/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * IEEE 802.11 generic handler */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include #include const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = "auto", [IEEE80211_MODE_11A] = "11a", [IEEE80211_MODE_11B] = "11b", [IEEE80211_MODE_11G] = "11g", [IEEE80211_MODE_FH] = "FH", [IEEE80211_MODE_TURBO_A] = "turboA", [IEEE80211_MODE_TURBO_G] = "turboG", [IEEE80211_MODE_STURBO_A] = "sturboA", [IEEE80211_MODE_HALF] = "half", [IEEE80211_MODE_QUARTER] = "quarter", [IEEE80211_MODE_11NA] = "11na", [IEEE80211_MODE_11NG] = "11ng", [IEEE80211_MODE_VHT_2GHZ] = "11acg", [IEEE80211_MODE_VHT_5GHZ] = "11ac", }; /* map ieee80211_opmode to the corresponding capability bit */ const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, [IEEE80211_M_WDS] = IEEE80211_C_WDS, [IEEE80211_M_STA] = IEEE80211_C_STA, [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, #ifdef IEEE80211_SUPPORT_MESH [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, #endif }; const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); static int ieee80211_media_setup(struct ieee80211com *ic, struct ifmedia *media, int caps, int addsta, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); static int media_status(enum ieee80211_opmode, const struct ieee80211_channel *); static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); /* * Default supported rates for 802.11 operation (in IEEE .5Mb units). */ #define B(r) ((r) | IEEE80211_RATE_BASIC) static const struct ieee80211_rateset ieee80211_rateset_11a = { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; static const struct ieee80211_rateset ieee80211_rateset_half = { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; static const struct ieee80211_rateset ieee80211_rateset_quarter = { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; static const struct ieee80211_rateset ieee80211_rateset_11b = { 4, { B(2), B(4), B(11), B(22) } }; /* NB: OFDM rates are handled specially based on mode */ static const struct ieee80211_rateset ieee80211_rateset_11g = { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; #undef B static int set_vht_extchan(struct ieee80211_channel *c); /* * Fill in 802.11 available channel set, mark * all available channels as active, and pick * a default channel if not already specified. */ void ieee80211_chan_init(struct ieee80211com *ic) { #define DEFAULTRATES(m, def) do { \ if (ic->ic_sup_rates[m].rs_nrates == 0) \ ic->ic_sup_rates[m] = def; \ } while (0) struct ieee80211_channel *c; int i; KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, ("invalid number of channels specified: %u", ic->ic_nchans)); memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; KASSERT(c->ic_flags != 0, ("channel with no flags")); /* * Help drivers that work only with frequencies by filling * in IEEE channel #'s if not already calculated. Note this * mimics similar work done in ieee80211_setregdomain when * changing regulatory state. */ if (c->ic_ieee == 0) c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); /* * Setup the HT40/VHT40 upper/lower bits. * The VHT80/... math is done elsewhere. */ if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), c->ic_flags); /* Update VHT math */ /* * XXX VHT again, note that this assumes VHT80/... channels * are legit already. */ set_vht_extchan(c); /* default max tx power to max regulatory */ if (c->ic_maxpower == 0) c->ic_maxpower = 2*c->ic_maxregpower; setbit(ic->ic_chan_avail, c->ic_ieee); /* * Identify mode capabilities. */ if (IEEE80211_IS_CHAN_A(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11A); if (IEEE80211_IS_CHAN_B(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11B); if (IEEE80211_IS_CHAN_ANYG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11G); if (IEEE80211_IS_CHAN_FHSS(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_FH); if (IEEE80211_IS_CHAN_108A(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); if (IEEE80211_IS_CHAN_108G(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); if (IEEE80211_IS_CHAN_ST(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); if (IEEE80211_IS_CHAN_HALF(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); if (IEEE80211_IS_CHAN_QUARTER(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); if (IEEE80211_IS_CHAN_HTA(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); if (IEEE80211_IS_CHAN_HTG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); if (IEEE80211_IS_CHAN_VHTA(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); if (IEEE80211_IS_CHAN_VHTG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); } /* initialize candidate channels to all available */ memcpy(ic->ic_chan_active, ic->ic_chan_avail, sizeof(ic->ic_chan_avail)); /* sort channel table to allow lookup optimizations */ ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); /* invalidate any previous state */ ic->ic_bsschan = IEEE80211_CHAN_ANYC; ic->ic_prevchan = NULL; ic->ic_csa_newchan = NULL; /* arbitrarily pick the first channel */ ic->ic_curchan = &ic->ic_channels[0]; ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); /* fillin well-known rate sets if driver has not specified */ DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); /* * Setup required information to fill the mcsset field, if driver did * not. Assume a 2T2R setup for historic reasons. */ if (ic->ic_rxstream == 0) ic->ic_rxstream = 2; if (ic->ic_txstream == 0) ic->ic_txstream = 2; ieee80211_init_suphtrates(ic); /* * Set auto mode to reset active channel state and any desired channel. */ (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); #undef DEFAULTRATES } static void null_update_mcast(struct ieee80211com *ic) { ic_printf(ic, "need multicast update callback\n"); } static void null_update_promisc(struct ieee80211com *ic) { ic_printf(ic, "need promiscuous mode update callback\n"); } static void null_update_chw(struct ieee80211com *ic) { ic_printf(ic, "%s: need callback\n", __func__); } int ic_printf(struct ieee80211com *ic, const char * fmt, ...) { va_list ap; int retval; retval = printf("%s: ", ic->ic_name); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); static struct mtx ic_list_mtx; MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); static int sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic; struct sbuf sb; char *sp; int error; error = sysctl_wire_old_buffer(req, 0); if (error) return (error); sbuf_new_for_sysctl(&sb, NULL, 8, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); sp = ""; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) { sbuf_printf(&sb, "%s%s", sp, ic->ic_name); sp = " "; } mtx_unlock(&ic_list_mtx); error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } SYSCTL_PROC(_net_wlan, OID_AUTO, devices, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_ieee80211coms, "A", "names of available 802.11 devices"); /* * Attach/setup the common net80211 state. Called by * the driver on attach to prior to creating any vap's. */ void ieee80211_ifattach(struct ieee80211com *ic) { IEEE80211_LOCK_INIT(ic, ic->ic_name); IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); TAILQ_INIT(&ic->ic_vaps); /* Create a taskqueue for all state changes */ ic->ic_tq = taskqueue_create("ic_taskq", IEEE80211_M_WAITOK | IEEE80211_M_ZERO, taskqueue_thread_enqueue, &ic->ic_tq); taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", ic->ic_name); ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); /* * Fill in 802.11 available channel set, mark all * available channels as active, and pick a default * channel if not already specified. */ ieee80211_chan_init(ic); ic->ic_update_mcast = null_update_mcast; ic->ic_update_promisc = null_update_promisc; ic->ic_update_chw = null_update_chw; ic->ic_hash_key = arc4random(); ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; ic->ic_lintval = ic->ic_bintval; ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; ieee80211_crypto_attach(ic); ieee80211_node_attach(ic); ieee80211_power_attach(ic); ieee80211_proto_attach(ic); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_attach(ic); #endif ieee80211_ht_attach(ic); ieee80211_vht_attach(ic); ieee80211_scan_attach(ic); ieee80211_regdomain_attach(ic); ieee80211_dfs_attach(ic); ieee80211_sysctl_attach(ic); mtx_lock(&ic_list_mtx); LIST_INSERT_HEAD(&ic_head, ic, ic_next); mtx_unlock(&ic_list_mtx); } /* * Detach net80211 state on device detach. Tear down * all vap's and reclaim all common state prior to the * device state going away. Note we may call back into * driver; it must be prepared for this. */ void ieee80211_ifdetach(struct ieee80211com *ic) { struct ieee80211vap *vap; /* * We use this as an indicator that ifattach never had a chance to be * called, e.g. early driver attach failed and ifdetach was called * during subsequent detach. Never fear, for we have nothing to do * here. */ if (ic->ic_tq == NULL) return; mtx_lock(&ic_list_mtx); LIST_REMOVE(ic, ic_next); mtx_unlock(&ic_list_mtx); taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); /* * The VAP is responsible for setting and clearing * the VIMAGE context. */ while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { ieee80211_com_vdetach(vap); ieee80211_vap_destroy(vap); } ieee80211_waitfor_parent(ic); ieee80211_sysctl_detach(ic); ieee80211_dfs_detach(ic); ieee80211_regdomain_detach(ic); ieee80211_scan_detach(ic); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_detach(ic); #endif ieee80211_vht_detach(ic); ieee80211_ht_detach(ic); /* NB: must be called before ieee80211_node_detach */ ieee80211_proto_detach(ic); ieee80211_crypto_detach(ic); ieee80211_power_detach(ic); ieee80211_node_detach(ic); counter_u64_free(ic->ic_ierrors); counter_u64_free(ic->ic_oerrors); taskqueue_free(ic->ic_tq); IEEE80211_TX_LOCK_DESTROY(ic); IEEE80211_LOCK_DESTROY(ic); } struct ieee80211com * ieee80211_find_com(const char *name) { struct ieee80211com *ic; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) if (strcmp(ic->ic_name, name) == 0) break; mtx_unlock(&ic_list_mtx); return (ic); } void ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) { struct ieee80211com *ic; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) (*f)(arg, ic); mtx_unlock(&ic_list_mtx); } /* * Default reset method for use with the ioctl support. This * method is invoked after any state change in the 802.11 * layer that should be propagated to the hardware but not * require re-initialization of the 802.11 state machine (e.g * rescanning for an ap). We always return ENETRESET which * should cause the driver to re-initialize the device. Drivers * can override this method to implement more optimized support. */ static int default_reset(struct ieee80211vap *vap, u_long cmd) { return ENETRESET; } /* * Default for updating the VAP default TX key index. * * Drivers that support TX offload as well as hardware encryption offload * may need to be informed of key index changes separate from the key * update. */ static void default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) { /* XXX assert validity */ /* XXX assert we're in a key update block */ vap->iv_def_txkey = kid; } /* * Add underlying device errors to vap errors. */ static uint64_t ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; uint64_t rv; rv = if_get_counter_default(ifp, cnt); switch (cnt) { case IFCOUNTER_OERRORS: rv += counter_u64_fetch(ic->ic_oerrors); break; case IFCOUNTER_IERRORS: rv += counter_u64_fetch(ic->ic_ierrors); break; default: break; } return (rv); } /* * Prepare a vap for use. Drivers use this call to * setup net80211 state in new vap's prior attaching * them with ieee80211_vap_attach (below). */ int ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) { struct ifnet *ifp; ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { ic_printf(ic, "%s: unable to allocate ifnet\n", __func__); return ENOMEM; } if_initname(ifp, name, unit); ifp->if_softc = vap; /* back pointer */ ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; ifp->if_transmit = ieee80211_vap_transmit; ifp->if_qflush = ieee80211_vap_qflush; ifp->if_ioctl = ieee80211_ioctl; ifp->if_init = ieee80211_init; ifp->if_get_counter = ieee80211_get_counter; vap->iv_ifp = ifp; vap->iv_ic = ic; vap->iv_flags = ic->ic_flags; /* propagate common flags */ vap->iv_flags_ext = ic->ic_flags_ext; vap->iv_flags_ven = ic->ic_flags_ven; vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; /* 11n capabilities - XXX methodize */ vap->iv_htcaps = ic->ic_htcaps; vap->iv_htextcaps = ic->ic_htextcaps; /* 11ac capabilities - XXX methodize */ vap->iv_vhtcaps = ic->ic_vhtcaps; vap->iv_vhtextcaps = ic->ic_vhtextcaps; vap->iv_opmode = opmode; vap->iv_caps |= ieee80211_opcap[opmode]; IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); switch (opmode) { case IEEE80211_M_WDS: /* * WDS links must specify the bssid of the far end. * For legacy operation this is a static relationship. * For non-legacy operation the station must associate * and be authorized to pass traffic. Plumbing the * vap to the proper node happens when the vap * transitions to RUN state. */ IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); vap->iv_flags |= IEEE80211_F_DESBSSID; if (flags & IEEE80211_CLONE_WDSLEGACY) vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; break; #ifdef IEEE80211_SUPPORT_TDMA case IEEE80211_M_AHDEMO: if (flags & IEEE80211_CLONE_TDMA) { /* NB: checked before clone operation allowed */ KASSERT(ic->ic_caps & IEEE80211_C_TDMA, ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); /* * Propagate TDMA capability to mark vap; this * cannot be removed and is used to distinguish * regular ahdemo operation from ahdemo+tdma. */ vap->iv_caps |= IEEE80211_C_TDMA; } break; #endif default: break; } /* auto-enable s/w beacon miss support */ if (flags & IEEE80211_CLONE_NOBEACONS) vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; /* auto-generated or user supplied MAC address */ if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; /* * Enable various functionality by default if we're * capable; the driver can override us if it knows better. */ if (vap->iv_caps & IEEE80211_C_WME) vap->iv_flags |= IEEE80211_F_WME; if (vap->iv_caps & IEEE80211_C_BURST) vap->iv_flags |= IEEE80211_F_BURST; /* NB: bg scanning only makes sense for station mode right now */ if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_caps & IEEE80211_C_BGSCAN)) vap->iv_flags |= IEEE80211_F_BGSCAN; vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ /* NB: DFS support only makes sense for ap mode right now */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && (vap->iv_caps & IEEE80211_C_DFS)) vap->iv_flags_ext |= IEEE80211_FEXT_DFS; /* NB: only flip on U-APSD for hostap/sta for now */ if ((vap->iv_opmode == IEEE80211_M_STA) || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { if (vap->iv_caps & IEEE80211_C_UAPSD) vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; } vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; /* * Install a default reset method for the ioctl support; * the driver can override this. */ vap->iv_reset = default_reset; /* * Install a default crypto key update method, the driver * can override this. */ vap->iv_update_deftxkey = default_update_deftxkey; ieee80211_sysctl_vattach(vap); ieee80211_crypto_vattach(vap); ieee80211_node_vattach(vap); ieee80211_power_vattach(vap); ieee80211_proto_vattach(vap); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_vattach(vap); #endif ieee80211_ht_vattach(vap); ieee80211_vht_vattach(vap); ieee80211_scan_vattach(vap); ieee80211_regdomain_vattach(vap); ieee80211_radiotap_vattach(vap); ieee80211_vap_reset_erp(vap); ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); return 0; } /* * Activate a vap. State should have been prepared with a * call to ieee80211_vap_setup and by the driver. On return * from this call the vap is ready for use. */ int ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211com *ic = vap->iv_ic; struct ifmediareq imr; int maxrate; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name, vap->iv_flags, vap->iv_flags_ext); /* * Do late attach work that cannot happen until after * the driver has had a chance to override defaults. */ ieee80211_node_latevattach(vap); ieee80211_power_latevattach(vap); maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); ieee80211_media_status(ifp, &imr); /* NB: strip explicit mode; we're actually in autoselect */ ifmedia_set(&vap->iv_media, imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); if (maxrate) ifp->if_baudrate = IF_Mbps(maxrate); ether_ifattach(ifp, macaddr); IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); /* hook output method setup by ether_ifattach */ vap->iv_output = ifp->if_output; ifp->if_output = ieee80211_output; /* NB: if_mtu set by ether_ifattach to ETHERMTU */ IEEE80211_LOCK(ic); TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); ieee80211_syncflag_locked(ic, IEEE80211_F_WME); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); #endif ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); IEEE80211_UNLOCK(ic); return 1; } /* * Tear down vap state and reclaim the ifnet. * The driver is assumed to have prepared for * this; e.g. by turning off interrupts for the * underlying device. */ void ieee80211_vap_detach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ ether_ifdetach(ifp); ieee80211_stop(vap); /* * Flush any deferred vap tasks. */ ieee80211_draintask(ic, &vap->iv_nstate_task); ieee80211_draintask(ic, &vap->iv_swbmiss_task); ieee80211_draintask(ic, &vap->iv_wme_task); ieee80211_draintask(ic, &ic->ic_parent_task); /* XXX band-aid until ifnet handles this for us */ taskqueue_drain(taskqueue_swi, &ifp->if_linktask); IEEE80211_LOCK(ic); KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); ieee80211_syncflag_locked(ic, IEEE80211_F_WME); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); #endif ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); /* NB: this handles the bpfdetach done below */ ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); if (vap->iv_ifflags & IFF_PROMISC) ieee80211_promisc(vap, false); if (vap->iv_ifflags & IFF_ALLMULTI) ieee80211_allmulti(vap, false); IEEE80211_UNLOCK(ic); ifmedia_removeall(&vap->iv_media); ieee80211_radiotap_vdetach(vap); ieee80211_regdomain_vdetach(vap); ieee80211_scan_vdetach(vap); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_vdetach(vap); #endif ieee80211_vht_vdetach(vap); ieee80211_ht_vdetach(vap); /* NB: must be before ieee80211_node_vdetach */ ieee80211_proto_vdetach(vap); ieee80211_crypto_vdetach(vap); ieee80211_power_vdetach(vap); ieee80211_node_vdetach(vap); ieee80211_sysctl_vdetach(vap); if_free(ifp); CURVNET_RESTORE(); } /* * Count number of vaps in promisc, and issue promisc on * parent respectively. */ void ieee80211_promisc(struct ieee80211vap *vap, bool on) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); if (on) { if (++ic->ic_promisc == 1) ieee80211_runtask(ic, &ic->ic_promisc_task); } else { KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", __func__, ic)); if (--ic->ic_promisc == 0) ieee80211_runtask(ic, &ic->ic_promisc_task); } } /* * Count number of vaps in allmulti, and issue allmulti on * parent respectively. */ void ieee80211_allmulti(struct ieee80211vap *vap, bool on) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); if (on) { if (++ic->ic_allmulti == 1) ieee80211_runtask(ic, &ic->ic_mcast_task); } else { KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", __func__, ic)); if (--ic->ic_allmulti == 0) ieee80211_runtask(ic, &ic->ic_mcast_task); } } /* * Synchronize flag bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags & flag) { bit = 1; break; } if (bit) ic->ic_flags |= flag; else ic->ic_flags &= ~flag; } void ieee80211_syncflag(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags &= ~flag; } else vap->iv_flags |= flag; ieee80211_syncflag_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_ht bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags_ht & flag) { bit = 1; break; } if (bit) ic->ic_flags_ht |= flag; else ic->ic_flags_ht &= ~flag; } void ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags_ht &= ~flag; } else vap->iv_flags_ht |= flag; ieee80211_syncflag_ht_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_vht bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags_vht & flag) { bit = 1; break; } if (bit) ic->ic_flags_vht |= flag; else ic->ic_flags_vht &= ~flag; } void ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags_vht &= ~flag; } else vap->iv_flags_vht |= flag; ieee80211_syncflag_vht_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_ext bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags_ext & flag) { bit = 1; break; } if (bit) ic->ic_flags_ext |= flag; else ic->ic_flags_ext &= ~flag; } void ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags_ext &= ~flag; } else vap->iv_flags_ext |= flag; ieee80211_syncflag_ext_locked(ic, flag); IEEE80211_UNLOCK(ic); } static __inline int mapgsm(u_int freq, u_int flags) { freq *= 10; if (flags & IEEE80211_CHAN_QUARTER) freq += 5; else if (flags & IEEE80211_CHAN_HALF) freq += 10; else freq += 20; /* NB: there is no 907/20 wide but leave room */ return (freq - 906*10) / 5; } static __inline int mappsb(u_int freq, u_int flags) { return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; } /* * Convert MHz frequency to IEEE channel number. */ int ieee80211_mhz2ieee(u_int freq, u_int flags) { #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) if (flags & IEEE80211_CHAN_GSM) return mapgsm(freq, flags); if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (freq == 2484) return 14; if (freq < 2484) return ((int) freq - 2407) / 5; else return 15 + ((freq - 2512) / 20); } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ if (freq <= 5000) { /* XXX check regdomain? */ if (IS_FREQ_IN_PSB(freq)) return mappsb(freq, flags); return (freq - 4000) / 5; } else return (freq - 5000) / 5; } else { /* either, guess */ if (freq == 2484) return 14; if (freq < 2484) { if (907 <= freq && freq <= 922) return mapgsm(freq, flags); return ((int) freq - 2407) / 5; } if (freq < 5000) { if (IS_FREQ_IN_PSB(freq)) return mappsb(freq, flags); else if (freq > 4900) return (freq - 4000) / 5; else return 15 + ((freq - 2512) / 20); } return (freq - 5000) / 5; } #undef IS_FREQ_IN_PSB } /* * Convert channel to IEEE channel number. */ int ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) { if (c == NULL) { ic_printf(ic, "invalid channel (NULL)\n"); return 0; /* XXX */ } return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); } /* * Convert IEEE channel number to MHz frequency. */ u_int ieee80211_ieee2mhz(u_int chan, u_int flags) { if (flags & IEEE80211_CHAN_GSM) return 907 + 5 * (chan / 10); if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (chan == 14) return 2484; if (chan < 14) return 2407 + chan*5; else return 2512 + ((chan-15)*20); } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { chan -= 37; return 4940 + chan*5 + (chan % 5 ? 2 : 0); } return 5000 + (chan*5); } else { /* either, guess */ /* XXX can't distinguish PSB+GSM channels */ if (chan == 14) return 2484; if (chan < 14) /* 0-13 */ return 2407 + chan*5; if (chan < 27) /* 15-26 */ return 2512 + ((chan-15)*20); return 5000 + (chan*5); } } static __inline void set_extchan(struct ieee80211_channel *c) { /* * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: * "the secondary channel number shall be 'N + [1,-1] * 4' */ if (c->ic_flags & IEEE80211_CHAN_HT40U) c->ic_extieee = c->ic_ieee + 4; else if (c->ic_flags & IEEE80211_CHAN_HT40D) c->ic_extieee = c->ic_ieee - 4; else c->ic_extieee = 0; } /* * Populate the freq1/freq2 fields as appropriate for VHT channels. * * This for now uses a hard-coded list of 80MHz wide channels. * * For HT20/HT40, freq1 just is the centre frequency of the 40MHz * wide channel we've already decided upon. * * For VHT80 and VHT160, there are only a small number of fixed * 80/160MHz wide channels, so we just use those. * * This is all likely very very wrong - both the regulatory code * and this code needs to ensure that all four channels are * available and valid before the VHT80 (and eight for VHT160) channel * is created. */ struct vht_chan_range { uint16_t freq_start; uint16_t freq_end; }; struct vht_chan_range vht80_chan_ranges[] = { { 5170, 5250 }, { 5250, 5330 }, { 5490, 5570 }, { 5570, 5650 }, { 5650, 5730 }, { 5735, 5815 }, { 0, 0 } }; struct vht_chan_range vht160_chan_ranges[] = { { 5170, 5330 }, { 5490, 5650 }, { 0, 0 } }; static int set_vht_extchan(struct ieee80211_channel *c) { int i; if (! IEEE80211_IS_CHAN_VHT(c)) return (0); if (IEEE80211_IS_CHAN_VHT80P80(c)) { printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", __func__, c->ic_ieee, c->ic_flags); } if (IEEE80211_IS_CHAN_VHT160(c)) { for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { if (c->ic_freq >= vht160_chan_ranges[i].freq_start && c->ic_freq < vht160_chan_ranges[i].freq_end) { int midpoint; midpoint = vht160_chan_ranges[i].freq_start + 80; c->ic_vht_ch_freq1 = ieee80211_mhz2ieee(midpoint, c->ic_flags); c->ic_vht_ch_freq2 = 0; #if 0 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", __func__, c->ic_ieee, c->ic_freq, midpoint, c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); #endif return (1); } } return (0); } if (IEEE80211_IS_CHAN_VHT80(c)) { for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { if (c->ic_freq >= vht80_chan_ranges[i].freq_start && c->ic_freq < vht80_chan_ranges[i].freq_end) { int midpoint; midpoint = vht80_chan_ranges[i].freq_start + 40; c->ic_vht_ch_freq1 = ieee80211_mhz2ieee(midpoint, c->ic_flags); c->ic_vht_ch_freq2 = 0; #if 0 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", __func__, c->ic_ieee, c->ic_freq, midpoint, c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); #endif return (1); } } return (0); } if (IEEE80211_IS_CHAN_VHT40(c)) { if (IEEE80211_IS_CHAN_HT40U(c)) c->ic_vht_ch_freq1 = c->ic_ieee + 2; else if (IEEE80211_IS_CHAN_HT40D(c)) c->ic_vht_ch_freq1 = c->ic_ieee - 2; else return (0); return (1); } if (IEEE80211_IS_CHAN_VHT20(c)) { c->ic_vht_ch_freq1 = c->ic_ieee; return (1); } printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", __func__, c->ic_ieee, c->ic_flags); return (0); } /* * Return whether the current channel could possibly be a part of * a VHT80/VHT160 channel. * * This doesn't check that the whole range is in the allowed list * according to regulatory. */ static bool is_vht160_valid_freq(uint16_t freq) { int i; for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { if (freq >= vht160_chan_ranges[i].freq_start && freq < vht160_chan_ranges[i].freq_end) return (true); } return (false); } static int is_vht80_valid_freq(uint16_t freq) { int i; for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { if (freq >= vht80_chan_ranges[i].freq_start && freq < vht80_chan_ranges[i].freq_end) return (1); } return (0); } static int addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) { struct ieee80211_channel *c; if (*nchans >= maxchans) return (ENOBUFS); #if 0 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", __func__, *nchans, maxchans, ieee, freq, flags); #endif c = &chans[(*nchans)++]; c->ic_ieee = ieee; c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); c->ic_maxregpower = maxregpower; c->ic_maxpower = 2 * maxregpower; c->ic_flags = flags; c->ic_vht_ch_freq1 = 0; c->ic_vht_ch_freq2 = 0; set_extchan(c); set_vht_extchan(c); return (0); } static int copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, uint32_t flags) { struct ieee80211_channel *c; KASSERT(*nchans > 0, ("channel list is empty\n")); if (*nchans >= maxchans) return (ENOBUFS); #if 0 printf("%s: %d of %d: flags=0x%08x\n", __func__, *nchans, maxchans, flags); #endif c = &chans[(*nchans)++]; c[0] = c[-1]; c->ic_flags = flags; c->ic_vht_ch_freq1 = 0; c->ic_vht_ch_freq2 = 0; set_extchan(c); set_vht_extchan(c); return (0); } /* * XXX VHT-2GHz */ static void getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) { int nmodes; nmodes = 0; if (isset(bands, IEEE80211_MODE_11B)) flags[nmodes++] = IEEE80211_CHAN_B; if (isset(bands, IEEE80211_MODE_11G)) flags[nmodes++] = IEEE80211_CHAN_G; if (isset(bands, IEEE80211_MODE_11NG)) flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; if (cbw_flags & NET80211_CBW_FLAG_HT40) { flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; } flags[nmodes] = 0; } static void getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) { int nmodes; /* * The addchan_list() function seems to expect the flags array to * be in channel width order, so the VHT bits are interspersed * as appropriate to maintain said order. * * It also assumes HT40U is before HT40D. */ nmodes = 0; /* 20MHz */ if (isset(bands, IEEE80211_MODE_11A)) flags[nmodes++] = IEEE80211_CHAN_A; if (isset(bands, IEEE80211_MODE_11NA)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | IEEE80211_CHAN_VHT20; } /* 40MHz */ if (cbw_flags & NET80211_CBW_FLAG_HT40) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; if ((cbw_flags & NET80211_CBW_FLAG_HT40) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT40U; if (cbw_flags & NET80211_CBW_FLAG_HT40) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; if ((cbw_flags & NET80211_CBW_FLAG_HT40) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT40D; /* 80MHz */ if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; } /* VHT160 */ if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT160; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT160; } /* VHT80+80 */ if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80P80; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80P80; } flags[nmodes] = 0; } static void getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) { flags[0] = 0; if (isset(bands, IEEE80211_MODE_11A) || isset(bands, IEEE80211_MODE_11NA) || isset(bands, IEEE80211_MODE_VHT_5GHZ)) { if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G) || isset(bands, IEEE80211_MODE_11NG) || isset(bands, IEEE80211_MODE_VHT_2GHZ)) return; getflags_5ghz(bands, flags, cbw_flags); } else getflags_2ghz(bands, flags, cbw_flags); } /* * Add one 20 MHz channel into specified channel list. * You MUST NOT mix bands when calling this. It will not add 5ghz * channels if you have any B/G/N band bit set. * The _cbw() variant does also support HT40/VHT80/160/80+80. */ int ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t chan_flags, const uint8_t bands[], int cbw_flags) { uint32_t flags[IEEE80211_MODE_MAX]; int i, error; getflags(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, flags[0] | chan_flags); for (i = 1; flags[i] != 0 && error == 0; i++) { error = copychan_prev(chans, maxchans, nchans, flags[i] | chan_flags); } return (error); } int ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t chan_flags, const uint8_t bands[]) { return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, maxregpower, chan_flags, bands, 0)); } static struct ieee80211_channel * findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, uint32_t flags) { struct ieee80211_channel *c; int i; flags &= IEEE80211_CHAN_ALLTURBO; /* brute force search */ for (i = 0; i < nchans; i++) { c = &chans[i]; if (c->ic_freq == freq && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; } return NULL; } /* * Add 40 MHz channel pair into specified channel list. */ /* XXX VHT */ int ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) { struct ieee80211_channel *cent, *extc; uint16_t freq; int error; freq = ieee80211_ieee2mhz(ieee, flags); /* * Each entry defines an HT40 channel pair; find the * center channel, then the extension channel above. */ flags |= IEEE80211_CHAN_HT20; cent = findchannel(chans, *nchans, freq, flags); if (cent == NULL) return (EINVAL); extc = findchannel(chans, *nchans, freq + 20, flags); if (extc == NULL) return (ENOENT); flags &= ~IEEE80211_CHAN_HT; error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, maxregpower, flags | IEEE80211_CHAN_HT40U); if (error != 0) return (error); error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, maxregpower, flags | IEEE80211_CHAN_HT40D); return (error); } /* * Fetch the center frequency for the primary channel. */ uint32_t ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) { return (c->ic_freq); } /* * Fetch the center frequency for the primary BAND channel. * * For 5, 10, 20MHz channels it'll be the normally configured channel * frequency. * * For 40MHz, 80MHz, 160Mhz channels it'll the centre of the * wide channel, not the centre of the primary channel (that's ic_freq). * * For 80+80MHz channels this will be the centre of the primary * 80MHz channel; the secondary 80MHz channel will be center_freq2(). */ uint32_t ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) { /* * VHT - use the pre-calculated centre frequency * of the given channel. */ if (IEEE80211_IS_CHAN_VHT(c)) return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); if (IEEE80211_IS_CHAN_HT40U(c)) { return (c->ic_freq + 10); } if (IEEE80211_IS_CHAN_HT40D(c)) { return (c->ic_freq - 10); } return (c->ic_freq); } /* * For now, no 80+80 support; it will likely always return 0. */ uint32_t ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); return (0); } /* * Adds channels into specified channel list (ieee[] array must be sorted). * Channels are already sorted. */ static int add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, uint32_t flags[]) { uint16_t freq; int i, j, error; int is_vht; for (i = 0; i < nieee; i++) { freq = ieee80211_ieee2mhz(ieee[i], flags[0]); for (j = 0; flags[j] != 0; j++) { /* * Notes: * + HT40 and VHT40 channels occur together, so * we need to be careful that we actually allow that. * + VHT80, VHT160 will coexist with HT40/VHT40, so * make sure it's not skipped because of the overlap * check used for (V)HT40. */ is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); /* XXX TODO FIXME VHT80P80. */ /* Test for VHT160 analogue to the VHT80 below. */ if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) if (! is_vht160_valid_freq(freq)) continue; /* * Test for VHT80. * XXX This is all very broken right now. * What we /should/ do is: * * + check that the frequency is in the list of * allowed VHT80 ranges; and * + the other 3 channels in the list are actually * also available. */ if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) if (! is_vht80_valid_freq(freq)) continue; /* * Test for (V)HT40. * * This is also a fall through from VHT80; as we only * allow a VHT80 channel if the VHT40 combination is * also valid. If the VHT40 form is not valid then * we certainly can't do VHT80.. */ if (flags[j] & IEEE80211_CHAN_HT40D) /* * Can't have a "lower" channel if we are the * first channel. * * Can't have a "lower" channel if it's below/ * within 20MHz of the first channel. * * Can't have a "lower" channel if the channel * below it is not 20MHz away. */ if (i == 0 || ieee[i] < ieee[0] + 4 || freq - 20 != ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) continue; if (flags[j] & IEEE80211_CHAN_HT40U) /* * Can't have an "upper" channel if we are * the last channel. * * Can't have an "upper" channel be above the * last channel in the list. * * Can't have an "upper" channel if the next * channel according to the math isn't 20MHz * away. (Likely for channel 13/14.) */ if (i == nieee - 1 || ieee[i] + 4 > ieee[nieee - 1] || freq + 20 != ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) continue; if (j == 0) { error = addchan(chans, maxchans, nchans, ieee[i], freq, 0, flags[j]); } else { error = copychan_prev(chans, maxchans, nchans, flags[j]); } if (error != 0) return (error); } } return (0); } int ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], int cbw_flags) { uint32_t flags[IEEE80211_MODE_MAX]; /* XXX no VHT for now */ getflags_2ghz(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); } int ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) { const uint8_t default_chan_list[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, default_chan_list, nitems(default_chan_list), bands, cbw_flags)); } int ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], int cbw_flags) { /* * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all * uses of IEEE80211_MODE_MAX and add a new #define name for array size. */ uint32_t flags[2 * IEEE80211_MODE_MAX]; getflags_5ghz(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); } /* * Locate a channel given a frequency+flags. We cache * the previous lookup to optimize switching between two * channels--as happens with dynamic turbo. */ struct ieee80211_channel * ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) { struct ieee80211_channel *c; flags &= IEEE80211_CHAN_ALLTURBO; c = ic->ic_prevchan; if (c != NULL && c->ic_freq == freq && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; /* brute force search */ return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); } /* * Locate a channel given a channel number+flags. We cache * the previous lookup to optimize switching between two * channels--as happens with dynamic turbo. */ struct ieee80211_channel * ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) { struct ieee80211_channel *c; int i; flags &= IEEE80211_CHAN_ALLTURBO; c = ic->ic_prevchan; if (c != NULL && c->ic_ieee == ieee && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; /* brute force search */ for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; if (c->ic_ieee == ieee && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; } return NULL; } /* * Lookup a channel suitable for the given rx status. * * This is used to find a channel for a frame (eg beacon, probe * response) based purely on the received PHY information. * * For now it tries to do it based on R_FREQ / R_IEEE. * This is enough for 11bg and 11a (and thus 11ng/11na) * but it will not be enough for GSM, PSB channels and the * like. It also doesn't know about legacy-turbog and * legacy-turbo modes, which some offload NICs actually * support in weird ways. * * Takes the ic and rxstatus; returns the channel or NULL * if not found. * * XXX TODO: Add support for that when the need arises. */ struct ieee80211_channel * ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, const struct ieee80211_rx_stats *rxs) { struct ieee80211com *ic = vap->iv_ic; uint32_t flags; struct ieee80211_channel *c; if (rxs == NULL) return (NULL); /* * Strictly speaking we only use freq for now, * however later on we may wish to just store * the ieee for verification. */ if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) return (NULL); if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) return (NULL); if ((rxs->r_flags & IEEE80211_R_BAND) == 0) return (NULL); /* * If the rx status contains a valid ieee/freq, then * ensure we populate the correct channel information * in rxchan before passing it up to the scan infrastructure. * Offload NICs will pass up beacons from all channels * during background scans. */ /* Determine a band */ switch (rxs->c_band) { case IEEE80211_CHAN_2GHZ: flags = IEEE80211_CHAN_G; break; case IEEE80211_CHAN_5GHZ: flags = IEEE80211_CHAN_A; break; default: if (rxs->c_freq < 3000) { flags = IEEE80211_CHAN_G; } else { flags = IEEE80211_CHAN_A; } break; } /* Channel lookup */ c = ieee80211_find_channel(ic, rxs->c_freq, flags); IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); return (c); } static void addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) { #define ADD(_ic, _s, _o) \ ifmedia_add(media, \ IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) static const u_int mopts[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = IFM_AUTO, [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, }; u_int mopt; mopt = mopts[mode]; if (addsta) ADD(ic, mword, mopt); /* STA mode has no cap */ if (caps & IEEE80211_C_IBSS) ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); if (caps & IEEE80211_C_HOSTAP) ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); if (caps & IEEE80211_C_AHDEMO) ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); if (caps & IEEE80211_C_MONITOR) ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); if (caps & IEEE80211_C_WDS) ADD(media, mword, mopt | IFM_IEEE80211_WDS); if (caps & IEEE80211_C_MBSS) ADD(media, mword, mopt | IFM_IEEE80211_MBSS); #undef ADD } /* * Setup the media data structures according to the channel and * rate tables. */ static int ieee80211_media_setup(struct ieee80211com *ic, struct ifmedia *media, int caps, int addsta, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) { int i, j, rate, maxrate, mword, r; enum ieee80211_phymode mode; const struct ieee80211_rateset *rs; struct ieee80211_rateset allrates; /* * Fill in media characteristics. */ ifmedia_init(media, 0, media_change, media_stat); maxrate = 0; /* * Add media for legacy operating modes. */ memset(&allrates, 0, sizeof(allrates)); for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); if (mode == IEEE80211_MODE_AUTO) continue; rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; mword = ieee80211_rate2media(ic, rate, mode); if (mword == 0) continue; addmedia(media, caps, addsta, mode, mword); /* * Add legacy rate to the collection of all rates. */ r = rate & IEEE80211_RATE_VAL; for (j = 0; j < allrates.rs_nrates; j++) if (allrates.rs_rates[j] == r) break; if (j == allrates.rs_nrates) { /* unique, add to the set */ allrates.rs_rates[j] = r; allrates.rs_nrates++; } rate = (rate & IEEE80211_RATE_VAL) / 2; if (rate > maxrate) maxrate = rate; } } for (i = 0; i < allrates.rs_nrates; i++) { mword = ieee80211_rate2media(ic, allrates.rs_rates[i], IEEE80211_MODE_AUTO); if (mword == 0) continue; /* NB: remove media options from mword */ addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); } /* * Add HT/11n media. Note that we do not have enough * bits in the media subtype to express the MCS so we * use a "placeholder" media subtype and any fixed MCS * must be specified with a different mechanism. */ for (; mode <= IEEE80211_MODE_11NG; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); } if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); i = ic->ic_txstream * 8 - 1; if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) rate = ieee80211_htrates[i].ht40_rate_400ns; else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) rate = ieee80211_htrates[i].ht40_rate_800ns; else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) rate = ieee80211_htrates[i].ht20_rate_400ns; else rate = ieee80211_htrates[i].ht20_rate_800ns; if (rate > maxrate) maxrate = rate; } /* * Add VHT media. * XXX-BZ skip "VHT_2GHZ" for now. */ for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); } if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); /* XXX TODO: VHT maxrate */ } return maxrate; } /* XXX inline or eliminate? */ const struct ieee80211_rateset * ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) { /* XXX does this work for 11ng basic rates? */ return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; } /* XXX inline or eliminate? */ const struct ieee80211_htrateset * ieee80211_get_suphtrates(struct ieee80211com *ic, const struct ieee80211_channel *c) { return &ic->ic_sup_htrates; } void ieee80211_announce(struct ieee80211com *ic) { int i, rate, mword; enum ieee80211_phymode mode; const struct ieee80211_rateset *rs; /* NB: skip AUTO since it has no rates */ for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); if (mword == 0) continue; rate = ieee80211_media2rate(mword); printf("%s%d%sMbps", (i != 0 ? " " : ""), rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); } printf("\n"); } ieee80211_ht_announce(ic); ieee80211_vht_announce(ic); } void ieee80211_announce_channels(struct ieee80211com *ic) { const struct ieee80211_channel *c; char type; int i, cw; printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; if (IEEE80211_IS_CHAN_ST(c)) type = 'S'; else if (IEEE80211_IS_CHAN_108A(c)) type = 'T'; else if (IEEE80211_IS_CHAN_108G(c)) type = 'G'; else if (IEEE80211_IS_CHAN_HT(c)) type = 'n'; else if (IEEE80211_IS_CHAN_A(c)) type = 'a'; else if (IEEE80211_IS_CHAN_ANYG(c)) type = 'g'; else if (IEEE80211_IS_CHAN_B(c)) type = 'b'; else type = 'f'; if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) cw = 40; else if (IEEE80211_IS_CHAN_HALF(c)) cw = 10; else if (IEEE80211_IS_CHAN_QUARTER(c)) cw = 5; else cw = 20; printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" , c->ic_ieee, c->ic_freq, type , cw , IEEE80211_IS_CHAN_HT40U(c) ? '+' : IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' , c->ic_maxregpower , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 ); } } static int media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) { switch (IFM_MODE(ime->ifm_media)) { case IFM_IEEE80211_11A: *mode = IEEE80211_MODE_11A; break; case IFM_IEEE80211_11B: *mode = IEEE80211_MODE_11B; break; case IFM_IEEE80211_11G: *mode = IEEE80211_MODE_11G; break; case IFM_IEEE80211_FH: *mode = IEEE80211_MODE_FH; break; case IFM_IEEE80211_11NA: *mode = IEEE80211_MODE_11NA; break; case IFM_IEEE80211_11NG: *mode = IEEE80211_MODE_11NG; break; case IFM_IEEE80211_VHT2G: *mode = IEEE80211_MODE_VHT_2GHZ; break; case IFM_IEEE80211_VHT5G: *mode = IEEE80211_MODE_VHT_5GHZ; break; case IFM_AUTO: *mode = IEEE80211_MODE_AUTO; break; default: return 0; } /* * Turbo mode is an ``option''. * XXX does not apply to AUTO */ if (ime->ifm_media & IFM_IEEE80211_TURBO) { if (*mode == IEEE80211_MODE_11A) { if (flags & IEEE80211_F_TURBOP) *mode = IEEE80211_MODE_TURBO_A; else *mode = IEEE80211_MODE_STURBO_A; } else if (*mode == IEEE80211_MODE_11G) *mode = IEEE80211_MODE_TURBO_G; else return 0; } /* XXX HT40 +/- */ return 1; } /* * Handle a media change request on the vap interface. */ int ieee80211_media_change(struct ifnet *ifp) { struct ieee80211vap *vap = ifp->if_softc; struct ifmedia_entry *ime = vap->iv_media.ifm_cur; uint16_t newmode; if (!media2mode(ime, vap->iv_flags, &newmode)) return EINVAL; if (vap->iv_des_mode != newmode) { vap->iv_des_mode = newmode; /* XXX kick state machine if up+running */ } return 0; } /* * Common code to calculate the media status word * from the operating mode and channel state. */ static int media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) { int status; status = IFM_IEEE80211; switch (opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: status |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_HOSTAP: status |= IFM_IEEE80211_HOSTAP; break; case IEEE80211_M_MONITOR: status |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; break; case IEEE80211_M_WDS: status |= IFM_IEEE80211_WDS; break; case IEEE80211_M_MBSS: status |= IFM_IEEE80211_MBSS; break; } if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { status |= IFM_IEEE80211_VHT5G; } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { status |= IFM_IEEE80211_VHT2G; } else if (IEEE80211_IS_CHAN_HTA(chan)) { status |= IFM_IEEE80211_11NA; } else if (IEEE80211_IS_CHAN_HTG(chan)) { status |= IFM_IEEE80211_11NG; } else if (IEEE80211_IS_CHAN_A(chan)) { status |= IFM_IEEE80211_11A; } else if (IEEE80211_IS_CHAN_B(chan)) { status |= IFM_IEEE80211_11B; } else if (IEEE80211_IS_CHAN_ANYG(chan)) { status |= IFM_IEEE80211_11G; } else if (IEEE80211_IS_CHAN_FHSS(chan)) { status |= IFM_IEEE80211_FH; } /* XXX else complain? */ if (IEEE80211_IS_CHAN_TURBO(chan)) status |= IFM_IEEE80211_TURBO; #if 0 if (IEEE80211_IS_CHAN_HT20(chan)) status |= IFM_IEEE80211_HT20; if (IEEE80211_IS_CHAN_HT40(chan)) status |= IFM_IEEE80211_HT40; #endif return status; } void ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; enum ieee80211_phymode mode; imr->ifm_status = IFM_AVALID; /* * NB: use the current channel's mode to lock down a xmit * rate only when running; otherwise we may have a mismatch * in which case the rate will not be convertible. */ if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) { imr->ifm_status |= IFM_ACTIVE; mode = ieee80211_chan2mode(ic->ic_curchan); } else mode = IEEE80211_MODE_AUTO; imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); /* * Calculate a current rate if possible. */ if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { /* * A fixed rate is set, report that. */ imr->ifm_active |= ieee80211_rate2media(ic, vap->iv_txparms[mode].ucastrate, mode); } else if (vap->iv_opmode == IEEE80211_M_STA) { /* * In station mode report the current transmit rate. */ imr->ifm_active |= ieee80211_rate2media(ic, vap->iv_bss->ni_txrate, mode); } else imr->ifm_active |= IFM_AUTO; if (imr->ifm_status & IFM_ACTIVE) imr->ifm_current = imr->ifm_active; } /* * Set the current phy mode and recalculate the active channel * set based on the available channels for this mode. Also * select a new default/current channel if the current one is * inappropriate for this mode. */ int ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) { /* * Adjust basic rates in 11b/11g supported rate set. * Note that if operating on a hal/quarter rate channel * this is a noop as those rates sets are different * and used instead. */ if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); ic->ic_curmode = mode; ieee80211_reset_erp(ic); /* reset global ERP state */ return 0; } /* * Return the phy mode for with the specified channel. */ enum ieee80211_phymode ieee80211_chan2mode(const struct ieee80211_channel *chan) { if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) return IEEE80211_MODE_VHT_2GHZ; else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) return IEEE80211_MODE_VHT_5GHZ; else if (IEEE80211_IS_CHAN_HTA(chan)) return IEEE80211_MODE_11NA; else if (IEEE80211_IS_CHAN_HTG(chan)) return IEEE80211_MODE_11NG; else if (IEEE80211_IS_CHAN_108G(chan)) return IEEE80211_MODE_TURBO_G; else if (IEEE80211_IS_CHAN_ST(chan)) return IEEE80211_MODE_STURBO_A; else if (IEEE80211_IS_CHAN_TURBO(chan)) return IEEE80211_MODE_TURBO_A; else if (IEEE80211_IS_CHAN_HALF(chan)) return IEEE80211_MODE_HALF; else if (IEEE80211_IS_CHAN_QUARTER(chan)) return IEEE80211_MODE_QUARTER; else if (IEEE80211_IS_CHAN_A(chan)) return IEEE80211_MODE_11A; else if (IEEE80211_IS_CHAN_ANYG(chan)) return IEEE80211_MODE_11G; else if (IEEE80211_IS_CHAN_B(chan)) return IEEE80211_MODE_11B; else if (IEEE80211_IS_CHAN_FHSS(chan)) return IEEE80211_MODE_FH; /* NB: should not get here */ printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", __func__, chan->ic_freq, chan->ic_flags); return IEEE80211_MODE_11B; } struct ratemedia { u_int match; /* rate + mode */ u_int media; /* if_media rate */ }; static int findmedia(const struct ratemedia rates[], int n, u_int match) { int i; for (i = 0; i < n; i++) if (rates[i].match == match) return rates[i].media; return IFM_AUTO; } /* * Convert IEEE80211 rate value to ifmedia subtype. * Rate is either a legacy rate in units of 0.5Mbps * or an MCS index. */ int ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) { static const struct ratemedia rates[] = { { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, /* NB: OFDM72 doesn't really exist so we don't handle it */ }; static const struct ratemedia htrates[] = { { 0, IFM_IEEE80211_MCS }, { 1, IFM_IEEE80211_MCS }, { 2, IFM_IEEE80211_MCS }, { 3, IFM_IEEE80211_MCS }, { 4, IFM_IEEE80211_MCS }, { 5, IFM_IEEE80211_MCS }, { 6, IFM_IEEE80211_MCS }, { 7, IFM_IEEE80211_MCS }, { 8, IFM_IEEE80211_MCS }, { 9, IFM_IEEE80211_MCS }, { 10, IFM_IEEE80211_MCS }, { 11, IFM_IEEE80211_MCS }, { 12, IFM_IEEE80211_MCS }, { 13, IFM_IEEE80211_MCS }, { 14, IFM_IEEE80211_MCS }, { 15, IFM_IEEE80211_MCS }, { 16, IFM_IEEE80211_MCS }, { 17, IFM_IEEE80211_MCS }, { 18, IFM_IEEE80211_MCS }, { 19, IFM_IEEE80211_MCS }, { 20, IFM_IEEE80211_MCS }, { 21, IFM_IEEE80211_MCS }, { 22, IFM_IEEE80211_MCS }, { 23, IFM_IEEE80211_MCS }, { 24, IFM_IEEE80211_MCS }, { 25, IFM_IEEE80211_MCS }, { 26, IFM_IEEE80211_MCS }, { 27, IFM_IEEE80211_MCS }, { 28, IFM_IEEE80211_MCS }, { 29, IFM_IEEE80211_MCS }, { 30, IFM_IEEE80211_MCS }, { 31, IFM_IEEE80211_MCS }, { 32, IFM_IEEE80211_MCS }, { 33, IFM_IEEE80211_MCS }, { 34, IFM_IEEE80211_MCS }, { 35, IFM_IEEE80211_MCS }, { 36, IFM_IEEE80211_MCS }, { 37, IFM_IEEE80211_MCS }, { 38, IFM_IEEE80211_MCS }, { 39, IFM_IEEE80211_MCS }, { 40, IFM_IEEE80211_MCS }, { 41, IFM_IEEE80211_MCS }, { 42, IFM_IEEE80211_MCS }, { 43, IFM_IEEE80211_MCS }, { 44, IFM_IEEE80211_MCS }, { 45, IFM_IEEE80211_MCS }, { 46, IFM_IEEE80211_MCS }, { 47, IFM_IEEE80211_MCS }, { 48, IFM_IEEE80211_MCS }, { 49, IFM_IEEE80211_MCS }, { 50, IFM_IEEE80211_MCS }, { 51, IFM_IEEE80211_MCS }, { 52, IFM_IEEE80211_MCS }, { 53, IFM_IEEE80211_MCS }, { 54, IFM_IEEE80211_MCS }, { 55, IFM_IEEE80211_MCS }, { 56, IFM_IEEE80211_MCS }, { 57, IFM_IEEE80211_MCS }, { 58, IFM_IEEE80211_MCS }, { 59, IFM_IEEE80211_MCS }, { 60, IFM_IEEE80211_MCS }, { 61, IFM_IEEE80211_MCS }, { 62, IFM_IEEE80211_MCS }, { 63, IFM_IEEE80211_MCS }, { 64, IFM_IEEE80211_MCS }, { 65, IFM_IEEE80211_MCS }, { 66, IFM_IEEE80211_MCS }, { 67, IFM_IEEE80211_MCS }, { 68, IFM_IEEE80211_MCS }, { 69, IFM_IEEE80211_MCS }, { 70, IFM_IEEE80211_MCS }, { 71, IFM_IEEE80211_MCS }, { 72, IFM_IEEE80211_MCS }, { 73, IFM_IEEE80211_MCS }, { 74, IFM_IEEE80211_MCS }, { 75, IFM_IEEE80211_MCS }, { 76, IFM_IEEE80211_MCS }, }; static const struct ratemedia vhtrates[] = { { 0, IFM_IEEE80211_VHT }, { 1, IFM_IEEE80211_VHT }, { 2, IFM_IEEE80211_VHT }, { 3, IFM_IEEE80211_VHT }, { 4, IFM_IEEE80211_VHT }, { 5, IFM_IEEE80211_VHT }, { 6, IFM_IEEE80211_VHT }, { 7, IFM_IEEE80211_VHT }, { 8, IFM_IEEE80211_VHT }, /* Optional. */ { 9, IFM_IEEE80211_VHT }, /* Optional. */ #if 0 /* Some QCA and BRCM seem to support this; offspec. */ { 10, IFM_IEEE80211_VHT }, { 11, IFM_IEEE80211_VHT }, #endif }; int m; /* * Check 11ac/11n rates first for match as an MCS. */ if (mode == IEEE80211_MODE_VHT_5GHZ) { if (rate & IFM_IEEE80211_VHT) { rate &= ~IFM_IEEE80211_VHT; m = findmedia(vhtrates, nitems(vhtrates), rate); if (m != IFM_AUTO) return (m | IFM_IEEE80211_VHT); } } else if (mode == IEEE80211_MODE_11NA) { if (rate & IEEE80211_RATE_MCS) { rate &= ~IEEE80211_RATE_MCS; m = findmedia(htrates, nitems(htrates), rate); if (m != IFM_AUTO) return m | IFM_IEEE80211_11NA; } } else if (mode == IEEE80211_MODE_11NG) { /* NB: 12 is ambiguous, it will be treated as an MCS */ if (rate & IEEE80211_RATE_MCS) { rate &= ~IEEE80211_RATE_MCS; m = findmedia(htrates, nitems(htrates), rate); if (m != IFM_AUTO) return m | IFM_IEEE80211_11NG; } } rate &= IEEE80211_RATE_VAL; switch (mode) { case IEEE80211_MODE_11A: case IEEE80211_MODE_HALF: /* XXX good 'nuf */ case IEEE80211_MODE_QUARTER: case IEEE80211_MODE_11NA: case IEEE80211_MODE_TURBO_A: case IEEE80211_MODE_STURBO_A: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11A); case IEEE80211_MODE_11B: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11B); case IEEE80211_MODE_FH: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_FH); case IEEE80211_MODE_AUTO: /* NB: ic may be NULL for some drivers */ if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_FH); /* NB: hack, 11g matches both 11b+11a rates */ /* fall thru... */ case IEEE80211_MODE_11G: case IEEE80211_MODE_11NG: case IEEE80211_MODE_TURBO_G: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); case IEEE80211_MODE_VHT_2GHZ: case IEEE80211_MODE_VHT_5GHZ: /* XXX TODO: need to figure out mapping for VHT rates */ return IFM_AUTO; } return IFM_AUTO; } int ieee80211_media2rate(int mword) { static const int ieeerates[] = { -1, /* IFM_AUTO */ 0, /* IFM_MANUAL */ 0, /* IFM_NONE */ 2, /* IFM_IEEE80211_FH1 */ 4, /* IFM_IEEE80211_FH2 */ 2, /* IFM_IEEE80211_DS1 */ 4, /* IFM_IEEE80211_DS2 */ 11, /* IFM_IEEE80211_DS5 */ 22, /* IFM_IEEE80211_DS11 */ 44, /* IFM_IEEE80211_DS22 */ 12, /* IFM_IEEE80211_OFDM6 */ 18, /* IFM_IEEE80211_OFDM9 */ 24, /* IFM_IEEE80211_OFDM12 */ 36, /* IFM_IEEE80211_OFDM18 */ 48, /* IFM_IEEE80211_OFDM24 */ 72, /* IFM_IEEE80211_OFDM36 */ 96, /* IFM_IEEE80211_OFDM48 */ 108, /* IFM_IEEE80211_OFDM54 */ 144, /* IFM_IEEE80211_OFDM72 */ 0, /* IFM_IEEE80211_DS354k */ 0, /* IFM_IEEE80211_DS512k */ 6, /* IFM_IEEE80211_OFDM3 */ 9, /* IFM_IEEE80211_OFDM4 */ 54, /* IFM_IEEE80211_OFDM27 */ -1, /* IFM_IEEE80211_MCS */ -1, /* IFM_IEEE80211_VHT */ }; return IFM_SUBTYPE(mword) < nitems(ieeerates) ? ieeerates[IFM_SUBTYPE(mword)] : 0; } /* * The following hash function is adapted from "Hash Functions" by Bob Jenkins * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). */ #define mix(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (/*CONSTCOND*/0) uint32_t ieee80211_mac_hash(const struct ieee80211com *ic, const uint8_t addr[IEEE80211_ADDR_LEN]) { uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; b += addr[5] << 8; b += addr[4]; a += addr[3] << 24; a += addr[2] << 16; a += addr[1] << 8; a += addr[0]; mix(a, b, c); return c; } #undef mix char ieee80211_channel_type_char(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_ST(c)) return 'S'; if (IEEE80211_IS_CHAN_108A(c)) return 'T'; if (IEEE80211_IS_CHAN_108G(c)) return 'G'; if (IEEE80211_IS_CHAN_VHT(c)) return 'v'; if (IEEE80211_IS_CHAN_HT(c)) return 'n'; if (IEEE80211_IS_CHAN_A(c)) return 'a'; if (IEEE80211_IS_CHAN_ANYG(c)) return 'g'; if (IEEE80211_IS_CHAN_B(c)) return 'b'; return 'f'; }