/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007-2008 * Swinburne University of Technology, Melbourne, Australia. * Copyright (c) 2009-2010 Lawrence Stewart * Copyright (c) 2010 The FreeBSD Foundation * All rights reserved. * * This software was developed at the Centre for Advanced Internet * Architectures, Swinburne University of Technology, by Lawrence Stewart and * James Healy, made possible in part by a grant from the Cisco University * Research Program Fund at Community Foundation Silicon Valley. * * Portions of this software were developed at the Centre for Advanced * Internet Architectures, Swinburne University of Technology, Melbourne, * Australia by David Hayes under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This software was first released in 2007 by James Healy and Lawrence Stewart * whilst working on the NewTCP research project at Swinburne University of * Technology's Centre for Advanced Internet Architectures, Melbourne, * Australia, which was made possible in part by a grant from the Cisco * University Research Program Fund at Community Foundation Silicon Valley. * More details are available at: * http://caia.swin.edu.au/urp/newtcp/ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_CC_MEM, "CC Mem", "Congestion Control State memory"); /* * List of available cc algorithms on the current system. First element * is used as the system default CC algorithm. */ struct cc_head cc_list = STAILQ_HEAD_INITIALIZER(cc_list); /* Protects the cc_list TAILQ. */ struct rwlock cc_list_lock; VNET_DEFINE(struct cc_algo *, default_cc_ptr) = NULL; VNET_DEFINE(uint32_t, newreno_beta) = 50; #define V_newreno_beta VNET(newreno_beta) /* * Sysctl handler to show and change the default CC algorithm. */ static int cc_default_algo(SYSCTL_HANDLER_ARGS) { char default_cc[TCP_CA_NAME_MAX]; struct cc_algo *funcs; int error; /* Get the current default: */ CC_LIST_RLOCK(); if (CC_DEFAULT_ALGO() != NULL) strlcpy(default_cc, CC_DEFAULT_ALGO()->name, sizeof(default_cc)); else memset(default_cc, 0, TCP_CA_NAME_MAX); CC_LIST_RUNLOCK(); error = sysctl_handle_string(oidp, default_cc, sizeof(default_cc), req); /* Check for error or no change */ if (error != 0 || req->newptr == NULL) goto done; error = ESRCH; /* Find algo with specified name and set it to default. */ CC_LIST_RLOCK(); STAILQ_FOREACH(funcs, &cc_list, entries) { if (strncmp(default_cc, funcs->name, sizeof(default_cc))) continue; V_default_cc_ptr = funcs; error = 0; break; } CC_LIST_RUNLOCK(); done: return (error); } /* * Sysctl handler to display the list of available CC algorithms. */ static int cc_list_available(SYSCTL_HANDLER_ARGS) { struct cc_algo *algo; struct sbuf *s; int err, first, nalgos; err = nalgos = 0; first = 1; CC_LIST_RLOCK(); STAILQ_FOREACH(algo, &cc_list, entries) { nalgos++; } CC_LIST_RUNLOCK(); if (nalgos == 0) { return (ENOENT); } s = sbuf_new(NULL, NULL, nalgos * TCP_CA_NAME_MAX, SBUF_FIXEDLEN); if (s == NULL) return (ENOMEM); /* * It is theoretically possible for the CC list to have grown in size * since the call to sbuf_new() and therefore for the sbuf to be too * small. If this were to happen (incredibly unlikely), the sbuf will * reach an overflow condition, sbuf_printf() will return an error and * the sysctl will fail gracefully. */ CC_LIST_RLOCK(); STAILQ_FOREACH(algo, &cc_list, entries) { err = sbuf_printf(s, first ? "%s" : ", %s", algo->name); if (err) { /* Sbuf overflow condition. */ err = EOVERFLOW; break; } first = 0; } CC_LIST_RUNLOCK(); if (!err) { sbuf_finish(s); err = sysctl_handle_string(oidp, sbuf_data(s), 0, req); } sbuf_delete(s); return (err); } /* * Return the number of times a proposed removal_cc is * being used as the default. */ static int cc_check_default(struct cc_algo *remove_cc) { int cnt = 0; VNET_ITERATOR_DECL(vnet_iter); CC_LIST_LOCK_ASSERT(); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); if ((CC_DEFAULT_ALGO() != NULL) && strncmp(CC_DEFAULT_ALGO()->name, remove_cc->name, TCP_CA_NAME_MAX) == 0) { cnt++; } CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); return (cnt); } /* * Initialise CC subsystem on system boot. */ static void cc_init(void) { CC_LIST_LOCK_INIT(); STAILQ_INIT(&cc_list); } /* * Returns non-zero on success, 0 on failure. */ int cc_deregister_algo(struct cc_algo *remove_cc) { struct cc_algo *funcs, *tmpfuncs; int err; err = ENOENT; /* Remove algo from cc_list so that new connections can't use it. */ CC_LIST_WLOCK(); STAILQ_FOREACH_SAFE(funcs, &cc_list, entries, tmpfuncs) { if (funcs == remove_cc) { if (cc_check_default(remove_cc)) { err = EBUSY; break; } /* Add a temp flag to stop new adds to it */ funcs->flags |= CC_MODULE_BEING_REMOVED; break; } } CC_LIST_WUNLOCK(); err = tcp_ccalgounload(remove_cc); /* * Now back through and we either remove the temp flag * or pull the registration. */ CC_LIST_WLOCK(); STAILQ_FOREACH_SAFE(funcs, &cc_list, entries, tmpfuncs) { if (funcs == remove_cc) { if (err == 0) STAILQ_REMOVE(&cc_list, funcs, cc_algo, entries); else funcs->flags &= ~CC_MODULE_BEING_REMOVED; break; } } CC_LIST_WUNLOCK(); return (err); } /* * Returns 0 on success, non-zero on failure. */ int cc_register_algo(struct cc_algo *add_cc) { struct cc_algo *funcs; int err; err = 0; /* * Iterate over list of registered CC algorithms and make sure * we're not trying to add a duplicate. */ CC_LIST_WLOCK(); STAILQ_FOREACH(funcs, &cc_list, entries) { if (funcs == add_cc || strncmp(funcs->name, add_cc->name, TCP_CA_NAME_MAX) == 0) { err = EEXIST; break; } } /* * The first loaded congestion control module will become * the default until we find the "CC_DEFAULT" defined in * the config (if we do). */ if (!err) { STAILQ_INSERT_TAIL(&cc_list, add_cc, entries); if (strcmp(add_cc->name, CC_DEFAULT) == 0) { V_default_cc_ptr = add_cc; } else if (V_default_cc_ptr == NULL) { V_default_cc_ptr = add_cc; } } CC_LIST_WUNLOCK(); return (err); } /* * Perform any necessary tasks before we exit congestion recovery. */ void newreno_cc_post_recovery(struct cc_var *ccv) { int pipe; if (IN_FASTRECOVERY(CCV(ccv, t_flags))) { /* * Fast recovery will conclude after returning from this * function. Window inflation should have left us with * approximately snd_ssthresh outstanding data. But in case we * would be inclined to send a burst, better to do it via the * slow start mechanism. * * XXXLAS: Find a way to do this without needing curack */ if (V_tcp_do_newsack) pipe = tcp_compute_pipe(ccv->ccvc.tcp); else pipe = CCV(ccv, snd_max) - ccv->curack; if (pipe < CCV(ccv, snd_ssthresh)) /* * Ensure that cwnd does not collapse to 1 MSS under * adverse conditons. Implements RFC6582 */ CCV(ccv, snd_cwnd) = max(pipe, CCV(ccv, t_maxseg)) + CCV(ccv, t_maxseg); else CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh); } } void newreno_cc_after_idle(struct cc_var *ccv) { uint32_t rw; /* * If we've been idle for more than one retransmit timeout the old * congestion window is no longer current and we have to reduce it to * the restart window before we can transmit again. * * The restart window is the initial window or the last CWND, whichever * is smaller. * * This is done to prevent us from flooding the path with a full CWND at * wirespeed, overloading router and switch buffers along the way. * * See RFC5681 Section 4.1. "Restarting Idle Connections". * * In addition, per RFC2861 Section 2, the ssthresh is set to the * maximum of the former ssthresh or 3/4 of the old cwnd, to * not exit slow-start prematurely. */ rw = tcp_compute_initwnd(tcp_maxseg(ccv->ccvc.tcp)); CCV(ccv, snd_ssthresh) = max(CCV(ccv, snd_ssthresh), CCV(ccv, snd_cwnd)-(CCV(ccv, snd_cwnd)>>2)); CCV(ccv, snd_cwnd) = min(rw, CCV(ccv, snd_cwnd)); } /* * Perform any necessary tasks before we enter congestion recovery. */ void newreno_cc_cong_signal(struct cc_var *ccv, uint32_t type) { uint32_t cwin, factor; u_int mss; cwin = CCV(ccv, snd_cwnd); mss = tcp_fixed_maxseg(ccv->ccvc.tcp); /* * Other TCP congestion controls use newreno_cong_signal(), but * with their own private cc_data. Make sure the cc_data is used * correctly. */ factor = V_newreno_beta; /* Catch algos which mistakenly leak private signal types. */ KASSERT((type & CC_SIGPRIVMASK) == 0, ("%s: congestion signal type 0x%08x is private\n", __func__, type)); cwin = max(((uint64_t)cwin * (uint64_t)factor) / (100ULL * (uint64_t)mss), 2) * mss; switch (type) { case CC_NDUPACK: if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) { if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) CCV(ccv, snd_ssthresh) = cwin; ENTER_RECOVERY(CCV(ccv, t_flags)); } break; case CC_ECN: if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) { CCV(ccv, snd_ssthresh) = cwin; CCV(ccv, snd_cwnd) = cwin; ENTER_CONGRECOVERY(CCV(ccv, t_flags)); } break; case CC_RTO: CCV(ccv, snd_ssthresh) = max(min(CCV(ccv, snd_wnd), CCV(ccv, snd_cwnd)) / 2 / mss, 2) * mss; CCV(ccv, snd_cwnd) = mss; break; } } void newreno_cc_ack_received(struct cc_var *ccv, uint16_t type) { if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) && (ccv->flags & CCF_CWND_LIMITED)) { u_int cw = CCV(ccv, snd_cwnd); u_int incr = CCV(ccv, t_maxseg); /* * Regular in-order ACK, open the congestion window. * Method depends on which congestion control state we're * in (slow start or cong avoid) and if ABC (RFC 3465) is * enabled. * * slow start: cwnd <= ssthresh * cong avoid: cwnd > ssthresh * * slow start and ABC (RFC 3465): * Grow cwnd exponentially by the amount of data * ACKed capping the max increment per ACK to * (abc_l_var * maxseg) bytes. * * slow start without ABC (RFC 5681): * Grow cwnd exponentially by maxseg per ACK. * * cong avoid and ABC (RFC 3465): * Grow cwnd linearly by maxseg per RTT for each * cwnd worth of ACKed data. * * cong avoid without ABC (RFC 5681): * Grow cwnd linearly by approximately maxseg per RTT using * maxseg^2 / cwnd per ACK as the increment. * If cwnd > maxseg^2, fix the cwnd increment at 1 byte to * avoid capping cwnd. */ if (cw > CCV(ccv, snd_ssthresh)) { if (V_tcp_do_rfc3465) { if (ccv->flags & CCF_ABC_SENTAWND) ccv->flags &= ~CCF_ABC_SENTAWND; else incr = 0; } else incr = max((incr * incr / cw), 1); } else if (V_tcp_do_rfc3465) { /* * In slow-start with ABC enabled and no RTO in sight? * (Must not use abc_l_var > 1 if slow starting after * an RTO. On RTO, snd_nxt = snd_una, so the * snd_nxt == snd_max check is sufficient to * handle this). * * XXXLAS: Find a way to signal SS after RTO that * doesn't rely on tcpcb vars. */ uint16_t abc_val; if (ccv->flags & CCF_USE_LOCAL_ABC) abc_val = ccv->labc; else abc_val = V_tcp_abc_l_var; if (CCV(ccv, snd_nxt) == CCV(ccv, snd_max)) incr = min(ccv->bytes_this_ack, ccv->nsegs * abc_val * CCV(ccv, t_maxseg)); else incr = min(ccv->bytes_this_ack, CCV(ccv, t_maxseg)); } /* ABC is on by default, so incr equals 0 frequently. */ if (incr > 0) CCV(ccv, snd_cwnd) = min(cw + incr, TCP_MAXWIN << CCV(ccv, snd_scale)); } } /* * Handles kld related events. Returns 0 on success, non-zero on failure. */ int cc_modevent(module_t mod, int event_type, void *data) { struct cc_algo *algo; int err; err = 0; algo = (struct cc_algo *)data; switch(event_type) { case MOD_LOAD: if ((algo->cc_data_sz == NULL) && (algo->cb_init != NULL)) { /* * A module must have a cc_data_sz function * even if it has no data it should return 0. */ printf("Module Load Fails, it lacks a cc_data_sz() function but has a cb_init()!\n"); err = EINVAL; break; } if (algo->mod_init != NULL) err = algo->mod_init(); if (!err) err = cc_register_algo(algo); break; case MOD_QUIESCE: case MOD_SHUTDOWN: case MOD_UNLOAD: err = cc_deregister_algo(algo); if (!err && algo->mod_destroy != NULL) algo->mod_destroy(); if (err == ENOENT) err = 0; break; default: err = EINVAL; break; } return (err); } SYSINIT(cc, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, cc_init, NULL); /* Declare sysctl tree and populate it. */ SYSCTL_NODE(_net_inet_tcp, OID_AUTO, cc, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, "Congestion control related settings"); SYSCTL_PROC(_net_inet_tcp_cc, OID_AUTO, algorithm, CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, cc_default_algo, "A", "Default congestion control algorithm"); SYSCTL_PROC(_net_inet_tcp_cc, OID_AUTO, available, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, cc_list_available, "A", "List available congestion control algorithms"); VNET_DEFINE(int, cc_do_abe) = 0; SYSCTL_INT(_net_inet_tcp_cc, OID_AUTO, abe, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(cc_do_abe), 0, "Enable draft-ietf-tcpm-alternativebackoff-ecn (TCP Alternative Backoff with ECN)"); VNET_DEFINE(int, cc_abe_frlossreduce) = 0; SYSCTL_INT(_net_inet_tcp_cc, OID_AUTO, abe_frlossreduce, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(cc_abe_frlossreduce), 0, "Apply standard beta instead of ABE-beta during ECN-signalled congestion " "recovery episodes if loss also needs to be repaired");