc_tp); bbr_log_flowend(bbr); bbr->rc_tp = NULL; if (tp->t_inpcb) { /* Backout any flags2 we applied */ tp->t_inpcb->inp_flags2 &= ~INP_CANNOT_DO_ECN; tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY; } if (bbr->bbr_hdrw_pacing) counter_u64_add(bbr_flows_whdwr_pacing, -1); else counter_u64_add(bbr_flows_nohdwr_pacing, -1); rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); while (rsm) { TAILQ_REMOVE(&bbr->r_ctl.rc_map, rsm, r_next); uma_zfree(bbr_zone, rsm); rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); } rsm = TAILQ_FIRST(&bbr->r_ctl.rc_free); while (rsm) { TAILQ_REMOVE(&bbr->r_ctl.rc_free, rsm, r_next); uma_zfree(bbr_zone, rsm); rsm = TAILQ_FIRST(&bbr->r_ctl.rc_free); } calc = bbr->r_ctl.rc_high_rwnd - bbr->r_ctl.rc_init_rwnd; if (calc > (bbr->r_ctl.rc_init_rwnd / 10)) BBR_STAT_INC(bbr_dynamic_rwnd); else BBR_STAT_INC(bbr_static_rwnd); bbr->r_ctl.rc_free_cnt = 0; uma_zfree(bbr_pcb_zone, tp->t_fb_ptr); tp->t_fb_ptr = NULL; } /* Make sure snd_nxt is correctly set */ tp->snd_nxt = tp->snd_max; } static void bbr_set_state(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t win) { switch (tp->t_state) { case TCPS_SYN_SENT: bbr->r_state = TCPS_SYN_SENT; bbr->r_substate = bbr_do_syn_sent; break; case TCPS_SYN_RECEIVED: bbr->r_state = TCPS_SYN_RECEIVED; bbr->r_substate = bbr_do_syn_recv; break; case TCPS_ESTABLISHED: bbr->r_ctl.rc_init_rwnd = max(win, bbr->rc_tp->snd_wnd); bbr->r_state = TCPS_ESTABLISHED; bbr->r_substate = bbr_do_established; break; case TCPS_CLOSE_WAIT: bbr->r_state = TCPS_CLOSE_WAIT; bbr->r_substate = bbr_do_close_wait; break; case TCPS_FIN_WAIT_1: bbr->r_state = TCPS_FIN_WAIT_1; bbr->r_substate = bbr_do_fin_wait_1; break; case TCPS_CLOSING: bbr->r_state = TCPS_CLOSING; bbr->r_substate = bbr_do_closing; break; case TCPS_LAST_ACK: bbr->r_state = TCPS_LAST_ACK; bbr->r_substate = bbr_do_lastack; break; case TCPS_FIN_WAIT_2: bbr->r_state = TCPS_FIN_WAIT_2; bbr->r_substate = bbr_do_fin_wait_2; break; case TCPS_LISTEN: case TCPS_CLOSED: case TCPS_TIME_WAIT: default: break; }; } static void bbr_substate_change(struct tcp_bbr *bbr, uint32_t cts, int32_t line, int dolog) { /* * Now what state are we going into now? Is there adjustments * needed? */ int32_t old_state, old_gain; old_state = bbr_state_val(bbr); old_gain = bbr->r_ctl.rc_bbr_hptsi_gain; if (bbr_state_val(bbr) == BBR_SUB_LEVEL1) { /* Save the lowest srtt we saw in our end of the sub-state */ bbr->rc_hit_state_1 = 0; if (bbr->r_ctl.bbr_smallest_srtt_this_state != 0xffffffff) bbr->r_ctl.bbr_smallest_srtt_state2 = bbr->r_ctl.bbr_smallest_srtt_this_state; } bbr->rc_bbr_substate++; if (bbr->rc_bbr_substate >= BBR_SUBSTATE_COUNT) { /* Cycle back to first state-> gain */ bbr->rc_bbr_substate = 0; } if (bbr_state_val(bbr) == BBR_SUB_GAIN) { /* * We enter the gain(5/4) cycle (possibly less if * shallow buffer detection is enabled) */ if (bbr->skip_gain) { /* * Hardware pacing has set our rate to * the max and limited our b/w just * do level i.e. no gain. */ bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[BBR_SUB_LEVEL1]; } else if (bbr->gain_is_limited && bbr->bbr_hdrw_pacing && bbr->r_ctl.crte) { /* * We can't gain above the hardware pacing * rate which is less than our rate + the gain * calculate the gain needed to reach the hardware * pacing rate.. */ uint64_t bw, rate, gain_calc; bw = bbr_get_bw(bbr); rate = bbr->r_ctl.crte->rate; if ((rate > bw) && (((bw * (uint64_t)bbr_hptsi_gain[BBR_SUB_GAIN]) / (uint64_t)BBR_UNIT) > rate)) { gain_calc = (rate * BBR_UNIT) / bw; if (gain_calc < BBR_UNIT) gain_calc = BBR_UNIT; bbr->r_ctl.rc_bbr_hptsi_gain = (uint16_t)gain_calc; } else { bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[BBR_SUB_GAIN]; } } else bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[BBR_SUB_GAIN]; if ((bbr->rc_use_google == 0) && (bbr_gain_to_target == 0)) { bbr->r_ctl.rc_bbr_state_atflight = cts; } else bbr->r_ctl.rc_bbr_state_atflight = 0; } else if (bbr_state_val(bbr) == BBR_SUB_DRAIN) { bbr->rc_hit_state_1 = 1; bbr->r_ctl.rc_exta_time_gd = 0; bbr->r_ctl.flightsize_at_drain = ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); if (bbr_state_drain_2_tar) { bbr->r_ctl.rc_bbr_state_atflight = 0; } else bbr->r_ctl.rc_bbr_state_atflight = cts; bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[BBR_SUB_DRAIN]; } else { /* All other cycles hit here 2-7 */ if ((old_state == BBR_SUB_DRAIN) && bbr->rc_hit_state_1) { if (bbr_sub_drain_slam_cwnd && (bbr->rc_use_google == 0) && (bbr->rc_tp->snd_cwnd < bbr->r_ctl.rc_saved_cwnd)) { bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_saved_cwnd; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } if ((cts - bbr->r_ctl.rc_bbr_state_time) > bbr_get_rtt(bbr, BBR_RTT_PROP)) bbr->r_ctl.rc_exta_time_gd += ((cts - bbr->r_ctl.rc_bbr_state_time) - bbr_get_rtt(bbr, BBR_RTT_PROP)); else bbr->r_ctl.rc_exta_time_gd = 0; if (bbr->r_ctl.rc_exta_time_gd) { bbr->r_ctl.rc_level_state_extra = bbr->r_ctl.rc_exta_time_gd; /* Now chop up the time for each state (div by 7) */ bbr->r_ctl.rc_level_state_extra /= 7; if (bbr_rand_ot && bbr->r_ctl.rc_level_state_extra) { /* Add a randomization */ bbr_randomize_extra_state_time(bbr); } } } bbr->r_ctl.rc_bbr_state_atflight = max(1, cts); bbr->r_ctl.rc_bbr_hptsi_gain = bbr_hptsi_gain[bbr_state_val(bbr)]; } if (bbr->rc_use_google) { bbr->r_ctl.rc_bbr_state_atflight = max(1, cts); } bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost; bbr->r_ctl.rc_bbr_cwnd_gain = bbr_cwnd_gain; if (dolog) bbr_log_type_statechange(bbr, cts, line); if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) { uint32_t time_in; time_in = cts - bbr->r_ctl.rc_bbr_state_time; if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) { counter_u64_add(bbr_state_time[(old_state + 5)], time_in); } else { counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in); } } bbr->r_ctl.bbr_smallest_srtt_this_state = 0xffffffff; bbr_set_state_target(bbr, __LINE__); if (bbr_sub_drain_slam_cwnd && (bbr->rc_use_google == 0) && (bbr_state_val(bbr) == BBR_SUB_DRAIN)) { /* Slam down the cwnd */ bbr->r_ctl.rc_saved_cwnd = bbr->rc_tp->snd_cwnd; bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state; if (bbr_sub_drain_app_limit) { /* Go app limited if we are on a long drain */ bbr->r_ctl.r_app_limited_until = (bbr->r_ctl.rc_delivered + ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes))); } bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } if (bbr->rc_lt_use_bw) { /* In policed mode we clamp pacing_gain to BBR_UNIT */ bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT; } /* Google changes TSO size every cycle */ if (bbr->rc_use_google) tcp_bbr_tso_size_check(bbr, cts); bbr->r_ctl.gain_epoch = cts; bbr->r_ctl.rc_bbr_state_time = cts; bbr->r_ctl.substate_pe = bbr->r_ctl.rc_pkt_epoch; } static void bbr_set_probebw_google_gains(struct tcp_bbr *bbr, uint32_t cts, uint32_t losses) { if ((bbr_state_val(bbr) == BBR_SUB_DRAIN) && (google_allow_early_out == 1) && (bbr->r_ctl.rc_flight_at_input <= bbr->r_ctl.rc_target_at_state)) { /* We have reached out target flight size possibly early */ goto change_state; } if (TSTMP_LT(cts, bbr->r_ctl.rc_bbr_state_time)) { return; } if ((cts - bbr->r_ctl.rc_bbr_state_time) < bbr_get_rtt(bbr, BBR_RTT_PROP)) { /* * Must be a rttProp movement forward before * we can change states. */ return; } if (bbr_state_val(bbr) == BBR_SUB_GAIN) { /* * The needed time has passed but for * the gain cycle extra rules apply: * 1) If we have seen loss, we exit * 2) If we have not reached the target * we stay in GAIN (gain-to-target). */ if (google_consider_lost && losses) goto change_state; if (bbr->r_ctl.rc_target_at_state > bbr->r_ctl.rc_flight_at_input) { return; } } change_state: /* For gain we must reach our target, all others last 1 rttProp */ bbr_substate_change(bbr, cts, __LINE__, 1); } static void bbr_set_probebw_gains(struct tcp_bbr *bbr, uint32_t cts, uint32_t losses) { uint32_t flight, bbr_cur_cycle_time; if (bbr->rc_use_google) { bbr_set_probebw_google_gains(bbr, cts, losses); return; } if (cts == 0) { /* * Never alow cts to be 0 we * do this so we can judge if * we have set a timestamp. */ cts = 1; } if (bbr_state_is_pkt_epoch) bbr_cur_cycle_time = bbr_get_rtt(bbr, BBR_RTT_PKTRTT); else bbr_cur_cycle_time = bbr_get_rtt(bbr, BBR_RTT_PROP); if (bbr->r_ctl.rc_bbr_state_atflight == 0) { if (bbr_state_val(bbr) == BBR_SUB_DRAIN) { flight = ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); if (bbr_sub_drain_slam_cwnd && bbr->rc_hit_state_1) { /* Keep it slam down */ if (bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state) { bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } if (bbr_sub_drain_app_limit) { /* Go app limited if we are on a long drain */ bbr->r_ctl.r_app_limited_until = (bbr->r_ctl.rc_delivered + flight); } } if (TSTMP_GT(cts, bbr->r_ctl.gain_epoch) && (((cts - bbr->r_ctl.gain_epoch) > bbr_get_rtt(bbr, BBR_RTT_PROP)) || (flight >= bbr->r_ctl.flightsize_at_drain))) { /* * Still here after the same time as * the gain. We need to drain harder * for the next srtt. Reduce by a set amount * the gain drop is capped at DRAIN states * value (88). */ bbr->r_ctl.flightsize_at_drain = flight; if (bbr_drain_drop_mul && bbr_drain_drop_div && (bbr_drain_drop_mul < bbr_drain_drop_div)) { /* Use your specific drop value (def 4/5 = 20%) */ bbr->r_ctl.rc_bbr_hptsi_gain *= bbr_drain_drop_mul; bbr->r_ctl.rc_bbr_hptsi_gain /= bbr_drain_drop_div; } else { /* You get drop of 20% */ bbr->r_ctl.rc_bbr_hptsi_gain *= 4; bbr->r_ctl.rc_bbr_hptsi_gain /= 5; } if (bbr->r_ctl.rc_bbr_hptsi_gain <= bbr_drain_floor) { /* Reduce our gain again to the bottom */ bbr->r_ctl.rc_bbr_hptsi_gain = max(bbr_drain_floor, 1); } bbr_log_exit_gain(bbr, cts, 4); /* * Extend out so we wait another * epoch before dropping again. */ bbr->r_ctl.gain_epoch = cts; } if (flight <= bbr->r_ctl.rc_target_at_state) { if (bbr_sub_drain_slam_cwnd && (bbr->rc_use_google == 0) && (bbr->rc_tp->snd_cwnd < bbr->r_ctl.rc_saved_cwnd)) { bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_saved_cwnd; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } bbr->r_ctl.rc_bbr_state_atflight = max(cts, 1); bbr_log_exit_gain(bbr, cts, 3); } } else { /* Its a gain */ if (bbr->r_ctl.rc_lost > bbr->r_ctl.bbr_lost_at_state) { bbr->r_ctl.rc_bbr_state_atflight = max(cts, 1); goto change_state; } if ((ctf_outstanding(bbr->rc_tp) >= bbr->r_ctl.rc_target_at_state) || ((ctf_outstanding(bbr->rc_tp) + bbr->rc_tp->t_maxseg - 1) >= bbr->rc_tp->snd_wnd)) { bbr->r_ctl.rc_bbr_state_atflight = max(cts, 1); bbr_log_exit_gain(bbr, cts, 2); } } /** * We fall through and return always one of two things has * occured. * 1) We are still not at target * * 2) We reached the target and set rc_bbr_state_atflight * which means we no longer hit this block * next time we are called. */ return; } change_state: if (TSTMP_LT(cts, bbr->r_ctl.rc_bbr_state_time)) return; if ((cts - bbr->r_ctl.rc_bbr_state_time) < bbr_cur_cycle_time) { /* Less than a full time-period has passed */ return; } if (bbr->r_ctl.rc_level_state_extra && (bbr_state_val(bbr) > BBR_SUB_DRAIN) && ((cts - bbr->r_ctl.rc_bbr_state_time) < (bbr_cur_cycle_time + bbr->r_ctl.rc_level_state_extra))) { /* Less than a full time-period + extra has passed */ return; } if (bbr_gain_gets_extra_too && bbr->r_ctl.rc_level_state_extra && (bbr_state_val(bbr) == BBR_SUB_GAIN) && ((cts - bbr->r_ctl.rc_bbr_state_time) < (bbr_cur_cycle_time + bbr->r_ctl.rc_level_state_extra))) { /* Less than a full time-period + extra has passed */ return; } bbr_substate_change(bbr, cts, __LINE__, 1); } static uint32_t bbr_get_a_state_target(struct tcp_bbr *bbr, uint32_t gain) { uint32_t mss, tar; if (bbr->rc_use_google) { /* Google just uses the cwnd target */ tar = bbr_get_target_cwnd(bbr, bbr_get_bw(bbr), gain); } else { mss = min((bbr->rc_tp->t_maxseg - bbr->rc_last_options), bbr->r_ctl.rc_pace_max_segs); /* Get the base cwnd with gain rounded to a mss */ tar = roundup(bbr_get_raw_target_cwnd(bbr, bbr_get_bw(bbr), gain), mss); /* Make sure it is within our min */ if (tar < get_min_cwnd(bbr)) return (get_min_cwnd(bbr)); } return (tar); } static void bbr_set_state_target(struct tcp_bbr *bbr, int line) { uint32_t tar, meth; if ((bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) && ((bbr->r_ctl.bbr_rttprobe_gain_val == 0) || bbr->rc_use_google)) { /* Special case using old probe-rtt method */ tar = bbr_rtt_probe_cwndtarg * (bbr->rc_tp->t_maxseg - bbr->rc_last_options); meth = 1; } else { /* Non-probe-rtt case and reduced probe-rtt */ if ((bbr->rc_bbr_state == BBR_STATE_PROBE_BW) && (bbr->r_ctl.rc_bbr_hptsi_gain > BBR_UNIT)) { /* For gain cycle we use the hptsi gain */ tar = bbr_get_a_state_target(bbr, bbr->r_ctl.rc_bbr_hptsi_gain); meth = 2; } else if ((bbr_target_is_bbunit) || bbr->rc_use_google) { /* * If configured, or for google all other states * get BBR_UNIT. */ tar = bbr_get_a_state_target(bbr, BBR_UNIT); meth = 3; } else { /* * Or we set a target based on the pacing gain * for non-google mode and default (non-configured). * Note we don't set a target goal below drain (192). */ if (bbr->r_ctl.rc_bbr_hptsi_gain < bbr_hptsi_gain[BBR_SUB_DRAIN]) { tar = bbr_get_a_state_target(bbr, bbr_hptsi_gain[BBR_SUB_DRAIN]); meth = 4; } else { tar = bbr_get_a_state_target(bbr, bbr->r_ctl.rc_bbr_hptsi_gain); meth = 5; } } } bbr_log_set_of_state_target(bbr, tar, line, meth); bbr->r_ctl.rc_target_at_state = tar; } static void bbr_enter_probe_rtt(struct tcp_bbr *bbr, uint32_t cts, int32_t line) { /* Change to probe_rtt */ uint32_t time_in; bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost; bbr->r_ctl.flightsize_at_drain = ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); bbr->r_ctl.r_app_limited_until = (bbr->r_ctl.flightsize_at_drain + bbr->r_ctl.rc_delivered); /* Setup so we force feed the filter */ if (bbr->rc_use_google || bbr_probertt_sets_rtt) bbr->rc_prtt_set_ts = 1; if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) { time_in = cts - bbr->r_ctl.rc_bbr_state_time; counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in); } bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_ENTERPROBE, 0); bbr->r_ctl.rc_rtt_shrinks = cts; bbr->r_ctl.last_in_probertt = cts; bbr->r_ctl.rc_probertt_srttchktim = cts; bbr->r_ctl.rc_bbr_state_time = cts; bbr->rc_bbr_state = BBR_STATE_PROBE_RTT; /* We need to force the filter to update */ if ((bbr_sub_drain_slam_cwnd) && bbr->rc_hit_state_1 && (bbr->rc_use_google == 0) && (bbr_state_val(bbr) == BBR_SUB_DRAIN)) { if (bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_saved_cwnd) bbr->r_ctl.rc_saved_cwnd = bbr->rc_tp->snd_cwnd; } else bbr->r_ctl.rc_saved_cwnd = bbr->rc_tp->snd_cwnd; /* Update the lost */ bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost; if ((bbr->r_ctl.bbr_rttprobe_gain_val == 0) || bbr->rc_use_google){ /* Set to the non-configurable default of 4 (PROBE_RTT_MIN) */ bbr->rc_tp->snd_cwnd = bbr_rtt_probe_cwndtarg * (bbr->rc_tp->t_maxseg - bbr->rc_last_options); bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT; bbr->r_ctl.rc_bbr_cwnd_gain = BBR_UNIT; bbr_log_set_of_state_target(bbr, bbr->rc_tp->snd_cwnd, __LINE__, 6); bbr->r_ctl.rc_target_at_state = bbr->rc_tp->snd_cwnd; } else { /* * We bring it down slowly by using a hptsi gain that is * probably 75%. This will slowly float down our outstanding * without tampering with the cwnd. */ bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.bbr_rttprobe_gain_val; bbr->r_ctl.rc_bbr_cwnd_gain = BBR_UNIT; bbr_set_state_target(bbr, __LINE__); if (bbr_prtt_slam_cwnd && (bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state)) { bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } } if (ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) <= bbr->r_ctl.rc_target_at_state) { /* We are at target */ bbr->r_ctl.rc_bbr_enters_probertt = cts; } else { /* We need to come down to reach target before our time begins */ bbr->r_ctl.rc_bbr_enters_probertt = 0; } bbr->r_ctl.rc_pe_of_prtt = bbr->r_ctl.rc_pkt_epoch; BBR_STAT_INC(bbr_enter_probertt); bbr_log_exit_gain(bbr, cts, 0); bbr_log_type_statechange(bbr, cts, line); } static void bbr_check_probe_rtt_limits(struct tcp_bbr *bbr, uint32_t cts) { /* * Sanity check on probe-rtt intervals. * In crazy situations where we are competing * against new-reno flows with huge buffers * our rtt-prop interval could come to dominate * things if we can't get through a full set * of cycles, we need to adjust it. */ if (bbr_can_adjust_probertt && (bbr->rc_use_google == 0)) { uint16_t val = 0; uint32_t cur_rttp, fval, newval, baseval; /* Are we to small and go into probe-rtt to often? */ baseval = (bbr_get_rtt(bbr, BBR_RTT_PROP) * (BBR_SUBSTATE_COUNT + 1)); cur_rttp = roundup(baseval, USECS_IN_SECOND); fval = bbr_filter_len_sec * USECS_IN_SECOND; if (bbr_is_ratio == 0) { if (fval > bbr_rtt_probe_limit) newval = cur_rttp + (fval - bbr_rtt_probe_limit); else newval = cur_rttp; } else { int mul; mul = fval / bbr_rtt_probe_limit; newval = cur_rttp * mul; } if (cur_rttp > bbr->r_ctl.rc_probertt_int) { bbr->r_ctl.rc_probertt_int = cur_rttp; reset_time_small(&bbr->r_ctl.rc_rttprop, newval); val = 1; } else { /* * No adjustments were made * do we need to shrink it? */ if (bbr->r_ctl.rc_probertt_int > bbr_rtt_probe_limit) { if (cur_rttp <= bbr_rtt_probe_limit) { /* * Things have calmed down lets * shrink all the way to default */ bbr->r_ctl.rc_probertt_int = bbr_rtt_probe_limit; reset_time_small(&bbr->r_ctl.rc_rttprop, (bbr_filter_len_sec * USECS_IN_SECOND)); cur_rttp = bbr_rtt_probe_limit; newval = (bbr_filter_len_sec * USECS_IN_SECOND); val = 2; } else { /* * Well does some adjustment make sense? */ if (cur_rttp < bbr->r_ctl.rc_probertt_int) { /* We can reduce interval time some */ bbr->r_ctl.rc_probertt_int = cur_rttp; reset_time_small(&bbr->r_ctl.rc_rttprop, newval); val = 3; } } } } if (val) bbr_log_rtt_shrinks(bbr, cts, cur_rttp, newval, __LINE__, BBR_RTTS_RESETS_VALUES, val); } } static void bbr_exit_probe_rtt(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t cts) { /* Exit probe-rtt */ if (tp->snd_cwnd < bbr->r_ctl.rc_saved_cwnd) { tp->snd_cwnd = bbr->r_ctl.rc_saved_cwnd; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } bbr_log_exit_gain(bbr, cts, 1); bbr->rc_hit_state_1 = 0; bbr->r_ctl.rc_rtt_shrinks = cts; bbr->r_ctl.last_in_probertt = cts; bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_RTTPROBE, 0); bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost; bbr->r_ctl.r_app_limited_until = (ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) + bbr->r_ctl.rc_delivered); if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) { uint32_t time_in; time_in = cts - bbr->r_ctl.rc_bbr_state_time; counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in); } if (bbr->rc_filled_pipe) { /* Switch to probe_bw */ bbr->rc_bbr_state = BBR_STATE_PROBE_BW; bbr->rc_bbr_substate = bbr_pick_probebw_substate(bbr, cts); bbr->r_ctl.rc_bbr_cwnd_gain = bbr_cwnd_gain; bbr_substate_change(bbr, cts, __LINE__, 0); bbr_log_type_statechange(bbr, cts, __LINE__); } else { /* Back to startup */ bbr->rc_bbr_state = BBR_STATE_STARTUP; bbr->r_ctl.rc_bbr_state_time = cts; /* * We don't want to give a complete free 3 * measurements until we exit, so we use * the number of pe's we were in probe-rtt * to add to the startup_epoch. That way * we will still retain the old state. */ bbr->r_ctl.rc_bbr_last_startup_epoch += (bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_pe_of_prtt); bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost; /* Make sure to use the lower pg when shifting back in */ if (bbr->r_ctl.rc_lost && bbr_use_lower_gain_in_startup && (bbr->rc_use_google == 0)) bbr->r_ctl.rc_bbr_hptsi_gain = bbr_startup_lower; else bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.rc_startup_pg; bbr->r_ctl.rc_bbr_cwnd_gain = bbr->r_ctl.rc_startup_pg; /* Probably not needed but set it anyway */ bbr_set_state_target(bbr, __LINE__); bbr_log_type_statechange(bbr, cts, __LINE__); bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 0); } bbr_check_probe_rtt_limits(bbr, cts); } static int32_t inline bbr_should_enter_probe_rtt(struct tcp_bbr *bbr, uint32_t cts) { if ((bbr->rc_past_init_win == 1) && (bbr->rc_in_persist == 0) && (bbr_calc_time(cts, bbr->r_ctl.rc_rtt_shrinks) >= bbr->r_ctl.rc_probertt_int)) { return (1); } if (bbr_can_force_probertt && (bbr->rc_in_persist == 0) && (TSTMP_GT(cts, bbr->r_ctl.last_in_probertt)) && ((cts - bbr->r_ctl.last_in_probertt) > bbr->r_ctl.rc_probertt_int)) { return (1); } return (0); } static int32_t bbr_google_startup(struct tcp_bbr *bbr, uint32_t cts, int32_t pkt_epoch) { uint64_t btlbw, gain; if (pkt_epoch == 0) { /* * Need to be on a pkt-epoch to continue. */ return (0); } btlbw = bbr_get_full_bw(bbr); gain = ((bbr->r_ctl.rc_bbr_lastbtlbw * (uint64_t)bbr_start_exit) / (uint64_t)100) + bbr->r_ctl.rc_bbr_lastbtlbw; if (btlbw >= gain) { bbr->r_ctl.rc_bbr_last_startup_epoch = bbr->r_ctl.rc_pkt_epoch; bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 3); bbr->r_ctl.rc_bbr_lastbtlbw = btlbw; } if ((bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_bbr_last_startup_epoch) >= BBR_STARTUP_EPOCHS) return (1); bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 8); return(0); } static int32_t inline bbr_state_startup(struct tcp_bbr *bbr, uint32_t cts, int32_t epoch, int32_t pkt_epoch) { /* Have we gained 25% in the last 3 packet based epoch's? */ uint64_t btlbw, gain; int do_exit; int delta, rtt_gain; if ((bbr->rc_tp->snd_una == bbr->rc_tp->snd_max) && (bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time) >= bbr_rtt_probe_time)) { /* * This qualifies as a RTT_PROBE session since we drop the * data outstanding to nothing and waited more than * bbr_rtt_probe_time. */ bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_WASIDLE, 0); bbr_set_reduced_rtt(bbr, cts, __LINE__); } if (bbr_should_enter_probe_rtt(bbr, cts)) { bbr_enter_probe_rtt(bbr, cts, __LINE__); return (0); } if (bbr->rc_use_google) return (bbr_google_startup(bbr, cts, pkt_epoch)); if ((bbr->r_ctl.rc_lost > bbr->r_ctl.rc_lost_at_startup) && (bbr_use_lower_gain_in_startup)) { /* Drop to a lower gain 1.5 x since we saw loss */ bbr->r_ctl.rc_bbr_hptsi_gain = bbr_startup_lower; } if (pkt_epoch == 0) { /* * Need to be on a pkt-epoch to continue. */ return (0); } if (bbr_rtt_gain_thresh) { /* * Do we allow a flow to stay * in startup with no loss and no * gain in rtt over a set threshold? */ if (bbr->r_ctl.rc_pkt_epoch_rtt && bbr->r_ctl.startup_last_srtt && (bbr->r_ctl.rc_pkt_epoch_rtt > bbr->r_ctl.startup_last_srtt)) { delta = bbr->r_ctl.rc_pkt_epoch_rtt - bbr->r_ctl.startup_last_srtt; rtt_gain = (delta * 100) / bbr->r_ctl.startup_last_srtt; } else rtt_gain = 0; if ((bbr->r_ctl.startup_last_srtt == 0) || (bbr->r_ctl.rc_pkt_epoch_rtt < bbr->r_ctl.startup_last_srtt)) /* First time or new lower value */ bbr->r_ctl.startup_last_srtt = bbr->r_ctl.rc_pkt_epoch_rtt; if ((bbr->r_ctl.rc_lost == 0) && (rtt_gain < bbr_rtt_gain_thresh)) { /* * No loss, and we are under * our gain threhold for * increasing RTT. */ if (bbr->r_ctl.rc_bbr_last_startup_epoch < bbr->r_ctl.rc_pkt_epoch) bbr->r_ctl.rc_bbr_last_startup_epoch++; bbr_log_startup_event(bbr, cts, rtt_gain, delta, bbr->r_ctl.startup_last_srtt, 10); return (0); } } if ((bbr->r_ctl.r_measurement_count == bbr->r_ctl.last_startup_measure) && (bbr->r_ctl.rc_lost_at_startup == bbr->r_ctl.rc_lost) && (!IN_RECOVERY(bbr->rc_tp->t_flags))) { /* * We only assess if we have a new measurment when * we have no loss and are not in recovery. * Drag up by one our last_startup epoch so we will hold * the number of non-gain we have already accumulated. */ if (bbr->r_ctl.rc_bbr_last_startup_epoch < bbr->r_ctl.rc_pkt_epoch) bbr->r_ctl.rc_bbr_last_startup_epoch++; bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 9); return (0); } /* Case where we reduced the lost (bad retransmit) */ if (bbr->r_ctl.rc_lost_at_startup > bbr->r_ctl.rc_lost) bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost; bbr->r_ctl.last_startup_measure = bbr->r_ctl.r_measurement_count; btlbw = bbr_get_full_bw(bbr); if (bbr->r_ctl.rc_bbr_hptsi_gain == bbr_startup_lower) gain = ((bbr->r_ctl.rc_bbr_lastbtlbw * (uint64_t)bbr_low_start_exit) / (uint64_t)100) + bbr->r_ctl.rc_bbr_lastbtlbw; else gain = ((bbr->r_ctl.rc_bbr_lastbtlbw * (uint64_t)bbr_start_exit) / (uint64_t)100) + bbr->r_ctl.rc_bbr_lastbtlbw; do_exit = 0; if (btlbw > bbr->r_ctl.rc_bbr_lastbtlbw) bbr->r_ctl.rc_bbr_lastbtlbw = btlbw; if (btlbw >= gain) { bbr->r_ctl.rc_bbr_last_startup_epoch = bbr->r_ctl.rc_pkt_epoch; /* Update the lost so we won't exit in next set of tests */ bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost; bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 3); } if ((bbr->rc_loss_exit && (bbr->r_ctl.rc_lost > bbr->r_ctl.rc_lost_at_startup) && (bbr->r_ctl.rc_pkt_epoch_loss_rate > bbr_startup_loss_thresh)) && ((bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_bbr_last_startup_epoch) >= BBR_STARTUP_EPOCHS)) { /* * If we had no gain, we had loss and that loss was above * our threshould, the rwnd is not constrained, and we have * had at least 3 packet epochs exit. Note that this is * switched off by sysctl. Google does not do this by the * way. */ if ((ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) + (2 * max(bbr->r_ctl.rc_pace_max_segs, bbr->rc_tp->t_maxseg))) <= bbr->rc_tp->snd_wnd) { do_exit = 1; bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 4); } else { /* Just record an updated loss value */ bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost; bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 5); } } else bbr->r_ctl.rc_lost_at_startup = bbr->r_ctl.rc_lost; if (((bbr->r_ctl.rc_pkt_epoch - bbr->r_ctl.rc_bbr_last_startup_epoch) >= BBR_STARTUP_EPOCHS) || do_exit) { /* Return 1 to exit the startup state. */ return (1); } /* Stay in startup */ bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 8); return (0); } static void bbr_state_change(struct tcp_bbr *bbr, uint32_t cts, int32_t epoch, int32_t pkt_epoch, uint32_t losses) { /* * A tick occured in the rtt epoch do we need to do anything? */ #ifdef BBR_INVARIANTS if ((bbr->rc_bbr_state != BBR_STATE_STARTUP) && (bbr->rc_bbr_state != BBR_STATE_DRAIN) && (bbr->rc_bbr_state != BBR_STATE_PROBE_RTT) && (bbr->rc_bbr_state != BBR_STATE_IDLE_EXIT) && (bbr->rc_bbr_state != BBR_STATE_PROBE_BW)) { /* Debug code? */ panic("Unknown BBR state %d?\n", bbr->rc_bbr_state); } #endif if (bbr->rc_bbr_state == BBR_STATE_STARTUP) { /* Do we exit the startup state? */ if (bbr_state_startup(bbr, cts, epoch, pkt_epoch)) { uint32_t time_in; bbr_log_startup_event(bbr, cts, bbr->r_ctl.rc_bbr_last_startup_epoch, bbr->r_ctl.rc_lost_at_startup, bbr_start_exit, 6); bbr->rc_filled_pipe = 1; bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost; if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) { time_in = cts - bbr->r_ctl.rc_bbr_state_time; counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in); } else time_in = 0; if (bbr->rc_no_pacing) bbr->rc_no_pacing = 0; bbr->r_ctl.rc_bbr_state_time = cts; bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.rc_drain_pg; bbr->rc_bbr_state = BBR_STATE_DRAIN; bbr_set_state_target(bbr, __LINE__); if ((bbr->rc_use_google == 0) && bbr_slam_cwnd_in_main_drain) { /* Here we don't have to worry about probe-rtt */ bbr->r_ctl.rc_saved_cwnd = bbr->rc_tp->snd_cwnd; bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } bbr->r_ctl.rc_bbr_cwnd_gain = bbr_high_gain; bbr_log_type_statechange(bbr, cts, __LINE__); if (ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) <= bbr->r_ctl.rc_target_at_state) { /* * Switch to probe_bw if we are already * there */ bbr->rc_bbr_substate = bbr_pick_probebw_substate(bbr, cts); bbr_substate_change(bbr, cts, __LINE__, 0); bbr->rc_bbr_state = BBR_STATE_PROBE_BW; bbr_log_type_statechange(bbr, cts, __LINE__); } } } else if (bbr->rc_bbr_state == BBR_STATE_IDLE_EXIT) { uint32_t inflight; struct tcpcb *tp; tp = bbr->rc_tp; inflight = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); if (inflight >= bbr->r_ctl.rc_target_at_state) { /* We have reached a flight of the cwnd target */ bbr->rc_bbr_state = BBR_STATE_PROBE_BW; bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT; bbr->r_ctl.rc_bbr_cwnd_gain = BBR_UNIT; bbr_set_state_target(bbr, __LINE__); /* * Rig it so we don't do anything crazy and * start fresh with a new randomization. */ bbr->r_ctl.bbr_smallest_srtt_this_state = 0xffffffff; bbr->rc_bbr_substate = BBR_SUB_LEVEL6; bbr_substate_change(bbr, cts, __LINE__, 1); } } else if (bbr->rc_bbr_state == BBR_STATE_DRAIN) { /* Has in-flight reached the bdp (or less)? */ uint32_t inflight; struct tcpcb *tp; tp = bbr->rc_tp; inflight = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); if ((bbr->rc_use_google == 0) && bbr_slam_cwnd_in_main_drain && (bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state)) { /* * Here we don't have to worry about probe-rtt * re-slam it, but keep it slammed down. */ bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } if (inflight <= bbr->r_ctl.rc_target_at_state) { /* We have drained */ bbr->rc_bbr_state = BBR_STATE_PROBE_BW; bbr->r_ctl.bbr_lost_at_state = bbr->r_ctl.rc_lost; if (SEQ_GT(cts, bbr->r_ctl.rc_bbr_state_time)) { uint32_t time_in; time_in = cts - bbr->r_ctl.rc_bbr_state_time; counter_u64_add(bbr_state_time[bbr->rc_bbr_state], time_in); } if ((bbr->rc_use_google == 0) && bbr_slam_cwnd_in_main_drain && (tp->snd_cwnd < bbr->r_ctl.rc_saved_cwnd)) { /* Restore the cwnd */ tp->snd_cwnd = bbr->r_ctl.rc_saved_cwnd; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } /* Setup probe-rtt has being done now RRS-HERE */ bbr->r_ctl.rc_rtt_shrinks = cts; bbr->r_ctl.last_in_probertt = cts; bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_LEAVE_DRAIN, 0); /* Randomly pick a sub-state */ bbr->rc_bbr_substate = bbr_pick_probebw_substate(bbr, cts); bbr_substate_change(bbr, cts, __LINE__, 0); bbr_log_type_statechange(bbr, cts, __LINE__); } } else if (bbr->rc_bbr_state == BBR_STATE_PROBE_RTT) { uint32_t flight; flight = ctf_flight_size(bbr->rc_tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); bbr->r_ctl.r_app_limited_until = (flight + bbr->r_ctl.rc_delivered); if (((bbr->r_ctl.bbr_rttprobe_gain_val == 0) || bbr->rc_use_google) && (bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state)) { /* * We must keep cwnd at the desired MSS. */ bbr->rc_tp->snd_cwnd = bbr_rtt_probe_cwndtarg * (bbr->rc_tp->t_maxseg - bbr->rc_last_options); bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } else if ((bbr_prtt_slam_cwnd) && (bbr->rc_tp->snd_cwnd > bbr->r_ctl.rc_target_at_state)) { /* Re-slam it */ bbr->rc_tp->snd_cwnd = bbr->r_ctl.rc_target_at_state; bbr_log_type_cwndupd(bbr, 0, 0, 0, 12, 0, 0, __LINE__); } if (bbr->r_ctl.rc_bbr_enters_probertt == 0) { /* Has outstanding reached our target? */ if (flight <= bbr->r_ctl.rc_target_at_state) { bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_REACHTAR, 0); bbr->r_ctl.rc_bbr_enters_probertt = cts; /* If time is exactly 0, be 1usec off */ if (bbr->r_ctl.rc_bbr_enters_probertt == 0) bbr->r_ctl.rc_bbr_enters_probertt = 1; if (bbr->rc_use_google == 0) { /* * Restore any lowering that as occured to * reach here */ if (bbr->r_ctl.bbr_rttprobe_gain_val) bbr->r_ctl.rc_bbr_hptsi_gain = bbr->r_ctl.bbr_rttprobe_gain_val; else bbr->r_ctl.rc_bbr_hptsi_gain = BBR_UNIT; } } if ((bbr->r_ctl.rc_bbr_enters_probertt == 0) && (bbr->rc_use_google == 0) && bbr->r_ctl.bbr_rttprobe_gain_val && (((cts - bbr->r_ctl.rc_probertt_srttchktim) > bbr_get_rtt(bbr, bbr_drain_rtt)) || (flight >= bbr->r_ctl.flightsize_at_drain))) { /* * We have doddled with our current hptsi * gain an srtt and have still not made it * to target, or we have increased our flight. * Lets reduce the gain by xx% * flooring the reduce at DRAIN (based on * mul/div) */ int red; bbr->r_ctl.flightsize_at_drain = flight; bbr->r_ctl.rc_probertt_srttchktim = cts; red = max((bbr->r_ctl.bbr_rttprobe_gain_val / 10), 1); if ((bbr->r_ctl.rc_bbr_hptsi_gain - red) > max(bbr_drain_floor, 1)) { /* Reduce our gain again */ bbr->r_ctl.rc_bbr_hptsi_gain -= red; bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_SHRINK_PG, 0); } else if (bbr->r_ctl.rc_bbr_hptsi_gain > max(bbr_drain_floor, 1)) { /* one more chance before we give up */ bbr->r_ctl.rc_bbr_hptsi_gain = max(bbr_drain_floor, 1); bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_SHRINK_PG_FINAL, 0); } else { /* At the very bottom */ bbr->r_ctl.rc_bbr_hptsi_gain = max((bbr_drain_floor-1), 1); } } } if (bbr->r_ctl.rc_bbr_enters_probertt && (TSTMP_GT(cts, bbr->r_ctl.rc_bbr_enters_probertt)) && ((cts - bbr->r_ctl.rc_bbr_enters_probertt) >= bbr_rtt_probe_time)) { /* Time to exit probe RTT normally */ bbr_exit_probe_rtt(bbr->rc_tp, bbr, cts); } } else if (bbr->rc_bbr_state == BBR_STATE_PROBE_BW) { if ((bbr->rc_tp->snd_una == bbr->rc_tp->snd_max) && (bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time) >= bbr_rtt_probe_time)) { /* * This qualifies as a RTT_PROBE session since we * drop the data outstanding to nothing and waited * more than bbr_rtt_probe_time. */ bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_WASIDLE, 0); bbr_set_reduced_rtt(bbr, cts, __LINE__); } if (bbr_should_enter_probe_rtt(bbr, cts)) { bbr_enter_probe_rtt(bbr, cts, __LINE__); } else { bbr_set_probebw_gains(bbr, cts, losses); } } } static void bbr_check_bbr_for_state(struct tcp_bbr *bbr, uint32_t cts, int32_t line, uint32_t losses) { int32_t epoch = 0; if ((cts - bbr->r_ctl.rc_rcv_epoch_start) >= bbr_get_rtt(bbr, BBR_RTT_PROP)) { bbr_set_epoch(bbr, cts, line); /* At each epoch doe lt bw sampling */ epoch = 1; } bbr_state_change(bbr, cts, epoch, bbr->rc_is_pkt_epoch_now, losses); } static int bbr_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos, int32_t nxt_pkt, struct timeval *tv) { int32_t thflags, retval; uint32_t cts, lcts; uint32_t tiwin; struct tcpopt to; struct tcp_bbr *bbr; struct bbr_sendmap *rsm; struct timeval ltv; int32_t did_out = 0; int32_t in_recovery; uint16_t nsegs; int32_t prev_state; uint32_t lost; nsegs = max(1, m->m_pkthdr.lro_nsegs); bbr = (struct tcp_bbr *)tp->t_fb_ptr; /* add in our stats */ kern_prefetch(bbr, &prev_state); prev_state = 0; thflags = th->th_flags; /* * If this is either a state-changing packet or current state isn't * established, we require a write lock on tcbinfo. Otherwise, we * allow the tcbinfo to be in either alocked or unlocked, as the * caller may have unnecessarily acquired a write lock due to a * race. */ INP_WLOCK_ASSERT(tp->t_inpcb); KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", __func__)); KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", __func__)); tp->t_rcvtime = ticks; /* * Unscale the window into a 32-bit value. For the SYN_SENT state * the scale is zero. */ tiwin = th->th_win << tp->snd_scale; #ifdef STATS stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); #endif /* * Parse options on any incoming segment. */ tcp_dooptions(&to, (u_char *)(th + 1), (th->th_off << 2) - sizeof(struct tcphdr), (thflags & TH_SYN) ? TO_SYN : 0); if (m->m_flags & M_TSTMP) { /* Prefer the hardware timestamp if present */ struct timespec ts; mbuf_tstmp2timespec(m, &ts); bbr->rc_tv.tv_sec = ts.tv_sec; bbr->rc_tv.tv_usec = ts.tv_nsec / 1000; bbr->r_ctl.rc_rcvtime = cts = tcp_tv_to_usectick(&bbr->rc_tv); } else if (m->m_flags & M_TSTMP_LRO) { /* Next the arrival timestamp */ struct timespec ts; mbuf_tstmp2timespec(m, &ts); bbr->rc_tv.tv_sec = ts.tv_sec; bbr->rc_tv.tv_usec = ts.tv_nsec / 1000; bbr->r_ctl.rc_rcvtime = cts = tcp_tv_to_usectick(&bbr->rc_tv); } else { /* * Ok just get the current time. */ bbr->r_ctl.rc_rcvtime = lcts = cts = tcp_get_usecs(&bbr->rc_tv); } /* * If echoed timestamp is later than the current time, fall back to * non RFC1323 RTT calculation. Normalize timestamp if syncookies * were used when this connection was established. */ if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { to.to_tsecr -= tp->ts_offset; if (TSTMP_GT(to.to_tsecr, tcp_tv_to_mssectick(&bbr->rc_tv))) to.to_tsecr = 0; } /* * If its the first time in we need to take care of options and * verify we can do SACK for rack! */ if (bbr->r_state == 0) { /* * Process options only when we get SYN/ACK back. The SYN * case for incoming connections is handled in tcp_syncache. * According to RFC1323 the window field in a SYN (i.e., a * or ) segment itself is never scaled. XXX * this is traditional behavior, may need to be cleaned up. */ if (bbr->rc_inp == NULL) { bbr->rc_inp = tp->t_inpcb; } /* * We need to init rc_inp here since its not init'd when * bbr_init is called */ if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) { tp->t_flags |= TF_RCVD_SCALE; tp->snd_scale = to.to_wscale; } /* * Initial send window. It will be updated with the * next incoming segment to the scaled value. */ tp->snd_wnd = th->th_win; if (to.to_flags & TOF_TS) { tp->t_flags |= TF_RCVD_TSTMP; tp->ts_recent = to.to_tsval; tp->ts_recent_age = tcp_tv_to_mssectick(&bbr->rc_tv); } if (to.to_flags & TOF_MSS) tcp_mss(tp, to.to_mss); if ((tp->t_flags & TF_SACK_PERMIT) && (to.to_flags & TOF_SACKPERM) == 0) tp->t_flags &= ~TF_SACK_PERMIT; if (IS_FASTOPEN(tp->t_flags)) { if (to.to_flags & TOF_FASTOPEN) { uint16_t mss; if (to.to_flags & TOF_MSS) mss = to.to_mss; else if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) mss = TCP6_MSS; else mss = TCP_MSS; tcp_fastopen_update_cache(tp, mss, to.to_tfo_len, to.to_tfo_cookie); } else tcp_fastopen_disable_path(tp); } } /* * At this point we are at the initial call. Here we decide * if we are doing RACK or not. We do this by seeing if * TF_SACK_PERMIT is set, if not rack is *not* possible and * we switch to the default code. */ if ((tp->t_flags & TF_SACK_PERMIT) == 0) { /* Bail */ tcp_switch_back_to_default(tp); (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen, tlen, iptos); return (1); } /* Set the flag */ bbr->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; tcp_set_hpts(tp->t_inpcb); sack_filter_clear(&bbr->r_ctl.bbr_sf, th->th_ack); } if (thflags & TH_ACK) { /* Track ack types */ if (to.to_flags & TOF_SACK) BBR_STAT_INC(bbr_acks_with_sacks); else BBR_STAT_INC(bbr_plain_acks); } /* * This is the one exception case where we set the rack state * always. All other times (timers etc) we must have a rack-state * set (so we assure we have done the checks above for SACK). */ if (bbr->r_state != tp->t_state) bbr_set_state(tp, bbr, tiwin); if (SEQ_GT(th->th_ack, tp->snd_una) && (rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map)) != NULL) kern_prefetch(rsm, &prev_state); prev_state = bbr->r_state; bbr->rc_ack_was_delayed = 0; lost = bbr->r_ctl.rc_lost; bbr->rc_is_pkt_epoch_now = 0; if (m->m_flags & (M_TSTMP|M_TSTMP_LRO)) { /* Get the real time into lcts and figure the real delay */ lcts = tcp_get_usecs(<v); if (TSTMP_GT(lcts, cts)) { bbr->r_ctl.rc_ack_hdwr_delay = lcts - cts; bbr->rc_ack_was_delayed = 1; if (TSTMP_GT(bbr->r_ctl.rc_ack_hdwr_delay, bbr->r_ctl.highest_hdwr_delay)) bbr->r_ctl.highest_hdwr_delay = bbr->r_ctl.rc_ack_hdwr_delay; } else { bbr->r_ctl.rc_ack_hdwr_delay = 0; bbr->rc_ack_was_delayed = 0; } } else { bbr->r_ctl.rc_ack_hdwr_delay = 0; bbr->rc_ack_was_delayed = 0; } bbr_log_ack_event(bbr, th, &to, tlen, nsegs, cts, nxt_pkt, m); if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { retval = 0; m_freem(m); goto done_with_input; } /* * If a segment with the ACK-bit set arrives in the SYN-SENT state * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9. */ if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } in_recovery = IN_RECOVERY(tp->t_flags); if (tiwin > bbr->r_ctl.rc_high_rwnd) bbr->r_ctl.rc_high_rwnd = tiwin; #ifdef BBR_INVARIANTS if ((tp->t_inpcb->inp_flags & INP_DROPPED) || (tp->t_inpcb->inp_flags2 & INP_FREED)) { panic("tp:%p bbr:%p given a dropped inp:%p", tp, bbr, tp->t_inpcb); } #endif bbr->r_ctl.rc_flight_at_input = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); bbr->rtt_valid = 0; if (to.to_flags & TOF_TS) { bbr->rc_ts_valid = 1; bbr->r_ctl.last_inbound_ts = to.to_tsval; } else { bbr->rc_ts_valid = 0; bbr->r_ctl.last_inbound_ts = 0; } retval = (*bbr->r_substate) (m, th, so, tp, &to, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt); #ifdef BBR_INVARIANTS if ((retval == 0) && (tp->t_inpcb == NULL)) { panic("retval:%d tp:%p t_inpcb:NULL state:%d", retval, tp, prev_state); } #endif if (nxt_pkt == 0) BBR_STAT_INC(bbr_rlock_left_ret0); else BBR_STAT_INC(bbr_rlock_left_ret1); if (retval == 0) { /* * If retval is 1 the tcb is unlocked and most likely the tp * is gone. */ INP_WLOCK_ASSERT(tp->t_inpcb); tcp_bbr_xmit_timer_commit(bbr, tp, cts); if (bbr->rc_is_pkt_epoch_now) bbr_set_pktepoch(bbr, cts, __LINE__); bbr_check_bbr_for_state(bbr, cts, __LINE__, (bbr->r_ctl.rc_lost - lost)); if (nxt_pkt == 0) { if (bbr->r_wanted_output != 0) { bbr->rc_output_starts_timer = 0; did_out = 1; (void)tp->t_fb->tfb_tcp_output(tp); } else bbr_start_hpts_timer(bbr, tp, cts, 6, 0, 0); } if ((nxt_pkt == 0) && ((bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) && (SEQ_GT(tp->snd_max, tp->snd_una) || (tp->t_flags & TF_DELACK) || ((V_tcp_always_keepalive || bbr->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && (tp->t_state <= TCPS_CLOSING)))) { /* * We could not send (probably in the hpts but * stopped the timer)? */ if ((tp->snd_max == tp->snd_una) && ((tp->t_flags & TF_DELACK) == 0) && (bbr->rc_inp->inp_in_hpts) && (bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { /* * keep alive not needed if we are hptsi * output yet */ ; } else { if (bbr->rc_inp->inp_in_hpts) { tcp_hpts_remove(bbr->rc_inp, HPTS_REMOVE_OUTPUT); if ((bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && (TSTMP_GT(lcts, bbr->rc_pacer_started))) { uint32_t del; del = lcts - bbr->rc_pacer_started; if (bbr->r_ctl.rc_last_delay_val > del) { BBR_STAT_INC(bbr_force_timer_start); bbr->r_ctl.rc_last_delay_val -= del; bbr->rc_pacer_started = lcts; } else { /* We are late */ bbr->r_ctl.rc_last_delay_val = 0; BBR_STAT_INC(bbr_force_output); (void)tp->t_fb->tfb_tcp_output(tp); } } } bbr_start_hpts_timer(bbr, tp, cts, 8, bbr->r_ctl.rc_last_delay_val, 0); } } else if ((bbr->rc_output_starts_timer == 0) && (nxt_pkt == 0)) { /* Do we have the correct timer running? */ bbr_timer_audit(tp, bbr, lcts, &so->so_snd); } /* Do we have a new state */ if (bbr->r_state != tp->t_state) bbr_set_state(tp, bbr, tiwin); done_with_input: bbr_log_doseg_done(bbr, cts, nxt_pkt, did_out); if (did_out) bbr->r_wanted_output = 0; #ifdef BBR_INVARIANTS if (tp->t_inpcb == NULL) { panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d", did_out, retval, tp, prev_state); } #endif } return (retval); } static void bbr_log_type_hrdwtso(struct tcpcb *tp, struct tcp_bbr *bbr, int len, int mod, int what_we_can_send) { if (tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; uint32_t cts; cts = tcp_get_usecs(&tv); bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); log.u_bbr.flex1 = bbr->r_ctl.rc_pace_min_segs; log.u_bbr.flex2 = what_we_can_send; log.u_bbr.flex3 = bbr->r_ctl.rc_pace_max_segs; log.u_bbr.flex4 = len; log.u_bbr.flex5 = 0; log.u_bbr.flex7 = mod; log.u_bbr.flex8 = 1; TCP_LOG_EVENTP(tp, NULL, &tp->t_inpcb->inp_socket->so_rcv, &tp->t_inpcb->inp_socket->so_snd, TCP_HDWR_TLS, 0, 0, &log, false, &tv); } } static void bbr_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos) { struct timeval tv; int retval; /* First lets see if we have old packets */ if (tp->t_in_pkt) { if (ctf_do_queued_segments(so, tp, 1)) { m_freem(m); return; } } if (m->m_flags & M_TSTMP_LRO) { tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000; tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000; } else { /* Should not be should we kassert instead? */ tcp_get_usecs(&tv); } retval = bbr_do_segment_nounlock(m, th, so, tp, drop_hdrlen, tlen, iptos, 0, &tv); if (retval == 0) INP_WUNLOCK(tp->t_inpcb); } /* * Return how much data can be sent without violating the * cwnd or rwnd. */ static inline uint32_t bbr_what_can_we_send(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t sendwin, uint32_t avail, int32_t sb_offset, uint32_t cts) { uint32_t len; if (ctf_outstanding(tp) >= tp->snd_wnd) { /* We never want to go over our peers rcv-window */ len = 0; } else { uint32_t flight; flight = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)); if (flight >= sendwin) { /* * We have in flight what we are allowed by cwnd (if * it was rwnd blocking it would have hit above out * >= tp->snd_wnd). */ return (0); } len = sendwin - flight; if ((len + ctf_outstanding(tp)) > tp->snd_wnd) { /* We would send too much (beyond the rwnd) */ len = tp->snd_wnd - ctf_outstanding(tp); } if ((len + sb_offset) > avail) { /* * We don't have that much in the SB, how much is * there? */ len = avail - sb_offset; } } return (len); } static inline void bbr_do_error_accounting(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, int32_t len, int32_t error) { #ifdef NETFLIX_STATS TCPSTAT_INC(tcps_sndpack_error); TCPSTAT_ADD(tcps_sndbyte_error, len); #endif } static inline void bbr_do_send_accounting(struct tcpcb *tp, struct tcp_bbr *bbr, struct bbr_sendmap *rsm, int32_t len, int32_t error) { if (error) { bbr_do_error_accounting(tp, bbr, rsm, len, error); return; } if ((tp->t_flags & TF_FORCEDATA) && len == 1) { /* Window probe */ TCPSTAT_INC(tcps_sndprobe); #ifdef STATS stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, len); #endif } else if (rsm) { if (rsm->r_flags & BBR_TLP) { /* * TLP should not count in retran count, but in its * own bin */ #ifdef NETFLIX_STATS tp->t_sndtlppack++; tp->t_sndtlpbyte += len; TCPSTAT_INC(tcps_tlpresends); TCPSTAT_ADD(tcps_tlpresend_bytes, len); #endif } else { /* Retransmit */ tp->t_sndrexmitpack++; TCPSTAT_INC(tcps_sndrexmitpack); TCPSTAT_ADD(tcps_sndrexmitbyte, len); #ifdef STATS stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, len); #endif } /* * Logs in 0 - 8, 8 is all non probe_bw states 0-7 is * sub-state */ counter_u64_add(bbr_state_lost[rsm->r_bbr_state], len); if (bbr->rc_bbr_state != BBR_STATE_PROBE_BW) { /* Non probe_bw log in 1, 2, or 4. */ counter_u64_add(bbr_state_resend[bbr->rc_bbr_state], len); } else { /* * Log our probe state 3, and log also 5-13 to show * us the recovery sub-state for the send. This * means that 3 == (5+6+7+8+9+10+11+12+13) */ counter_u64_add(bbr_state_resend[BBR_STATE_PROBE_BW], len); counter_u64_add(bbr_state_resend[(bbr_state_val(bbr) + 5)], len); } /* Place in both 16's the totals of retransmitted */ counter_u64_add(bbr_state_lost[16], len); counter_u64_add(bbr_state_resend[16], len); /* Place in 17's the total sent */ counter_u64_add(bbr_state_resend[17], len); counter_u64_add(bbr_state_lost[17], len); } else { /* New sends */ TCPSTAT_INC(tcps_sndpack); TCPSTAT_ADD(tcps_sndbyte, len); /* Place in 17's the total sent */ counter_u64_add(bbr_state_resend[17], len); counter_u64_add(bbr_state_lost[17], len); #ifdef STATS stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, len); #endif } } static void bbr_cwnd_limiting(struct tcpcb *tp, struct tcp_bbr *bbr, uint32_t in_level) { if (bbr->rc_filled_pipe && bbr_target_cwnd_mult_limit && (bbr->rc_use_google == 0)) { /* * Limit the cwnd to not be above N x the target plus whats * is outstanding. The target is based on the current b/w * estimate. */ uint32_t target; target = bbr_get_target_cwnd(bbr, bbr_get_bw(bbr), BBR_UNIT); target += ctf_outstanding(tp); target *= bbr_target_cwnd_mult_limit; if (tp->snd_cwnd > target) tp->snd_cwnd = target; bbr_log_type_cwndupd(bbr, 0, 0, 0, 10, 0, 0, __LINE__); } } static int bbr_window_update_needed(struct tcpcb *tp, struct socket *so, uint32_t recwin, int32_t maxseg) { /* * "adv" is the amount we could increase the window, taking into * account that we are limited by TCP_MAXWIN << tp->rcv_scale. */ uint32_t adv; int32_t oldwin; adv = min(recwin, TCP_MAXWIN << tp->rcv_scale); if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) { oldwin = (tp->rcv_adv - tp->rcv_nxt); adv -= oldwin; } else oldwin = 0; /* * If the new window size ends up being the same as the old size * when it is scaled, then don't force a window update. */ if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale) return (0); if (adv >= (2 * maxseg) && (adv >= (so->so_rcv.sb_hiwat / 4) || recwin <= (so->so_rcv.sb_hiwat / 8) || so->so_rcv.sb_hiwat <= 8 * maxseg)) { return (1); } if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) return (1); return (0); } /* * Return 0 on success and a errno on failure to send. * Note that a 0 return may not mean we sent anything * if the TCB was on the hpts. A non-zero return * does indicate the error we got from ip[6]_output. */ static int bbr_output_wtime(struct tcpcb *tp, const struct timeval *tv) { struct socket *so; int32_t len; uint32_t cts; uint32_t recwin, sendwin; int32_t sb_offset; int32_t flags, abandon, error = 0; struct tcp_log_buffer *lgb = NULL; struct mbuf *m; struct mbuf *mb; uint32_t if_hw_tsomaxsegcount = 0; uint32_t if_hw_tsomaxsegsize = 0; uint32_t if_hw_tsomax = 0; struct ip *ip = NULL; #ifdef TCPDEBUG struct ipovly *ipov = NULL; #endif struct tcp_bbr *bbr; struct tcphdr *th; #ifdef NETFLIX_TCPOUDP struct udphdr *udp = NULL; #endif u_char opt[TCP_MAXOLEN]; unsigned ipoptlen, optlen, hdrlen; #ifdef NETFLIX_TCPOUDP unsigned ulen; #endif uint32_t bbr_seq; uint32_t delay_calc=0; uint8_t doing_tlp = 0; uint8_t local_options; #ifdef BBR_INVARIANTS uint8_t doing_retran_from = 0; uint8_t picked_up_retran = 0; #endif uint8_t wanted_cookie = 0; uint8_t more_to_rxt=0; int32_t prefetch_so_done = 0; int32_t prefetch_rsm = 0; uint32_t what_we_can = 0; uint32_t tot_len = 0; uint32_t rtr_cnt = 0; uint32_t maxseg, pace_max_segs, p_maxseg; int32_t csum_flags; int32_t hw_tls; #if defined(IPSEC) || defined(IPSEC_SUPPORT) unsigned ipsec_optlen = 0; #endif volatile int32_t sack_rxmit; struct bbr_sendmap *rsm = NULL; int32_t tso, mtu; int force_tso = 0; struct tcpopt to; int32_t slot = 0; struct inpcb *inp; struct sockbuf *sb; uint32_t hpts_calling; #ifdef INET6 struct ip6_hdr *ip6 = NULL; int32_t isipv6; #endif uint8_t app_limited = BBR_JR_SENT_DATA; uint8_t filled_all = 0; bbr = (struct tcp_bbr *)tp->t_fb_ptr; /* We take a cache hit here */ memcpy(&bbr->rc_tv, tv, sizeof(struct timeval)); cts = tcp_tv_to_usectick(&bbr->rc_tv); inp = bbr->rc_inp; so = inp->inp_socket; sb = &so->so_snd; #ifdef KERN_TLS if (sb->sb_flags & SB_TLS_IFNET) hw_tls = 1; else #endif hw_tls = 0; kern_prefetch(sb, &maxseg); maxseg = tp->t_maxseg - bbr->rc_last_options; if (bbr_minseg(bbr) < maxseg) { tcp_bbr_tso_size_check(bbr, cts); } /* Remove any flags that indicate we are pacing on the inp */ pace_max_segs = bbr->r_ctl.rc_pace_max_segs; p_maxseg = min(maxseg, pace_max_segs); INP_WLOCK_ASSERT(inp); #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) return (tcp_offload_output(tp)); #endif #ifdef INET6 if (bbr->r_state) { /* Use the cache line loaded if possible */ isipv6 = bbr->r_is_v6; } else { isipv6 = (inp->inp_vflag & INP_IPV6) != 0; } #endif if (((bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) && inp->inp_in_hpts) { /* * We are on the hpts for some timer but not hptsi output. * Possibly remove from the hpts so we can send/recv etc. */ if ((tp->t_flags & TF_ACKNOW) == 0) { /* * No immediate demand right now to send an ack, but * the user may have read, making room for new data * (a window update). If so we may want to cancel * whatever timer is running (KEEP/DEL-ACK?) and * continue to send out a window update. Or we may * have gotten more data into the socket buffer to * send. */ recwin = min(max(sbspace(&so->so_rcv), 0), TCP_MAXWIN << tp->rcv_scale); if ((bbr_window_update_needed(tp, so, recwin, maxseg) == 0) && ((sbavail(sb) + ((tcp_outflags[tp->t_state] & TH_FIN) ? 1 : 0)) <= (tp->snd_max - tp->snd_una))) { /* * Nothing new to send and no window update * is needed to send. Lets just return and * let the timer-run off. */ return (0); } } tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT); bbr_timer_cancel(bbr, __LINE__, cts); } if (bbr->r_ctl.rc_last_delay_val) { /* Calculate a rough delay for early escape to sending */ if (SEQ_GT(cts, bbr->rc_pacer_started)) delay_calc = cts - bbr->rc_pacer_started; if (delay_calc >= bbr->r_ctl.rc_last_delay_val) delay_calc -= bbr->r_ctl.rc_last_delay_val; else delay_calc = 0; } /* Mark that we have called bbr_output(). */ if ((bbr->r_timer_override) || (tp->t_flags & TF_FORCEDATA) || (tp->t_state < TCPS_ESTABLISHED)) { /* Timeouts or early states are exempt */ if (inp->inp_in_hpts) tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT); } else if (inp->inp_in_hpts) { if ((bbr->r_ctl.rc_last_delay_val) && (bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && delay_calc) { /* * We were being paced for output and the delay has * already exceeded when we were supposed to be * called, lets go ahead and pull out of the hpts * and call output. */ counter_u64_add(bbr_out_size[TCP_MSS_ACCT_LATE], 1); bbr->r_ctl.rc_last_delay_val = 0; tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT); } else if (tp->t_state == TCPS_CLOSED) { bbr->r_ctl.rc_last_delay_val = 0; tcp_hpts_remove(inp, HPTS_REMOVE_OUTPUT); } else { /* * On the hpts, you shall not pass! even if ACKNOW * is on, we will when the hpts fires, unless of * course we are overdue. */ counter_u64_add(bbr_out_size[TCP_MSS_ACCT_INPACE], 1); return (0); } } bbr->rc_cwnd_limited = 0; if (bbr->r_ctl.rc_last_delay_val) { /* recalculate the real delay and deal with over/under */ if (SEQ_GT(cts, bbr->rc_pacer_started)) delay_calc = cts - bbr->rc_pacer_started; else delay_calc = 0; if (delay_calc >= bbr->r_ctl.rc_last_delay_val) /* Setup the delay which will be added in */ delay_calc -= bbr->r_ctl.rc_last_delay_val; else { /* * We are early setup to adjust * our slot time. */ uint64_t merged_val; bbr->r_ctl.rc_agg_early += (bbr->r_ctl.rc_last_delay_val - delay_calc); bbr->r_agg_early_set = 1; if (bbr->r_ctl.rc_hptsi_agg_delay) { if (bbr->r_ctl.rc_hptsi_agg_delay >= bbr->r_ctl.rc_agg_early) { /* Nope our previous late cancels out the early */ bbr->r_ctl.rc_hptsi_agg_delay -= bbr->r_ctl.rc_agg_early; bbr->r_agg_early_set = 0; bbr->r_ctl.rc_agg_early = 0; } else { bbr->r_ctl.rc_agg_early -= bbr->r_ctl.rc_hptsi_agg_delay; bbr->r_ctl.rc_hptsi_agg_delay = 0; } } merged_val = bbr->rc_pacer_started; merged_val <<= 32; merged_val |= bbr->r_ctl.rc_last_delay_val; bbr_log_pacing_delay_calc(bbr, inp->inp_hpts_calls, bbr->r_ctl.rc_agg_early, cts, delay_calc, merged_val, bbr->r_agg_early_set, 3); bbr->r_ctl.rc_last_delay_val = 0; BBR_STAT_INC(bbr_early); delay_calc = 0; } } else { /* We were not delayed due to hptsi */ if (bbr->r_agg_early_set) bbr->r_ctl.rc_agg_early = 0; bbr->r_agg_early_set = 0; delay_calc = 0; } if (delay_calc) { /* * We had a hptsi delay which means we are falling behind on * sending at the expected rate. Calculate an extra amount * of data we can send, if any, to put us back on track. */ if ((bbr->r_ctl.rc_hptsi_agg_delay + delay_calc) < bbr->r_ctl.rc_hptsi_agg_delay) bbr->r_ctl.rc_hptsi_agg_delay = 0xffffffff; else bbr->r_ctl.rc_hptsi_agg_delay += delay_calc; } sendwin = min(tp->snd_wnd, tp->snd_cwnd); if ((tp->snd_una == tp->snd_max) && (bbr->rc_bbr_state != BBR_STATE_IDLE_EXIT) && (sbavail(sb))) { /* * Ok we have been idle with nothing outstanding * we possibly need to start fresh with either a new * suite of states or a fast-ramp up. */ bbr_restart_after_idle(bbr, cts, bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time)); } /* * Now was there a hptsi delay where we are behind? We only count * being behind if: a) We are not in recovery. b) There was a delay. * c) We had room to send something. * */ hpts_calling = inp->inp_hpts_calls; inp->inp_hpts_calls = 0; if (bbr->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { if (bbr_process_timers(tp, bbr, cts, hpts_calling)) { counter_u64_add(bbr_out_size[TCP_MSS_ACCT_ATIMER], 1); return (0); } } bbr->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY; if (hpts_calling && (bbr->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { bbr->r_ctl.rc_last_delay_val = 0; } bbr->r_timer_override = 0; bbr->r_wanted_output = 0; /* * For TFO connections in SYN_RECEIVED, only allow the initial * SYN|ACK and those sent by the retransmit timer. */ if (IS_FASTOPEN(tp->t_flags) && ((tp->t_state == TCPS_SYN_RECEIVED) || (tp->t_state == TCPS_SYN_SENT)) && SEQ_GT(tp->snd_max, tp->snd_una) && /* inital SYN or SYN|ACK sent */ (tp->t_rxtshift == 0)) { /* not a retransmit */ return (0); } /* * Before sending anything check for a state update. For hpts * calling without input this is important. If its input calling * then this was already done. */ if (bbr->rc_use_google == 0) bbr_check_bbr_for_state(bbr, cts, __LINE__, 0); again: /* * If we've recently taken a timeout, snd_max will be greater than * snd_max. BBR in general does not pay much attention to snd_nxt * for historic reasons the persist timer still uses it. This means * we have to look at it. All retransmissions that are not persits * use the rsm that needs to be sent so snd_nxt is ignored. At the * end of this routine we pull snd_nxt always up to snd_max. */ doing_tlp = 0; #ifdef BBR_INVARIANTS doing_retran_from = picked_up_retran = 0; #endif error = 0; tso = 0; slot = 0; mtu = 0; sendwin = min(tp->snd_wnd, tp->snd_cwnd); sb_offset = tp->snd_max - tp->snd_una; flags = tcp_outflags[tp->t_state]; sack_rxmit = 0; len = 0; rsm = NULL; if (flags & TH_RST) { SOCKBUF_LOCK(sb); goto send; } recheck_resend: while (bbr->r_ctl.rc_free_cnt < bbr_min_req_free) { /* We need to always have one in reserve */ rsm = bbr_alloc(bbr); if (rsm == NULL) { error = ENOMEM; /* Lie to get on the hpts */ tot_len = tp->t_maxseg; if (hpts_calling) /* Retry in a ms */ slot = 1001; goto just_return_nolock; } TAILQ_INSERT_TAIL(&bbr->r_ctl.rc_free, rsm, r_next); bbr->r_ctl.rc_free_cnt++; rsm = NULL; } /* What do we send, a resend? */ if (bbr->r_ctl.rc_resend == NULL) { /* Check for rack timeout */ bbr->r_ctl.rc_resend = bbr_check_recovery_mode(tp, bbr, cts); if (bbr->r_ctl.rc_resend) { #ifdef BBR_INVARIANTS picked_up_retran = 1; #endif bbr_cong_signal(tp, NULL, CC_NDUPACK, bbr->r_ctl.rc_resend); } } if (bbr->r_ctl.rc_resend) { rsm = bbr->r_ctl.rc_resend; #ifdef BBR_INVARIANTS doing_retran_from = 1; #endif /* Remove any TLP flags its a RACK or T-O */ rsm->r_flags &= ~BBR_TLP; bbr->r_ctl.rc_resend = NULL; if (SEQ_LT(rsm->r_start, tp->snd_una)) { #ifdef BBR_INVARIANTS panic("Huh, tp:%p bbr:%p rsm:%p start:%u < snd_una:%u\n", tp, bbr, rsm, rsm->r_start, tp->snd_una); goto recheck_resend; #else /* TSNH */ rsm = NULL; goto recheck_resend; #endif } rtr_cnt++; if (rsm->r_flags & BBR_HAS_SYN) { /* Only retransmit a SYN by itself */ len = 0; if ((flags & TH_SYN) == 0) { /* Huh something is wrong */ rsm->r_start++; if (rsm->r_start == rsm->r_end) { /* Clean it up, somehow we missed the ack? */ bbr_log_syn(tp, NULL); } else { /* TFO with data? */ rsm->r_flags &= ~BBR_HAS_SYN; len = rsm->r_end - rsm->r_start; } } else { /* Retransmitting SYN */ rsm = NULL; SOCKBUF_LOCK(sb); goto send; } } else len = rsm->r_end - rsm->r_start; if ((bbr->rc_resends_use_tso == 0) && #ifdef KERN_TLS ((sb->sb_flags & SB_TLS_IFNET) == 0) && #endif (len > maxseg)) { len = maxseg; more_to_rxt = 1; } sb_offset = rsm->r_start - tp->snd_una; if (len > 0) { sack_rxmit = 1; TCPSTAT_INC(tcps_sack_rexmits); TCPSTAT_ADD(tcps_sack_rexmit_bytes, min(len, maxseg)); } else { /* I dont think this can happen */ rsm = NULL; goto recheck_resend; } BBR_STAT_INC(bbr_resends_set); } else if (bbr->r_ctl.rc_tlp_send) { /* * Tail loss probe */ doing_tlp = 1; rsm = bbr->r_ctl.rc_tlp_send; bbr->r_ctl.rc_tlp_send = NULL; sack_rxmit = 1; len = rsm->r_end - rsm->r_start; rtr_cnt++; if ((bbr->rc_resends_use_tso == 0) && (len > maxseg)) len = maxseg; if (SEQ_GT(tp->snd_una, rsm->r_start)) { #ifdef BBR_INVARIANTS panic("tp:%p bbc:%p snd_una:%u rsm:%p r_start:%u", tp, bbr, tp->snd_una, rsm, rsm->r_start); #else /* TSNH */ rsm = NULL; goto recheck_resend; #endif } sb_offset = rsm->r_start - tp->snd_una; BBR_STAT_INC(bbr_tlp_set); } /* * Enforce a connection sendmap count limit if set * as long as we are not retransmiting. */ if ((rsm == NULL) && (V_tcp_map_entries_limit > 0) && (bbr->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { BBR_STAT_INC(bbr_alloc_limited); if (!bbr->alloc_limit_reported) { bbr->alloc_limit_reported = 1; BBR_STAT_INC(bbr_alloc_limited_conns); } goto just_return_nolock; } #ifdef BBR_INVARIANTS if (rsm && SEQ_LT(rsm->r_start, tp->snd_una)) { panic("tp:%p bbr:%p rsm:%p sb_offset:%u len:%u", tp, bbr, rsm, sb_offset, len); } #endif /* * Get standard flags, and add SYN or FIN if requested by 'hidden' * state flags. */ if (tp->t_flags & TF_NEEDFIN && (rsm == NULL)) flags |= TH_FIN; if (tp->t_flags & TF_NEEDSYN) flags |= TH_SYN; if (rsm && (rsm->r_flags & BBR_HAS_FIN)) { /* we are retransmitting the fin */ len--; if (len) { /* * When retransmitting data do *not* include the * FIN. This could happen from a TLP probe if we * allowed data with a FIN. */ flags &= ~TH_FIN; } } else if (rsm) { if (flags & TH_FIN) flags &= ~TH_FIN; } if ((sack_rxmit == 0) && (prefetch_rsm == 0)) { void *end_rsm; end_rsm = TAILQ_LAST_FAST(&bbr->r_ctl.rc_tmap, bbr_sendmap, r_tnext); if (end_rsm) kern_prefetch(end_rsm, &prefetch_rsm); prefetch_rsm = 1; } SOCKBUF_LOCK(sb); /* * If in persist timeout with window of 0, send 1 byte. Otherwise, * if window is small but nonzero and time TF_SENTFIN expired, we * will send what we can and go to transmit state. */ if (tp->t_flags & TF_FORCEDATA) { if ((sendwin == 0) || (sendwin <= (tp->snd_max - tp->snd_una))) { /* * If we still have some data to send, then clear * the FIN bit. Usually this would happen below * when it realizes that we aren't sending all the * data. However, if we have exactly 1 byte of * unsent data, then it won't clear the FIN bit * below, and if we are in persist state, we wind up * sending the packet without recording that we sent * the FIN bit. * * We can't just blindly clear the FIN bit, because * if we don't have any more data to send then the * probe will be the FIN itself. */ if (sb_offset < sbused(sb)) flags &= ~TH_FIN; sendwin = 1; } else { if ((bbr->rc_in_persist != 0) && (tp->snd_wnd >= min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr)))) { /* Exit persists if there is space */ bbr_exit_persist(tp, bbr, cts, __LINE__); } if (rsm == NULL) { /* * If we are dropping persist mode then we * need to correct sb_offset if not a * retransmit. */ sb_offset = tp->snd_max - tp->snd_una; } } } /* * If snd_nxt == snd_max and we have transmitted a FIN, the * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a * negative length. This can also occur when TCP opens up its * congestion window while receiving additional duplicate acks after * fast-retransmit because TCP will reset snd_nxt to snd_max after * the fast-retransmit. * * In the normal retransmit-FIN-only case, however, snd_nxt will be * set to snd_una, the sb_offset will be 0, and the length may wind * up 0. * * If sack_rxmit is true we are retransmitting from the scoreboard * in which case len is already set. */ if (sack_rxmit == 0) { uint32_t avail; avail = sbavail(sb); if (SEQ_GT(tp->snd_max, tp->snd_una)) sb_offset = tp->snd_max - tp->snd_una; else sb_offset = 0; if (bbr->rc_tlp_new_data) { /* TLP is forcing out new data */ uint32_t tlplen; doing_tlp = 1; tlplen = maxseg; if (tlplen > (uint32_t)(avail - sb_offset)) { tlplen = (uint32_t)(avail - sb_offset); } if (tlplen > tp->snd_wnd) { len = tp->snd_wnd; } else { len = tlplen; } bbr->rc_tlp_new_data = 0; } else { what_we_can = len = bbr_what_can_we_send(tp, bbr, sendwin, avail, sb_offset, cts); if ((len < p_maxseg) && (bbr->rc_in_persist == 0) && (ctf_outstanding(tp) >= (2 * p_maxseg)) && ((avail - sb_offset) >= p_maxseg)) { /* * We are not completing whats in the socket * buffer (i.e. there is at least a segment * waiting to send) and we have 2 or more * segments outstanding. There is no sense * of sending a little piece. Lets defer and * and wait until we can send a whole * segment. */ len = 0; } if ((tp->t_flags & TF_FORCEDATA) && (bbr->rc_in_persist)) { /* * We are in persists, figure out if * a retransmit is available (maybe the previous * persists we sent) or if we have to send new * data. */ rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); if (rsm) { len = rsm->r_end - rsm->r_start; if (rsm->r_flags & BBR_HAS_FIN) len--; if ((bbr->rc_resends_use_tso == 0) && (len > maxseg)) len = maxseg; if (len > 1) BBR_STAT_INC(bbr_persist_reneg); /* * XXXrrs we could force the len to * 1 byte here to cause the chunk to * split apart.. but that would then * mean we always retransmit it as * one byte even after the window * opens. */ sack_rxmit = 1; sb_offset = rsm->r_start - tp->snd_una; } else { /* * First time through in persists or peer * acked our one byte. Though we do have * to have something in the sb. */ len = 1; sb_offset = 0; if (avail == 0) len = 0; } } } } if (prefetch_so_done == 0) { kern_prefetch(so, &prefetch_so_done); prefetch_so_done = 1; } /* * Lop off SYN bit if it has already been sent. However, if this is * SYN-SENT state and if segment contains data and if we don't know * that foreign host supports TAO, suppress sending segment. */ if ((flags & TH_SYN) && (rsm == NULL) && SEQ_GT(tp->snd_max, tp->snd_una)) { if (tp->t_state != TCPS_SYN_RECEIVED) flags &= ~TH_SYN; /* * When sending additional segments following a TFO SYN|ACK, * do not include the SYN bit. */ if (IS_FASTOPEN(tp->t_flags) && (tp->t_state == TCPS_SYN_RECEIVED)) flags &= ~TH_SYN; sb_offset--, len++; if (sbavail(sb) == 0) len = 0; } else if ((flags & TH_SYN) && rsm) { /* * Subtract one from the len for the SYN being * retransmitted. */ len--; } /* * Be careful not to send data and/or FIN on SYN segments. This * measure is needed to prevent interoperability problems with not * fully conformant TCP implementations. */ if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) { len = 0; flags &= ~TH_FIN; } /* * On TFO sockets, ensure no data is sent in the following cases: * * - When retransmitting SYN|ACK on a passively-created socket * - When retransmitting SYN on an actively created socket * - When sending a zero-length cookie (cookie request) on an * actively created socket * - When the socket is in the CLOSED state (RST is being sent) */ if (IS_FASTOPEN(tp->t_flags) && (((flags & TH_SYN) && (tp->t_rxtshift > 0)) || ((tp->t_state == TCPS_SYN_SENT) && (tp->t_tfo_client_cookie_len == 0)) || (flags & TH_RST))) { len = 0; sack_rxmit = 0; rsm = NULL; } /* Without fast-open there should never be data sent on a SYN */ if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) len = 0; if (len <= 0) { /* * If FIN has been sent but not acked, but we haven't been * called to retransmit, len will be < 0. Otherwise, window * shrank after we sent into it. If window shrank to 0, * cancel pending retransmit, pull snd_nxt back to (closed) * window, and set the persist timer if it isn't already * going. If the window didn't close completely, just wait * for an ACK. * * We also do a general check here to ensure that we will * set the persist timer when we have data to send, but a * 0-byte window. This makes sure the persist timer is set * even if the packet hits one of the "goto send" lines * below. */ len = 0; if ((tp->snd_wnd == 0) && (TCPS_HAVEESTABLISHED(tp->t_state)) && (tp->snd_una == tp->snd_max) && (sb_offset < (int)sbavail(sb))) { /* * Not enough room in the rwnd to send * a paced segment out. */ bbr_enter_persist(tp, bbr, cts, __LINE__); } } else if ((rsm == NULL) && (doing_tlp == 0) && (len < bbr->r_ctl.rc_pace_max_segs)) { /* * We are not sending a full segment for * some reason. Should we not send anything (think * sws or persists)? */ if ((tp->snd_wnd < min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) && (TCPS_HAVEESTABLISHED(tp->t_state)) && (len < (int)(sbavail(sb) - sb_offset))) { /* * Here the rwnd is less than * the pacing size, this is not a retransmit, * we are established and * the send is not the last in the socket buffer * lets not send, and possibly enter persists. */ len = 0; if (tp->snd_max == tp->snd_una) bbr_enter_persist(tp, bbr, cts, __LINE__); } else if ((tp->snd_cwnd >= bbr->r_ctl.rc_pace_max_segs) && (ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) > (2 * maxseg)) && (len < (int)(sbavail(sb) - sb_offset)) && (len < bbr_minseg(bbr))) { /* * Here we are not retransmitting, and * the cwnd is not so small that we could * not send at least a min size (rxt timer * not having gone off), We have 2 segments or * more already in flight, its not the tail end * of the socket buffer and the cwnd is blocking * us from sending out minimum pacing segment size. * Lets not send anything. */ bbr->rc_cwnd_limited = 1; len = 0; } else if (((tp->snd_wnd - ctf_outstanding(tp)) < min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) && (ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) > (2 * maxseg)) && (len < (int)(sbavail(sb) - sb_offset)) && (TCPS_HAVEESTABLISHED(tp->t_state))) { /* * Here we have a send window but we have * filled it up and we can't send another pacing segment. * We also have in flight more than 2 segments * and we are not completing the sb i.e. we allow * the last bytes of the sb to go out even if * its not a full pacing segment. */ len = 0; } } /* len will be >= 0 after this point. */ KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); tcp_sndbuf_autoscale(tp, so, sendwin); /* * */ if (bbr->rc_in_persist && len && (rsm == NULL) && (len < min((bbr->r_ctl.rc_high_rwnd/2), bbr->r_ctl.rc_pace_max_segs))) { /* * We are in persist, not doing a retransmit and don't have enough space * yet to send a full TSO. So is it at the end of the sb * if so we need to send else nuke to 0 and don't send. */ int sbleft; if (sbavail(sb) > sb_offset) sbleft = sbavail(sb) - sb_offset; else sbleft = 0; if (sbleft >= min((bbr->r_ctl.rc_high_rwnd/2), bbr->r_ctl.rc_pace_max_segs)) { /* not at end of sb lets not send */ len = 0; } } /* * Decide if we can use TCP Segmentation Offloading (if supported by * hardware). * * TSO may only be used if we are in a pure bulk sending state. The * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP * options prevent using TSO. With TSO the TCP header is the same * (except for the sequence number) for all generated packets. This * makes it impossible to transmit any options which vary per * generated segment or packet. * * IPv4 handling has a clear separation of ip options and ip header * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() * does the right thing below to provide length of just ip options * and thus checking for ipoptlen is enough to decide if ip options * are present. */ #ifdef INET6 if (isipv6) ipoptlen = ip6_optlen(inp); else #endif if (inp->inp_options) ipoptlen = inp->inp_options->m_len - offsetof(struct ipoption, ipopt_list); else ipoptlen = 0; #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* * Pre-calculate here as we save another lookup into the darknesses * of IPsec that way and can actually decide if TSO is ok. */ #ifdef INET6 if (isipv6 && IPSEC_ENABLED(ipv6)) ipsec_optlen = IPSEC_HDRSIZE(ipv6, inp); #ifdef INET else #endif #endif /* INET6 */ #ifdef INET if (IPSEC_ENABLED(ipv4)) ipsec_optlen = IPSEC_HDRSIZE(ipv4, inp); #endif /* INET */ #endif /* IPSEC */ #if defined(IPSEC) || defined(IPSEC_SUPPORT) ipoptlen += ipsec_optlen; #endif if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && (len > maxseg) && (tp->t_port == 0) && ((tp->t_flags & TF_SIGNATURE) == 0) && tp->rcv_numsacks == 0 && ipoptlen == 0) tso = 1; recwin = min(max(sbspace(&so->so_rcv), 0), TCP_MAXWIN << tp->rcv_scale); /* * Sender silly window avoidance. We transmit under the following * conditions when len is non-zero: * * - We have a full segment (or more with TSO) - This is the last * buffer in a write()/send() and we are either idle or running * NODELAY - we've timed out (e.g. persist timer) - we have more * then 1/2 the maximum send window's worth of data (receiver may be * limited the window size) - we need to retransmit */ if (rsm) goto send; if (len) { if (sack_rxmit) goto send; if (len >= p_maxseg) goto send; /* * NOTE! on localhost connections an 'ack' from the remote * end may occur synchronously with the output and cause us * to flush a buffer queued with moretocome. XXX * */ if (((tp->t_flags & TF_MORETOCOME) == 0) && /* normal case */ ((tp->t_flags & TF_NODELAY) || ((uint32_t)len + (uint32_t)sb_offset) >= sbavail(&so->so_snd)) && (tp->t_flags & TF_NOPUSH) == 0) { goto send; } if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */ goto send; } if (tp->t_flags & TF_FORCEDATA) { /* typ. timeout case */ goto send; } if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) { goto send; } } /* * Sending of standalone window updates. * * Window updates are important when we close our window due to a * full socket buffer and are opening it again after the application * reads data from it. Once the window has opened again and the * remote end starts to send again the ACK clock takes over and * provides the most current window information. * * We must avoid the silly window syndrome whereas every read from * the receive buffer, no matter how small, causes a window update * to be sent. We also should avoid sending a flurry of window * updates when the socket buffer had queued a lot of data and the * application is doing small reads. * * Prevent a flurry of pointless window updates by only sending an * update when we can increase the advertized window by more than * 1/4th of the socket buffer capacity. When the buffer is getting * full or is very small be more aggressive and send an update * whenever we can increase by two mss sized segments. In all other * situations the ACK's to new incoming data will carry further * window increases. * * Don't send an independent window update if a delayed ACK is * pending (it will get piggy-backed on it) or the remote side * already has done a half-close and won't send more data. Skip * this if the connection is in T/TCP half-open state. */ if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) && !(tp->t_flags & TF_DELACK) && !TCPS_HAVERCVDFIN(tp->t_state)) { /* Check to see if we should do a window update */ if (bbr_window_update_needed(tp, so, recwin, maxseg)) goto send; } /* * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW * is also a catch-all for the retransmit timer timeout case. */ if (tp->t_flags & TF_ACKNOW) { goto send; } if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) { goto send; } if (SEQ_GT(tp->snd_up, tp->snd_una)) { goto send; } /* * If our state indicates that FIN should be sent and we have not * yet done so, then we need to send. */ if (flags & TH_FIN && ((tp->t_flags & TF_SENTFIN) == 0)) { goto send; } /* * No reason to send a segment, just return. */ just_return: SOCKBUF_UNLOCK(sb); just_return_nolock: if (tot_len) slot = bbr_get_pacing_delay(bbr, bbr->r_ctl.rc_bbr_hptsi_gain, tot_len, cts, 0); if (bbr->rc_no_pacing) slot = 0; if (tot_len == 0) { if ((ctf_outstanding(tp) + min((bbr->r_ctl.rc_high_rwnd/2), bbr_minseg(bbr))) >= tp->snd_wnd) { BBR_STAT_INC(bbr_rwnd_limited); app_limited = BBR_JR_RWND_LIMITED; bbr_cwnd_limiting(tp, bbr, ctf_outstanding(tp)); if ((bbr->rc_in_persist == 0) && TCPS_HAVEESTABLISHED(tp->t_state) && (tp->snd_max == tp->snd_una) && sbavail(&tp->t_inpcb->inp_socket->so_snd)) { /* No send window.. we must enter persist */ bbr_enter_persist(tp, bbr, bbr->r_ctl.rc_rcvtime, __LINE__); } } else if (ctf_outstanding(tp) >= sbavail(sb)) { BBR_STAT_INC(bbr_app_limited); app_limited = BBR_JR_APP_LIMITED; bbr_cwnd_limiting(tp, bbr, ctf_outstanding(tp)); } else if ((ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) + p_maxseg) >= tp->snd_cwnd) { BBR_STAT_INC(bbr_cwnd_limited); app_limited = BBR_JR_CWND_LIMITED; bbr_cwnd_limiting(tp, bbr, ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes))); bbr->rc_cwnd_limited = 1; } else { BBR_STAT_INC(bbr_app_limited); app_limited = BBR_JR_APP_LIMITED; bbr_cwnd_limiting(tp, bbr, ctf_outstanding(tp)); } bbr->r_ctl.rc_hptsi_agg_delay = 0; bbr->r_agg_early_set = 0; bbr->r_ctl.rc_agg_early = 0; bbr->r_ctl.rc_last_delay_val = 0; } else if (bbr->rc_use_google == 0) bbr_check_bbr_for_state(bbr, cts, __LINE__, 0); /* Are we app limited? */ if ((app_limited == BBR_JR_APP_LIMITED) || (app_limited == BBR_JR_RWND_LIMITED)) { /** * We are application limited. */ bbr->r_ctl.r_app_limited_until = (ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) + bbr->r_ctl.rc_delivered); } if (tot_len == 0) counter_u64_add(bbr_out_size[TCP_MSS_ACCT_JUSTRET], 1); tp->t_flags &= ~TF_FORCEDATA; /* Dont update the time if we did not send */ bbr->r_ctl.rc_last_delay_val = 0; bbr->rc_output_starts_timer = 1; bbr_start_hpts_timer(bbr, tp, cts, 9, slot, tot_len); bbr_log_type_just_return(bbr, cts, tot_len, hpts_calling, app_limited, p_maxseg, len); if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* Make sure snd_nxt is drug up */ tp->snd_nxt = tp->snd_max; } return (error); send: if (doing_tlp == 0) { /* * Data not a TLP, and its not the rxt firing. If it is the * rxt firing, we want to leave the tlp_in_progress flag on * so we don't send another TLP. It has to be a rack timer * or normal send (response to acked data) to clear the tlp * in progress flag. */ bbr->rc_tlp_in_progress = 0; bbr->rc_tlp_rtx_out = 0; } else { /* * Its a TLP. */ bbr->rc_tlp_in_progress = 1; } bbr_timer_cancel(bbr, __LINE__, cts); if (rsm == NULL) { if (sbused(sb) > 0) { /* * This is sub-optimal. We only send a stand alone * FIN on its own segment. */ if (flags & TH_FIN) { flags &= ~TH_FIN; if ((len == 0) && ((tp->t_flags & TF_ACKNOW) == 0)) { /* Lets not send this */ slot = 0; goto just_return; } } } } else { /* * We do *not* send a FIN on a retransmit if it has data. * The if clause here where len > 1 should never come true. */ if ((len > 0) && (((rsm->r_flags & BBR_HAS_FIN) == 0) && (flags & TH_FIN))) { flags &= ~TH_FIN; len--; } } SOCKBUF_LOCK_ASSERT(sb); if (len > 0) { if ((tp->snd_una == tp->snd_max) && (bbr_calc_time(cts, bbr->r_ctl.rc_went_idle_time) >= bbr_rtt_probe_time)) { /* * This qualifies as a RTT_PROBE session since we * drop the data outstanding to nothing and waited * more than bbr_rtt_probe_time. */ bbr_log_rtt_shrinks(bbr, cts, 0, 0, __LINE__, BBR_RTTS_WASIDLE, 0); bbr_set_reduced_rtt(bbr, cts, __LINE__); } if (len >= maxseg) tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT; else tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT; } /* * Before ESTABLISHED, force sending of initial options unless TCP * set not to do any options. NOTE: we assume that the IP/TCP header * plus TCP options always fit in a single mbuf, leaving room for a * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr) * + optlen <= MCLBYTES */ optlen = 0; #ifdef INET6 if (isipv6) hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else #endif hdrlen = sizeof(struct tcpiphdr); /* * Compute options for segment. We only have to care about SYN and * established connection segments. Options for SYN-ACK segments * are handled in TCP syncache. */ to.to_flags = 0; local_options = 0; if ((tp->t_flags & TF_NOOPT) == 0) { /* Maximum segment size. */ if (flags & TH_SYN) { to.to_mss = tcp_mssopt(&inp->inp_inc); #ifdef NETFLIX_TCPOUDP if (tp->t_port) to.to_mss -= V_tcp_udp_tunneling_overhead; #endif to.to_flags |= TOF_MSS; /* * On SYN or SYN|ACK transmits on TFO connections, * only include the TFO option if it is not a * retransmit, as the presence of the TFO option may * have caused the original SYN or SYN|ACK to have * been dropped by a middlebox. */ if (IS_FASTOPEN(tp->t_flags) && (tp->t_rxtshift == 0)) { if (tp->t_state == TCPS_SYN_RECEIVED) { to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; to.to_tfo_cookie = (u_int8_t *)&tp->t_tfo_cookie.server; to.to_flags |= TOF_FASTOPEN; wanted_cookie = 1; } else if (tp->t_state == TCPS_SYN_SENT) { to.to_tfo_len = tp->t_tfo_client_cookie_len; to.to_tfo_cookie = tp->t_tfo_cookie.client; to.to_flags |= TOF_FASTOPEN; wanted_cookie = 1; } } } /* Window scaling. */ if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) { to.to_wscale = tp->request_r_scale; to.to_flags |= TOF_SCALE; } /* Timestamps. */ if ((tp->t_flags & TF_RCVD_TSTMP) || ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) { to.to_tsval = tcp_tv_to_mssectick(&bbr->rc_tv) + tp->ts_offset; to.to_tsecr = tp->ts_recent; to.to_flags |= TOF_TS; local_options += TCPOLEN_TIMESTAMP + 2; } /* Set receive buffer autosizing timestamp. */ if (tp->rfbuf_ts == 0 && (so->so_rcv.sb_flags & SB_AUTOSIZE)) tp->rfbuf_ts = tcp_tv_to_mssectick(&bbr->rc_tv); /* Selective ACK's. */ if (flags & TH_SYN) to.to_flags |= TOF_SACKPERM; else if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->rcv_numsacks > 0) { to.to_flags |= TOF_SACK; to.to_nsacks = tp->rcv_numsacks; to.to_sacks = (u_char *)tp->sackblks; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* TCP-MD5 (RFC2385). */ if (tp->t_flags & TF_SIGNATURE) to.to_flags |= TOF_SIGNATURE; #endif /* TCP_SIGNATURE */ /* Processing the options. */ hdrlen += (optlen = tcp_addoptions(&to, opt)); /* * If we wanted a TFO option to be added, but it was unable * to fit, ensure no data is sent. */ if (IS_FASTOPEN(tp->t_flags) && wanted_cookie && !(to.to_flags & TOF_FASTOPEN)) len = 0; } #ifdef NETFLIX_TCPOUDP if (tp->t_port) { if (V_tcp_udp_tunneling_port == 0) { /* The port was removed?? */ SOCKBUF_UNLOCK(&so->so_snd); return (EHOSTUNREACH); } hdrlen += sizeof(struct udphdr); } #endif #ifdef INET6 if (isipv6) ipoptlen = ip6_optlen(tp->t_inpcb); else #endif if (tp->t_inpcb->inp_options) ipoptlen = tp->t_inpcb->inp_options->m_len - offsetof(struct ipoption, ipopt_list); else ipoptlen = 0; ipoptlen = 0; #if defined(IPSEC) || defined(IPSEC_SUPPORT) ipoptlen += ipsec_optlen; #endif if (bbr->rc_last_options != local_options) { /* * Cache the options length this generally does not change * on a connection. We use this to calculate TSO. */ bbr->rc_last_options = local_options; } maxseg = tp->t_maxseg - (ipoptlen + optlen); p_maxseg = min(maxseg, pace_max_segs); /* * Adjust data length if insertion of options will bump the packet * length beyond the t_maxseg length. Clear the FIN bit because we * cut off the tail of the segment. */ #ifdef KERN_TLS /* force TSO for so TLS offload can get mss */ if (sb->sb_flags & SB_TLS_IFNET) { force_tso = 1; } #endif if (len > maxseg) { if (len != 0 && (flags & TH_FIN)) { flags &= ~TH_FIN; } if (tso) { uint32_t moff; int32_t max_len; /* extract TSO information */ if_hw_tsomax = tp->t_tsomax; if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; KASSERT(ipoptlen == 0, ("%s: TSO can't do IP options", __func__)); /* * Check if we should limit by maximum payload * length: */ if (if_hw_tsomax != 0) { /* compute maximum TSO length */ max_len = (if_hw_tsomax - hdrlen - max_linkhdr); if (max_len <= 0) { len = 0; } else if (len > max_len) { len = max_len; } } /* * Prevent the last segment from being fractional * unless the send sockbuf can be emptied: */ if (((sb_offset + len) < sbavail(sb)) && (hw_tls == 0)) { moff = len % (uint32_t)maxseg; if (moff != 0) { len -= moff; } } /* * In case there are too many small fragments don't * use TSO: */ if (len <= maxseg) { len = maxseg; tso = 0; } } else { /* Not doing TSO */ if (optlen + ipoptlen >= tp->t_maxseg) { /* * Since we don't have enough space to put * the IP header chain and the TCP header in * one packet as required by RFC 7112, don't * send it. Also ensure that at least one * byte of the payload can be put into the * TCP segment. */ SOCKBUF_UNLOCK(&so->so_snd); error = EMSGSIZE; sack_rxmit = 0; goto out; } len = maxseg; } } else { /* Not doing TSO */ if_hw_tsomaxsegcount = 0; tso = 0; } KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET, ("%s: len > IP_MAXPACKET", __func__)); #ifdef DIAGNOSTIC #ifdef INET6 if (max_linkhdr + hdrlen > MCLBYTES) #else if (max_linkhdr + hdrlen > MHLEN) #endif panic("tcphdr too big"); #endif /* * This KASSERT is here to catch edge cases at a well defined place. * Before, those had triggered (random) panic conditions further * down. */ #ifdef BBR_INVARIANTS if (sack_rxmit) { if (SEQ_LT(rsm->r_start, tp->snd_una)) { panic("RSM:%p TP:%p bbr:%p start:%u is < snd_una:%u", rsm, tp, bbr, rsm->r_start, tp->snd_una); } } #endif KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); if ((len == 0) && (flags & TH_FIN) && (sbused(sb))) { /* * We have outstanding data, don't send a fin by itself!. */ slot = 0; goto just_return; } /* * Grab a header mbuf, attaching a copy of data to be transmitted, * and initialize the header from the template for sends on this * connection. */ if (len) { uint32_t moff; uint32_t orig_len; /* * We place a limit on sending with hptsi. */ if ((rsm == NULL) && len > pace_max_segs) len = pace_max_segs; if (len <= maxseg) tso = 0; #ifdef INET6 if (MHLEN < hdrlen + max_linkhdr) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else #endif m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { BBR_STAT_INC(bbr_failed_mbuf_aloc); bbr_log_enobuf_jmp(bbr, len, cts, __LINE__, len, 0, 0); SOCKBUF_UNLOCK(sb); error = ENOBUFS; sack_rxmit = 0; goto out; } m->m_data += max_linkhdr; m->m_len = hdrlen; /* * Start the m_copy functions from the closest mbuf to the * sb_offset in the socket buffer chain. */ if ((sb_offset > sbavail(sb)) || ((len + sb_offset) > sbavail(sb))) { #ifdef BBR_INVARIANTS if ((len + sb_offset) > (sbavail(sb) + ((flags & (TH_FIN | TH_SYN)) ? 1 : 0))) panic("tp:%p bbr:%p len:%u sb_offset:%u sbavail:%u rsm:%p %u:%u:%u", tp, bbr, len, sb_offset, sbavail(sb), rsm, doing_retran_from, picked_up_retran, doing_tlp); #endif /* * In this messed up situation we have two choices, * a) pretend the send worked, and just start timers * and what not (not good since that may lead us * back here a lot). b) Send the lowest segment * in the map. c) Drop the connection. Lets do * which if it continues to happen will lead to * via timeouts. */ BBR_STAT_INC(bbr_offset_recovery); rsm = TAILQ_FIRST(&bbr->r_ctl.rc_map); sb_offset = 0; if (rsm == NULL) { sack_rxmit = 0; len = sbavail(sb); } else { sack_rxmit = 1; if (rsm->r_start != tp->snd_una) { /* * Things are really messed up, * is the only thing to do. */ BBR_STAT_INC(bbr_offset_drop); tcp_set_inp_to_drop(inp, EFAULT); return (0); } len = rsm->r_end - rsm->r_start; } if (len > sbavail(sb)) len = sbavail(sb); if (len > maxseg) len = maxseg; } mb = sbsndptr_noadv(sb, sb_offset, &moff); if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) { m_copydata(mb, moff, (int)len, mtod(m, caddr_t)+hdrlen); if (rsm == NULL) sbsndptr_adv(sb, mb, len); m->m_len += len; } else { struct sockbuf *msb; if (rsm) msb = NULL; else msb = sb; #ifdef BBR_INVARIANTS if ((len + moff) > (sbavail(sb) + ((flags & (TH_FIN | TH_SYN)) ? 1 : 0))) { if (rsm) { panic("tp:%p bbr:%p len:%u moff:%u sbavail:%u rsm:%p snd_una:%u rsm_start:%u flg:%x %u:%u:%u sr:%d ", tp, bbr, len, moff, sbavail(sb), rsm, tp->snd_una, rsm->r_flags, rsm->r_start, doing_retran_from, picked_up_retran, doing_tlp, sack_rxmit); } else { panic("tp:%p bbr:%p len:%u moff:%u sbavail:%u sb_offset:%u snd_una:%u", tp, bbr, len, moff, sbavail(sb), sb_offset, tp->snd_una); } } #endif orig_len = len; m->m_next = tcp_m_copym( #ifdef NETFLIX_COPY_ARGS tp, #endif mb, moff, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb, ((rsm == NULL) ? hw_tls : 0) #ifdef NETFLIX_COPY_ARGS , &filled_all #endif ); if (len <= maxseg && !force_tso) { /* * Must have ran out of mbufs for the copy * shorten it to no longer need tso. Lets * not put on sendalot since we are low on * mbufs. */ tso = 0; } if (m->m_next == NULL) { SOCKBUF_UNLOCK(sb); (void)m_free(m); error = ENOBUFS; sack_rxmit = 0; goto out; } } #ifdef BBR_INVARIANTS if (tso && len < maxseg) { panic("tp:%p tso on, but len:%d < maxseg:%d", tp, len, maxseg); } if (tso && if_hw_tsomaxsegcount) { int32_t seg_cnt = 0; struct mbuf *foo; foo = m; while (foo) { seg_cnt++; foo = foo->m_next; } if (seg_cnt > if_hw_tsomaxsegcount) { panic("seg_cnt:%d > max:%d", seg_cnt, if_hw_tsomaxsegcount); } } #endif /* * If we're sending everything we've got, set PUSH. (This * will keep happy those implementations which only give * data to the user when a buffer fills or a PUSH comes in.) */ if (sb_offset + len == sbused(sb) && sbused(sb) && !(flags & TH_SYN)) { flags |= TH_PUSH; } SOCKBUF_UNLOCK(sb); } else { SOCKBUF_UNLOCK(sb); if (tp->t_flags & TF_ACKNOW) TCPSTAT_INC(tcps_sndacks); else if (flags & (TH_SYN | TH_FIN | TH_RST)) TCPSTAT_INC(tcps_sndctrl); else if (SEQ_GT(tp->snd_up, tp->snd_una)) TCPSTAT_INC(tcps_sndurg); else TCPSTAT_INC(tcps_sndwinup); m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { BBR_STAT_INC(bbr_failed_mbuf_aloc); bbr_log_enobuf_jmp(bbr, len, cts, __LINE__, len, 0, 0); error = ENOBUFS; /* Fudge the send time since we could not send */ sack_rxmit = 0; goto out; } #ifdef INET6 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) && MHLEN >= hdrlen) { M_ALIGN(m, hdrlen); } else #endif m->m_data += max_linkhdr; m->m_len = hdrlen; } SOCKBUF_UNLOCK_ASSERT(sb); m->m_pkthdr.rcvif = (struct ifnet *)0; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif #ifdef INET6 if (isipv6) { ip6 = mtod(m, struct ip6_hdr *); #ifdef NETFLIX_TCPOUDP if (tp->t_port) { udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr)); udp->uh_sport = htons(V_tcp_udp_tunneling_port); udp->uh_dport = tp->t_port; ulen = hdrlen + len - sizeof(struct ip6_hdr); udp->uh_ulen = htons(ulen); th = (struct tcphdr *)(udp + 1); } else { #endif th = (struct tcphdr *)(ip6 + 1); #ifdef NETFLIX_TCPOUDP } #endif tcpip_fillheaders(inp, #ifdef NETFLIX_TCPOUDP tp->t_port, #endif ip6, th); } else #endif /* INET6 */ { ip = mtod(m, struct ip *); #ifdef TCPDEBUG ipov = (struct ipovly *)ip; #endif #ifdef NETFLIX_TCPOUDP if (tp->t_port) { udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip)); udp->uh_sport = htons(V_tcp_udp_tunneling_port); udp->uh_dport = tp->t_port; ulen = hdrlen + len - sizeof(struct ip); udp->uh_ulen = htons(ulen); th = (struct tcphdr *)(udp + 1); } else #endif th = (struct tcphdr *)(ip + 1); tcpip_fillheaders(inp, #ifdef NETFLIX_TCPOUDP tp->t_port, #endif ip, th); } /* * If we are doing retransmissions, then snd_nxt will not reflect * the first unsent octet. For ACK only packets, we do not want the * sequence number of the retransmitted packet, we want the sequence * number of the next unsent octet. So, if there is no data (and no * SYN or FIN), use snd_max instead of snd_nxt when filling in * ti_seq. But if we are in persist state, snd_max might reflect * one byte beyond the right edge of the window, so use snd_nxt in * that case, since we know we aren't doing a retransmission. * (retransmit and persist are mutually exclusive...) */ if (sack_rxmit == 0) { if (len && ((flags & (TH_FIN | TH_SYN | TH_RST)) == 0)) { /* New data (including new persists) */ th->th_seq = htonl(tp->snd_max); bbr_seq = tp->snd_max; } else if (flags & TH_SYN) { /* Syn's always send from iss */ th->th_seq = htonl(tp->iss); bbr_seq = tp->iss; } else if (flags & TH_FIN) { if (flags & TH_FIN && tp->t_flags & TF_SENTFIN) { /* * If we sent the fin already its 1 minus * snd_max */ th->th_seq = (htonl(tp->snd_max - 1)); bbr_seq = (tp->snd_max - 1); } else { /* First time FIN use snd_max */ th->th_seq = htonl(tp->snd_max); bbr_seq = tp->snd_max; } } else if (flags & TH_RST) { /* * For a Reset send the last cum ack in sequence * (this like any other choice may still generate a * challenge ack, if a ack-update packet is in * flight). */ th->th_seq = htonl(tp->snd_una); bbr_seq = tp->snd_una; } else { /* * len == 0 and not persist we use snd_max, sending * an ack unless we have sent the fin then its 1 * minus. */ /* * XXXRRS Question if we are in persists and we have * nothing outstanding to send and we have not sent * a FIN, we will send an ACK. In such a case it * might be better to send (tp->snd_una - 1) which * would force the peer to ack. */ if (tp->t_flags & TF_SENTFIN) { th->th_seq = htonl(tp->snd_max - 1); bbr_seq = (tp->snd_max - 1); } else { th->th_seq = htonl(tp->snd_max); bbr_seq = tp->snd_max; } } } else { /* All retransmits use the rsm to guide the send */ th->th_seq = htonl(rsm->r_start); bbr_seq = rsm->r_start; } th->th_ack = htonl(tp->rcv_nxt); if (optlen) { bcopy(opt, th + 1, optlen); th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; } th->th_flags = flags; /* * Calculate receive window. Don't shrink window, but avoid silly * window syndrome. */ if ((flags & TH_RST) || ((recwin < (so->so_rcv.sb_hiwat / 4) && recwin < maxseg))) recwin = 0; if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) && recwin < (tp->rcv_adv - tp->rcv_nxt)) recwin = (tp->rcv_adv - tp->rcv_nxt); if (recwin > TCP_MAXWIN << tp->rcv_scale) recwin = TCP_MAXWIN << tp->rcv_scale; /* * According to RFC1323 the window field in a SYN (i.e., a or * ) segment itself is never scaled. The case is * handled in syncache. */ if (flags & TH_SYN) th->th_win = htons((u_short) (min(sbspace(&so->so_rcv), TCP_MAXWIN))); else th->th_win = htons((u_short)(recwin >> tp->rcv_scale)); /* * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0 * window. This may cause the remote transmitter to stall. This * flag tells soreceive() to disable delayed acknowledgements when * draining the buffer. This can occur if the receiver is * attempting to read more data than can be buffered prior to * transmitting on the connection. */ if (th->th_win == 0) { tp->t_sndzerowin++; tp->t_flags |= TF_RXWIN0SENT; } else tp->t_flags &= ~TF_RXWIN0SENT; if (SEQ_GT(tp->snd_up, tp->snd_max)) { th->th_urp = htons((u_short)(tp->snd_up - tp->snd_max)); th->th_flags |= TH_URG; } else /* * If no urgent pointer to send, then we pull the urgent * pointer to the left edge of the send window so that it * doesn't drift into the send window on sequence number * wraparound. */ tp->snd_up = tp->snd_una; /* drag it along */ #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (to.to_flags & TOF_SIGNATURE) { /* * Calculate MD5 signature and put it into the place * determined before. NOTE: since TCP options buffer doesn't * point into mbuf's data, calculate offset and use it. */ if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { /* * Do not send segment if the calculation of MD5 * digest has failed. */ goto out; } } #endif /* * Put TCP length in extended header, and then checksum extended * header and data. */ m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ #ifdef INET6 if (isipv6) { /* * ip6_plen is not need to be filled now, and will be filled * in ip6_output. */ #ifdef NETFLIX_TCPOUDP if (tp->t_port) { m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); th->th_sum = htons(0); UDPSTAT_INC(udps_opackets); } else { #endif csum_flags = m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); th->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 0); #ifdef NETFLIX_TCPOUDP } #endif } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { #ifdef NETFLIX_TCPOUDP if (tp->t_port) { m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); udp->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); th->th_sum = htons(0); UDPSTAT_INC(udps_opackets); } else { #endif csum_flags = m->m_pkthdr.csum_flags = CSUM_TCP; m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + IPPROTO_TCP + len + optlen)); #ifdef NETFLIX_TCPOUDP } #endif /* IP version must be set here for ipv4/ipv6 checking later */ KASSERT(ip->ip_v == IPVERSION, ("%s: IP version incorrect: %d", __func__, ip->ip_v)); } #endif /* * Enable TSO and specify the size of the segments. The TCP pseudo * header checksum is always provided. XXX: Fixme: This is currently * not the case for IPv6. */ if (tso || force_tso) { KASSERT(force_tso || len > maxseg, ("%s: len:%d <= tso_segsz:%d", __func__, len, maxseg)); m->m_pkthdr.csum_flags |= CSUM_TSO; csum_flags |= CSUM_TSO; m->m_pkthdr.tso_segsz = maxseg; } KASSERT(len + hdrlen == m_length(m, NULL), ("%s: mbuf chain different than expected: %d + %u != %u", __func__, len, hdrlen, m_length(m, NULL))); #ifdef TCP_HHOOK /* Run HHOOK_TC_ESTABLISHED_OUT helper hooks. */ hhook_run_tcp_est_out(tp, th, &to, len, tso); #endif #ifdef TCPDEBUG /* * Trace. */ if (so->so_options & SO_DEBUG) { u_short save = 0; #ifdef INET6 if (!isipv6) #endif { save = ipov->ih_len; ipov->ih_len = htons(m->m_pkthdr.len /* - hdrlen + * (th->th_off << 2) */ ); } tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0); #ifdef INET6 if (!isipv6) #endif ipov->ih_len = save; } #endif /* TCPDEBUG */ /* Log to the black box */ if (tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; bbr_fill_in_logging_data(bbr, &log.u_bbr, cts); /* Record info on type of transmission */ log.u_bbr.flex1 = bbr->r_ctl.rc_hptsi_agg_delay; log.u_bbr.flex2 = (bbr->r_recovery_bw << 3); log.u_bbr.flex3 = maxseg; log.u_bbr.flex4 = delay_calc; /* Encode filled_all into the upper flex5 bit */ log.u_bbr.flex5 = bbr->rc_past_init_win; log.u_bbr.flex5 <<= 1; log.u_bbr.flex5 |= bbr->rc_no_pacing; log.u_bbr.flex5 <<= 29; if (filled_all) log.u_bbr.flex5 |= 0x80000000; log.u_bbr.flex5 |= tp->t_maxseg; log.u_bbr.flex6 = bbr->r_ctl.rc_pace_max_segs; log.u_bbr.flex7 = (bbr->rc_bbr_state << 8) | bbr_state_val(bbr); /* lets poke in the low and the high here for debugging */ log.u_bbr.pkts_out = bbr->rc_tp->t_maxseg; if (rsm || sack_rxmit) { if (doing_tlp) log.u_bbr.flex8 = 2; else log.u_bbr.flex8 = 1; } else { log.u_bbr.flex8 = 0; } lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK, len, &log, false, NULL, NULL, 0, tv); } else { lgb = NULL; } /* * Fill in IP length and desired time to live and send to IP level. * There should be a better way to handle ttl and tos; we could keep * them in the template, but need a way to checksum without them. */ /* * m->m_pkthdr.len should have been set before cksum calcuration, * because in6_cksum() need it. */ #ifdef INET6 if (isipv6) { /* * we separately set hoplimit for every segment, since the * user might want to change the value via setsockopt. Also, * desired default hop limit might be changed via Neighbor * Discovery. */ ip6->ip6_hlim = in6_selecthlim(inp, NULL); /* * Set the packet size here for the benefit of DTrace * probes. ip6_output() will set it properly; it's supposed * to include the option header lengths as well. */ ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); if (V_path_mtu_discovery && maxseg > V_tcp_minmss) tp->t_flags2 |= TF2_PLPMTU_PMTUD; else tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; if (tp->t_state == TCPS_SYN_SENT) TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th); TCP_PROBE5(send, NULL, tp, ip6, tp, th); /* TODO: IPv6 IP6TOS_ECT bit on */ error = ip6_output(m, inp->in6p_outputopts, &inp->inp_route6, ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), NULL, NULL, inp); if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL) mtu = inp->inp_route6.ro_rt->rt_mtu; } #endif /* INET6 */ #if defined(INET) && defined(INET6) else #endif #ifdef INET { ip->ip_len = htons(m->m_pkthdr.len); #ifdef INET6 if (isipv6) ip->ip_ttl = in6_selecthlim(inp, NULL); #endif /* INET6 */ /* * If we do path MTU discovery, then we set DF on every * packet. This might not be the best thing to do according * to RFC3390 Section 2. However the tcp hostcache migitates * the problem so it affects only the first tcp connection * with a host. * * NB: Don't set DF on small MTU/MSS to have a safe * fallback. */ if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { tp->t_flags2 |= TF2_PLPMTU_PMTUD; if (tp->t_port == 0 || len < V_tcp_minmss) { ip->ip_off |= htons(IP_DF); } } else { tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; } if (tp->t_state == TCPS_SYN_SENT) TCP_PROBE5(connect__request, NULL, tp, ip, tp, th); TCP_PROBE5(send, NULL, tp, ip, tp, th); error = ip_output(m, inp->inp_options, &inp->inp_route, ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0, inp); if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL) mtu = inp->inp_route.ro_rt->rt_mtu; } #endif /* INET */ out: if (lgb) { lgb->tlb_errno = error; lgb = NULL; } /* * In transmit state, time the transmission and arrange for the * retransmit. In persist state, just set snd_max. */ if (error == 0) { if (TCPS_HAVEESTABLISHED(tp->t_state) && (tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) tcp_clean_dsack_blocks(tp); /* We sent an ack clear the bbr_segs_rcvd count */ bbr->output_error_seen = 0; bbr->oerror_cnt = 0; bbr->bbr_segs_rcvd = 0; if (len == 0) counter_u64_add(bbr_out_size[TCP_MSS_ACCT_SNDACK], 1); else if (hw_tls) { if (filled_all || (len >= bbr->r_ctl.rc_pace_max_segs)) BBR_STAT_INC(bbr_meets_tso_thresh); else { if (doing_tlp) { BBR_STAT_INC(bbr_miss_tlp); bbr_log_type_hrdwtso(tp, bbr, len, 1, what_we_can); } else if (rsm) { BBR_STAT_INC(bbr_miss_retran); bbr_log_type_hrdwtso(tp, bbr, len, 2, what_we_can); } else if ((ctf_outstanding(tp) + bbr->r_ctl.rc_pace_max_segs) > sbavail(sb)) { BBR_STAT_INC(bbr_miss_tso_app); bbr_log_type_hrdwtso(tp, bbr, len, 3, what_we_can); } else if ((ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) + bbr->r_ctl.rc_pace_max_segs) > tp->snd_cwnd) { BBR_STAT_INC(bbr_miss_tso_cwnd); bbr_log_type_hrdwtso(tp, bbr, len, 4, what_we_can); } else if ((ctf_outstanding(tp) + bbr->r_ctl.rc_pace_max_segs) > tp->snd_wnd) { BBR_STAT_INC(bbr_miss_tso_rwnd); bbr_log_type_hrdwtso(tp, bbr, len, 5, what_we_can); } else { BBR_STAT_INC(bbr_miss_unknown); bbr_log_type_hrdwtso(tp, bbr, len, 6, what_we_can); } } } /* Do accounting for new sends */ if ((len > 0) && (rsm == NULL)) { int idx; if (tp->snd_una == tp->snd_max) { /* * Special case to match google, when * nothing is in flight the delivered * time does get updated to the current * time (see tcp_rate_bsd.c). */ bbr->r_ctl.rc_del_time = cts; } if (len >= maxseg) { idx = (len / maxseg) + 3; if (idx >= TCP_MSS_ACCT_ATIMER) counter_u64_add(bbr_out_size[(TCP_MSS_ACCT_ATIMER - 1)], 1); else counter_u64_add(bbr_out_size[idx], 1); } else { /* smaller than a MSS */ idx = len / (bbr_hptsi_bytes_min - bbr->rc_last_options); if (idx >= TCP_MSS_SMALL_MAX_SIZE_DIV) idx = (TCP_MSS_SMALL_MAX_SIZE_DIV - 1); counter_u64_add(bbr_out_size[(idx + TCP_MSS_SMALL_SIZE_OFF)], 1); } } } abandon = 0; /* * We must do the send accounting before we log the output, * otherwise the state of the rsm could change and we account to the * wrong bucket. */ if (len > 0) { bbr_do_send_accounting(tp, bbr, rsm, len, error); if (error == 0) { if (tp->snd_una == tp->snd_max) bbr->r_ctl.rc_tlp_rxt_last_time = cts; } } bbr_log_output(bbr, tp, &to, len, bbr_seq, (uint8_t) flags, error, cts, mb, &abandon, rsm, 0, sb); if (abandon) { /* * If bbr_log_output destroys the TCB or sees a TH_RST being * sent we should hit this condition. */ return (0); } if (((tp->t_flags & TF_FORCEDATA) == 0) || (bbr->rc_in_persist == 0)) { /* * Advance snd_nxt over sequence space of this segment. */ if (error) /* We don't log or do anything with errors */ goto skip_upd; if (tp->snd_una == tp->snd_max && (len || (flags & (TH_SYN | TH_FIN)))) { /* * Update the time we just added data since none was * outstanding. */ bbr_log_progress_event(bbr, tp, ticks, PROGRESS_START, __LINE__); bbr->rc_tp->t_acktime = ticks; } if (flags & (TH_SYN | TH_FIN) && (rsm == NULL)) { if (flags & TH_SYN) { tp->snd_max++; } if ((flags & TH_FIN) && ((tp->t_flags & TF_SENTFIN) == 0)) { tp->snd_max++; tp->t_flags |= TF_SENTFIN; } } if (sack_rxmit == 0) tp->snd_max += len; skip_upd: if ((error == 0) && len) tot_len += len; } else { /* Persists case */ int32_t xlen = len; if (error) goto nomore; if (flags & TH_SYN) ++xlen; if ((flags & TH_FIN) && ((tp->t_flags & TF_SENTFIN) == 0)) { ++xlen; tp->t_flags |= TF_SENTFIN; } if (xlen && (tp->snd_una == tp->snd_max)) { /* * Update the time we just added data since none was * outstanding. */ bbr_log_progress_event(bbr, tp, ticks, PROGRESS_START, __LINE__); bbr->rc_tp->t_acktime = ticks; } if (sack_rxmit == 0) tp->snd_max += xlen; tot_len += (len + optlen + ipoptlen); } nomore: if (error) { /* * Failures do not advance the seq counter above. For the * case of ENOBUFS we will fall out and become ack-clocked. * capping the cwnd at the current flight. * Everything else will just have to retransmit with the timer * (no pacer). */ SOCKBUF_UNLOCK_ASSERT(sb); BBR_STAT_INC(bbr_saw_oerr); /* Clear all delay/early tracks */ bbr->r_ctl.rc_hptsi_agg_delay = 0; bbr->r_ctl.rc_agg_early = 0; bbr->r_agg_early_set = 0; bbr->output_error_seen = 1; if (bbr->oerror_cnt < 0xf) bbr->oerror_cnt++; if (bbr_max_net_error_cnt && (bbr->oerror_cnt >= bbr_max_net_error_cnt)) { /* drop the session */ tcp_set_inp_to_drop(inp, ENETDOWN); } switch (error) { case ENOBUFS: /* * Make this guy have to get ack's to send * more but lets make sure we don't * slam him below a T-O (1MSS). */ if (bbr->rc_bbr_state != BBR_STATE_PROBE_RTT) { tp->snd_cwnd = ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes)) - maxseg; if (tp->snd_cwnd < maxseg) tp->snd_cwnd = maxseg; } slot = (bbr_error_base_paceout + 1) << bbr->oerror_cnt; BBR_STAT_INC(bbr_saw_enobuf); if (bbr->bbr_hdrw_pacing) counter_u64_add(bbr_hdwr_pacing_enobuf, 1); else counter_u64_add(bbr_nohdwr_pacing_enobuf, 1); /* * Here even in the enobuf's case we want to do our * state update. The reason being we may have been * called by the input function. If so we have had * things change. */ error = 0; goto enobufs; case EMSGSIZE: /* * For some reason the interface we used initially * to send segments changed to another or lowered * its MTU. If TSO was active we either got an * interface without TSO capabilits or TSO was * turned off. If we obtained mtu from ip_output() * then update it and try again. */ /* Turn on tracing (or try to) */ { int old_maxseg; old_maxseg = tp->t_maxseg; BBR_STAT_INC(bbr_saw_emsgsiz); bbr_log_msgsize_fail(bbr, tp, len, maxseg, mtu, csum_flags, tso, cts); if (mtu != 0) tcp_mss_update(tp, -1, mtu, NULL, NULL); if (old_maxseg <= tp->t_maxseg) { /* Huh it did not shrink? */ tp->t_maxseg = old_maxseg - 40; bbr_log_msgsize_fail(bbr, tp, len, maxseg, mtu, 0, tso, cts); } tp->t_flags &= ~TF_FORCEDATA; /* * Nuke all other things that can interfere * with slot */ if ((tot_len + len) && (len >= tp->t_maxseg)) { slot = bbr_get_pacing_delay(bbr, bbr->r_ctl.rc_bbr_hptsi_gain, (tot_len + len), cts, 0); if (slot < bbr_error_base_paceout) slot = (bbr_error_base_paceout + 2) << bbr->oerror_cnt; } else slot = (bbr_error_base_paceout + 2) << bbr->oerror_cnt; bbr->rc_output_starts_timer = 1; bbr_start_hpts_timer(bbr, tp, cts, 10, slot, tot_len); return (error); } case EPERM: tp->t_softerror = error; /* Fall through */ case EHOSTDOWN: case EHOSTUNREACH: case ENETDOWN: case ENETUNREACH: if (TCPS_HAVERCVDSYN(tp->t_state)) { tp->t_softerror = error; } /* FALLTHROUGH */ default: tp->t_flags &= ~TF_FORCEDATA; slot = (bbr_error_base_paceout + 3) << bbr->oerror_cnt; bbr->rc_output_starts_timer = 1; bbr_start_hpts_timer(bbr, tp, cts, 11, slot, 0); return (error); } #ifdef STATS } else if (((tp->t_flags & TF_GPUTINPROG) == 0) && len && (rsm == NULL) && (bbr->rc_in_persist == 0)) { tp->gput_seq = bbr_seq; tp->gput_ack = bbr_seq + min(sbavail(&so->so_snd) - sb_offset, sendwin); tp->gput_ts = cts; tp->t_flags |= TF_GPUTINPROG; #endif } TCPSTAT_INC(tcps_sndtotal); if ((bbr->bbr_hdw_pace_ena) && (bbr->bbr_attempt_hdwr_pace == 0) && (bbr->rc_past_init_win) && (bbr->rc_bbr_state != BBR_STATE_STARTUP) && (get_filter_value(&bbr->r_ctl.rc_delrate)) && (inp->inp_route.ro_rt && inp->inp_route.ro_rt->rt_ifp)) { /* * We are past the initial window and * have at least one measurement so we * could use hardware pacing if its available. * We have an interface and we have not attempted * to setup hardware pacing, lets try to now. */ uint64_t rate_wanted; int err = 0; rate_wanted = bbr_get_hardware_rate(bbr); bbr->bbr_attempt_hdwr_pace = 1; bbr->r_ctl.crte = tcp_set_pacing_rate(bbr->rc_tp, inp->inp_route.ro_rt->rt_ifp, rate_wanted, (RS_PACING_GEQ|RS_PACING_SUB_OK), &err); if (bbr->r_ctl.crte) { bbr_type_log_hdwr_pacing(bbr, bbr->r_ctl.crte->ptbl->rs_ifp, rate_wanted, bbr->r_ctl.crte->rate, __LINE__, cts, err); BBR_STAT_INC(bbr_hdwr_rl_add_ok); counter_u64_add(bbr_flows_nohdwr_pacing, -1); counter_u64_add(bbr_flows_whdwr_pacing, 1); bbr->bbr_hdrw_pacing = 1; /* Now what is our gain status? */ if (bbr->r_ctl.crte->rate < rate_wanted) { /* We have a problem */ bbr_setup_less_of_rate(bbr, cts, bbr->r_ctl.crte->rate, rate_wanted); } else { /* We are good */ bbr->gain_is_limited = 0; bbr->skip_gain = 0; } tcp_bbr_tso_size_check(bbr, cts); } else { bbr_type_log_hdwr_pacing(bbr, inp->inp_route.ro_rt->rt_ifp, rate_wanted, 0, __LINE__, cts, err); BBR_STAT_INC(bbr_hdwr_rl_add_fail); } } if (bbr->bbr_hdrw_pacing) { /* * Worry about cases where the route * changes or something happened that we * lost our hardware pacing possibly during * the last ip_output call. */ if (inp->inp_snd_tag == NULL) { /* A change during ip output disabled hw pacing? */ bbr->bbr_hdrw_pacing = 0; } else if ((inp->inp_route.ro_rt == NULL) || (inp->inp_route.ro_rt->rt_ifp != inp->inp_snd_tag->ifp)) { /* * We had an interface or route change, * detach from the current hdwr pacing * and setup to re-attempt next go * round. */ bbr->bbr_hdrw_pacing = 0; bbr->bbr_attempt_hdwr_pace = 0; tcp_rel_pacing_rate(bbr->r_ctl.crte, bbr->rc_tp); tcp_bbr_tso_size_check(bbr, cts); } } /* * Data sent (as far as we can tell). If this advertises a larger * window than any other segment, then remember the size of the * advertised window. Any pending ACK has now been sent. */ if (SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv)) tp->rcv_adv = tp->rcv_nxt + recwin; tp->last_ack_sent = tp->rcv_nxt; if ((error == 0) && (bbr->r_ctl.rc_pace_max_segs > tp->t_maxseg) && (doing_tlp == 0) && (tso == 0) && (hw_tls == 0) && (len > 0) && ((flags & TH_RST) == 0) && (IN_RECOVERY(tp->t_flags) == 0) && (bbr->rc_in_persist == 0) && ((tp->t_flags & TF_FORCEDATA) == 0) && (tot_len < bbr->r_ctl.rc_pace_max_segs)) { /* * For non-tso we need to goto again until we have sent out * enough data to match what we are hptsi out every hptsi * interval. */ if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* Make sure snd_nxt is drug up */ tp->snd_nxt = tp->snd_max; } if (rsm != NULL) { rsm = NULL; goto skip_again; } rsm = NULL; sack_rxmit = 0; tp->t_flags &= ~(TF_ACKNOW | TF_DELACK | TF_FORCEDATA); goto again; } skip_again: if (((flags & (TH_RST | TH_SYN | TH_FIN)) == 0) && tot_len) { /* * Calculate/Re-Calculate the hptsi slot in usecs based on * what we have sent so far */ slot = bbr_get_pacing_delay(bbr, bbr->r_ctl.rc_bbr_hptsi_gain, tot_len, cts, 0); if (bbr->rc_no_pacing) slot = 0; } tp->t_flags &= ~(TF_ACKNOW | TF_DELACK | TF_FORCEDATA); enobufs: if (bbr->rc_use_google == 0) bbr_check_bbr_for_state(bbr, cts, __LINE__, 0); bbr_cwnd_limiting(tp, bbr, ctf_flight_size(tp, (bbr->r_ctl.rc_sacked + bbr->r_ctl.rc_lost_bytes))); bbr->rc_output_starts_timer = 1; if (bbr->bbr_use_rack_cheat && (more_to_rxt || ((bbr->r_ctl.rc_resend = bbr_check_recovery_mode(tp, bbr, cts)) != NULL))) { /* Rack cheats and shotguns out all rxt's 1ms apart */ if (slot > 1000) slot = 1000; } if (bbr->bbr_hdrw_pacing && (bbr->hw_pacing_set == 0)) { /* * We don't change the tso size until some number of sends * to give the hardware commands time to get down * to the interface. */ bbr->r_ctl.bbr_hdwr_cnt_noset_snt++; if (bbr->r_ctl.bbr_hdwr_cnt_noset_snt >= bbr_hdwr_pacing_delay_cnt) { bbr->hw_pacing_set = 1; tcp_bbr_tso_size_check(bbr, cts); } } bbr_start_hpts_timer(bbr, tp, cts, 12, slot, tot_len); if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* Make sure snd_nxt is drug up */ tp->snd_nxt = tp->snd_max; } return (error); } /* * See bbr_output_wtime() for return values. */ static int bbr_output(struct tcpcb *tp) { int32_t ret; struct timeval tv; struct tcp_bbr *bbr; NET_EPOCH_ASSERT(); bbr = (struct tcp_bbr *)tp->t_fb_ptr; INP_WLOCK_ASSERT(tp->t_inpcb); (void)tcp_get_usecs(&tv); ret = bbr_output_wtime(tp, &tv); return (ret); } static void bbr_mtu_chg(struct tcpcb *tp) { struct tcp_bbr *bbr; struct bbr_sendmap *rsm, *frsm = NULL; uint32_t maxseg; /* * The MTU has changed. a) Clear the sack filter. b) Mark everything * over the current size as SACK_PASS so a retransmit will occur. */ bbr = (struct tcp_bbr *)tp->t_fb_ptr; maxseg = tp->t_maxseg - bbr->rc_last_options; sack_filter_clear(&bbr->r_ctl.bbr_sf, tp->snd_una); TAILQ_FOREACH(rsm, &bbr->r_ctl.rc_map, r_next) { /* Don't mess with ones acked (by sack?) */ if (rsm->r_flags & BBR_ACKED) continue; if ((rsm->r_end - rsm->r_start) > maxseg) { /* * We mark sack-passed on all the previous large * sends we did. This will force them to retransmit. */ rsm->r_flags |= BBR_SACK_PASSED; if (((rsm->r_flags & BBR_MARKED_LOST) == 0) && bbr_is_lost(bbr, rsm, bbr->r_ctl.rc_rcvtime)) { bbr->r_ctl.rc_lost_bytes += rsm->r_end - rsm->r_start; bbr->r_ctl.rc_lost += rsm->r_end - rsm->r_start; rsm->r_flags |= BBR_MARKED_LOST; } if (frsm == NULL) frsm = rsm; } } if (frsm) { bbr->r_ctl.rc_resend = frsm; } } /* * bbr_ctloutput() must drop the inpcb lock before performing copyin on * socket option arguments. When it re-acquires the lock after the copy, it * has to revalidate that the connection is still valid for the socket * option. */ static int bbr_set_sockopt(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp, struct tcp_bbr *bbr) { int32_t error = 0, optval; switch (sopt->sopt_name) { case TCP_RACK_PACE_MAX_SEG: case TCP_RACK_MIN_TO: case TCP_RACK_REORD_THRESH: case TCP_RACK_REORD_FADE: case TCP_RACK_TLP_THRESH: case TCP_RACK_PKT_DELAY: case TCP_BBR_ALGORITHM: case TCP_BBR_TSLIMITS: case TCP_BBR_IWINTSO: case TCP_BBR_RECFORCE: case TCP_BBR_STARTUP_PG: case TCP_BBR_DRAIN_PG: case TCP_BBR_RWND_IS_APP: case TCP_BBR_PROBE_RTT_INT: case TCP_BBR_PROBE_RTT_GAIN: case TCP_BBR_PROBE_RTT_LEN: case TCP_BBR_STARTUP_LOSS_EXIT: case TCP_BBR_USEDEL_RATE: case TCP_BBR_MIN_RTO: case TCP_BBR_MAX_RTO: case TCP_BBR_PACE_PER_SEC: case TCP_DELACK: case TCP_BBR_PACE_DEL_TAR: case TCP_BBR_SEND_IWND_IN_TSO: case TCP_BBR_EXTRA_STATE: case TCP_BBR_UTTER_MAX_TSO: case TCP_BBR_MIN_TOPACEOUT: case TCP_BBR_FLOOR_MIN_TSO: case TCP_BBR_TSTMP_RAISES: case TCP_BBR_POLICER_DETECT: case TCP_BBR_USE_RACK_CHEAT: case TCP_DATA_AFTER_CLOSE: case TCP_BBR_HDWR_PACE: case TCP_BBR_PACE_SEG_MAX: case TCP_BBR_PACE_SEG_MIN: case TCP_BBR_PACE_CROSS: case TCP_BBR_PACE_OH: #ifdef NETFLIX_PEAKRATE case TCP_MAXPEAKRATE: #endif case TCP_BBR_TMR_PACE_OH: case TCP_BBR_RACK_RTT_USE: case TCP_BBR_RETRAN_WTSO: break; default: return (tcp_default_ctloutput(so, sopt, inp, tp)); break; } INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) return (error); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } tp = intotcpcb(inp); bbr = (struct tcp_bbr *)tp->t_fb_ptr; switch (sopt->sopt_name) { case TCP_BBR_PACE_PER_SEC: BBR_OPTS_INC(tcp_bbr_pace_per_sec); bbr->r_ctl.bbr_hptsi_per_second = optval; break; case TCP_BBR_PACE_DEL_TAR: BBR_OPTS_INC(tcp_bbr_pace_del_tar); bbr->r_ctl.bbr_hptsi_segments_delay_tar = optval; break; case TCP_BBR_PACE_SEG_MAX: BBR_OPTS_INC(tcp_bbr_pace_seg_max); bbr->r_ctl.bbr_hptsi_segments_max = optval; break; case TCP_BBR_PACE_SEG_MIN: BBR_OPTS_INC(tcp_bbr_pace_seg_min); bbr->r_ctl.bbr_hptsi_bytes_min = optval; break; case TCP_BBR_PACE_CROSS: BBR_OPTS_INC(tcp_bbr_pace_cross); bbr->r_ctl.bbr_cross_over = optval; break; case TCP_BBR_ALGORITHM: BBR_OPTS_INC(tcp_bbr_algorithm); if (optval && (bbr->rc_use_google == 0)) { /* Turn on the google mode */ bbr_google_mode_on(bbr); if ((optval > 3) && (optval < 500)) { /* * Must be at least greater than .3% * and must be less than 50.0%. */ bbr->r_ctl.bbr_google_discount = optval; } } else if ((optval == 0) && (bbr->rc_use_google == 1)) { /* Turn off the google mode */ bbr_google_mode_off(bbr); } break; case TCP_BBR_TSLIMITS: BBR_OPTS_INC(tcp_bbr_tslimits); if (optval == 1) bbr->rc_use_ts_limit = 1; else if (optval == 0) bbr->rc_use_ts_limit = 0; else error = EINVAL; break; case TCP_BBR_IWINTSO: BBR_OPTS_INC(tcp_bbr_iwintso); if ((optval >= 0) && (optval < 128)) { uint32_t twin; bbr->rc_init_win = optval; twin = bbr_initial_cwnd(bbr, tp); if ((bbr->rc_past_init_win == 0) && (twin > tp->snd_cwnd)) tp->snd_cwnd = twin; else error = EBUSY; } else error = EINVAL; break; case TCP_BBR_STARTUP_PG: BBR_OPTS_INC(tcp_bbr_startup_pg); if ((optval > 0) && (optval < BBR_MAX_GAIN_VALUE)) { bbr->r_ctl.rc_startup_pg = optval; if (bbr->rc_bbr_state == BBR_STATE_STARTUP) { bbr->r_ctl.rc_bbr_hptsi_gain = optval; } } else error = EINVAL; break; case TCP_BBR_DRAIN_PG: BBR_OPTS_INC(tcp_bbr_drain_pg); if ((optval > 0) && (optval < BBR_MAX_GAIN_VALUE)) bbr->r_ctl.rc_drain_pg = optval; else error = EINVAL; break; case TCP_BBR_PROBE_RTT_LEN: BBR_OPTS_INC(tcp_bbr_probertt_len); if (optval <= 1) reset_time_small(&bbr->r_ctl.rc_rttprop, (optval * USECS_IN_SECOND)); else error = EINVAL; break; case TCP_BBR_PROBE_RTT_GAIN: BBR_OPTS_INC(tcp_bbr_probertt_gain); if (optval <= BBR_UNIT) bbr->r_ctl.bbr_rttprobe_gain_val = optval; else error = EINVAL; break; case TCP_BBR_PROBE_RTT_INT: BBR_OPTS_INC(tcp_bbr_probe_rtt_int); if (optval > 1000) bbr->r_ctl.rc_probertt_int = optval; else error = EINVAL; break; case TCP_BBR_MIN_TOPACEOUT: BBR_OPTS_INC(tcp_bbr_topaceout); if (optval == 0) { bbr->no_pacing_until = 0; bbr->rc_no_pacing = 0; } else if (optval <= 0x00ff) { bbr->no_pacing_until = optval; if ((bbr->r_ctl.rc_pkt_epoch < bbr->no_pacing_until) && (bbr->rc_bbr_state == BBR_STATE_STARTUP)){ /* Turn on no pacing */ bbr->rc_no_pacing = 1; } } else error = EINVAL; break; case TCP_BBR_STARTUP_LOSS_EXIT: BBR_OPTS_INC(tcp_bbr_startup_loss_exit); bbr->rc_loss_exit = optval; break; case TCP_BBR_USEDEL_RATE: error = EINVAL; break; case TCP_BBR_MIN_RTO: BBR_OPTS_INC(tcp_bbr_min_rto); bbr->r_ctl.rc_min_rto_ms = optval; break; case TCP_BBR_MAX_RTO: BBR_OPTS_INC(tcp_bbr_max_rto); bbr->rc_max_rto_sec = optval; break; case TCP_RACK_MIN_TO: /* Minimum time between rack t-o's in ms */ BBR_OPTS_INC(tcp_rack_min_to); bbr->r_ctl.rc_min_to = optval; break; case TCP_RACK_REORD_THRESH: /* RACK reorder threshold (shift amount) */ BBR_OPTS_INC(tcp_rack_reord_thresh); if ((optval > 0) && (optval < 31)) bbr->r_ctl.rc_reorder_shift = optval; else error = EINVAL; break; case TCP_RACK_REORD_FADE: /* Does reordering fade after ms time */ BBR_OPTS_INC(tcp_rack_reord_fade); bbr->r_ctl.rc_reorder_fade = optval; break; case TCP_RACK_TLP_THRESH: /* RACK TLP theshold i.e. srtt+(srtt/N) */ BBR_OPTS_INC(tcp_rack_tlp_thresh); if (optval) bbr->rc_tlp_threshold = optval; else error = EINVAL; break; case TCP_BBR_USE_RACK_CHEAT: BBR_OPTS_INC(tcp_use_rackcheat); if (bbr->rc_use_google) { error = EINVAL; break; } BBR_OPTS_INC(tcp_rack_cheat); if (optval) bbr->bbr_use_rack_cheat = 1; else bbr->bbr_use_rack_cheat = 0; break; case TCP_BBR_FLOOR_MIN_TSO: BBR_OPTS_INC(tcp_utter_max_tso); if ((optval >= 0) && (optval < 40)) bbr->r_ctl.bbr_hptsi_segments_floor = optval; else error = EINVAL; break; case TCP_BBR_UTTER_MAX_TSO: BBR_OPTS_INC(tcp_utter_max_tso); if ((optval >= 0) && (optval < 0xffff)) bbr->r_ctl.bbr_utter_max = optval; else error = EINVAL; break; case TCP_BBR_EXTRA_STATE: BBR_OPTS_INC(tcp_extra_state); if (optval) bbr->rc_use_idle_restart = 1; else bbr->rc_use_idle_restart = 0; break; case TCP_BBR_SEND_IWND_IN_TSO: BBR_OPTS_INC(tcp_iwnd_tso); if (optval) { bbr->bbr_init_win_cheat = 1; if (bbr->rc_past_init_win == 0) { uint32_t cts; cts = tcp_get_usecs(&bbr->rc_tv); tcp_bbr_tso_size_check(bbr, cts); } } else bbr->bbr_init_win_cheat = 0; break; case TCP_BBR_HDWR_PACE: BBR_OPTS_INC(tcp_hdwr_pacing); if (optval){ bbr->bbr_hdw_pace_ena = 1; bbr->bbr_attempt_hdwr_pace = 0; } else { bbr->bbr_hdw_pace_ena = 0; #ifdef RATELIMIT if (bbr->bbr_hdrw_pacing) { bbr->bbr_hdrw_pacing = 0; in_pcbdetach_txrtlmt(bbr->rc_inp); } #endif } break; case TCP_DELACK: BBR_OPTS_INC(tcp_delack); if (optval < 100) { if (optval == 0) /* off */ tp->t_delayed_ack = 0; else if (optval == 1) /* on which is 2 */ tp->t_delayed_ack = 2; else /* higher than 2 and less than 100 */ tp->t_delayed_ack = optval; if (tp->t_flags & TF_DELACK) { tp->t_flags &= ~TF_DELACK; tp->t_flags |= TF_ACKNOW; bbr_output(tp); } } else error = EINVAL; break; case TCP_RACK_PKT_DELAY: /* RACK added ms i.e. rack-rtt + reord + N */ BBR_OPTS_INC(tcp_rack_pkt_delay); bbr->r_ctl.rc_pkt_delay = optval; break; #ifdef NETFLIX_PEAKRATE case TCP_MAXPEAKRATE: BBR_OPTS_INC(tcp_maxpeak); error = tcp_set_maxpeakrate(tp, optval); if (!error) tp->t_peakrate_thr = tp->t_maxpeakrate; break; #endif case TCP_BBR_RETRAN_WTSO: BBR_OPTS_INC(tcp_retran_wtso); if (optval) bbr->rc_resends_use_tso = 1; else bbr->rc_resends_use_tso = 0; break; case TCP_DATA_AFTER_CLOSE: BBR_OPTS_INC(tcp_data_ac); if (optval) bbr->rc_allow_data_af_clo = 1; else bbr->rc_allow_data_af_clo = 0; break; case TCP_BBR_POLICER_DETECT: BBR_OPTS_INC(tcp_policer_det); if (bbr->rc_use_google == 0) error = EINVAL; else if (optval) bbr->r_use_policer = 1; else bbr->r_use_policer = 0; break; case TCP_BBR_TSTMP_RAISES: BBR_OPTS_INC(tcp_ts_raises); if (optval) bbr->ts_can_raise = 1; else bbr->ts_can_raise = 0; break; case TCP_BBR_TMR_PACE_OH: BBR_OPTS_INC(tcp_pacing_oh_tmr); if (bbr->rc_use_google) { error = EINVAL; } else { if (optval) bbr->r_ctl.rc_incr_tmrs = 1; else bbr->r_ctl.rc_incr_tmrs = 0; } break; case TCP_BBR_PACE_OH: BBR_OPTS_INC(tcp_pacing_oh); if (bbr->rc_use_google) { error = EINVAL; } else { if (optval > (BBR_INCL_TCP_OH| BBR_INCL_IP_OH| BBR_INCL_ENET_OH)) { error = EINVAL; break; } if (optval & BBR_INCL_TCP_OH) bbr->r_ctl.rc_inc_tcp_oh = 1; else bbr->r_ctl.rc_inc_tcp_oh = 0; if (optval & BBR_INCL_IP_OH) bbr->r_ctl.rc_inc_ip_oh = 1; else bbr->r_ctl.rc_inc_ip_oh = 0; if (optval & BBR_INCL_ENET_OH) bbr->r_ctl.rc_inc_enet_oh = 1; else bbr->r_ctl.rc_inc_enet_oh = 0; } break; default: return (tcp_default_ctloutput(so, sopt, inp, tp)); break; } #ifdef NETFLIX_STATS tcp_log_socket_option(tp, sopt->sopt_name, optval, error); #endif INP_WUNLOCK(inp); return (error); } /* * return 0 on success, error-num on failure */ static int bbr_get_sockopt(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp, struct tcp_bbr *bbr) { int32_t error, optval; /* * Because all our options are either boolean or an int, we can just * pull everything into optval and then unlock and copy. If we ever * add a option that is not a int, then this will have quite an * impact to this routine. */ switch (sopt->sopt_name) { case TCP_BBR_PACE_PER_SEC: optval = bbr->r_ctl.bbr_hptsi_per_second; break; case TCP_BBR_PACE_DEL_TAR: optval = bbr->r_ctl.bbr_hptsi_segments_delay_tar; break; case TCP_BBR_PACE_SEG_MAX: optval = bbr->r_ctl.bbr_hptsi_segments_max; break; case TCP_BBR_MIN_TOPACEOUT: optval = bbr->no_pacing_until; break; case TCP_BBR_PACE_SEG_MIN: optval = bbr->r_ctl.bbr_hptsi_bytes_min; break; case TCP_BBR_PACE_CROSS: optval = bbr->r_ctl.bbr_cross_over; break; case TCP_BBR_ALGORITHM: optval = bbr->rc_use_google; break; case TCP_BBR_TSLIMITS: optval = bbr->rc_use_ts_limit; break; case TCP_BBR_IWINTSO: optval = bbr->rc_init_win; break; case TCP_BBR_STARTUP_PG: optval = bbr->r_ctl.rc_startup_pg; break; case TCP_BBR_DRAIN_PG: optval = bbr->r_ctl.rc_drain_pg; break; case TCP_BBR_PROBE_RTT_INT: optval = bbr->r_ctl.rc_probertt_int; break; case TCP_BBR_PROBE_RTT_LEN: optval = (bbr->r_ctl.rc_rttprop.cur_time_limit / USECS_IN_SECOND); break; case TCP_BBR_PROBE_RTT_GAIN: optval = bbr->r_ctl.bbr_rttprobe_gain_val; break; case TCP_BBR_STARTUP_LOSS_EXIT: optval = bbr->rc_loss_exit; break; case TCP_BBR_USEDEL_RATE: error = EINVAL; break; case TCP_BBR_MIN_RTO: optval = bbr->r_ctl.rc_min_rto_ms; break; case TCP_BBR_MAX_RTO: optval = bbr->rc_max_rto_sec; break; case TCP_RACK_PACE_MAX_SEG: /* Max segments in a pace */ optval = bbr->r_ctl.rc_pace_max_segs; break; case TCP_RACK_MIN_TO: /* Minimum time between rack t-o's in ms */ optval = bbr->r_ctl.rc_min_to; break; case TCP_RACK_REORD_THRESH: /* RACK reorder threshold (shift amount) */ optval = bbr->r_ctl.rc_reorder_shift; break; case TCP_RACK_REORD_FADE: /* Does reordering fade after ms time */ optval = bbr->r_ctl.rc_reorder_fade; break; case TCP_BBR_USE_RACK_CHEAT: /* Do we use the rack cheat for rxt */ optval = bbr->bbr_use_rack_cheat; break; case TCP_BBR_FLOOR_MIN_TSO: optval = bbr->r_ctl.bbr_hptsi_segments_floor; break; case TCP_BBR_UTTER_MAX_TSO: optval = bbr->r_ctl.bbr_utter_max; break; case TCP_BBR_SEND_IWND_IN_TSO: /* Do we send TSO size segments initially */ optval = bbr->bbr_init_win_cheat; break; case TCP_BBR_EXTRA_STATE: optval = bbr->rc_use_idle_restart; break; case TCP_RACK_TLP_THRESH: /* RACK TLP theshold i.e. srtt+(srtt/N) */ optval = bbr->rc_tlp_threshold; break; case TCP_RACK_PKT_DELAY: /* RACK added ms i.e. rack-rtt + reord + N */ optval = bbr->r_ctl.rc_pkt_delay; break; case TCP_BBR_RETRAN_WTSO: optval = bbr->rc_resends_use_tso; break; case TCP_DATA_AFTER_CLOSE: optval = bbr->rc_allow_data_af_clo; break; case TCP_DELACK: optval = tp->t_delayed_ack; break; case TCP_BBR_HDWR_PACE: optval = bbr->bbr_hdw_pace_ena; break; case TCP_BBR_POLICER_DETECT: optval = bbr->r_use_policer; break; case TCP_BBR_TSTMP_RAISES: optval = bbr->ts_can_raise; break; case TCP_BBR_TMR_PACE_OH: optval = bbr->r_ctl.rc_incr_tmrs; break; case TCP_BBR_PACE_OH: optval = 0; if (bbr->r_ctl.rc_inc_tcp_oh) optval |= BBR_INCL_TCP_OH; if (bbr->r_ctl.rc_inc_ip_oh) optval |= BBR_INCL_IP_OH; if (bbr->r_ctl.rc_inc_enet_oh) optval |= BBR_INCL_ENET_OH; break; default: return (tcp_default_ctloutput(so, sopt, inp, tp)); break; } INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); return (error); } /* * return 0 on success, error-num on failure */ static int bbr_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp) { int32_t error = EINVAL; struct tcp_bbr *bbr; bbr = (struct tcp_bbr *)tp->t_fb_ptr; if (bbr == NULL) { /* Huh? */ goto out; } if (sopt->sopt_dir == SOPT_SET) { return (bbr_set_sockopt(so, sopt, inp, tp, bbr)); } else if (sopt->sopt_dir == SOPT_GET) { return (bbr_get_sockopt(so, sopt, inp, tp, bbr)); } out: INP_WUNLOCK(inp); return (error); } struct tcp_function_block __tcp_bbr = { .tfb_tcp_block_name = __XSTRING(STACKNAME), .tfb_tcp_output = bbr_output, .tfb_do_queued_segments = ctf_do_queued_segments, .tfb_do_segment_nounlock = bbr_do_segment_nounlock, .tfb_tcp_do_segment = bbr_do_segment, .tfb_tcp_ctloutput = bbr_ctloutput, .tfb_tcp_fb_init = bbr_init, .tfb_tcp_fb_fini = bbr_fini, .tfb_tcp_timer_stop_all = bbr_stopall, .tfb_tcp_timer_activate = bbr_timer_activate, .tfb_tcp_timer_active = bbr_timer_active, .tfb_tcp_timer_stop = bbr_timer_stop, .tfb_tcp_rexmit_tmr = bbr_remxt_tmr, .tfb_tcp_handoff_ok = bbr_handoff_ok, .tfb_tcp_mtu_chg = bbr_mtu_chg }; static const char *bbr_stack_names[] = { __XSTRING(STACKNAME), #ifdef STACKALIAS __XSTRING(STACKALIAS), #endif }; static bool bbr_mod_inited = false; static int tcp_addbbr(module_t mod, int32_t type, void *data) { int32_t err = 0; int num_stacks; switch (type) { case MOD_LOAD: printf("Attempting to load " __XSTRING(MODNAME) "\n"); bbr_zone = uma_zcreate(__XSTRING(MODNAME) "_map", sizeof(struct bbr_sendmap), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); bbr_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb", sizeof(struct tcp_bbr), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); sysctl_ctx_init(&bbr_sysctl_ctx); bbr_sysctl_root = SYSCTL_ADD_NODE(&bbr_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_net_inet_tcp), OID_AUTO, #ifdef STACKALIAS __XSTRING(STACKALIAS), #else __XSTRING(STACKNAME), #endif CTLFLAG_RW, 0, ""); if (bbr_sysctl_root == NULL) { printf("Failed to add sysctl node\n"); err = EFAULT; goto free_uma; } bbr_init_sysctls(); num_stacks = nitems(bbr_stack_names); err = register_tcp_functions_as_names(&__tcp_bbr, M_WAITOK, bbr_stack_names, &num_stacks); if (err) { printf("Failed to register %s stack name for " "%s module\n", bbr_stack_names[num_stacks], __XSTRING(MODNAME)); sysctl_ctx_free(&bbr_sysctl_ctx); free_uma: uma_zdestroy(bbr_zone); uma_zdestroy(bbr_pcb_zone); bbr_counter_destroy(); printf("Failed to register " __XSTRING(MODNAME) " module err:%d\n", err); return (err); } tcp_lro_reg_mbufq(); bbr_mod_inited = true; printf(__XSTRING(MODNAME) " is now available\n"); break; case MOD_QUIESCE: err = deregister_tcp_functions(&__tcp_bbr, true, false); break; case MOD_UNLOAD: err = deregister_tcp_functions(&__tcp_bbr, false, true); if (err == EBUSY) break; if (bbr_mod_inited) { uma_zdestroy(bbr_zone); uma_zdestroy(bbr_pcb_zone); sysctl_ctx_free(&bbr_sysctl_ctx); bbr_counter_destroy(); printf(__XSTRING(MODNAME) " is now no longer available\n"); bbr_mod_inited = false; } tcp_lro_dereg_mbufq(); err = 0; break; default: return (EOPNOTSUPP); } return (err); } static moduledata_t tcp_bbr = { .name = __XSTRING(MODNAME), .evhand = tcp_addbbr, .priv = 0 }; MODULE_VERSION(MODNAME, 1); DECLARE_MODULE(MODNAME, tcp_bbr, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);