/*- * Copyright (c) 2007-2008 * Swinburne University of Technology, Melbourne, Australia * Copyright (c) 2009-2010 Lawrence Stewart * Copyright (c) 2014 Midori Kato * Copyright (c) 2014 The FreeBSD Foundation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * An implementation of the DCTCP algorithm for FreeBSD, based on * "Data Center TCP (DCTCP)" by M. Alizadeh, A. Greenberg, D. A. Maltz, * J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan., * in ACM Conference on SIGCOMM 2010, New York, USA, * Originally released as the contribution of Microsoft Research project. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DCTCP_SHIFT 10 #define MAX_ALPHA_VALUE (1<cc_data; if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) { /* * DCTCP doesn't treat receipt of ECN marked packet as a * congestion event. Thus, DCTCP always executes the ACK * processing out of congestion recovery. */ if (IN_CONGRECOVERY(CCV(ccv, t_flags))) { EXIT_CONGRECOVERY(CCV(ccv, t_flags)); newreno_cc_ack_received(ccv, type); ENTER_CONGRECOVERY(CCV(ccv, t_flags)); } else newreno_cc_ack_received(ccv, type); if (type == CC_DUPACK) bytes_acked = min(ccv->bytes_this_ack, CCV(ccv, t_maxseg)); if (type == CC_ACK) bytes_acked = ccv->bytes_this_ack; /* Update total bytes. */ dctcp_data->bytes_total += bytes_acked; /* Update total marked bytes. */ if (dctcp_data->ece_curr) { //XXRMS: For fluid-model DCTCP, update //cwnd here during for RTT fairness if (!dctcp_data->ece_prev && bytes_acked > CCV(ccv, t_maxseg)) { dctcp_data->bytes_ecn += (bytes_acked - CCV(ccv, t_maxseg)); } else dctcp_data->bytes_ecn += bytes_acked; dctcp_data->ece_prev = 1; } else { if (dctcp_data->ece_prev && bytes_acked > CCV(ccv, t_maxseg)) dctcp_data->bytes_ecn += CCV(ccv, t_maxseg); dctcp_data->ece_prev = 0; } dctcp_data->ece_curr = 0; /* * Update the fraction of marked bytes at the end of * current window size. */ if (!IN_FASTRECOVERY(CCV(ccv, t_flags)) && SEQ_GT(ccv->curack, dctcp_data->save_sndnxt)) dctcp_update_alpha(ccv); } else newreno_cc_ack_received(ccv, type); } static size_t dctcp_data_sz(void) { return (sizeof(struct dctcp)); } static void dctcp_after_idle(struct cc_var *ccv) { struct dctcp *dctcp_data; if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) { dctcp_data = ccv->cc_data; /* Initialize internal parameters after idle time */ dctcp_data->bytes_ecn = 0; dctcp_data->bytes_total = 0; dctcp_data->save_sndnxt = CCV(ccv, snd_nxt); dctcp_data->alpha = V_dctcp_alpha; dctcp_data->ece_curr = 0; dctcp_data->ece_prev = 0; dctcp_data->num_cong_events = 0; } newreno_cc_after_idle(ccv); } static void dctcp_cb_destroy(struct cc_var *ccv) { free(ccv->cc_data, M_CC_MEM); } static int dctcp_cb_init(struct cc_var *ccv, void *ptr) { struct dctcp *dctcp_data; INP_WLOCK_ASSERT(tptoinpcb(ccv->ccvc.tcp)); if (ptr == NULL) { dctcp_data = malloc(sizeof(struct dctcp), M_CC_MEM, M_NOWAIT|M_ZERO); if (dctcp_data == NULL) return (ENOMEM); } else dctcp_data = ptr; /* Initialize some key variables with sensible defaults. */ dctcp_data->bytes_ecn = 0; dctcp_data->bytes_total = 0; /* * When alpha is set to 0 in the beginning, DCTCP sender transfers as * much data as possible until the value converges which may expand the * queueing delay at the switch. When alpha is set to 1, queueing delay * is kept small. * Throughput-sensitive applications should have alpha = 0 * Latency-sensitive applications should have alpha = 1 * * Note: DCTCP draft suggests initial alpha to be 1 but we've decided to * keep it 0 as default. */ dctcp_data->alpha = V_dctcp_alpha; dctcp_data->save_sndnxt = 0; dctcp_data->ce_prev = 0; dctcp_data->ece_curr = 0; dctcp_data->ece_prev = 0; dctcp_data->num_cong_events = 0; ccv->cc_data = dctcp_data; return (0); } /* * Perform any necessary tasks before we enter congestion recovery. */ static void dctcp_cong_signal(struct cc_var *ccv, uint32_t type) { struct dctcp *dctcp_data; u_int cwin, mss; if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) { dctcp_data = ccv->cc_data; cwin = CCV(ccv, snd_cwnd); mss = tcp_maxseg(ccv->ccvc.tcp); switch (type) { case CC_NDUPACK: if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) { if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) { CCV(ccv, snd_ssthresh) = max(cwin / 2, 2 * mss); dctcp_data->num_cong_events++; } else { /* cwnd has already updated as congestion * recovery. Reverse cwnd value using * snd_cwnd_prev and recalculate snd_ssthresh */ cwin = CCV(ccv, snd_cwnd_prev); CCV(ccv, snd_ssthresh) = max(cwin / 2, 2 * mss); } ENTER_RECOVERY(CCV(ccv, t_flags)); } break; case CC_ECN: /* * Save current snd_cwnd when the host encounters both * congestion recovery and fast recovery. */ CCV(ccv, snd_cwnd_prev) = cwin; if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) { if (V_dctcp_slowstart && dctcp_data->num_cong_events++ == 0) { CCV(ccv, snd_ssthresh) = max(cwin / 2, 2 * mss); dctcp_data->alpha = MAX_ALPHA_VALUE; dctcp_data->bytes_ecn = 0; dctcp_data->bytes_total = 0; dctcp_data->save_sndnxt = CCV(ccv, snd_nxt); } else CCV(ccv, snd_ssthresh) = max((cwin - (((uint64_t)cwin * dctcp_data->alpha) >> (DCTCP_SHIFT+1))), 2 * mss); CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh); ENTER_CONGRECOVERY(CCV(ccv, t_flags)); } dctcp_data->ece_curr = 1; break; case CC_RTO: CCV(ccv, snd_ssthresh) = max(min(CCV(ccv, snd_wnd), CCV(ccv, snd_cwnd)) / 2 / mss, 2) * mss; CCV(ccv, snd_cwnd) = mss; dctcp_update_alpha(ccv); dctcp_data->save_sndnxt += CCV(ccv, t_maxseg); dctcp_data->num_cong_events++; break; } } else newreno_cc_cong_signal(ccv, type); } static void dctcp_conn_init(struct cc_var *ccv) { struct dctcp *dctcp_data; dctcp_data = ccv->cc_data; if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) { dctcp_data->save_sndnxt = CCV(ccv, snd_nxt); if (V_dctcp_ect1) CCV(ccv, t_flags2) |= TF2_ECN_USE_ECT1; } } /* * Perform any necessary tasks before we exit congestion recovery. */ static void dctcp_post_recovery(struct cc_var *ccv) { newreno_cc_post_recovery(ccv); if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) dctcp_update_alpha(ccv); } /* * Execute an additional ECN processing using ECN field in IP header * and the CWR bit in TCP header. */ static void dctcp_ecnpkt_handler(struct cc_var *ccv) { struct dctcp *dctcp_data; uint32_t ccflag; int acknow; dctcp_data = ccv->cc_data; ccflag = ccv->flags; acknow = 0; /* * DCTCP responds with an ACK immediately when the CE state * in between this segment and the last segment has changed. */ if (ccflag & CCF_IPHDR_CE) { if (!dctcp_data->ce_prev) { acknow = 1; dctcp_data->ce_prev = 1; CCV(ccv, t_flags2) |= TF2_ECN_SND_ECE; } } else { if (dctcp_data->ce_prev) { acknow = 1; dctcp_data->ce_prev = 0; CCV(ccv, t_flags2) &= ~TF2_ECN_SND_ECE; } } if ((acknow) || (ccflag & CCF_TCPHDR_CWR)) { ccv->flags |= CCF_ACKNOW; } else { ccv->flags &= ~CCF_ACKNOW; } } /* * Update the fraction of marked bytes represented as 'alpha'. * Also initialize several internal parameters at the end of this function. */ static void dctcp_update_alpha(struct cc_var *ccv) { struct dctcp *dctcp_data; int alpha_prev; dctcp_data = ccv->cc_data; alpha_prev = dctcp_data->alpha; dctcp_data->bytes_total = max(dctcp_data->bytes_total, 1); /* * Update alpha: alpha = (1 - g) * alpha + g * M. * Here: * g is weight factor * recommaded to be set to 1/16 * small g = slow convergence between competitive DCTCP flows * large g = impacts low utilization of bandwidth at switches * M is fraction of marked segments in last RTT * updated every RTT * Alpha must be round to 0 - MAX_ALPHA_VALUE. */ dctcp_data->alpha = ulmin(alpha_prev - (alpha_prev >> V_dctcp_shift_g) + ((uint64_t)dctcp_data->bytes_ecn << (DCTCP_SHIFT - V_dctcp_shift_g)) / dctcp_data->bytes_total, MAX_ALPHA_VALUE); /* Initialize internal parameters for next alpha calculation */ dctcp_data->bytes_ecn = 0; dctcp_data->bytes_total = 0; dctcp_data->save_sndnxt = CCV(ccv, snd_nxt); } static int dctcp_alpha_handler(SYSCTL_HANDLER_ARGS) { uint32_t new; int error; new = V_dctcp_alpha; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr != NULL) { if (new > MAX_ALPHA_VALUE) error = EINVAL; else V_dctcp_alpha = new; } return (error); } static int dctcp_shift_g_handler(SYSCTL_HANDLER_ARGS) { uint32_t new; int error; new = V_dctcp_shift_g; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr != NULL) { if (new > DCTCP_SHIFT) error = EINVAL; else V_dctcp_shift_g = new; } return (error); } static int dctcp_slowstart_handler(SYSCTL_HANDLER_ARGS) { uint32_t new; int error; new = V_dctcp_slowstart; error = sysctl_handle_int(oidp, &new, 0, req); if (error == 0 && req->newptr != NULL) { if (new > 1) error = EINVAL; else V_dctcp_slowstart = new; } return (error); } SYSCTL_DECL(_net_inet_tcp_cc_dctcp); SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, dctcp, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, "dctcp congestion control related settings"); SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, alpha, CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(dctcp_alpha), 0, &dctcp_alpha_handler, "IU", "dctcp alpha parameter at start of session"); SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, shift_g, CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(dctcp_shift_g), 4, &dctcp_shift_g_handler, "IU", "dctcp shift parameter"); SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, slowstart, CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(dctcp_slowstart), 0, &dctcp_slowstart_handler, "IU", "half CWND reduction after the first slow start"); SYSCTL_UINT(_net_inet_tcp_cc_dctcp, OID_AUTO, ect1, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(dctcp_ect1), 0, "Send DCTCP segments with ÍP ECT(0) or ECT(1)"); DECLARE_CC_MODULE(dctcp, &dctcp_cc_algo); MODULE_VERSION(dctcp, 2);