/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $OpenBSD: pfvar.h,v 1.282 2009/01/29 15:12:28 pyr Exp $ */ #ifndef _NET_PFVAR_H_ #define _NET_PFVAR_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #include #endif #include #include #include #ifdef _KERNEL #define PF_PFIL_NOREFRAGMENT 0x80000000 #if defined(__arm__) #define PF_WANT_32_TO_64_COUNTER #endif /* * A hybrid of 32-bit and 64-bit counters which can be used on platforms where * counter(9) is very expensive. * * As 32-bit counters are expected to overflow, a periodic job sums them up to * a saved 64-bit state. Fetching the value still walks all CPUs to get the most * current snapshot. */ #ifdef PF_WANT_32_TO_64_COUNTER struct pf_counter_u64_pcpu { u_int32_t current; u_int32_t snapshot; }; struct pf_counter_u64 { struct pf_counter_u64_pcpu *pfcu64_pcpu; u_int64_t pfcu64_value; seqc_t pfcu64_seqc; }; static inline int pf_counter_u64_init(struct pf_counter_u64 *pfcu64, int flags) { pfcu64->pfcu64_value = 0; pfcu64->pfcu64_seqc = 0; pfcu64->pfcu64_pcpu = uma_zalloc_pcpu(pcpu_zone_8, flags | M_ZERO); if (__predict_false(pfcu64->pfcu64_pcpu == NULL)) return (ENOMEM); return (0); } static inline void pf_counter_u64_deinit(struct pf_counter_u64 *pfcu64) { uma_zfree_pcpu(pcpu_zone_8, pfcu64->pfcu64_pcpu); } static inline void pf_counter_u64_critical_enter(void) { critical_enter(); } static inline void pf_counter_u64_critical_exit(void) { critical_exit(); } static inline void pf_counter_u64_rollup_protected(struct pf_counter_u64 *pfcu64, uint64_t n) { MPASS(curthread->td_critnest > 0); pfcu64->pfcu64_value += n; } static inline void pf_counter_u64_add_protected(struct pf_counter_u64 *pfcu64, uint32_t n) { struct pf_counter_u64_pcpu *pcpu; u_int32_t val; MPASS(curthread->td_critnest > 0); pcpu = zpcpu_get(pfcu64->pfcu64_pcpu); val = atomic_load_int(&pcpu->current); atomic_store_int(&pcpu->current, val + n); } static inline void pf_counter_u64_add(struct pf_counter_u64 *pfcu64, uint32_t n) { critical_enter(); pf_counter_u64_add_protected(pfcu64, n); critical_exit(); } static inline u_int64_t pf_counter_u64_periodic(struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; u_int64_t sum; u_int32_t val; int cpu; MPASS(curthread->td_critnest > 0); seqc_write_begin(&pfcu64->pfcu64_seqc); sum = pfcu64->pfcu64_value; CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); val = atomic_load_int(&pcpu->current); sum += (uint32_t)(val - pcpu->snapshot); pcpu->snapshot = val; } pfcu64->pfcu64_value = sum; seqc_write_end(&pfcu64->pfcu64_seqc); return (sum); } static inline u_int64_t pf_counter_u64_fetch(const struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; u_int64_t sum; seqc_t seqc; int cpu; for (;;) { seqc = seqc_read(&pfcu64->pfcu64_seqc); sum = 0; CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); sum += (uint32_t)(atomic_load_int(&pcpu->current) -pcpu->snapshot); } sum += pfcu64->pfcu64_value; if (seqc_consistent(&pfcu64->pfcu64_seqc, seqc)) break; } return (sum); } static inline void pf_counter_u64_zero_protected(struct pf_counter_u64 *pfcu64) { struct pf_counter_u64_pcpu *pcpu; int cpu; MPASS(curthread->td_critnest > 0); seqc_write_begin(&pfcu64->pfcu64_seqc); CPU_FOREACH(cpu) { pcpu = zpcpu_get_cpu(pfcu64->pfcu64_pcpu, cpu); pcpu->snapshot = atomic_load_int(&pcpu->current); } pfcu64->pfcu64_value = 0; seqc_write_end(&pfcu64->pfcu64_seqc); } static inline void pf_counter_u64_zero(struct pf_counter_u64 *pfcu64) { critical_enter(); pf_counter_u64_zero_protected(pfcu64); critical_exit(); } #else struct pf_counter_u64 { counter_u64_t counter; }; static inline int pf_counter_u64_init(struct pf_counter_u64 *pfcu64, int flags) { pfcu64->counter = counter_u64_alloc(flags); if (__predict_false(pfcu64->counter == NULL)) return (ENOMEM); return (0); } static inline void pf_counter_u64_deinit(struct pf_counter_u64 *pfcu64) { counter_u64_free(pfcu64->counter); } static inline void pf_counter_u64_critical_enter(void) { } static inline void pf_counter_u64_critical_exit(void) { } static inline void pf_counter_u64_rollup_protected(struct pf_counter_u64 *pfcu64, uint64_t n) { counter_u64_add(pfcu64->counter, n); } static inline void pf_counter_u64_add_protected(struct pf_counter_u64 *pfcu64, uint32_t n) { counter_u64_add(pfcu64->counter, n); } static inline void pf_counter_u64_add(struct pf_counter_u64 *pfcu64, uint32_t n) { pf_counter_u64_add_protected(pfcu64, n); } static inline u_int64_t pf_counter_u64_fetch(const struct pf_counter_u64 *pfcu64) { return (counter_u64_fetch(pfcu64->counter)); } static inline void pf_counter_u64_zero_protected(struct pf_counter_u64 *pfcu64) { counter_u64_zero(pfcu64->counter); } static inline void pf_counter_u64_zero(struct pf_counter_u64 *pfcu64) { pf_counter_u64_zero_protected(pfcu64); } #endif #define pf_get_timestamp(prule)({ \ uint32_t _ts = 0; \ uint32_t __ts; \ int cpu; \ CPU_FOREACH(cpu) { \ __ts = *zpcpu_get_cpu(prule->timestamp, cpu); \ if (__ts > _ts) \ _ts = __ts; \ } \ _ts; \ }) #define pf_update_timestamp(prule) \ do { \ critical_enter(); \ *zpcpu_get((prule)->timestamp) = time_second; \ critical_exit(); \ } while (0) #define pf_timestamp_pcpu_zone (sizeof(time_t) == 4 ? pcpu_zone_4 : pcpu_zone_8) _Static_assert(sizeof(time_t) == 4 || sizeof(time_t) == 8, "unexpected time_t size"); SYSCTL_DECL(_net_pf); MALLOC_DECLARE(M_PFHASH); MALLOC_DECLARE(M_PF_RULE_ITEM); SDT_PROVIDER_DECLARE(pf); struct pfi_dynaddr { TAILQ_ENTRY(pfi_dynaddr) entry; struct pf_addr pfid_addr4; struct pf_addr pfid_mask4; struct pf_addr pfid_addr6; struct pf_addr pfid_mask6; struct pfr_ktable *pfid_kt; struct pfi_kkif *pfid_kif; int pfid_net; /* mask or 128 */ int pfid_acnt4; /* address count IPv4 */ int pfid_acnt6; /* address count IPv6 */ sa_family_t pfid_af; /* rule af */ u_int8_t pfid_iflags; /* PFI_AFLAG_* */ }; /* * Address manipulation macros */ #define HTONL(x) (x) = htonl((__uint32_t)(x)) #define HTONS(x) (x) = htons((__uint16_t)(x)) #define NTOHL(x) (x) = ntohl((__uint32_t)(x)) #define NTOHS(x) (x) = ntohs((__uint16_t)(x)) #define PF_NAME "pf" #define PF_HASHROW_ASSERT(h) mtx_assert(&(h)->lock, MA_OWNED) #define PF_HASHROW_LOCK(h) mtx_lock(&(h)->lock) #define PF_HASHROW_UNLOCK(h) mtx_unlock(&(h)->lock) #ifdef INVARIANTS #define PF_STATE_LOCK(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ mtx_lock(_s->lock); \ } while (0) #define PF_STATE_UNLOCK(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ mtx_unlock(_s->lock); \ } while (0) #else #define PF_STATE_LOCK(s) mtx_lock((s)->lock) #define PF_STATE_UNLOCK(s) mtx_unlock((s)->lock) #endif #ifdef INVARIANTS #define PF_STATE_LOCK_ASSERT(s) \ do { \ struct pf_kstate *_s = (s); \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(_s)]; \ MPASS(_s->lock == &_ih->lock); \ PF_HASHROW_ASSERT(_ih); \ } while (0) #else /* !INVARIANTS */ #define PF_STATE_LOCK_ASSERT(s) do {} while (0) #endif /* INVARIANTS */ #ifdef INVARIANTS #define PF_SRC_NODE_LOCK(sn) \ do { \ struct pf_ksrc_node *_sn = (sn); \ struct pf_srchash *_sh = &V_pf_srchash[ \ pf_hashsrc(&_sn->addr, _sn->af)]; \ MPASS(_sn->lock == &_sh->lock); \ mtx_lock(_sn->lock); \ } while (0) #define PF_SRC_NODE_UNLOCK(sn) \ do { \ struct pf_ksrc_node *_sn = (sn); \ struct pf_srchash *_sh = &V_pf_srchash[ \ pf_hashsrc(&_sn->addr, _sn->af)]; \ MPASS(_sn->lock == &_sh->lock); \ mtx_unlock(_sn->lock); \ } while (0) #else #define PF_SRC_NODE_LOCK(sn) mtx_lock((sn)->lock) #define PF_SRC_NODE_UNLOCK(sn) mtx_unlock((sn)->lock) #endif #ifdef INVARIANTS #define PF_SRC_NODE_LOCK_ASSERT(sn) \ do { \ struct pf_ksrc_node *_sn = (sn); \ struct pf_srchash *_sh = &V_pf_srchash[ \ pf_hashsrc(&_sn->addr, _sn->af)]; \ MPASS(_sn->lock == &_sh->lock); \ PF_HASHROW_ASSERT(_sh); \ } while (0) #else /* !INVARIANTS */ #define PF_SRC_NODE_LOCK_ASSERT(sn) do {} while (0) #endif /* INVARIANTS */ extern struct mtx_padalign pf_unlnkdrules_mtx; #define PF_UNLNKDRULES_LOCK() mtx_lock(&pf_unlnkdrules_mtx) #define PF_UNLNKDRULES_UNLOCK() mtx_unlock(&pf_unlnkdrules_mtx) #define PF_UNLNKDRULES_ASSERT() mtx_assert(&pf_unlnkdrules_mtx, MA_OWNED) extern struct sx pf_config_lock; #define PF_CONFIG_LOCK() sx_xlock(&pf_config_lock) #define PF_CONFIG_UNLOCK() sx_xunlock(&pf_config_lock) #define PF_CONFIG_ASSERT() sx_assert(&pf_config_lock, SA_XLOCKED) VNET_DECLARE(struct rmlock, pf_rules_lock); #define V_pf_rules_lock VNET(pf_rules_lock) #define PF_RULES_RLOCK_TRACKER struct rm_priotracker _pf_rules_tracker #define PF_RULES_RLOCK() rm_rlock(&V_pf_rules_lock, &_pf_rules_tracker) #define PF_RULES_RUNLOCK() rm_runlock(&V_pf_rules_lock, &_pf_rules_tracker) #define PF_RULES_WLOCK() rm_wlock(&V_pf_rules_lock) #define PF_RULES_WUNLOCK() rm_wunlock(&V_pf_rules_lock) #define PF_RULES_WOWNED() rm_wowned(&V_pf_rules_lock) #define PF_RULES_ASSERT() rm_assert(&V_pf_rules_lock, RA_LOCKED) #define PF_RULES_RASSERT() rm_assert(&V_pf_rules_lock, RA_RLOCKED) #define PF_RULES_WASSERT() rm_assert(&V_pf_rules_lock, RA_WLOCKED) extern struct mtx_padalign pf_table_stats_lock; #define PF_TABLE_STATS_LOCK() mtx_lock(&pf_table_stats_lock) #define PF_TABLE_STATS_UNLOCK() mtx_unlock(&pf_table_stats_lock) #define PF_TABLE_STATS_OWNED() mtx_owned(&pf_table_stats_lock) #define PF_TABLE_STATS_ASSERT() mtx_assert(&pf_table_stats_lock, MA_OWNED) extern struct sx pf_end_lock; #define PF_MODVER 1 #define PFLOG_MODVER 1 #define PFSYNC_MODVER 1 #define PFLOG_MINVER 1 #define PFLOG_PREFVER PFLOG_MODVER #define PFLOG_MAXVER 1 #define PFSYNC_MINVER 1 #define PFSYNC_PREFVER PFSYNC_MODVER #define PFSYNC_MAXVER 1 #ifdef INET #ifndef INET6 #define PF_INET_ONLY #endif /* ! INET6 */ #endif /* INET */ #ifdef INET6 #ifndef INET #define PF_INET6_ONLY #endif /* ! INET */ #endif /* INET6 */ #ifdef INET #ifdef INET6 #define PF_INET_INET6 #endif /* INET6 */ #endif /* INET */ #else #define PF_INET_INET6 #endif /* _KERNEL */ /* Both IPv4 and IPv6 */ #ifdef PF_INET_INET6 #define PF_AEQ(a, b, c) \ ((c == AF_INET && (a)->addr32[0] == (b)->addr32[0]) || \ (c == AF_INET6 && (a)->addr32[3] == (b)->addr32[3] && \ (a)->addr32[2] == (b)->addr32[2] && \ (a)->addr32[1] == (b)->addr32[1] && \ (a)->addr32[0] == (b)->addr32[0])) \ #define PF_ANEQ(a, b, c) \ ((c == AF_INET && (a)->addr32[0] != (b)->addr32[0]) || \ (c == AF_INET6 && ((a)->addr32[0] != (b)->addr32[0] || \ (a)->addr32[1] != (b)->addr32[1] || \ (a)->addr32[2] != (b)->addr32[2] || \ (a)->addr32[3] != (b)->addr32[3]))) \ #define PF_AZERO(a, c) \ ((c == AF_INET && !(a)->addr32[0]) || \ (c == AF_INET6 && !(a)->addr32[0] && !(a)->addr32[1] && \ !(a)->addr32[2] && !(a)->addr32[3] )) \ #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ pf_addrcpy(a, b, f) #define PF_AINC(a, f) \ pf_addr_inc(a, f) #define PF_POOLMASK(a, b, c, d, f) \ pf_poolmask(a, b, c, d, f) #else /* Just IPv6 */ #ifdef PF_INET6_ONLY #define PF_AEQ(a, b, c) \ ((a)->addr32[3] == (b)->addr32[3] && \ (a)->addr32[2] == (b)->addr32[2] && \ (a)->addr32[1] == (b)->addr32[1] && \ (a)->addr32[0] == (b)->addr32[0]) \ #define PF_ANEQ(a, b, c) \ ((a)->addr32[3] != (b)->addr32[3] || \ (a)->addr32[2] != (b)->addr32[2] || \ (a)->addr32[1] != (b)->addr32[1] || \ (a)->addr32[0] != (b)->addr32[0]) \ #define PF_AZERO(a, c) \ (!(a)->addr32[0] && \ !(a)->addr32[1] && \ !(a)->addr32[2] && \ !(a)->addr32[3] ) \ #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ pf_addrcpy(a, b, f) #define PF_AINC(a, f) \ pf_addr_inc(a, f) #define PF_POOLMASK(a, b, c, d, f) \ pf_poolmask(a, b, c, d, f) #else /* Just IPv4 */ #ifdef PF_INET_ONLY #define PF_AEQ(a, b, c) \ ((a)->addr32[0] == (b)->addr32[0]) #define PF_ANEQ(a, b, c) \ ((a)->addr32[0] != (b)->addr32[0]) #define PF_AZERO(a, c) \ (!(a)->addr32[0]) #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ (a)->v4.s_addr = (b)->v4.s_addr #define PF_AINC(a, f) \ do { \ (a)->addr32[0] = htonl(ntohl((a)->addr32[0]) + 1); \ } while (0) #define PF_POOLMASK(a, b, c, d, f) \ do { \ (a)->addr32[0] = ((b)->addr32[0] & (c)->addr32[0]) | \ (((c)->addr32[0] ^ 0xffffffff ) & (d)->addr32[0]); \ } while (0) #endif /* PF_INET_ONLY */ #endif /* PF_INET6_ONLY */ #endif /* PF_INET_INET6 */ /* * XXX callers not FIB-aware in our version of pf yet. * OpenBSD fixed it later it seems, 2010/05/07 13:33:16 claudio. */ #define PF_MISMATCHAW(aw, x, af, neg, ifp, rtid) \ ( \ (((aw)->type == PF_ADDR_NOROUTE && \ pf_routable((x), (af), NULL, (rtid))) || \ (((aw)->type == PF_ADDR_URPFFAILED && (ifp) != NULL && \ pf_routable((x), (af), (ifp), (rtid))) || \ ((aw)->type == PF_ADDR_TABLE && \ !pfr_match_addr((aw)->p.tbl, (x), (af))) || \ ((aw)->type == PF_ADDR_DYNIFTL && \ !pfi_match_addr((aw)->p.dyn, (x), (af))) || \ ((aw)->type == PF_ADDR_RANGE && \ !pf_match_addr_range(&(aw)->v.a.addr, \ &(aw)->v.a.mask, (x), (af))) || \ ((aw)->type == PF_ADDR_ADDRMASK && \ !PF_AZERO(&(aw)->v.a.mask, (af)) && \ !PF_MATCHA(0, &(aw)->v.a.addr, \ &(aw)->v.a.mask, (x), (af))))) != \ (neg) \ ) #define PF_ALGNMNT(off) (((off) % 2) == 0) #ifdef _KERNEL struct pf_kpooladdr { struct pf_addr_wrap addr; TAILQ_ENTRY(pf_kpooladdr) entries; char ifname[IFNAMSIZ]; struct pfi_kkif *kif; }; TAILQ_HEAD(pf_kpalist, pf_kpooladdr); struct pf_kpool { struct mtx mtx; struct pf_kpalist list; struct pf_kpooladdr *cur; struct pf_poolhashkey key; struct pf_addr counter; struct pf_mape_portset mape; int tblidx; u_int16_t proxy_port[2]; u_int8_t opts; }; struct pf_rule_actions { struct pf_addr rt_addr; struct pfi_kkif *rt_kif; int32_t rtableid; uint32_t flags; uint16_t qid; uint16_t pqid; uint16_t max_mss; uint16_t dnpipe; uint16_t dnrpipe; /* Reverse direction pipe */ uint8_t log; uint8_t set_tos; uint8_t min_ttl; uint8_t set_prio[2]; uint8_t rt; }; union pf_keth_rule_ptr { struct pf_keth_rule *ptr; uint32_t nr; }; struct pf_keth_rule_addr { uint8_t addr[ETHER_ADDR_LEN]; uint8_t mask[ETHER_ADDR_LEN]; bool neg; uint8_t isset; }; struct pf_keth_anchor; TAILQ_HEAD(pf_keth_ruleq, pf_keth_rule); struct pf_keth_ruleset { struct pf_keth_ruleq rules[2]; struct pf_keth_rules { struct pf_keth_ruleq *rules; int open; uint32_t ticket; } active, inactive; struct epoch_context epoch_ctx; struct vnet *vnet; struct pf_keth_anchor *anchor; }; RB_HEAD(pf_keth_anchor_global, pf_keth_anchor); RB_HEAD(pf_keth_anchor_node, pf_keth_anchor); struct pf_keth_anchor { RB_ENTRY(pf_keth_anchor) entry_node; RB_ENTRY(pf_keth_anchor) entry_global; struct pf_keth_anchor *parent; struct pf_keth_anchor_node children; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pf_keth_ruleset ruleset; int refcnt; /* anchor rules */ uint8_t anchor_relative; uint8_t anchor_wildcard; }; RB_PROTOTYPE(pf_keth_anchor_node, pf_keth_anchor, entry_node, pf_keth_anchor_compare); RB_PROTOTYPE(pf_keth_anchor_global, pf_keth_anchor, entry_global, pf_keth_anchor_compare); struct pf_keth_rule { #define PFE_SKIP_IFP 0 #define PFE_SKIP_DIR 1 #define PFE_SKIP_PROTO 2 #define PFE_SKIP_SRC_ADDR 3 #define PFE_SKIP_DST_ADDR 4 #define PFE_SKIP_SRC_IP_ADDR 5 #define PFE_SKIP_DST_IP_ADDR 6 #define PFE_SKIP_COUNT 7 union pf_keth_rule_ptr skip[PFE_SKIP_COUNT]; TAILQ_ENTRY(pf_keth_rule) entries; struct pf_keth_anchor *anchor; u_int8_t anchor_relative; u_int8_t anchor_wildcard; uint32_t nr; bool quick; /* Filter */ char ifname[IFNAMSIZ]; struct pfi_kkif *kif; bool ifnot; uint8_t direction; uint16_t proto; struct pf_keth_rule_addr src, dst; struct pf_rule_addr ipsrc, ipdst; char match_tagname[PF_TAG_NAME_SIZE]; uint16_t match_tag; bool match_tag_not; /* Stats */ counter_u64_t evaluations; counter_u64_t packets[2]; counter_u64_t bytes[2]; time_t *timestamp; /* Action */ char qname[PF_QNAME_SIZE]; int qid; char tagname[PF_TAG_NAME_SIZE]; uint16_t tag; char bridge_to_name[IFNAMSIZ]; struct pfi_kkif *bridge_to; uint8_t action; uint16_t dnpipe; uint32_t dnflags; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t ridentifier; }; RB_HEAD(pf_krule_global, pf_krule); RB_PROTOTYPE(pf_krule_global, pf_krule, entry_global, pf_krule_compare); struct pf_krule { struct pf_rule_addr src; struct pf_rule_addr dst; struct pf_krule *skip[PF_SKIP_COUNT]; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; uint32_t ridentifier; char ifname[IFNAMSIZ]; char rcv_ifname[IFNAMSIZ]; char qname[PF_QNAME_SIZE]; char pqname[PF_QNAME_SIZE]; char tagname[PF_TAG_NAME_SIZE]; char match_tagname[PF_TAG_NAME_SIZE]; char overload_tblname[PF_TABLE_NAME_SIZE]; TAILQ_ENTRY(pf_krule) entries; struct pf_kpool rpool; struct pf_counter_u64 evaluations; struct pf_counter_u64 packets[2]; struct pf_counter_u64 bytes[2]; time_t *timestamp; struct pfi_kkif *kif; struct pfi_kkif *rcv_kif; struct pf_kanchor *anchor; struct pfr_ktable *overload_tbl; pf_osfp_t os_fingerprint; int32_t rtableid; u_int32_t timeout[PFTM_MAX]; u_int32_t max_states; u_int32_t max_src_nodes; u_int32_t max_src_states; u_int32_t max_src_conn; struct { u_int32_t limit; u_int32_t seconds; } max_src_conn_rate; u_int16_t qid; u_int16_t pqid; u_int16_t dnpipe; u_int16_t dnrpipe; u_int32_t free_flags; u_int32_t nr; u_int32_t prob; uid_t cuid; pid_t cpid; counter_u64_t states_cur; counter_u64_t states_tot; counter_u64_t src_nodes; u_int16_t return_icmp; u_int16_t return_icmp6; u_int16_t max_mss; u_int16_t tag; u_int16_t match_tag; u_int16_t scrub_flags; struct pf_rule_uid uid; struct pf_rule_gid gid; u_int32_t rule_flag; uint32_t rule_ref; u_int8_t action; u_int8_t direction; u_int8_t log; u_int8_t logif; u_int8_t quick; u_int8_t ifnot; u_int8_t match_tag_not; u_int8_t natpass; u_int8_t keep_state; sa_family_t af; u_int8_t proto; u_int8_t type; u_int8_t code; u_int8_t flags; u_int8_t flagset; u_int8_t min_ttl; u_int8_t allow_opts; u_int8_t rt; u_int8_t return_ttl; u_int8_t tos; u_int8_t set_tos; u_int8_t anchor_relative; u_int8_t anchor_wildcard; u_int8_t flush; u_int8_t prio; u_int8_t set_prio[2]; struct { struct pf_addr addr; u_int16_t port; } divert; u_int8_t md5sum[PF_MD5_DIGEST_LENGTH]; RB_ENTRY(pf_krule) entry_global; #ifdef PF_WANT_32_TO_64_COUNTER LIST_ENTRY(pf_krule) allrulelist; bool allrulelinked; #endif }; struct pf_krule_item { SLIST_ENTRY(pf_krule_item) entry; struct pf_krule *r; }; SLIST_HEAD(pf_krule_slist, pf_krule_item); struct pf_ksrc_node { LIST_ENTRY(pf_ksrc_node) entry; struct pf_addr addr; struct pf_addr raddr; struct pf_krule_slist match_rules; struct pf_krule *rule; struct pfi_kkif *rkif; counter_u64_t bytes[2]; counter_u64_t packets[2]; u_int32_t states; u_int32_t conn; struct pf_threshold conn_rate; u_int32_t creation; u_int32_t expire; sa_family_t af; u_int8_t ruletype; struct mtx *lock; }; #endif struct pf_state_scrub { struct timeval pfss_last; /* time received last packet */ u_int32_t pfss_tsecr; /* last echoed timestamp */ u_int32_t pfss_tsval; /* largest timestamp */ u_int32_t pfss_tsval0; /* original timestamp */ u_int16_t pfss_flags; #define PFSS_TIMESTAMP 0x0001 /* modulate timestamp */ #define PFSS_PAWS 0x0010 /* stricter PAWS checks */ #define PFSS_PAWS_IDLED 0x0020 /* was idle too long. no PAWS */ #define PFSS_DATA_TS 0x0040 /* timestamp on data packets */ #define PFSS_DATA_NOTS 0x0080 /* no timestamp on data packets */ u_int8_t pfss_ttl; /* stashed TTL */ u_int8_t pad; union { u_int32_t pfss_ts_mod; /* timestamp modulation */ u_int32_t pfss_v_tag; /* SCTP verification tag */ }; }; struct pf_state_host { struct pf_addr addr; u_int16_t port; u_int16_t pad; }; struct pf_state_peer { struct pf_state_scrub *scrub; /* state is scrubbed */ u_int32_t seqlo; /* Max sequence number sent */ u_int32_t seqhi; /* Max the other end ACKd + win */ u_int32_t seqdiff; /* Sequence number modulator */ u_int16_t max_win; /* largest window (pre scaling) */ u_int16_t mss; /* Maximum segment size option */ u_int8_t state; /* active state level */ u_int8_t wscale; /* window scaling factor */ u_int8_t tcp_est; /* Did we reach TCPS_ESTABLISHED */ u_int8_t pad[1]; }; /* Keep synced with struct pf_udp_endpoint. */ struct pf_udp_endpoint_cmp { struct pf_addr addr; uint16_t port; sa_family_t af; uint8_t pad[1]; }; struct pf_udp_endpoint { struct pf_addr addr; uint16_t port; sa_family_t af; uint8_t pad[1]; struct pf_udp_mapping *mapping; LIST_ENTRY(pf_udp_endpoint) entry; }; struct pf_udp_mapping { struct pf_udp_endpoint endpoints[2]; u_int refs; }; /* Keep synced with struct pf_state_key. */ struct pf_state_key_cmp { struct pf_addr addr[2]; u_int16_t port[2]; sa_family_t af; u_int8_t proto; u_int8_t pad[2]; }; struct pf_state_key { struct pf_addr addr[2]; u_int16_t port[2]; sa_family_t af; u_int8_t proto; u_int8_t pad[2]; LIST_ENTRY(pf_state_key) entry; TAILQ_HEAD(, pf_kstate) states[2]; }; /* Keep synced with struct pf_kstate. */ struct pf_state_cmp { u_int64_t id; u_int32_t creatorid; u_int8_t direction; u_int8_t pad[3]; }; struct pf_state_scrub_export { uint16_t pfss_flags; uint8_t pfss_ttl; /* stashed TTL */ #define PF_SCRUB_FLAG_VALID 0x01 uint8_t scrub_flag; uint32_t pfss_ts_mod; /* timestamp modulation */ }; struct pf_state_key_export { struct pf_addr addr[2]; uint16_t port[2]; }; struct pf_state_peer_export { struct pf_state_scrub_export scrub; /* state is scrubbed */ uint32_t seqlo; /* Max sequence number sent */ uint32_t seqhi; /* Max the other end ACKd + win */ uint32_t seqdiff; /* Sequence number modulator */ uint16_t max_win; /* largest window (pre scaling) */ uint16_t mss; /* Maximum segment size option */ uint8_t state; /* active state level */ uint8_t wscale; /* window scaling factor */ uint8_t dummy[6]; }; _Static_assert(sizeof(struct pf_state_peer_export) == 32, "size incorrect"); struct pf_state_export { uint64_t version; #define PF_STATE_VERSION 20230404 uint64_t id; char ifname[IFNAMSIZ]; char orig_ifname[IFNAMSIZ]; struct pf_state_key_export key[2]; struct pf_state_peer_export src; struct pf_state_peer_export dst; struct pf_addr rt_addr; uint32_t rule; uint32_t anchor; uint32_t nat_rule; uint32_t creation; uint32_t expire; uint32_t spare0; uint64_t packets[2]; uint64_t bytes[2]; uint32_t creatorid; uint32_t spare1; sa_family_t af; uint8_t proto; uint8_t direction; uint8_t log; uint8_t state_flags_compat; uint8_t timeout; uint8_t sync_flags; uint8_t updates; uint16_t state_flags; uint16_t qid; uint16_t pqid; uint16_t dnpipe; uint16_t dnrpipe; int32_t rtableid; uint8_t min_ttl; uint8_t set_tos; uint16_t max_mss; uint8_t set_prio[2]; uint8_t rt; char rt_ifname[IFNAMSIZ]; uint8_t spare[72]; }; _Static_assert(sizeof(struct pf_state_export) == 384, "size incorrect"); #ifdef _KERNEL struct pf_kstate { /* * Area shared with pf_state_cmp */ u_int64_t id; u_int32_t creatorid; u_int8_t direction; u_int8_t pad[3]; /* * end of the area */ u_int16_t state_flags; u_int8_t timeout; u_int8_t sync_state; /* PFSYNC_S_x */ u_int8_t sync_updates; /* XXX */ u_int refs; struct mtx *lock; TAILQ_ENTRY(pf_kstate) sync_list; TAILQ_ENTRY(pf_kstate) key_list[2]; LIST_ENTRY(pf_kstate) entry; struct pf_state_peer src; struct pf_state_peer dst; struct pf_krule_slist match_rules; struct pf_krule *rule; struct pf_krule *anchor; struct pf_krule *nat_rule; struct pf_state_key *key[2]; /* addresses stack and wire */ struct pf_udp_mapping *udp_mapping; struct pfi_kkif *kif; struct pfi_kkif *orig_kif; /* The real kif, even if we're a floating state (i.e. if == V_pfi_all). */ struct pf_ksrc_node *src_node; struct pf_ksrc_node *nat_src_node; u_int64_t packets[2]; u_int64_t bytes[2]; u_int64_t creation; u_int64_t expire; u_int32_t pfsync_time; struct pf_rule_actions act; u_int16_t tag; u_int16_t if_index_in; u_int16_t if_index_out; }; /* * Size <= fits 11 objects per page on LP64. Try to not grow the struct beyond that. */ _Static_assert(sizeof(struct pf_kstate) <= 372, "pf_kstate size crosses 372 bytes"); #endif /* * Unified state structures for pulling states out of the kernel * used by pfsync(4) and the pf(4) ioctl. */ struct pfsync_state_scrub { u_int16_t pfss_flags; u_int8_t pfss_ttl; /* stashed TTL */ #define PFSYNC_SCRUB_FLAG_VALID 0x01 u_int8_t scrub_flag; u_int32_t pfss_ts_mod; /* timestamp modulation */ } __packed; struct pfsync_state_peer { struct pfsync_state_scrub scrub; /* state is scrubbed */ u_int32_t seqlo; /* Max sequence number sent */ u_int32_t seqhi; /* Max the other end ACKd + win */ u_int32_t seqdiff; /* Sequence number modulator */ u_int16_t max_win; /* largest window (pre scaling) */ u_int16_t mss; /* Maximum segment size option */ u_int8_t state; /* active state level */ u_int8_t wscale; /* window scaling factor */ u_int8_t pad[6]; } __packed; struct pfsync_state_key { struct pf_addr addr[2]; u_int16_t port[2]; }; struct pfsync_state_1301 { u_int64_t id; char ifname[IFNAMSIZ]; struct pfsync_state_key key[2]; struct pfsync_state_peer src; struct pfsync_state_peer dst; struct pf_addr rt_addr; u_int32_t rule; u_int32_t anchor; u_int32_t nat_rule; u_int32_t creation; u_int32_t expire; u_int32_t packets[2][2]; u_int32_t bytes[2][2]; u_int32_t creatorid; sa_family_t af; u_int8_t proto; u_int8_t direction; u_int8_t __spare[2]; u_int8_t log; u_int8_t state_flags; u_int8_t timeout; u_int8_t sync_flags; u_int8_t updates; } __packed; struct pfsync_state_1400 { /* The beginning of the struct is compatible with previous versions */ u_int64_t id; char ifname[IFNAMSIZ]; struct pfsync_state_key key[2]; struct pfsync_state_peer src; struct pfsync_state_peer dst; struct pf_addr rt_addr; u_int32_t rule; u_int32_t anchor; u_int32_t nat_rule; u_int32_t creation; u_int32_t expire; u_int32_t packets[2][2]; u_int32_t bytes[2][2]; u_int32_t creatorid; sa_family_t af; u_int8_t proto; u_int8_t direction; u_int16_t state_flags; u_int8_t log; u_int8_t __spare; u_int8_t timeout; u_int8_t sync_flags; u_int8_t updates; /* The rest is not */ u_int16_t qid; u_int16_t pqid; u_int16_t dnpipe; u_int16_t dnrpipe; int32_t rtableid; u_int8_t min_ttl; u_int8_t set_tos; u_int16_t max_mss; u_int8_t set_prio[2]; u_int8_t rt; char rt_ifname[IFNAMSIZ]; } __packed; union pfsync_state_union { struct pfsync_state_1301 pfs_1301; struct pfsync_state_1400 pfs_1400; } __packed; #ifdef _KERNEL /* pfsync */ typedef int pfsync_state_import_t(union pfsync_state_union *, int, int); typedef void pfsync_insert_state_t(struct pf_kstate *); typedef void pfsync_update_state_t(struct pf_kstate *); typedef void pfsync_delete_state_t(struct pf_kstate *); typedef void pfsync_clear_states_t(u_int32_t, const char *); typedef int pfsync_defer_t(struct pf_kstate *, struct mbuf *); typedef void pfsync_detach_ifnet_t(struct ifnet *); typedef void pflow_export_state_t(const struct pf_kstate *); typedef bool pf_addr_filter_func_t(const sa_family_t, const struct pf_addr *); VNET_DECLARE(pfsync_state_import_t *, pfsync_state_import_ptr); #define V_pfsync_state_import_ptr VNET(pfsync_state_import_ptr) VNET_DECLARE(pfsync_insert_state_t *, pfsync_insert_state_ptr); #define V_pfsync_insert_state_ptr VNET(pfsync_insert_state_ptr) VNET_DECLARE(pfsync_update_state_t *, pfsync_update_state_ptr); #define V_pfsync_update_state_ptr VNET(pfsync_update_state_ptr) VNET_DECLARE(pfsync_delete_state_t *, pfsync_delete_state_ptr); #define V_pfsync_delete_state_ptr VNET(pfsync_delete_state_ptr) VNET_DECLARE(pfsync_clear_states_t *, pfsync_clear_states_ptr); #define V_pfsync_clear_states_ptr VNET(pfsync_clear_states_ptr) VNET_DECLARE(pfsync_defer_t *, pfsync_defer_ptr); #define V_pfsync_defer_ptr VNET(pfsync_defer_ptr) VNET_DECLARE(pflow_export_state_t *, pflow_export_state_ptr); #define V_pflow_export_state_ptr VNET(pflow_export_state_ptr) extern pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr; void pfsync_state_export(union pfsync_state_union *, struct pf_kstate *, int); void pf_state_export(struct pf_state_export *, struct pf_kstate *); /* pflog */ struct pf_kruleset; struct pf_pdesc; typedef int pflog_packet_t(uint8_t, u_int8_t, struct pf_krule *, struct pf_krule *, struct pf_kruleset *, struct pf_pdesc *, int); extern pflog_packet_t *pflog_packet_ptr; #endif /* _KERNEL */ #define PFSYNC_FLAG_SRCNODE 0x04 #define PFSYNC_FLAG_NATSRCNODE 0x08 /* for copies to/from network byte order */ /* ioctl interface also uses network byte order */ #define pf_state_peer_hton(s,d) do { \ (d)->seqlo = htonl((s)->seqlo); \ (d)->seqhi = htonl((s)->seqhi); \ (d)->seqdiff = htonl((s)->seqdiff); \ (d)->max_win = htons((s)->max_win); \ (d)->mss = htons((s)->mss); \ (d)->state = (s)->state; \ (d)->wscale = (s)->wscale; \ if ((s)->scrub) { \ (d)->scrub.pfss_flags = \ htons((s)->scrub->pfss_flags & PFSS_TIMESTAMP); \ (d)->scrub.pfss_ttl = (s)->scrub->pfss_ttl; \ (d)->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);\ (d)->scrub.scrub_flag = PFSYNC_SCRUB_FLAG_VALID; \ } \ } while (0) #define pf_state_peer_ntoh(s,d) do { \ (d)->seqlo = ntohl((s)->seqlo); \ (d)->seqhi = ntohl((s)->seqhi); \ (d)->seqdiff = ntohl((s)->seqdiff); \ (d)->max_win = ntohs((s)->max_win); \ (d)->mss = ntohs((s)->mss); \ (d)->state = (s)->state; \ (d)->wscale = (s)->wscale; \ if ((s)->scrub.scrub_flag == PFSYNC_SCRUB_FLAG_VALID && \ (d)->scrub != NULL) { \ (d)->scrub->pfss_flags = \ ntohs((s)->scrub.pfss_flags) & PFSS_TIMESTAMP; \ (d)->scrub->pfss_ttl = (s)->scrub.pfss_ttl; \ (d)->scrub->pfss_ts_mod = ntohl((s)->scrub.pfss_ts_mod);\ } \ } while (0) #define pf_state_counter_hton(s,d) do { \ d[0] = htonl((s>>32)&0xffffffff); \ d[1] = htonl(s&0xffffffff); \ } while (0) #define pf_state_counter_from_pfsync(s) \ (((u_int64_t)(s[0])<<32) | (u_int64_t)(s[1])) #define pf_state_counter_ntoh(s,d) do { \ d = ntohl(s[0]); \ d = d<<32; \ d += ntohl(s[1]); \ } while (0) TAILQ_HEAD(pf_krulequeue, pf_krule); struct pf_kanchor; struct pf_kruleset { struct { struct pf_krulequeue queues[2]; struct { struct pf_krulequeue *ptr; struct pf_krule **ptr_array; u_int32_t rcount; u_int32_t ticket; int open; struct pf_krule_global *tree; } active, inactive; } rules[PF_RULESET_MAX]; struct pf_kanchor *anchor; u_int32_t tticket; int tables; int topen; }; RB_HEAD(pf_kanchor_global, pf_kanchor); RB_HEAD(pf_kanchor_node, pf_kanchor); struct pf_kanchor { RB_ENTRY(pf_kanchor) entry_global; RB_ENTRY(pf_kanchor) entry_node; struct pf_kanchor *parent; struct pf_kanchor_node children; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pf_kruleset ruleset; int refcnt; /* anchor rules */ }; RB_PROTOTYPE(pf_kanchor_global, pf_kanchor, entry_global, pf_anchor_compare); RB_PROTOTYPE(pf_kanchor_node, pf_kanchor, entry_node, pf_kanchor_compare); #define PF_RESERVED_ANCHOR "_pf" #define PFR_TFLAG_PERSIST 0x00000001 #define PFR_TFLAG_CONST 0x00000002 #define PFR_TFLAG_ACTIVE 0x00000004 #define PFR_TFLAG_INACTIVE 0x00000008 #define PFR_TFLAG_REFERENCED 0x00000010 #define PFR_TFLAG_REFDANCHOR 0x00000020 #define PFR_TFLAG_COUNTERS 0x00000040 /* Adjust masks below when adding flags. */ #define PFR_TFLAG_USRMASK (PFR_TFLAG_PERSIST | \ PFR_TFLAG_CONST | \ PFR_TFLAG_COUNTERS) #define PFR_TFLAG_SETMASK (PFR_TFLAG_ACTIVE | \ PFR_TFLAG_INACTIVE | \ PFR_TFLAG_REFERENCED | \ PFR_TFLAG_REFDANCHOR) #define PFR_TFLAG_ALLMASK (PFR_TFLAG_PERSIST | \ PFR_TFLAG_CONST | \ PFR_TFLAG_ACTIVE | \ PFR_TFLAG_INACTIVE | \ PFR_TFLAG_REFERENCED | \ PFR_TFLAG_REFDANCHOR | \ PFR_TFLAG_COUNTERS) struct pf_kanchor_stackframe; struct pf_keth_anchor_stackframe; struct pfr_table { char pfrt_anchor[MAXPATHLEN]; char pfrt_name[PF_TABLE_NAME_SIZE]; u_int32_t pfrt_flags; u_int8_t pfrt_fback; }; enum { PFR_FB_NONE, PFR_FB_MATCH, PFR_FB_ADDED, PFR_FB_DELETED, PFR_FB_CHANGED, PFR_FB_CLEARED, PFR_FB_DUPLICATE, PFR_FB_NOTMATCH, PFR_FB_CONFLICT, PFR_FB_NOCOUNT, PFR_FB_MAX }; struct pfr_addr { union { struct in_addr _pfra_ip4addr; struct in6_addr _pfra_ip6addr; } pfra_u; u_int8_t pfra_af; u_int8_t pfra_net; u_int8_t pfra_not; u_int8_t pfra_fback; }; #define pfra_ip4addr pfra_u._pfra_ip4addr #define pfra_ip6addr pfra_u._pfra_ip6addr enum { PFR_DIR_IN, PFR_DIR_OUT, PFR_DIR_MAX }; enum { PFR_OP_BLOCK, PFR_OP_PASS, PFR_OP_ADDR_MAX, PFR_OP_TABLE_MAX }; enum { PFR_TYPE_PACKETS, PFR_TYPE_BYTES, PFR_TYPE_MAX }; #define PFR_NUM_COUNTERS (PFR_DIR_MAX * PFR_OP_ADDR_MAX * PFR_TYPE_MAX) #define PFR_OP_XPASS PFR_OP_ADDR_MAX struct pfr_astats { struct pfr_addr pfras_a; u_int64_t pfras_packets[PFR_DIR_MAX][PFR_OP_ADDR_MAX]; u_int64_t pfras_bytes[PFR_DIR_MAX][PFR_OP_ADDR_MAX]; long pfras_tzero; }; enum { PFR_REFCNT_RULE, PFR_REFCNT_ANCHOR, PFR_REFCNT_MAX }; struct pfr_tstats { struct pfr_table pfrts_t; u_int64_t pfrts_packets[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; u_int64_t pfrts_bytes[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; u_int64_t pfrts_match; u_int64_t pfrts_nomatch; long pfrts_tzero; int pfrts_cnt; int pfrts_refcnt[PFR_REFCNT_MAX]; }; #ifdef _KERNEL struct pfr_kstate_counter { counter_u64_t pkc_pcpu; u_int64_t pkc_zero; }; static inline int pfr_kstate_counter_init(struct pfr_kstate_counter *pfrc, int flags) { pfrc->pkc_zero = 0; pfrc->pkc_pcpu = counter_u64_alloc(flags); if (pfrc->pkc_pcpu == NULL) return (ENOMEM); return (0); } static inline void pfr_kstate_counter_deinit(struct pfr_kstate_counter *pfrc) { counter_u64_free(pfrc->pkc_pcpu); } static inline u_int64_t pfr_kstate_counter_fetch(struct pfr_kstate_counter *pfrc) { u_int64_t c; c = counter_u64_fetch(pfrc->pkc_pcpu); c -= pfrc->pkc_zero; return (c); } static inline void pfr_kstate_counter_zero(struct pfr_kstate_counter *pfrc) { u_int64_t c; c = counter_u64_fetch(pfrc->pkc_pcpu); pfrc->pkc_zero = c; } static inline void pfr_kstate_counter_add(struct pfr_kstate_counter *pfrc, int64_t n) { counter_u64_add(pfrc->pkc_pcpu, n); } struct pfr_ktstats { struct pfr_table pfrts_t; struct pfr_kstate_counter pfrkts_packets[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; struct pfr_kstate_counter pfrkts_bytes[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; struct pfr_kstate_counter pfrkts_match; struct pfr_kstate_counter pfrkts_nomatch; long pfrkts_tzero; int pfrkts_cnt; int pfrkts_refcnt[PFR_REFCNT_MAX]; }; #endif /* _KERNEL */ #define pfrts_name pfrts_t.pfrt_name #define pfrts_flags pfrts_t.pfrt_flags #ifndef _SOCKADDR_UNION_DEFINED #define _SOCKADDR_UNION_DEFINED union sockaddr_union { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_in6 sin6; }; #endif /* _SOCKADDR_UNION_DEFINED */ struct pfr_kcounters { counter_u64_t pfrkc_counters; long pfrkc_tzero; }; #define pfr_kentry_counter(kc, dir, op, t) \ ((kc)->pfrkc_counters + \ (dir) * PFR_OP_ADDR_MAX * PFR_TYPE_MAX + (op) * PFR_TYPE_MAX + (t)) #ifdef _KERNEL SLIST_HEAD(pfr_kentryworkq, pfr_kentry); struct pfr_kentry { struct radix_node pfrke_node[2]; union sockaddr_union pfrke_sa; SLIST_ENTRY(pfr_kentry) pfrke_workq; struct pfr_kcounters pfrke_counters; u_int8_t pfrke_af; u_int8_t pfrke_net; u_int8_t pfrke_not; u_int8_t pfrke_mark; }; SLIST_HEAD(pfr_ktableworkq, pfr_ktable); RB_HEAD(pfr_ktablehead, pfr_ktable); struct pfr_ktable { struct pfr_ktstats pfrkt_kts; RB_ENTRY(pfr_ktable) pfrkt_tree; SLIST_ENTRY(pfr_ktable) pfrkt_workq; struct radix_node_head *pfrkt_ip4; struct radix_node_head *pfrkt_ip6; struct pfr_ktable *pfrkt_shadow; struct pfr_ktable *pfrkt_root; struct pf_kruleset *pfrkt_rs; long pfrkt_larg; int pfrkt_nflags; }; #define pfrkt_t pfrkt_kts.pfrts_t #define pfrkt_name pfrkt_t.pfrt_name #define pfrkt_anchor pfrkt_t.pfrt_anchor #define pfrkt_ruleset pfrkt_t.pfrt_ruleset #define pfrkt_flags pfrkt_t.pfrt_flags #define pfrkt_cnt pfrkt_kts.pfrkts_cnt #define pfrkt_refcnt pfrkt_kts.pfrkts_refcnt #define pfrkt_packets pfrkt_kts.pfrkts_packets #define pfrkt_bytes pfrkt_kts.pfrkts_bytes #define pfrkt_match pfrkt_kts.pfrkts_match #define pfrkt_nomatch pfrkt_kts.pfrkts_nomatch #define pfrkt_tzero pfrkt_kts.pfrkts_tzero #endif #ifdef _KERNEL struct pfi_kkif { char pfik_name[IFNAMSIZ]; union { RB_ENTRY(pfi_kkif) _pfik_tree; LIST_ENTRY(pfi_kkif) _pfik_list; } _pfik_glue; #define pfik_tree _pfik_glue._pfik_tree #define pfik_list _pfik_glue._pfik_list struct pf_counter_u64 pfik_packets[2][2][2]; struct pf_counter_u64 pfik_bytes[2][2][2]; u_int32_t pfik_tzero; u_int pfik_flags; struct ifnet *pfik_ifp; struct ifg_group *pfik_group; u_int pfik_rulerefs; TAILQ_HEAD(, pfi_dynaddr) pfik_dynaddrs; #ifdef PF_WANT_32_TO_64_COUNTER LIST_ENTRY(pfi_kkif) pfik_allkiflist; #endif }; #endif #define PFI_IFLAG_REFS 0x0001 /* has state references */ #define PFI_IFLAG_SKIP 0x0100 /* skip filtering on interface */ #ifdef _KERNEL struct pf_sctp_multihome_job; TAILQ_HEAD(pf_sctp_multihome_jobs, pf_sctp_multihome_job); struct pf_pdesc { struct { int done; uid_t uid; gid_t gid; } lookup; u_int64_t tot_len; /* Make Mickey money */ union pf_headers { struct tcphdr tcp; struct udphdr udp; struct sctphdr sctp; struct icmp icmp; #ifdef INET6 struct icmp6_hdr icmp6; #endif /* INET6 */ char any[0]; } hdr; struct pfi_kkif *kif; /* incomming interface */ struct mbuf *m; struct pf_addr *src; /* src address */ struct pf_addr *dst; /* dst address */ u_int16_t *sport; u_int16_t *dport; struct pf_mtag *pf_mtag; struct pf_rule_actions act; u_int32_t off; /* protocol header offset */ u_int32_t hdrlen; /* protocol header length */ u_int32_t p_len; /* total length of protocol payload */ u_int32_t badopts; /* v4 options or v6 routing headers */ u_int16_t *ip_sum; u_int16_t *proto_sum; u_int16_t flags; /* Let SCRUB trigger behavior in * state code. Easier than tags */ #define PFDESC_TCP_NORM 0x0001 /* TCP shall be statefully scrubbed */ u_int16_t virtual_proto; #define PF_VPROTO_FRAGMENT 256 int extoff; sa_family_t af; u_int8_t proto; u_int8_t tos; u_int8_t ttl; u_int8_t dir; /* direction */ u_int8_t sidx; /* key index for source */ u_int8_t didx; /* key index for destination */ #define PFDESC_SCTP_INIT 0x0001 #define PFDESC_SCTP_INIT_ACK 0x0002 #define PFDESC_SCTP_COOKIE 0x0004 #define PFDESC_SCTP_COOKIE_ACK 0x0008 #define PFDESC_SCTP_ABORT 0x0010 #define PFDESC_SCTP_SHUTDOWN 0x0020 #define PFDESC_SCTP_SHUTDOWN_COMPLETE 0x0040 #define PFDESC_SCTP_DATA 0x0080 #define PFDESC_SCTP_ASCONF 0x0100 #define PFDESC_SCTP_HEARTBEAT 0x0200 #define PFDESC_SCTP_HEARTBEAT_ACK 0x0400 #define PFDESC_SCTP_OTHER 0x0800 #define PFDESC_SCTP_ADD_IP 0x1000 u_int16_t sctp_flags; u_int32_t sctp_initiate_tag; struct pf_sctp_multihome_jobs sctp_multihome_jobs; }; struct pf_sctp_multihome_job { TAILQ_ENTRY(pf_sctp_multihome_job) next; struct pf_pdesc pd; struct pf_addr src; struct pf_addr dst; int op; }; #endif /* flags for RDR options */ #define PF_DPORT_RANGE 0x01 /* Dest port uses range */ #define PF_RPORT_RANGE 0x02 /* RDR'ed port uses range */ /* UDP state enumeration */ #define PFUDPS_NO_TRAFFIC 0 #define PFUDPS_SINGLE 1 #define PFUDPS_MULTIPLE 2 #define PFUDPS_NSTATES 3 /* number of state levels */ #define PFUDPS_NAMES { \ "NO_TRAFFIC", \ "SINGLE", \ "MULTIPLE", \ NULL \ } /* Other protocol state enumeration */ #define PFOTHERS_NO_TRAFFIC 0 #define PFOTHERS_SINGLE 1 #define PFOTHERS_MULTIPLE 2 #define PFOTHERS_NSTATES 3 /* number of state levels */ #define PFOTHERS_NAMES { \ "NO_TRAFFIC", \ "SINGLE", \ "MULTIPLE", \ NULL \ } #define ACTION_SET(a, x) \ do { \ if ((a) != NULL) \ *(a) = (x); \ } while (0) #define REASON_SET(a, x) \ do { \ if ((a) != NULL) \ *(a) = (x); \ if (x < PFRES_MAX) \ counter_u64_add(V_pf_status.counters[x], 1); \ } while (0) enum pf_syncookies_mode { PF_SYNCOOKIES_NEVER = 0, PF_SYNCOOKIES_ALWAYS = 1, PF_SYNCOOKIES_ADAPTIVE = 2, PF_SYNCOOKIES_MODE_MAX = PF_SYNCOOKIES_ADAPTIVE }; #define PF_SYNCOOKIES_HIWATPCT 25 #define PF_SYNCOOKIES_LOWATPCT (PF_SYNCOOKIES_HIWATPCT / 2) #ifdef _KERNEL struct pf_kstatus { counter_u64_t counters[PFRES_MAX]; /* reason for passing/dropping */ counter_u64_t lcounters[KLCNT_MAX]; /* limit counters */ struct pf_counter_u64 fcounters[FCNT_MAX]; /* state operation counters */ counter_u64_t scounters[SCNT_MAX]; /* src_node operation counters */ uint32_t states; uint32_t src_nodes; uint32_t running; uint32_t since; uint32_t debug; uint32_t hostid; char ifname[IFNAMSIZ]; uint8_t pf_chksum[PF_MD5_DIGEST_LENGTH]; bool keep_counters; enum pf_syncookies_mode syncookies_mode; bool syncookies_active; uint64_t syncookies_inflight[2]; uint32_t states_halfopen; uint32_t reass; }; #endif struct pf_divert { union { struct in_addr ipv4; struct in6_addr ipv6; } addr; u_int16_t port; }; #define PFFRAG_FRENT_HIWAT 5000 /* Number of fragment entries */ #define PFR_KENTRY_HIWAT 200000 /* Number of table entries */ /* * Limit the length of the fragment queue traversal. Remember * search entry points based on the fragment offset. */ #define PF_FRAG_ENTRY_POINTS 16 /* * The number of entries in the fragment queue must be limited * to avoid DoS by linear searching. Instead of a global limit, * use a limit per entry point. For large packets these sum up. */ #define PF_FRAG_ENTRY_LIMIT 64 /* * ioctl parameter structures */ struct pfioc_pooladdr { u_int32_t action; u_int32_t ticket; u_int32_t nr; u_int32_t r_num; u_int8_t r_action; u_int8_t r_last; u_int8_t af; char anchor[MAXPATHLEN]; struct pf_pooladdr addr; }; struct pfioc_rule { u_int32_t action; u_int32_t ticket; u_int32_t pool_ticket; u_int32_t nr; char anchor[MAXPATHLEN]; char anchor_call[MAXPATHLEN]; struct pf_rule rule; }; struct pfioc_natlook { struct pf_addr saddr; struct pf_addr daddr; struct pf_addr rsaddr; struct pf_addr rdaddr; u_int16_t sport; u_int16_t dport; u_int16_t rsport; u_int16_t rdport; sa_family_t af; u_int8_t proto; u_int8_t direction; }; struct pfioc_state { struct pfsync_state_1301 state; }; struct pfioc_src_node_kill { sa_family_t psnk_af; struct pf_rule_addr psnk_src; struct pf_rule_addr psnk_dst; u_int psnk_killed; }; #ifdef _KERNEL struct pf_kstate_kill { struct pf_state_cmp psk_pfcmp; sa_family_t psk_af; int psk_proto; struct pf_rule_addr psk_src; struct pf_rule_addr psk_dst; struct pf_rule_addr psk_rt_addr; char psk_ifname[IFNAMSIZ]; char psk_label[PF_RULE_LABEL_SIZE]; u_int psk_killed; bool psk_kill_match; bool psk_nat; }; #endif struct pfioc_state_kill { struct pf_state_cmp psk_pfcmp; sa_family_t psk_af; int psk_proto; struct pf_rule_addr psk_src; struct pf_rule_addr psk_dst; char psk_ifname[IFNAMSIZ]; char psk_label[PF_RULE_LABEL_SIZE]; u_int psk_killed; }; struct pfioc_states { int ps_len; union { void *ps_buf; struct pfsync_state_1301 *ps_states; }; }; struct pfioc_states_v2 { int ps_len; uint64_t ps_req_version; union { void *ps_buf; struct pf_state_export *ps_states; }; }; struct pfioc_src_nodes { int psn_len; union { void *psn_buf; struct pf_src_node *psn_src_nodes; }; }; struct pfioc_if { char ifname[IFNAMSIZ]; }; struct pfioc_tm { int timeout; int seconds; }; struct pfioc_limit { int index; unsigned limit; }; struct pfioc_altq_v0 { u_int32_t action; u_int32_t ticket; u_int32_t nr; struct pf_altq_v0 altq; }; struct pfioc_altq_v1 { u_int32_t action; u_int32_t ticket; u_int32_t nr; /* * Placed here so code that only uses the above parameters can be * written entirely in terms of the v0 or v1 type. */ u_int32_t version; struct pf_altq_v1 altq; }; /* * Latest version of struct pfioc_altq_vX. This must move in lock-step with * the latest version of struct pf_altq_vX as it has that struct as a * member. */ #define PFIOC_ALTQ_VERSION PF_ALTQ_VERSION struct pfioc_qstats_v0 { u_int32_t ticket; u_int32_t nr; void *buf; int nbytes; u_int8_t scheduler; }; struct pfioc_qstats_v1 { u_int32_t ticket; u_int32_t nr; void *buf; int nbytes; u_int8_t scheduler; /* * Placed here so code that only uses the above parameters can be * written entirely in terms of the v0 or v1 type. */ u_int32_t version; /* Requested version of stats struct */ }; /* Latest version of struct pfioc_qstats_vX */ #define PFIOC_QSTATS_VERSION 1 struct pfioc_ruleset { u_int32_t nr; char path[MAXPATHLEN]; char name[PF_ANCHOR_NAME_SIZE]; }; #define PF_RULESET_ALTQ (PF_RULESET_MAX) #define PF_RULESET_TABLE (PF_RULESET_MAX+1) #define PF_RULESET_ETH (PF_RULESET_MAX+2) struct pfioc_trans { int size; /* number of elements */ int esize; /* size of each element in bytes */ struct pfioc_trans_e { int rs_num; char anchor[MAXPATHLEN]; u_int32_t ticket; } *array; }; #define PFR_FLAG_ATOMIC 0x00000001 /* unused */ #define PFR_FLAG_DUMMY 0x00000002 #define PFR_FLAG_FEEDBACK 0x00000004 #define PFR_FLAG_CLSTATS 0x00000008 #define PFR_FLAG_ADDRSTOO 0x00000010 #define PFR_FLAG_REPLACE 0x00000020 #define PFR_FLAG_ALLRSETS 0x00000040 #define PFR_FLAG_ALLMASK 0x0000007F #ifdef _KERNEL #define PFR_FLAG_USERIOCTL 0x10000000 #endif struct pfioc_table { struct pfr_table pfrio_table; void *pfrio_buffer; int pfrio_esize; int pfrio_size; int pfrio_size2; int pfrio_nadd; int pfrio_ndel; int pfrio_nchange; int pfrio_flags; u_int32_t pfrio_ticket; }; #define pfrio_exists pfrio_nadd #define pfrio_nzero pfrio_nadd #define pfrio_nmatch pfrio_nadd #define pfrio_naddr pfrio_size2 #define pfrio_setflag pfrio_size2 #define pfrio_clrflag pfrio_nadd struct pfioc_iface { char pfiio_name[IFNAMSIZ]; void *pfiio_buffer; int pfiio_esize; int pfiio_size; int pfiio_nzero; int pfiio_flags; }; /* * ioctl operations */ #define DIOCSTART _IO ('D', 1) #define DIOCSTOP _IO ('D', 2) #define DIOCADDRULE _IOWR('D', 4, struct pfioc_rule) #define DIOCADDRULENV _IOWR('D', 4, struct pfioc_nv) #define DIOCGETRULES _IOWR('D', 6, struct pfioc_rule) #define DIOCGETRULENV _IOWR('D', 7, struct pfioc_nv) /* XXX cut 8 - 17 */ #define DIOCCLRSTATESNV _IOWR('D', 18, struct pfioc_nv) #define DIOCGETSTATE _IOWR('D', 19, struct pfioc_state) #define DIOCGETSTATENV _IOWR('D', 19, struct pfioc_nv) #define DIOCSETSTATUSIF _IOWR('D', 20, struct pfioc_if) #define DIOCGETSTATUSNV _IOWR('D', 21, struct pfioc_nv) #define DIOCCLRSTATUS _IO ('D', 22) #define DIOCNATLOOK _IOWR('D', 23, struct pfioc_natlook) #define DIOCSETDEBUG _IOWR('D', 24, u_int32_t) #ifdef COMPAT_FREEBSD14 #define DIOCGETSTATES _IOWR('D', 25, struct pfioc_states) #endif #define DIOCCHANGERULE _IOWR('D', 26, struct pfioc_rule) /* XXX cut 26 - 28 */ #define DIOCSETTIMEOUT _IOWR('D', 29, struct pfioc_tm) #define DIOCGETTIMEOUT _IOWR('D', 30, struct pfioc_tm) #define DIOCADDSTATE _IOWR('D', 37, struct pfioc_state) #define DIOCCLRRULECTRS _IO ('D', 38) #define DIOCGETLIMIT _IOWR('D', 39, struct pfioc_limit) #define DIOCSETLIMIT _IOWR('D', 40, struct pfioc_limit) #define DIOCKILLSTATESNV _IOWR('D', 41, struct pfioc_nv) #define DIOCSTARTALTQ _IO ('D', 42) #define DIOCSTOPALTQ _IO ('D', 43) #define DIOCADDALTQV0 _IOWR('D', 45, struct pfioc_altq_v0) #define DIOCADDALTQV1 _IOWR('D', 45, struct pfioc_altq_v1) #define DIOCGETALTQSV0 _IOWR('D', 47, struct pfioc_altq_v0) #define DIOCGETALTQSV1 _IOWR('D', 47, struct pfioc_altq_v1) #define DIOCGETALTQV0 _IOWR('D', 48, struct pfioc_altq_v0) #define DIOCGETALTQV1 _IOWR('D', 48, struct pfioc_altq_v1) #define DIOCCHANGEALTQV0 _IOWR('D', 49, struct pfioc_altq_v0) #define DIOCCHANGEALTQV1 _IOWR('D', 49, struct pfioc_altq_v1) #define DIOCGETQSTATSV0 _IOWR('D', 50, struct pfioc_qstats_v0) #define DIOCGETQSTATSV1 _IOWR('D', 50, struct pfioc_qstats_v1) #define DIOCBEGINADDRS _IOWR('D', 51, struct pfioc_pooladdr) #define DIOCADDADDR _IOWR('D', 52, struct pfioc_pooladdr) #define DIOCGETADDRS _IOWR('D', 53, struct pfioc_pooladdr) #define DIOCGETADDR _IOWR('D', 54, struct pfioc_pooladdr) #define DIOCCHANGEADDR _IOWR('D', 55, struct pfioc_pooladdr) /* XXX cut 55 - 57 */ #define DIOCGETRULESETS _IOWR('D', 58, struct pfioc_ruleset) #define DIOCGETRULESET _IOWR('D', 59, struct pfioc_ruleset) #define DIOCRCLRTABLES _IOWR('D', 60, struct pfioc_table) #define DIOCRADDTABLES _IOWR('D', 61, struct pfioc_table) #define DIOCRDELTABLES _IOWR('D', 62, struct pfioc_table) #define DIOCRGETTABLES _IOWR('D', 63, struct pfioc_table) #define DIOCRGETTSTATS _IOWR('D', 64, struct pfioc_table) #define DIOCRCLRTSTATS _IOWR('D', 65, struct pfioc_table) #define DIOCRCLRADDRS _IOWR('D', 66, struct pfioc_table) #define DIOCRADDADDRS _IOWR('D', 67, struct pfioc_table) #define DIOCRDELADDRS _IOWR('D', 68, struct pfioc_table) #define DIOCRSETADDRS _IOWR('D', 69, struct pfioc_table) #define DIOCRGETADDRS _IOWR('D', 70, struct pfioc_table) #define DIOCRGETASTATS _IOWR('D', 71, struct pfioc_table) #define DIOCRCLRASTATS _IOWR('D', 72, struct pfioc_table) #define DIOCRTSTADDRS _IOWR('D', 73, struct pfioc_table) #define DIOCRSETTFLAGS _IOWR('D', 74, struct pfioc_table) #define DIOCRINADEFINE _IOWR('D', 77, struct pfioc_table) #define DIOCOSFPFLUSH _IO('D', 78) #define DIOCOSFPADD _IOWR('D', 79, struct pf_osfp_ioctl) #define DIOCOSFPGET _IOWR('D', 80, struct pf_osfp_ioctl) #define DIOCXBEGIN _IOWR('D', 81, struct pfioc_trans) #define DIOCXCOMMIT _IOWR('D', 82, struct pfioc_trans) #define DIOCXROLLBACK _IOWR('D', 83, struct pfioc_trans) #define DIOCGETSRCNODES _IOWR('D', 84, struct pfioc_src_nodes) #define DIOCCLRSRCNODES _IO('D', 85) #define DIOCSETHOSTID _IOWR('D', 86, u_int32_t) #define DIOCIGETIFACES _IOWR('D', 87, struct pfioc_iface) #define DIOCSETIFFLAG _IOWR('D', 89, struct pfioc_iface) #define DIOCCLRIFFLAG _IOWR('D', 90, struct pfioc_iface) #define DIOCKILLSRCNODES _IOWR('D', 91, struct pfioc_src_node_kill) #define DIOCGIFSPEEDV0 _IOWR('D', 92, struct pf_ifspeed_v0) #define DIOCGIFSPEEDV1 _IOWR('D', 92, struct pf_ifspeed_v1) #ifdef COMPAT_FREEBSD14 #define DIOCGETSTATESV2 _IOWR('D', 93, struct pfioc_states_v2) #endif #define DIOCGETSYNCOOKIES _IOWR('D', 94, struct pfioc_nv) #define DIOCSETSYNCOOKIES _IOWR('D', 95, struct pfioc_nv) #define DIOCKEEPCOUNTERS _IOWR('D', 96, struct pfioc_nv) #define DIOCKEEPCOUNTERS_FREEBSD13 _IOWR('D', 92, struct pfioc_nv) #define DIOCADDETHRULE _IOWR('D', 97, struct pfioc_nv) #define DIOCGETETHRULE _IOWR('D', 98, struct pfioc_nv) #define DIOCGETETHRULES _IOWR('D', 99, struct pfioc_nv) #define DIOCGETETHRULESETS _IOWR('D', 100, struct pfioc_nv) #define DIOCGETETHRULESET _IOWR('D', 101, struct pfioc_nv) #define DIOCSETREASS _IOWR('D', 102, u_int32_t) struct pf_ifspeed_v0 { char ifname[IFNAMSIZ]; u_int32_t baudrate; }; struct pf_ifspeed_v1 { char ifname[IFNAMSIZ]; u_int32_t baudrate32; /* layout identical to struct pf_ifspeed_v0 up to this point */ u_int64_t baudrate; }; /* Latest version of struct pf_ifspeed_vX */ #define PF_IFSPEED_VERSION 1 /* * Compatibility and convenience macros */ #ifndef _KERNEL #ifdef PFIOC_USE_LATEST /* * Maintaining in-tree consumers of the ioctl interface is easier when that * code can be written in terms old names that refer to the latest interface * version as that reduces the required changes in the consumers to those * that are functionally necessary to accommodate a new interface version. */ #define pfioc_altq __CONCAT(pfioc_altq_v, PFIOC_ALTQ_VERSION) #define pfioc_qstats __CONCAT(pfioc_qstats_v, PFIOC_QSTATS_VERSION) #define pf_ifspeed __CONCAT(pf_ifspeed_v, PF_IFSPEED_VERSION) #define DIOCADDALTQ __CONCAT(DIOCADDALTQV, PFIOC_ALTQ_VERSION) #define DIOCGETALTQS __CONCAT(DIOCGETALTQSV, PFIOC_ALTQ_VERSION) #define DIOCGETALTQ __CONCAT(DIOCGETALTQV, PFIOC_ALTQ_VERSION) #define DIOCCHANGEALTQ __CONCAT(DIOCCHANGEALTQV, PFIOC_ALTQ_VERSION) #define DIOCGETQSTATS __CONCAT(DIOCGETQSTATSV, PFIOC_QSTATS_VERSION) #define DIOCGIFSPEED __CONCAT(DIOCGIFSPEEDV, PF_IFSPEED_VERSION) #else /* * When building out-of-tree code that is written for the old interface, * such as may exist in ports for example, resolve the old struct tags and * ioctl command names to the v0 versions. */ #define pfioc_altq __CONCAT(pfioc_altq_v, 0) #define pfioc_qstats __CONCAT(pfioc_qstats_v, 0) #define pf_ifspeed __CONCAT(pf_ifspeed_v, 0) #define DIOCADDALTQ __CONCAT(DIOCADDALTQV, 0) #define DIOCGETALTQS __CONCAT(DIOCGETALTQSV, 0) #define DIOCGETALTQ __CONCAT(DIOCGETALTQV, 0) #define DIOCCHANGEALTQ __CONCAT(DIOCCHANGEALTQV, 0) #define DIOCGETQSTATS __CONCAT(DIOCGETQSTATSV, 0) #define DIOCGIFSPEED __CONCAT(DIOCGIFSPEEDV, 0) #endif /* PFIOC_USE_LATEST */ #endif /* _KERNEL */ #ifdef _KERNEL LIST_HEAD(pf_ksrc_node_list, pf_ksrc_node); struct pf_srchash { struct pf_ksrc_node_list nodes; struct mtx lock; }; struct pf_keyhash { LIST_HEAD(, pf_state_key) keys; struct mtx lock; }; struct pf_idhash { LIST_HEAD(, pf_kstate) states; struct mtx lock; }; struct pf_udpendpointhash { LIST_HEAD(, pf_udp_endpoint) endpoints; /* refcont is synchronized on the source endpoint's row lock */ struct mtx lock; }; extern u_long pf_ioctl_maxcount; VNET_DECLARE(u_long, pf_hashmask); #define V_pf_hashmask VNET(pf_hashmask) VNET_DECLARE(u_long, pf_srchashmask); #define V_pf_srchashmask VNET(pf_srchashmask) VNET_DECLARE(u_long, pf_udpendpointhashmask); #define V_pf_udpendpointhashmask VNET(pf_udpendpointhashmask) #define PF_HASHSIZ (131072) #define PF_SRCHASHSIZ (PF_HASHSIZ/4) #define PF_UDPENDHASHSIZ (PF_HASHSIZ/4) VNET_DECLARE(struct pf_keyhash *, pf_keyhash); VNET_DECLARE(struct pf_idhash *, pf_idhash); VNET_DECLARE(struct pf_udpendpointhash *, pf_udpendpointhash); #define V_pf_keyhash VNET(pf_keyhash) #define V_pf_idhash VNET(pf_idhash) #define V_pf_udpendpointhash VNET(pf_udpendpointhash) VNET_DECLARE(struct pf_srchash *, pf_srchash); #define V_pf_srchash VNET(pf_srchash) #define PF_IDHASH(s) (be64toh((s)->id) % (V_pf_hashmask + 1)) VNET_DECLARE(void *, pf_swi_cookie); #define V_pf_swi_cookie VNET(pf_swi_cookie) VNET_DECLARE(struct intr_event *, pf_swi_ie); #define V_pf_swi_ie VNET(pf_swi_ie) VNET_DECLARE(struct unrhdr64, pf_stateid); #define V_pf_stateid VNET(pf_stateid) TAILQ_HEAD(pf_altqqueue, pf_altq); VNET_DECLARE(struct pf_altqqueue, pf_altqs[4]); #define V_pf_altqs VNET(pf_altqs) VNET_DECLARE(struct pf_kpalist, pf_pabuf); #define V_pf_pabuf VNET(pf_pabuf) VNET_DECLARE(u_int32_t, ticket_altqs_active); #define V_ticket_altqs_active VNET(ticket_altqs_active) VNET_DECLARE(u_int32_t, ticket_altqs_inactive); #define V_ticket_altqs_inactive VNET(ticket_altqs_inactive) VNET_DECLARE(int, altqs_inactive_open); #define V_altqs_inactive_open VNET(altqs_inactive_open) VNET_DECLARE(u_int32_t, ticket_pabuf); #define V_ticket_pabuf VNET(ticket_pabuf) VNET_DECLARE(struct pf_altqqueue *, pf_altqs_active); #define V_pf_altqs_active VNET(pf_altqs_active) VNET_DECLARE(struct pf_altqqueue *, pf_altq_ifs_active); #define V_pf_altq_ifs_active VNET(pf_altq_ifs_active) VNET_DECLARE(struct pf_altqqueue *, pf_altqs_inactive); #define V_pf_altqs_inactive VNET(pf_altqs_inactive) VNET_DECLARE(struct pf_altqqueue *, pf_altq_ifs_inactive); #define V_pf_altq_ifs_inactive VNET(pf_altq_ifs_inactive) VNET_DECLARE(struct pf_krulequeue, pf_unlinked_rules); #define V_pf_unlinked_rules VNET(pf_unlinked_rules) #ifdef PF_WANT_32_TO_64_COUNTER LIST_HEAD(allkiflist_head, pfi_kkif); VNET_DECLARE(struct allkiflist_head, pf_allkiflist); #define V_pf_allkiflist VNET(pf_allkiflist) VNET_DECLARE(size_t, pf_allkifcount); #define V_pf_allkifcount VNET(pf_allkifcount) VNET_DECLARE(struct pfi_kkif *, pf_kifmarker); #define V_pf_kifmarker VNET(pf_kifmarker) LIST_HEAD(allrulelist_head, pf_krule); VNET_DECLARE(struct allrulelist_head, pf_allrulelist); #define V_pf_allrulelist VNET(pf_allrulelist) VNET_DECLARE(size_t, pf_allrulecount); #define V_pf_allrulecount VNET(pf_allrulecount) VNET_DECLARE(struct pf_krule *, pf_rulemarker); #define V_pf_rulemarker VNET(pf_rulemarker) #endif int pf_start(void); int pf_stop(void); void pf_initialize(void); void pf_mtag_initialize(void); void pf_mtag_cleanup(void); void pf_cleanup(void); struct pf_mtag *pf_get_mtag(struct mbuf *); extern void pf_calc_skip_steps(struct pf_krulequeue *); #ifdef ALTQ extern void pf_altq_ifnet_event(struct ifnet *, int); #endif VNET_DECLARE(uma_zone_t, pf_state_z); #define V_pf_state_z VNET(pf_state_z) VNET_DECLARE(uma_zone_t, pf_state_key_z); #define V_pf_state_key_z VNET(pf_state_key_z) VNET_DECLARE(uma_zone_t, pf_udp_mapping_z); #define V_pf_udp_mapping_z VNET(pf_udp_mapping_z) VNET_DECLARE(uma_zone_t, pf_state_scrub_z); #define V_pf_state_scrub_z VNET(pf_state_scrub_z) extern void pf_purge_thread(void *); extern void pf_unload_vnet_purge(void); extern void pf_intr(void *); extern void pf_purge_expired_src_nodes(void); extern int pf_unlink_state(struct pf_kstate *); extern int pf_state_insert(struct pfi_kkif *, struct pfi_kkif *, struct pf_state_key *, struct pf_state_key *, struct pf_kstate *); extern struct pf_kstate *pf_alloc_state(int); extern void pf_free_state(struct pf_kstate *); extern void pf_killstates(struct pf_kstate_kill *, unsigned int *); extern unsigned int pf_clear_states(const struct pf_kstate_kill *); static __inline void pf_ref_state(struct pf_kstate *s) { refcount_acquire(&s->refs); } static __inline int pf_release_state(struct pf_kstate *s) { if (refcount_release(&s->refs)) { pf_free_state(s); return (1); } else return (0); } static __inline int pf_release_staten(struct pf_kstate *s, u_int n) { if (refcount_releasen(&s->refs, n)) { pf_free_state(s); return (1); } else return (0); } static __inline uint64_t pf_get_uptime(void) { struct timeval t; microuptime(&t); return ((t.tv_sec * 1000) + (t.tv_usec / 1000)); } static __inline uint64_t pf_get_time(void) { struct timeval t; microtime(&t); return ((t.tv_sec * 1000) + (t.tv_usec / 1000)); } extern struct pf_kstate *pf_find_state_byid(uint64_t, uint32_t); extern struct pf_kstate *pf_find_state_all( const struct pf_state_key_cmp *, u_int, int *); extern bool pf_find_state_all_exists( const struct pf_state_key_cmp *, u_int); extern struct pf_udp_mapping *pf_udp_mapping_find(struct pf_udp_endpoint_cmp *endpoint); extern struct pf_udp_mapping *pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, struct pf_addr *nat_addr, uint16_t nat_port); extern int pf_udp_mapping_insert(struct pf_udp_mapping *mapping); extern void pf_udp_mapping_release(struct pf_udp_mapping *mapping); uint32_t pf_hashsrc(struct pf_addr *, sa_family_t); extern bool pf_src_node_exists(struct pf_ksrc_node **, struct pf_srchash *); extern struct pf_ksrc_node *pf_find_src_node(struct pf_addr *, struct pf_krule *, sa_family_t, struct pf_srchash **, bool); extern void pf_unlink_src_node(struct pf_ksrc_node *); extern u_int pf_free_src_nodes(struct pf_ksrc_node_list *); extern void pf_print_state(struct pf_kstate *); extern void pf_print_flags(uint16_t); extern int pf_addr_wrap_neq(struct pf_addr_wrap *, struct pf_addr_wrap *); extern u_int16_t pf_cksum_fixup(u_int16_t, u_int16_t, u_int16_t, u_int8_t); extern u_int16_t pf_proto_cksum_fixup(struct mbuf *, u_int16_t, u_int16_t, u_int16_t, u_int8_t); VNET_DECLARE(struct ifnet *, sync_ifp); #define V_sync_ifp VNET(sync_ifp); VNET_DECLARE(struct pf_krule, pf_default_rule); #define V_pf_default_rule VNET(pf_default_rule) extern void pf_addrcpy(struct pf_addr *, struct pf_addr *, sa_family_t); void pf_free_rule(struct pf_krule *); int pf_test_eth(int, int, struct ifnet *, struct mbuf **, struct inpcb *); int pf_scan_sctp(struct pf_pdesc *); #if defined(INET) || defined(INET6) int pf_test(sa_family_t, int, int, struct ifnet *, struct mbuf **, struct inpcb *, struct pf_rule_actions *); #endif #ifdef INET int pf_normalize_ip(struct mbuf **, u_short *, struct pf_pdesc *); #endif /* INET */ #ifdef INET6 int pf_walk_header6(struct mbuf *, struct ip6_hdr *, int *, int *, int *, uint8_t *, uint32_t *, u_short *); int pf_normalize_ip6(struct mbuf **, int, u_short *, struct pf_pdesc *); void pf_poolmask(struct pf_addr *, struct pf_addr*, struct pf_addr *, struct pf_addr *, sa_family_t); void pf_addr_inc(struct pf_addr *, sa_family_t); int pf_max_frag_size(struct mbuf *); int pf_refragment6(struct ifnet *, struct mbuf **, struct m_tag *, struct ifnet *, bool); #endif /* INET6 */ int pf_multihome_scan_init(int, int, struct pf_pdesc *); int pf_multihome_scan_asconf(int, int, struct pf_pdesc *); u_int32_t pf_new_isn(struct pf_kstate *); void *pf_pull_hdr(const struct mbuf *, int, void *, int, u_short *, u_short *, sa_family_t); void pf_change_a(void *, u_int16_t *, u_int32_t, u_int8_t); void pf_change_proto_a(struct mbuf *, void *, u_int16_t *, u_int32_t, u_int8_t); void pf_change_tcp_a(struct mbuf *, void *, u_int16_t *, u_int32_t); void pf_patch_16_unaligned(struct mbuf *, u_int16_t *, void *, u_int16_t, bool, u_int8_t); void pf_patch_32_unaligned(struct mbuf *, u_int16_t *, void *, u_int32_t, bool, u_int8_t); void pf_send_deferred_syn(struct pf_kstate *); int pf_match_addr(u_int8_t, struct pf_addr *, struct pf_addr *, struct pf_addr *, sa_family_t); int pf_match_addr_range(struct pf_addr *, struct pf_addr *, struct pf_addr *, sa_family_t); int pf_match_port(u_int8_t, u_int16_t, u_int16_t, u_int16_t); void pf_normalize_init(void); void pf_normalize_cleanup(void); int pf_normalize_tcp(struct pf_pdesc *); void pf_normalize_tcp_cleanup(struct pf_kstate *); int pf_normalize_tcp_init(struct pf_pdesc *, struct tcphdr *, struct pf_state_peer *, struct pf_state_peer *); int pf_normalize_tcp_stateful(struct pf_pdesc *, u_short *, struct tcphdr *, struct pf_kstate *, struct pf_state_peer *, struct pf_state_peer *, int *); int pf_normalize_sctp_init(struct pf_pdesc *, struct pf_state_peer *, struct pf_state_peer *); int pf_normalize_sctp(struct pf_pdesc *); u_int32_t pf_state_expires(const struct pf_kstate *); void pf_purge_expired_fragments(void); void pf_purge_fragments(uint32_t); int pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *, int); int pf_socket_lookup(struct pf_pdesc *); struct pf_state_key *pf_alloc_state_key(int); void pfr_initialize(void); void pfr_cleanup(void); int pfr_match_addr(struct pfr_ktable *, struct pf_addr *, sa_family_t); void pfr_update_stats(struct pfr_ktable *, struct pf_addr *, sa_family_t, u_int64_t, int, int, int); int pfr_pool_get(struct pfr_ktable *, int *, struct pf_addr *, sa_family_t, pf_addr_filter_func_t); void pfr_dynaddr_update(struct pfr_ktable *, struct pfi_dynaddr *); struct pfr_ktable * pfr_attach_table(struct pf_kruleset *, char *); struct pfr_ktable * pfr_eth_attach_table(struct pf_keth_ruleset *, char *); void pfr_detach_table(struct pfr_ktable *); int pfr_clr_tables(struct pfr_table *, int *, int); int pfr_add_tables(struct pfr_table *, int, int *, int); int pfr_del_tables(struct pfr_table *, int, int *, int); int pfr_table_count(struct pfr_table *, int); int pfr_get_tables(struct pfr_table *, struct pfr_table *, int *, int); int pfr_get_tstats(struct pfr_table *, struct pfr_tstats *, int *, int); int pfr_clr_tstats(struct pfr_table *, int, int *, int); int pfr_set_tflags(struct pfr_table *, int, int, int, int *, int *, int); int pfr_clr_addrs(struct pfr_table *, int *, int); int pfr_insert_kentry(struct pfr_ktable *, struct pfr_addr *, long); int pfr_add_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_del_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_set_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int *, int *, int *, int, u_int32_t); int pfr_get_addrs(struct pfr_table *, struct pfr_addr *, int *, int); int pfr_get_astats(struct pfr_table *, struct pfr_astats *, int *, int); int pfr_clr_astats(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_tst_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_ina_begin(struct pfr_table *, u_int32_t *, int *, int); int pfr_ina_rollback(struct pfr_table *, u_int32_t, int *, int); int pfr_ina_commit(struct pfr_table *, u_int32_t, int *, int *, int); int pfr_ina_define(struct pfr_table *, struct pfr_addr *, int, int *, int *, u_int32_t, int); MALLOC_DECLARE(PFI_MTYPE); VNET_DECLARE(struct pfi_kkif *, pfi_all); #define V_pfi_all VNET(pfi_all) void pfi_initialize(void); void pfi_initialize_vnet(void); void pfi_cleanup(void); void pfi_cleanup_vnet(void); void pfi_kkif_ref(struct pfi_kkif *); void pfi_kkif_unref(struct pfi_kkif *); struct pfi_kkif *pfi_kkif_find(const char *); struct pfi_kkif *pfi_kkif_attach(struct pfi_kkif *, const char *); int pfi_kkif_match(struct pfi_kkif *, struct pfi_kkif *); void pfi_kkif_purge(void); int pfi_match_addr(struct pfi_dynaddr *, struct pf_addr *, sa_family_t); int pfi_dynaddr_setup(struct pf_addr_wrap *, sa_family_t); void pfi_dynaddr_remove(struct pfi_dynaddr *); void pfi_dynaddr_copyout(struct pf_addr_wrap *); void pfi_update_status(const char *, struct pf_status *); void pfi_get_ifaces(const char *, struct pfi_kif *, int *); int pfi_set_flags(const char *, int); int pfi_clear_flags(const char *, int); int pf_match_tag(struct mbuf *, struct pf_krule *, int *, int); int pf_tag_packet(struct pf_pdesc *, int); int pf_addr_cmp(struct pf_addr *, struct pf_addr *, sa_family_t); u_int16_t pf_get_mss(struct pf_pdesc *); u_int8_t pf_get_wscale(struct pf_pdesc *); struct mbuf *pf_build_tcp(const struct pf_krule *, sa_family_t, const struct pf_addr *, const struct pf_addr *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, u_int16_t, u_int16_t, int); void pf_send_tcp(const struct pf_krule *, sa_family_t, const struct pf_addr *, const struct pf_addr *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, u_int16_t, u_int16_t, int); void pf_syncookies_init(void); void pf_syncookies_cleanup(void); int pf_get_syncookies(struct pfioc_nv *); int pf_set_syncookies(struct pfioc_nv *); int pf_synflood_check(struct pf_pdesc *); void pf_syncookie_send(struct pf_pdesc *); bool pf_syncookie_check(struct pf_pdesc *); u_int8_t pf_syncookie_validate(struct pf_pdesc *); struct mbuf * pf_syncookie_recreate_syn(struct pf_pdesc *); VNET_DECLARE(struct pf_kstatus, pf_status); #define V_pf_status VNET(pf_status) struct pf_limit { uma_zone_t zone; u_int limit; }; VNET_DECLARE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); #define V_pf_limits VNET(pf_limits) #endif /* _KERNEL */ #ifdef _KERNEL VNET_DECLARE(struct pf_kanchor_global, pf_anchors); #define V_pf_anchors VNET(pf_anchors) VNET_DECLARE(struct pf_kanchor, pf_main_anchor); #define V_pf_main_anchor VNET(pf_main_anchor) VNET_DECLARE(struct pf_keth_anchor_global, pf_keth_anchors); #define V_pf_keth_anchors VNET(pf_keth_anchors) #define pf_main_ruleset V_pf_main_anchor.ruleset VNET_DECLARE(struct pf_keth_anchor, pf_main_keth_anchor); #define V_pf_main_keth_anchor VNET(pf_main_keth_anchor) VNET_DECLARE(struct pf_keth_ruleset*, pf_keth); #define V_pf_keth VNET(pf_keth) void pf_init_kruleset(struct pf_kruleset *); void pf_init_keth(struct pf_keth_ruleset *); int pf_kanchor_setup(struct pf_krule *, const struct pf_kruleset *, const char *); int pf_kanchor_copyout(const struct pf_kruleset *, const struct pf_krule *, char *, size_t); int pf_kanchor_nvcopyout(const struct pf_kruleset *, const struct pf_krule *, nvlist_t *); void pf_kanchor_remove(struct pf_krule *); void pf_remove_if_empty_kruleset(struct pf_kruleset *); struct pf_kruleset *pf_find_kruleset(const char *); struct pf_kruleset *pf_find_or_create_kruleset(const char *); void pf_rs_initialize(void); struct pf_krule *pf_krule_alloc(void); void pf_remove_if_empty_keth_ruleset( struct pf_keth_ruleset *); struct pf_keth_ruleset *pf_find_keth_ruleset(const char *); struct pf_keth_anchor *pf_find_keth_anchor(const char *); int pf_keth_anchor_setup(struct pf_keth_rule *, const struct pf_keth_ruleset *, const char *); int pf_keth_anchor_nvcopyout( const struct pf_keth_ruleset *, const struct pf_keth_rule *, nvlist_t *); struct pf_keth_ruleset *pf_find_or_create_keth_ruleset(const char *); void pf_keth_anchor_remove(struct pf_keth_rule *); int pf_ioctl_getrules(struct pfioc_rule *); int pf_ioctl_addrule(struct pf_krule *, uint32_t, uint32_t, const char *, const char *, uid_t uid, pid_t); void pf_ioctl_clear_status(void); int pf_ioctl_get_timeout(int, int *); int pf_ioctl_set_timeout(int, int, int *); int pf_ioctl_get_limit(int, unsigned int *); int pf_ioctl_set_limit(int, unsigned int, unsigned int *); int pf_ioctl_begin_addrs(uint32_t *); int pf_ioctl_add_addr(struct pfioc_pooladdr *); int pf_ioctl_get_addrs(struct pfioc_pooladdr *); int pf_ioctl_get_addr(struct pfioc_pooladdr *); int pf_ioctl_get_rulesets(struct pfioc_ruleset *); int pf_ioctl_get_ruleset(struct pfioc_ruleset *); void pf_krule_free(struct pf_krule *); void pf_krule_clear_counters(struct pf_krule *); void pf_addr_copyout(struct pf_addr_wrap *); #endif /* The fingerprint functions can be linked into userland programs (tcpdump) */ int pf_osfp_add(struct pf_osfp_ioctl *); #ifdef _KERNEL struct pf_osfp_enlist * pf_osfp_fingerprint(struct pf_pdesc *, const struct tcphdr *); #endif /* _KERNEL */ void pf_osfp_flush(void); int pf_osfp_get(struct pf_osfp_ioctl *); int pf_osfp_match(struct pf_osfp_enlist *, pf_osfp_t); #ifdef _KERNEL void pf_print_host(struct pf_addr *, u_int16_t, sa_family_t); void pf_step_into_anchor(struct pf_kanchor_stackframe *, int *, struct pf_kruleset **, int, struct pf_krule **, struct pf_krule **, int *); int pf_step_out_of_anchor(struct pf_kanchor_stackframe *, int *, struct pf_kruleset **, int, struct pf_krule **, struct pf_krule **, int *); void pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *, int *, struct pf_keth_ruleset **, struct pf_keth_rule **, struct pf_keth_rule **, int *); int pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *, int *, struct pf_keth_ruleset **, struct pf_keth_rule **, struct pf_keth_rule **, int *); u_short pf_map_addr(u_int8_t, struct pf_krule *, struct pf_addr *, struct pf_addr *, struct pfi_kkif **nkif, struct pf_addr *); u_short pf_map_addr_sn(u_int8_t, struct pf_krule *, struct pf_addr *, struct pf_addr *, struct pfi_kkif **nkif, struct pf_addr *, struct pf_ksrc_node **, struct pf_srchash **); u_short pf_get_translation(struct pf_pdesc *, int, struct pf_state_key **, struct pf_state_key **, struct pf_addr *, struct pf_addr *, uint16_t, uint16_t, struct pf_kanchor_stackframe *, struct pf_krule **, struct pf_udp_mapping **udp_mapping); struct pf_state_key *pf_state_key_setup(struct pf_pdesc *, struct pf_addr *, struct pf_addr *, u_int16_t, u_int16_t); struct pf_state_key *pf_state_key_clone(const struct pf_state_key *); void pf_rule_to_actions(struct pf_krule *, struct pf_rule_actions *); int pf_normalize_mss(struct pf_pdesc *pd); #if defined(INET) || defined(INET6) void pf_scrub(struct pf_pdesc *); #endif struct pfi_kkif *pf_kkif_create(int); void pf_kkif_free(struct pfi_kkif *); void pf_kkif_zero(struct pfi_kkif *); #endif /* _KERNEL */ #endif /* _NET_PFVAR_H_ */