/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997 John S. Dyson. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. John S. Dyson's name may not be used to endorse or promote products * derived from this software without specific prior written permission. * * DISCLAIMER: This code isn't warranted to do anything useful. Anything * bad that happens because of using this software isn't the responsibility * of the author. This software is distributed AS-IS. */ /* * This file contains support for the POSIX 1003.1B AIO/LIO facility. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Counter for allocating reference ids to new jobs. Wrapped to 1 on * overflow. (XXX will be removed soon.) */ static u_long jobrefid; /* * Counter for aio_fsync. */ static uint64_t jobseqno; #ifndef MAX_AIO_PER_PROC #define MAX_AIO_PER_PROC 32 #endif #ifndef MAX_AIO_QUEUE_PER_PROC #define MAX_AIO_QUEUE_PER_PROC 256 #endif #ifndef MAX_AIO_QUEUE #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ #endif #ifndef MAX_BUF_AIO #define MAX_BUF_AIO 16 #endif FEATURE(aio, "Asynchronous I/O"); SYSCTL_DECL(_p1003_1b); static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Async IO management"); static int enable_aio_unsafe = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, "Permit asynchronous IO on all file types, not just known-safe types"); static unsigned int unsafe_warningcnt = 1; SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, &unsafe_warningcnt, 0, "Warnings that will be triggered upon failed IO requests on unsafe files"); static int max_aio_procs = MAX_AIO_PROCS; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, "Maximum number of kernel processes to use for handling async IO "); static int num_aio_procs = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, "Number of presently active kernel processes for async IO"); /* * The code will adjust the actual number of AIO processes towards this * number when it gets a chance. */ static int target_aio_procs = TARGET_AIO_PROCS; SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 0, "Preferred number of ready kernel processes for async IO"); static int max_queue_count = MAX_AIO_QUEUE; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, "Maximum number of aio requests to queue, globally"); static int num_queue_count = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, "Number of queued aio requests"); static int num_buf_aio = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, "Number of aio requests presently handled by the buf subsystem"); static int num_unmapped_aio = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 0, "Number of aio requests presently handled by unmapped I/O buffers"); /* Number of async I/O processes in the process of being started */ /* XXX This should be local to aio_aqueue() */ static int num_aio_resv_start = 0; static int aiod_lifetime; SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, "Maximum lifetime for idle aiod"); static int max_aio_per_proc = MAX_AIO_PER_PROC; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 0, "Maximum active aio requests per process"); static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, &max_aio_queue_per_proc, 0, "Maximum queued aio requests per process"); static int max_buf_aio = MAX_BUF_AIO; SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, "Maximum buf aio requests per process"); /* * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with * vfs.aio.aio_listio_max. */ SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 0, "Maximum aio requests for a single lio_listio call"); #ifdef COMPAT_FREEBSD6 typedef struct oaiocb { int aio_fildes; /* File descriptor */ off_t aio_offset; /* File offset for I/O */ volatile void *aio_buf; /* I/O buffer in process space */ size_t aio_nbytes; /* Number of bytes for I/O */ struct osigevent aio_sigevent; /* Signal to deliver */ int aio_lio_opcode; /* LIO opcode */ int aio_reqprio; /* Request priority -- ignored */ struct __aiocb_private _aiocb_private; } oaiocb_t; #endif /* * Below is a key of locks used to protect each member of struct kaiocb * aioliojob and kaioinfo and any backends. * * * - need not protected * a - locked by kaioinfo lock * b - locked by backend lock, the backend lock can be null in some cases, * for example, BIO belongs to this type, in this case, proc lock is * reused. * c - locked by aio_job_mtx, the lock for the generic file I/O backend. */ /* * If the routine that services an AIO request blocks while running in an * AIO kernel process it can starve other I/O requests. BIO requests * queued via aio_qbio() complete asynchronously and do not use AIO kernel * processes at all. Socket I/O requests use a separate pool of * kprocs and also force non-blocking I/O. Other file I/O requests * use the generic fo_read/fo_write operations which can block. The * fsync and mlock operations can also block while executing. Ideally * none of these requests would block while executing. * * Note that the service routines cannot toggle O_NONBLOCK in the file * structure directly while handling a request due to races with * userland threads. */ /* jobflags */ #define KAIOCB_QUEUEING 0x01 #define KAIOCB_CANCELLED 0x02 #define KAIOCB_CANCELLING 0x04 #define KAIOCB_CHECKSYNC 0x08 #define KAIOCB_CLEARED 0x10 #define KAIOCB_FINISHED 0x20 /* * AIO process info */ #define AIOP_FREE 0x1 /* proc on free queue */ struct aioproc { int aioprocflags; /* (c) AIO proc flags */ TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ struct proc *aioproc; /* (*) the AIO proc */ }; /* * data-structure for lio signal management */ struct aioliojob { int lioj_flags; /* (a) listio flags */ int lioj_count; /* (a) count of jobs */ int lioj_finished_count; /* (a) count of finished jobs */ struct sigevent lioj_signal; /* (a) signal on all I/O done */ TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ struct knlist klist; /* (a) list of knotes */ ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ }; #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ /* * per process aio data structure */ struct kaioinfo { struct mtx kaio_mtx; /* the lock to protect this struct */ int kaio_flags; /* (a) per process kaio flags */ int kaio_active_count; /* (c) number of currently used AIOs */ int kaio_count; /* (a) size of AIO queue */ int kaio_buffer_count; /* (a) number of bio buffers */ TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ struct task kaio_task; /* (*) task to kick aio processes */ struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ }; #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) #define AIO_MTX(ki) (&(ki)->kaio_mtx) #define KAIO_RUNDOWN 0x1 /* process is being run down */ #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ /* * Operations used to interact with userland aio control blocks. * Different ABIs provide their own operations. */ struct aiocb_ops { int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty); long (*fetch_status)(struct aiocb *ujob); long (*fetch_error)(struct aiocb *ujob); int (*store_status)(struct aiocb *ujob, long status); int (*store_error)(struct aiocb *ujob, long error); int (*store_kernelinfo)(struct aiocb *ujob, long jobref); int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); }; static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ static struct sema aio_newproc_sem; static struct mtx aio_job_mtx; static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ static struct unrhdr *aiod_unr; static void aio_biocleanup(struct bio *bp); void aio_init_aioinfo(struct proc *p); static int aio_onceonly(void); static int aio_free_entry(struct kaiocb *job); static void aio_process_rw(struct kaiocb *job); static void aio_process_sync(struct kaiocb *job); static void aio_process_mlock(struct kaiocb *job); static void aio_schedule_fsync(void *context, int pending); static int aio_newproc(int *); int aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lio, int type, struct aiocb_ops *ops); static int aio_queue_file(struct file *fp, struct kaiocb *job); static void aio_biowakeup(struct bio *bp); static void aio_proc_rundown(void *arg, struct proc *p); static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); static int aio_qbio(struct proc *p, struct kaiocb *job); static void aio_daemon(void *param); static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); static bool aio_clear_cancel_function_locked(struct kaiocb *job); static int aio_kick(struct proc *userp); static void aio_kick_nowait(struct proc *userp); static void aio_kick_helper(void *context, int pending); static int filt_aioattach(struct knote *kn); static void filt_aiodetach(struct knote *kn); static int filt_aio(struct knote *kn, long hint); static int filt_lioattach(struct knote *kn); static void filt_liodetach(struct knote *kn); static int filt_lio(struct knote *kn, long hint); /* * Zones for: * kaio Per process async io info * aiop async io process data * aiocb async io jobs * aiolio list io jobs */ static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; /* kqueue filters for aio */ static struct filterops aio_filtops = { .f_isfd = 0, .f_attach = filt_aioattach, .f_detach = filt_aiodetach, .f_event = filt_aio, }; static struct filterops lio_filtops = { .f_isfd = 0, .f_attach = filt_lioattach, .f_detach = filt_liodetach, .f_event = filt_lio }; static eventhandler_tag exit_tag, exec_tag; TASKQUEUE_DEFINE_THREAD(aiod_kick); /* * Main operations function for use as a kernel module. */ static int aio_modload(struct module *module, int cmd, void *arg) { int error = 0; switch (cmd) { case MOD_LOAD: aio_onceonly(); break; case MOD_SHUTDOWN: break; default: error = EOPNOTSUPP; break; } return (error); } static moduledata_t aio_mod = { "aio", &aio_modload, NULL }; DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); MODULE_VERSION(aio, 1); /* * Startup initialization */ static int aio_onceonly(void) { exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, EVENTHANDLER_PRI_ANY); exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, EVENTHANDLER_PRI_ANY); kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); TAILQ_INIT(&aio_freeproc); sema_init(&aio_newproc_sem, 0, "aio_new_proc"); mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); TAILQ_INIT(&aio_jobs); aiod_unr = new_unrhdr(1, INT_MAX, NULL); kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiod_lifetime = AIOD_LIFETIME_DEFAULT; jobrefid = 1; p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); return (0); } /* * Init the per-process aioinfo structure. The aioinfo limits are set * per-process for user limit (resource) management. */ void aio_init_aioinfo(struct proc *p) { struct kaioinfo *ki; ki = uma_zalloc(kaio_zone, M_WAITOK); mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); ki->kaio_flags = 0; ki->kaio_active_count = 0; ki->kaio_count = 0; ki->kaio_buffer_count = 0; TAILQ_INIT(&ki->kaio_all); TAILQ_INIT(&ki->kaio_done); TAILQ_INIT(&ki->kaio_jobqueue); TAILQ_INIT(&ki->kaio_liojoblist); TAILQ_INIT(&ki->kaio_syncqueue); TAILQ_INIT(&ki->kaio_syncready); TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); PROC_LOCK(p); if (p->p_aioinfo == NULL) { p->p_aioinfo = ki; PROC_UNLOCK(p); } else { PROC_UNLOCK(p); mtx_destroy(&ki->kaio_mtx); uma_zfree(kaio_zone, ki); } while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) aio_newproc(NULL); } static int aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext) { struct thread *td; int error; error = sigev_findtd(p, sigev, &td); if (error) return (error); if (!KSI_ONQ(ksi)) { ksiginfo_set_sigev(ksi, sigev); ksi->ksi_code = SI_ASYNCIO; ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0; tdsendsignal(p, td, ksi->ksi_signo, ksi); } PROC_UNLOCK(p); return (error); } /* * Free a job entry. Wait for completion if it is currently active, but don't * delay forever. If we delay, we return a flag that says that we have to * restart the queue scan. */ static int aio_free_entry(struct kaiocb *job) { struct kaioinfo *ki; struct aioliojob *lj; struct proc *p; p = job->userproc; MPASS(curproc == p); ki = p->p_aioinfo; MPASS(ki != NULL); AIO_LOCK_ASSERT(ki, MA_OWNED); MPASS(job->jobflags & KAIOCB_FINISHED); atomic_subtract_int(&num_queue_count, 1); ki->kaio_count--; MPASS(ki->kaio_count >= 0); TAILQ_REMOVE(&ki->kaio_done, job, plist); TAILQ_REMOVE(&ki->kaio_all, job, allist); lj = job->lio; if (lj) { lj->lioj_count--; lj->lioj_finished_count--; if (lj->lioj_count == 0) { TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); /* lio is going away, we need to destroy any knotes */ knlist_delete(&lj->klist, curthread, 1); PROC_LOCK(p); sigqueue_take(&lj->lioj_ksi); PROC_UNLOCK(p); uma_zfree(aiolio_zone, lj); } } /* job is going away, we need to destroy any knotes */ knlist_delete(&job->klist, curthread, 1); PROC_LOCK(p); sigqueue_take(&job->ksi); PROC_UNLOCK(p); AIO_UNLOCK(ki); /* * The thread argument here is used to find the owning process * and is also passed to fo_close() which may pass it to various * places such as devsw close() routines. Because of that, we * need a thread pointer from the process owning the job that is * persistent and won't disappear out from under us or move to * another process. * * Currently, all the callers of this function call it to remove * a kaiocb from the current process' job list either via a * syscall or due to the current process calling exit() or * execve(). Thus, we know that p == curproc. We also know that * curthread can't exit since we are curthread. * * Therefore, we use curthread as the thread to pass to * knlist_delete(). This does mean that it is possible for the * thread pointer at close time to differ from the thread pointer * at open time, but this is already true of file descriptors in * a multithreaded process. */ if (job->fd_file) fdrop(job->fd_file, curthread); crfree(job->cred); if (job->uiop != &job->uio) free(job->uiop, M_IOV); uma_zfree(aiocb_zone, job); AIO_LOCK(ki); return (0); } static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) { aio_proc_rundown(arg, p); } static int aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) { aio_cancel_fn_t *func; int cancelled; AIO_LOCK_ASSERT(ki, MA_OWNED); if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) return (0); MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); job->jobflags |= KAIOCB_CANCELLED; func = job->cancel_fn; /* * If there is no cancel routine, just leave the job marked as * cancelled. The job should be in active use by a caller who * should complete it normally or when it fails to install a * cancel routine. */ if (func == NULL) return (0); /* * Set the CANCELLING flag so that aio_complete() will defer * completions of this job. This prevents the job from being * freed out from under the cancel callback. After the * callback any deferred completion (whether from the callback * or any other source) will be completed. */ job->jobflags |= KAIOCB_CANCELLING; AIO_UNLOCK(ki); func(job); AIO_LOCK(ki); job->jobflags &= ~KAIOCB_CANCELLING; if (job->jobflags & KAIOCB_FINISHED) { cancelled = job->uaiocb._aiocb_private.error == ECANCELED; TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); aio_bio_done_notify(p, job); } else { /* * The cancel callback might have scheduled an * operation to cancel this request, but it is * only counted as cancelled if the request is * cancelled when the callback returns. */ cancelled = 0; } return (cancelled); } /* * Rundown the jobs for a given process. */ static void aio_proc_rundown(void *arg, struct proc *p) { struct kaioinfo *ki; struct aioliojob *lj; struct kaiocb *job, *jobn; KASSERT(curthread->td_proc == p, ("%s: called on non-curproc", __func__)); ki = p->p_aioinfo; if (ki == NULL) return; AIO_LOCK(ki); ki->kaio_flags |= KAIO_RUNDOWN; restart: /* * Try to cancel all pending requests. This code simulates * aio_cancel on all pending I/O requests. */ TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { aio_cancel_job(p, ki, job); } /* Wait for all running I/O to be finished */ if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { ki->kaio_flags |= KAIO_WAKEUP; msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); goto restart; } /* Free all completed I/O requests. */ while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) aio_free_entry(job); while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { if (lj->lioj_count == 0) { TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); knlist_delete(&lj->klist, curthread, 1); PROC_LOCK(p); sigqueue_take(&lj->lioj_ksi); PROC_UNLOCK(p); uma_zfree(aiolio_zone, lj); } else { panic("LIO job not cleaned up: C:%d, FC:%d\n", lj->lioj_count, lj->lioj_finished_count); } } AIO_UNLOCK(ki); taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); mtx_destroy(&ki->kaio_mtx); uma_zfree(kaio_zone, ki); p->p_aioinfo = NULL; } /* * Select a job to run (called by an AIO daemon). */ static struct kaiocb * aio_selectjob(struct aioproc *aiop) { struct kaiocb *job; struct kaioinfo *ki; struct proc *userp; mtx_assert(&aio_job_mtx, MA_OWNED); restart: TAILQ_FOREACH(job, &aio_jobs, list) { userp = job->userproc; ki = userp->p_aioinfo; if (ki->kaio_active_count < max_aio_per_proc) { TAILQ_REMOVE(&aio_jobs, job, list); if (!aio_clear_cancel_function(job)) goto restart; /* Account for currently active jobs. */ ki->kaio_active_count++; break; } } return (job); } /* * Move all data to a permanent storage device. This code * simulates the fsync and fdatasync syscalls. */ static int aio_fsync_vnode(struct thread *td, struct vnode *vp, int op) { struct mount *mp; int error; if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) goto drop; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_object != NULL) { VM_OBJECT_WLOCK(vp->v_object); vm_object_page_clean(vp->v_object, 0, 0, 0); VM_OBJECT_WUNLOCK(vp->v_object); } if (op == LIO_DSYNC) error = VOP_FDATASYNC(vp, td); else error = VOP_FSYNC(vp, MNT_WAIT, td); VOP_UNLOCK(vp); vn_finished_write(mp); drop: return (error); } /* * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that * does the I/O request for the non-bio version of the operations. The normal * vn operations are used, and this code should work in all instances for every * type of file, including pipes, sockets, fifos, and regular files. * * XXX I don't think it works well for socket, pipe, and fifo. */ static void aio_process_rw(struct kaiocb *job) { struct ucred *td_savedcred; struct thread *td; struct aiocb *cb; struct file *fp; ssize_t cnt; long msgsnd_st, msgsnd_end; long msgrcv_st, msgrcv_end; long oublock_st, oublock_end; long inblock_st, inblock_end; int error, opcode; KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || job->uaiocb.aio_lio_opcode == LIO_READV || job->uaiocb.aio_lio_opcode == LIO_WRITE || job->uaiocb.aio_lio_opcode == LIO_WRITEV, ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); aio_switch_vmspace(job); td = curthread; td_savedcred = td->td_ucred; td->td_ucred = job->cred; job->uiop->uio_td = td; cb = &job->uaiocb; fp = job->fd_file; opcode = job->uaiocb.aio_lio_opcode; cnt = job->uiop->uio_resid; msgrcv_st = td->td_ru.ru_msgrcv; msgsnd_st = td->td_ru.ru_msgsnd; inblock_st = td->td_ru.ru_inblock; oublock_st = td->td_ru.ru_oublock; /* * aio_aqueue() acquires a reference to the file that is * released in aio_free_entry(). */ if (opcode == LIO_READ || opcode == LIO_READV) { if (job->uiop->uio_resid == 0) error = 0; else error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET, td); } else { if (fp->f_type == DTYPE_VNODE) bwillwrite(); error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td); } msgrcv_end = td->td_ru.ru_msgrcv; msgsnd_end = td->td_ru.ru_msgsnd; inblock_end = td->td_ru.ru_inblock; oublock_end = td->td_ru.ru_oublock; job->msgrcv = msgrcv_end - msgrcv_st; job->msgsnd = msgsnd_end - msgsnd_st; job->inblock = inblock_end - inblock_st; job->outblock = oublock_end - oublock_st; if (error != 0 && job->uiop->uio_resid != cnt) { if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) error = 0; if (error == EPIPE && (opcode & LIO_WRITE)) { PROC_LOCK(job->userproc); kern_psignal(job->userproc, SIGPIPE); PROC_UNLOCK(job->userproc); } } cnt -= job->uiop->uio_resid; td->td_ucred = td_savedcred; if (error) aio_complete(job, -1, error); else aio_complete(job, cnt, 0); } static void aio_process_sync(struct kaiocb *job) { struct thread *td = curthread; struct ucred *td_savedcred = td->td_ucred; struct file *fp = job->fd_file; int error = 0; KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC, ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); td->td_ucred = job->cred; if (fp->f_vnode != NULL) { error = aio_fsync_vnode(td, fp->f_vnode, job->uaiocb.aio_lio_opcode); } td->td_ucred = td_savedcred; if (error) aio_complete(job, -1, error); else aio_complete(job, 0, 0); } static void aio_process_mlock(struct kaiocb *job) { struct aiocb *cb = &job->uaiocb; int error; KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); aio_switch_vmspace(job); error = kern_mlock(job->userproc, job->cred, __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); aio_complete(job, error != 0 ? -1 : 0, error); } static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job) { struct aioliojob *lj; struct kaioinfo *ki; struct kaiocb *sjob, *sjobn; int lj_done; bool schedule_fsync; ki = userp->p_aioinfo; AIO_LOCK_ASSERT(ki, MA_OWNED); lj = job->lio; lj_done = 0; if (lj) { lj->lioj_finished_count++; if (lj->lioj_count == lj->lioj_finished_count) lj_done = 1; } TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); MPASS(job->jobflags & KAIOCB_FINISHED); if (ki->kaio_flags & KAIO_RUNDOWN) goto notification_done; if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true); KNOTE_LOCKED(&job->klist, 1); if (lj_done) { if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { lj->lioj_flags |= LIOJ_KEVENT_POSTED; KNOTE_LOCKED(&lj->klist, 1); } if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi, true); lj->lioj_flags |= LIOJ_SIGNAL_POSTED; } } notification_done: if (job->jobflags & KAIOCB_CHECKSYNC) { schedule_fsync = false; TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { if (job->fd_file != sjob->fd_file || job->seqno >= sjob->seqno) continue; if (--sjob->pending > 0) continue; TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); if (!aio_clear_cancel_function_locked(sjob)) continue; TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); schedule_fsync = true; } if (schedule_fsync) taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_sync_task); } if (ki->kaio_flags & KAIO_WAKEUP) { ki->kaio_flags &= ~KAIO_WAKEUP; wakeup(&userp->p_aioinfo); } } static void aio_schedule_fsync(void *context, int pending) { struct kaioinfo *ki; struct kaiocb *job; ki = context; AIO_LOCK(ki); while (!TAILQ_EMPTY(&ki->kaio_syncready)) { job = TAILQ_FIRST(&ki->kaio_syncready); TAILQ_REMOVE(&ki->kaio_syncready, job, list); AIO_UNLOCK(ki); aio_schedule(job, aio_process_sync); AIO_LOCK(ki); } AIO_UNLOCK(ki); } bool aio_cancel_cleared(struct kaiocb *job) { /* * The caller should hold the same queue lock held when * aio_clear_cancel_function() was called and set this flag * ensuring this check sees an up-to-date value. However, * there is no way to assert that. */ return ((job->jobflags & KAIOCB_CLEARED) != 0); } static bool aio_clear_cancel_function_locked(struct kaiocb *job) { AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); MPASS(job->cancel_fn != NULL); if (job->jobflags & KAIOCB_CANCELLING) { job->jobflags |= KAIOCB_CLEARED; return (false); } job->cancel_fn = NULL; return (true); } bool aio_clear_cancel_function(struct kaiocb *job) { struct kaioinfo *ki; bool ret; ki = job->userproc->p_aioinfo; AIO_LOCK(ki); ret = aio_clear_cancel_function_locked(job); AIO_UNLOCK(ki); return (ret); } static bool aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) { AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); if (job->jobflags & KAIOCB_CANCELLED) return (false); job->cancel_fn = func; return (true); } bool aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) { struct kaioinfo *ki; bool ret; ki = job->userproc->p_aioinfo; AIO_LOCK(ki); ret = aio_set_cancel_function_locked(job, func); AIO_UNLOCK(ki); return (ret); } void aio_complete(struct kaiocb *job, long status, int error) { struct kaioinfo *ki; struct proc *userp; job->uaiocb._aiocb_private.error = error; job->uaiocb._aiocb_private.status = status; userp = job->userproc; ki = userp->p_aioinfo; AIO_LOCK(ki); KASSERT(!(job->jobflags & KAIOCB_FINISHED), ("duplicate aio_complete")); job->jobflags |= KAIOCB_FINISHED; if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); aio_bio_done_notify(userp, job); } AIO_UNLOCK(ki); } void aio_cancel(struct kaiocb *job) { aio_complete(job, -1, ECANCELED); } void aio_switch_vmspace(struct kaiocb *job) { vmspace_switch_aio(job->userproc->p_vmspace); } /* * The AIO daemon, most of the actual work is done in aio_process_*, * but the setup (and address space mgmt) is done in this routine. */ static void aio_daemon(void *_id) { struct kaiocb *job; struct aioproc *aiop; struct kaioinfo *ki; struct proc *p; struct vmspace *myvm; struct thread *td = curthread; int id = (intptr_t)_id; /* * Grab an extra reference on the daemon's vmspace so that it * doesn't get freed by jobs that switch to a different * vmspace. */ p = td->td_proc; myvm = vmspace_acquire_ref(p); KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); /* * Allocate and ready the aio control info. There is one aiop structure * per daemon. */ aiop = uma_zalloc(aiop_zone, M_WAITOK); aiop->aioproc = p; aiop->aioprocflags = 0; /* * Wakeup parent process. (Parent sleeps to keep from blasting away * and creating too many daemons.) */ sema_post(&aio_newproc_sem); mtx_lock(&aio_job_mtx); for (;;) { /* * Take daemon off of free queue */ if (aiop->aioprocflags & AIOP_FREE) { TAILQ_REMOVE(&aio_freeproc, aiop, list); aiop->aioprocflags &= ~AIOP_FREE; } /* * Check for jobs. */ while ((job = aio_selectjob(aiop)) != NULL) { mtx_unlock(&aio_job_mtx); ki = job->userproc->p_aioinfo; job->handle_fn(job); mtx_lock(&aio_job_mtx); /* Decrement the active job count. */ ki->kaio_active_count--; } /* * Disconnect from user address space. */ if (p->p_vmspace != myvm) { mtx_unlock(&aio_job_mtx); vmspace_switch_aio(myvm); mtx_lock(&aio_job_mtx); /* * We have to restart to avoid race, we only sleep if * no job can be selected. */ continue; } mtx_assert(&aio_job_mtx, MA_OWNED); TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); aiop->aioprocflags |= AIOP_FREE; /* * If daemon is inactive for a long time, allow it to exit, * thereby freeing resources. */ if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && (aiop->aioprocflags & AIOP_FREE) && num_aio_procs > target_aio_procs) break; } TAILQ_REMOVE(&aio_freeproc, aiop, list); num_aio_procs--; mtx_unlock(&aio_job_mtx); uma_zfree(aiop_zone, aiop); free_unr(aiod_unr, id); vmspace_free(myvm); KASSERT(p->p_vmspace == myvm, ("AIOD: bad vmspace for exiting daemon")); KASSERT(refcount_load(&myvm->vm_refcnt) > 1, ("AIOD: bad vm refcnt for exiting daemon: %d", refcount_load(&myvm->vm_refcnt))); kproc_exit(0); } /* * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The * AIO daemon modifies its environment itself. */ static int aio_newproc(int *start) { int error; struct proc *p; int id; id = alloc_unr(aiod_unr); error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, RFNOWAIT, 0, "aiod%d", id); if (error == 0) { /* * Wait until daemon is started. */ sema_wait(&aio_newproc_sem); mtx_lock(&aio_job_mtx); num_aio_procs++; if (start != NULL) (*start)--; mtx_unlock(&aio_job_mtx); } else { free_unr(aiod_unr, id); } return (error); } /* * Try the high-performance, low-overhead bio method for eligible * VCHR devices. This method doesn't use an aio helper thread, and * thus has very low overhead. * * Assumes that the caller, aio_aqueue(), has incremented the file * structure's reference count, preventing its deallocation for the * duration of this call. */ static int aio_qbio(struct proc *p, struct kaiocb *job) { struct aiocb *cb; struct file *fp; struct buf *pbuf; struct vnode *vp; struct cdevsw *csw; struct cdev *dev; struct kaioinfo *ki; struct bio **bios = NULL; off_t offset; int bio_cmd, error, i, iovcnt, opcode, poff, ref; vm_prot_t prot; bool use_unmapped; cb = &job->uaiocb; fp = job->fd_file; opcode = cb->aio_lio_opcode; if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV || opcode == LIO_READ || opcode == LIO_READV)) return (-1); if (fp == NULL || fp->f_type != DTYPE_VNODE) return (-1); vp = fp->f_vnode; if (vp->v_type != VCHR) return (-1); if (vp->v_bufobj.bo_bsize == 0) return (-1); bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ; iovcnt = job->uiop->uio_iovcnt; if (iovcnt > max_buf_aio) return (-1); for (i = 0; i < iovcnt; i++) { if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0) return (-1); if (job->uiop->uio_iov[i].iov_len > maxphys) { error = -1; return (-1); } } offset = cb->aio_offset; ref = 0; csw = devvn_refthread(vp, &dev, &ref); if (csw == NULL) return (ENXIO); if ((csw->d_flags & D_DISK) == 0) { error = -1; goto unref; } if (job->uiop->uio_resid > dev->si_iosize_max) { error = -1; goto unref; } ki = p->p_aioinfo; job->error = 0; use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed; if (!use_unmapped) { AIO_LOCK(ki); if (ki->kaio_buffer_count + iovcnt > max_buf_aio) { AIO_UNLOCK(ki); error = EAGAIN; goto unref; } ki->kaio_buffer_count += iovcnt; AIO_UNLOCK(ki); } bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK); atomic_store_int(&job->nbio, iovcnt); for (i = 0; i < iovcnt; i++) { struct vm_page** pages; struct bio *bp; void *buf; size_t nbytes; int npages; buf = job->uiop->uio_iov[i].iov_base; nbytes = job->uiop->uio_iov[i].iov_len; bios[i] = g_alloc_bio(); bp = bios[i]; poff = (vm_offset_t)buf & PAGE_MASK; if (use_unmapped) { pbuf = NULL; pages = malloc(sizeof(vm_page_t) * (atop(round_page( nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO); } else { pbuf = uma_zalloc(pbuf_zone, M_WAITOK); BUF_KERNPROC(pbuf); pages = pbuf->b_pages; } bp->bio_length = nbytes; bp->bio_bcount = nbytes; bp->bio_done = aio_biowakeup; bp->bio_offset = offset; bp->bio_cmd = bio_cmd; bp->bio_dev = dev; bp->bio_caller1 = job; bp->bio_caller2 = pbuf; prot = VM_PROT_READ; if (opcode == LIO_READ || opcode == LIO_READV) prot |= VM_PROT_WRITE; /* Less backwards than it looks */ npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, (vm_offset_t)buf, bp->bio_length, prot, pages, atop(maxphys) + 1); if (npages < 0) { if (pbuf != NULL) uma_zfree(pbuf_zone, pbuf); else free(pages, M_TEMP); error = EFAULT; g_destroy_bio(bp); i--; goto destroy_bios; } if (pbuf != NULL) { pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages); bp->bio_data = pbuf->b_data + poff; pbuf->b_npages = npages; atomic_add_int(&num_buf_aio, 1); } else { bp->bio_ma = pages; bp->bio_ma_n = npages; bp->bio_ma_offset = poff; bp->bio_data = unmapped_buf; bp->bio_flags |= BIO_UNMAPPED; atomic_add_int(&num_unmapped_aio, 1); } offset += nbytes; } /* Perform transfer. */ for (i = 0; i < iovcnt; i++) csw->d_strategy(bios[i]); free(bios, M_TEMP); dev_relthread(dev, ref); return (0); destroy_bios: for (; i >= 0; i--) aio_biocleanup(bios[i]); free(bios, M_TEMP); unref: dev_relthread(dev, ref); return (error); } #ifdef COMPAT_FREEBSD6 static int convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) { /* * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are * supported by AIO with the old sigevent structure. */ nsig->sigev_notify = osig->sigev_notify; switch (nsig->sigev_notify) { case SIGEV_NONE: break; case SIGEV_SIGNAL: nsig->sigev_signo = osig->__sigev_u.__sigev_signo; break; case SIGEV_KEVENT: nsig->sigev_notify_kqueue = osig->__sigev_u.__sigev_notify_kqueue; nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; break; default: return (EINVAL); } return (0); } static int aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, int type __unused) { struct oaiocb *ojob; struct aiocb *kcb = &kjob->uaiocb; int error; bzero(kcb, sizeof(struct aiocb)); error = copyin(ujob, kcb, sizeof(struct oaiocb)); if (error) return (error); /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ ojob = (struct oaiocb *)kcb; return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent)); } #endif static int aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) { struct aiocb *kcb = &kjob->uaiocb; int error; error = copyin(ujob, kcb, sizeof(struct aiocb)); if (error) return (error); if (type == LIO_NOP) type = kcb->aio_lio_opcode; if (type & LIO_VECTORED) { /* malloc a uio and copy in the iovec */ error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov), kcb->aio_iovcnt, &kjob->uiop); } return (error); } static long aiocb_fetch_status(struct aiocb *ujob) { return (fuword(&ujob->_aiocb_private.status)); } static long aiocb_fetch_error(struct aiocb *ujob) { return (fuword(&ujob->_aiocb_private.error)); } static int aiocb_store_status(struct aiocb *ujob, long status) { return (suword(&ujob->_aiocb_private.status, status)); } static int aiocb_store_error(struct aiocb *ujob, long error) { return (suword(&ujob->_aiocb_private.error, error)); } static int aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) { return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); } static int aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) { return (suword(ujobp, (long)ujob)); } static struct aiocb_ops aiocb_ops = { .aio_copyin = aiocb_copyin, .fetch_status = aiocb_fetch_status, .fetch_error = aiocb_fetch_error, .store_status = aiocb_store_status, .store_error = aiocb_store_error, .store_kernelinfo = aiocb_store_kernelinfo, .store_aiocb = aiocb_store_aiocb, }; #ifdef COMPAT_FREEBSD6 static struct aiocb_ops aiocb_ops_osigevent = { .aio_copyin = aiocb_copyin_old_sigevent, .fetch_status = aiocb_fetch_status, .fetch_error = aiocb_fetch_error, .store_status = aiocb_store_status, .store_error = aiocb_store_error, .store_kernelinfo = aiocb_store_kernelinfo, .store_aiocb = aiocb_store_aiocb, }; #endif /* * Queue a new AIO request. Choosing either the threaded or direct bio VCHR * technique is done in this code. */ int aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, int type, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct file *fp = NULL; struct kaiocb *job; struct kaioinfo *ki; struct kevent kev; int opcode; int error; int fd, kqfd; int jid; u_short evflags; if (p->p_aioinfo == NULL) aio_init_aioinfo(p); ki = p->p_aioinfo; ops->store_status(ujob, -1); ops->store_error(ujob, 0); ops->store_kernelinfo(ujob, -1); if (num_queue_count >= max_queue_count || ki->kaio_count >= max_aio_queue_per_proc) { error = EAGAIN; goto err1; } job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); knlist_init_mtx(&job->klist, AIO_MTX(ki)); error = ops->aio_copyin(ujob, job, type); if (error) goto err2; if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { error = EINVAL; goto err2; } if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { error = EINVAL; goto err2; } if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { error = EINVAL; goto err2; } /* Get the opcode. */ if (type == LIO_NOP) { switch (job->uaiocb.aio_lio_opcode) { case LIO_WRITE: case LIO_WRITEV: case LIO_NOP: case LIO_READ: case LIO_READV: opcode = job->uaiocb.aio_lio_opcode; break; default: error = EINVAL; goto err2; } } else opcode = job->uaiocb.aio_lio_opcode = type; ksiginfo_init(&job->ksi); /* Save userspace address of the job info. */ job->ujob = ujob; /* * Validate the opcode and fetch the file object for the specified * file descriptor. * * XXXRW: Moved the opcode validation up here so that we don't * retrieve a file descriptor without knowing what the capabiltity * should be. */ fd = job->uaiocb.aio_fildes; switch (opcode) { case LIO_WRITE: case LIO_WRITEV: error = fget_write(td, fd, &cap_pwrite_rights, &fp); break; case LIO_READ: case LIO_READV: error = fget_read(td, fd, &cap_pread_rights, &fp); break; case LIO_SYNC: case LIO_DSYNC: error = fget(td, fd, &cap_fsync_rights, &fp); break; case LIO_MLOCK: break; case LIO_NOP: error = fget(td, fd, &cap_no_rights, &fp); break; default: error = EINVAL; } if (error) goto err3; if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) { error = EINVAL; goto err3; } if ((opcode == LIO_READ || opcode == LIO_READV || opcode == LIO_WRITE || opcode == LIO_WRITEV) && job->uaiocb.aio_offset < 0 && (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { error = EINVAL; goto err3; } if (fp != NULL && fp->f_ops == &path_fileops) { error = EBADF; goto err3; } job->fd_file = fp; mtx_lock(&aio_job_mtx); jid = jobrefid++; job->seqno = jobseqno++; mtx_unlock(&aio_job_mtx); error = ops->store_kernelinfo(ujob, jid); if (error) { error = EINVAL; goto err3; } job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; if (opcode == LIO_NOP) { fdrop(fp, td); MPASS(job->uiop == &job->uio || job->uiop == NULL); uma_zfree(aiocb_zone, job); return (0); } if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) goto no_kqueue; evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { error = EINVAL; goto err3; } kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; memset(&kev, 0, sizeof(kev)); kev.ident = (uintptr_t)job->ujob; kev.filter = EVFILT_AIO; kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; kev.data = (intptr_t)job; kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; error = kqfd_register(kqfd, &kev, td, M_WAITOK); if (error) goto err3; no_kqueue: ops->store_error(ujob, EINPROGRESS); job->uaiocb._aiocb_private.error = EINPROGRESS; job->userproc = p; job->cred = crhold(td->td_ucred); job->jobflags = KAIOCB_QUEUEING; job->lio = lj; if (opcode & LIO_VECTORED) { /* Use the uio copied in by aio_copyin */ MPASS(job->uiop != &job->uio && job->uiop != NULL); } else { /* Setup the inline uio */ job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf; job->iov[0].iov_len = job->uaiocb.aio_nbytes; job->uio.uio_iov = job->iov; job->uio.uio_iovcnt = 1; job->uio.uio_resid = job->uaiocb.aio_nbytes; job->uio.uio_segflg = UIO_USERSPACE; job->uiop = &job->uio; } switch (opcode & (LIO_READ | LIO_WRITE)) { case LIO_READ: job->uiop->uio_rw = UIO_READ; break; case LIO_WRITE: job->uiop->uio_rw = UIO_WRITE; break; } job->uiop->uio_offset = job->uaiocb.aio_offset; job->uiop->uio_td = td; if (opcode == LIO_MLOCK) { aio_schedule(job, aio_process_mlock); error = 0; } else if (fp->f_ops->fo_aio_queue == NULL) error = aio_queue_file(fp, job); else error = fo_aio_queue(fp, job); if (error) goto err3; AIO_LOCK(ki); job->jobflags &= ~KAIOCB_QUEUEING; TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); ki->kaio_count++; if (lj) lj->lioj_count++; atomic_add_int(&num_queue_count, 1); if (job->jobflags & KAIOCB_FINISHED) { /* * The queue callback completed the request synchronously. * The bulk of the completion is deferred in that case * until this point. */ aio_bio_done_notify(p, job); } else TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); AIO_UNLOCK(ki); return (0); err3: if (fp) fdrop(fp, td); knlist_delete(&job->klist, curthread, 0); err2: if (job->uiop != &job->uio) free(job->uiop, M_IOV); uma_zfree(aiocb_zone, job); err1: ops->store_error(ujob, error); return (error); } static void aio_cancel_daemon_job(struct kaiocb *job) { mtx_lock(&aio_job_mtx); if (!aio_cancel_cleared(job)) TAILQ_REMOVE(&aio_jobs, job, list); mtx_unlock(&aio_job_mtx); aio_cancel(job); } void aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) { mtx_lock(&aio_job_mtx); if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { mtx_unlock(&aio_job_mtx); aio_cancel(job); return; } job->handle_fn = func; TAILQ_INSERT_TAIL(&aio_jobs, job, list); aio_kick_nowait(job->userproc); mtx_unlock(&aio_job_mtx); } static void aio_cancel_sync(struct kaiocb *job) { struct kaioinfo *ki; ki = job->userproc->p_aioinfo; AIO_LOCK(ki); if (!aio_cancel_cleared(job)) TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); AIO_UNLOCK(ki); aio_cancel(job); } int aio_queue_file(struct file *fp, struct kaiocb *job) { struct kaioinfo *ki; struct kaiocb *job2; struct vnode *vp; struct mount *mp; int error; bool safe; ki = job->userproc->p_aioinfo; error = aio_qbio(job->userproc, job); if (error >= 0) return (error); safe = false; if (fp->f_type == DTYPE_VNODE) { vp = fp->f_vnode; if (vp->v_type == VREG || vp->v_type == VDIR) { mp = fp->f_vnode->v_mount; if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) safe = true; } } if (!(safe || enable_aio_unsafe)) { counted_warning(&unsafe_warningcnt, "is attempting to use unsafe AIO requests"); return (EOPNOTSUPP); } if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) { aio_schedule(job, aio_process_rw); error = 0; } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) { AIO_LOCK(ki); TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { if (job2->fd_file == job->fd_file && ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) && job2->seqno < job->seqno) { job2->jobflags |= KAIOCB_CHECKSYNC; job->pending++; } } if (job->pending != 0) { if (!aio_set_cancel_function_locked(job, aio_cancel_sync)) { AIO_UNLOCK(ki); aio_cancel(job); return (0); } TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); AIO_UNLOCK(ki); return (0); } AIO_UNLOCK(ki); aio_schedule(job, aio_process_sync); error = 0; } else { error = EINVAL; } return (error); } static void aio_kick_nowait(struct proc *userp) { struct kaioinfo *ki = userp->p_aioinfo; struct aioproc *aiop; mtx_assert(&aio_job_mtx, MA_OWNED); if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { TAILQ_REMOVE(&aio_freeproc, aiop, list); aiop->aioprocflags &= ~AIOP_FREE; wakeup(aiop->aioproc); } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); } } static int aio_kick(struct proc *userp) { struct kaioinfo *ki = userp->p_aioinfo; struct aioproc *aiop; int error, ret = 0; mtx_assert(&aio_job_mtx, MA_OWNED); retryproc: if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { TAILQ_REMOVE(&aio_freeproc, aiop, list); aiop->aioprocflags &= ~AIOP_FREE; wakeup(aiop->aioproc); } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { num_aio_resv_start++; mtx_unlock(&aio_job_mtx); error = aio_newproc(&num_aio_resv_start); mtx_lock(&aio_job_mtx); if (error) { num_aio_resv_start--; goto retryproc; } } else { ret = -1; } return (ret); } static void aio_kick_helper(void *context, int pending) { struct proc *userp = context; mtx_lock(&aio_job_mtx); while (--pending >= 0) { if (aio_kick(userp)) break; } mtx_unlock(&aio_job_mtx); } /* * Support the aio_return system call, as a side-effect, kernel resources are * released. */ static int kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct kaiocb *job; struct kaioinfo *ki; long status, error; ki = p->p_aioinfo; if (ki == NULL) return (EINVAL); AIO_LOCK(ki); TAILQ_FOREACH(job, &ki->kaio_done, plist) { if (job->ujob == ujob) break; } if (job != NULL) { MPASS(job->jobflags & KAIOCB_FINISHED); status = job->uaiocb._aiocb_private.status; error = job->uaiocb._aiocb_private.error; td->td_retval[0] = status; td->td_ru.ru_oublock += job->outblock; td->td_ru.ru_inblock += job->inblock; td->td_ru.ru_msgsnd += job->msgsnd; td->td_ru.ru_msgrcv += job->msgrcv; aio_free_entry(job); AIO_UNLOCK(ki); ops->store_error(ujob, error); ops->store_status(ujob, status); } else { error = EINVAL; AIO_UNLOCK(ki); } return (error); } int sys_aio_return(struct thread *td, struct aio_return_args *uap) { return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); } /* * Allow a process to wakeup when any of the I/O requests are completed. */ static int kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, struct timespec *ts) { struct proc *p = td->td_proc; struct timeval atv; struct kaioinfo *ki; struct kaiocb *firstjob, *job; int error, i, timo; timo = 0; if (ts) { if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) return (EINVAL); TIMESPEC_TO_TIMEVAL(&atv, ts); if (itimerfix(&atv)) return (EINVAL); timo = tvtohz(&atv); } ki = p->p_aioinfo; if (ki == NULL) return (EAGAIN); if (njoblist == 0) return (0); AIO_LOCK(ki); for (;;) { firstjob = NULL; error = 0; TAILQ_FOREACH(job, &ki->kaio_all, allist) { for (i = 0; i < njoblist; i++) { if (job->ujob == ujoblist[i]) { if (firstjob == NULL) firstjob = job; if (job->jobflags & KAIOCB_FINISHED) goto RETURN; } } } /* All tasks were finished. */ if (firstjob == NULL) break; ki->kaio_flags |= KAIO_WAKEUP; error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, "aiospn", timo); if (error == ERESTART) error = EINTR; if (error) break; } RETURN: AIO_UNLOCK(ki); return (error); } int sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) { struct timespec ts, *tsp; struct aiocb **ujoblist; int error; if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) return (EINVAL); if (uap->timeout) { /* Get timespec struct. */ if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) return (error); tsp = &ts; } else tsp = NULL; ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); if (error == 0) error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); free(ujoblist, M_AIOS); return (error); } /* * aio_cancel cancels any non-bio aio operations not currently in progress. */ int sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) { struct proc *p = td->td_proc; struct kaioinfo *ki; struct kaiocb *job, *jobn; struct file *fp; int error; int cancelled = 0; int notcancelled = 0; struct vnode *vp; /* Lookup file object. */ error = fget(td, uap->fd, &cap_no_rights, &fp); if (error) return (error); ki = p->p_aioinfo; if (ki == NULL) goto done; if (fp->f_type == DTYPE_VNODE) { vp = fp->f_vnode; if (vn_isdisk(vp)) { fdrop(fp, td); td->td_retval[0] = AIO_NOTCANCELED; return (0); } } AIO_LOCK(ki); TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { if ((uap->fd == job->uaiocb.aio_fildes) && ((uap->aiocbp == NULL) || (uap->aiocbp == job->ujob))) { if (aio_cancel_job(p, ki, job)) { cancelled++; } else { notcancelled++; } if (uap->aiocbp != NULL) break; } } AIO_UNLOCK(ki); done: fdrop(fp, td); if (uap->aiocbp != NULL) { if (cancelled) { td->td_retval[0] = AIO_CANCELED; return (0); } } if (notcancelled) { td->td_retval[0] = AIO_NOTCANCELED; return (0); } if (cancelled) { td->td_retval[0] = AIO_CANCELED; return (0); } td->td_retval[0] = AIO_ALLDONE; return (0); } /* * aio_error is implemented in the kernel level for compatibility purposes * only. For a user mode async implementation, it would be best to do it in * a userland subroutine. */ static int kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct kaiocb *job; struct kaioinfo *ki; int status; ki = p->p_aioinfo; if (ki == NULL) { td->td_retval[0] = EINVAL; return (0); } AIO_LOCK(ki); TAILQ_FOREACH(job, &ki->kaio_all, allist) { if (job->ujob == ujob) { if (job->jobflags & KAIOCB_FINISHED) td->td_retval[0] = job->uaiocb._aiocb_private.error; else td->td_retval[0] = EINPROGRESS; AIO_UNLOCK(ki); return (0); } } AIO_UNLOCK(ki); /* * Hack for failure of aio_aqueue. */ status = ops->fetch_status(ujob); if (status == -1) { td->td_retval[0] = ops->fetch_error(ujob); return (0); } td->td_retval[0] = EINVAL; return (0); } int sys_aio_error(struct thread *td, struct aio_error_args *uap) { return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); } /* syscall - asynchronous read from a file (REALTIME) */ #ifdef COMPAT_FREEBSD6 int freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, &aiocb_ops_osigevent)); } #endif int sys_aio_read(struct thread *td, struct aio_read_args *uap) { return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); } int sys_aio_readv(struct thread *td, struct aio_readv_args *uap) { return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops)); } /* syscall - asynchronous write to a file (REALTIME) */ #ifdef COMPAT_FREEBSD6 int freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops_osigevent)); } #endif int sys_aio_write(struct thread *td, struct aio_write_args *uap) { return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); } int sys_aio_writev(struct thread *td, struct aio_writev_args *uap) { return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops)); } int sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) { return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); } static int kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, struct aiocb **acb_list, int nent, struct sigevent *sig, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct aiocb *job; struct kaioinfo *ki; struct aioliojob *lj; struct kevent kev; int error; int nagain, nerror; int i; if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) return (EINVAL); if (nent < 0 || nent > max_aio_queue_per_proc) return (EINVAL); if (p->p_aioinfo == NULL) aio_init_aioinfo(p); ki = p->p_aioinfo; lj = uma_zalloc(aiolio_zone, M_WAITOK); lj->lioj_flags = 0; lj->lioj_count = 0; lj->lioj_finished_count = 0; lj->lioj_signal.sigev_notify = SIGEV_NONE; knlist_init_mtx(&lj->klist, AIO_MTX(ki)); ksiginfo_init(&lj->lioj_ksi); /* * Setup signal. */ if (sig && (mode == LIO_NOWAIT)) { bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { /* Assume only new style KEVENT */ memset(&kev, 0, sizeof(kev)); kev.filter = EVFILT_LIO; kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; kev.ident = (uintptr_t)uacb_list; /* something unique */ kev.data = (intptr_t)lj; /* pass user defined sigval data */ kev.udata = lj->lioj_signal.sigev_value.sival_ptr; error = kqfd_register( lj->lioj_signal.sigev_notify_kqueue, &kev, td, M_WAITOK); if (error) { uma_zfree(aiolio_zone, lj); return (error); } } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { ; } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { uma_zfree(aiolio_zone, lj); return EINVAL; } lj->lioj_flags |= LIOJ_SIGNAL; } else { uma_zfree(aiolio_zone, lj); return EINVAL; } } AIO_LOCK(ki); TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); /* * Add extra aiocb count to avoid the lio to be freed * by other threads doing aio_waitcomplete or aio_return, * and prevent event from being sent until we have queued * all tasks. */ lj->lioj_count = 1; AIO_UNLOCK(ki); /* * Get pointers to the list of I/O requests. */ nagain = 0; nerror = 0; for (i = 0; i < nent; i++) { job = acb_list[i]; if (job != NULL) { error = aio_aqueue(td, job, lj, LIO_NOP, ops); if (error == EAGAIN) nagain++; else if (error != 0) nerror++; } } error = 0; AIO_LOCK(ki); if (mode == LIO_WAIT) { while (lj->lioj_count - 1 != lj->lioj_finished_count) { ki->kaio_flags |= KAIO_WAKEUP; error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, "aiospn", 0); if (error == ERESTART) error = EINTR; if (error) break; } } else { if (lj->lioj_count - 1 == lj->lioj_finished_count) { if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { lj->lioj_flags |= LIOJ_KEVENT_POSTED; KNOTE_LOCKED(&lj->klist, 1); } if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi, lj->lioj_count != 1); lj->lioj_flags |= LIOJ_SIGNAL_POSTED; } } } lj->lioj_count--; if (lj->lioj_count == 0) { TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); knlist_delete(&lj->klist, curthread, 1); PROC_LOCK(p); sigqueue_take(&lj->lioj_ksi); PROC_UNLOCK(p); AIO_UNLOCK(ki); uma_zfree(aiolio_zone, lj); } else AIO_UNLOCK(ki); if (nerror) return (EIO); else if (nagain) return (EAGAIN); else return (error); } /* syscall - list directed I/O (REALTIME) */ #ifdef COMPAT_FREEBSD6 int freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) { struct aiocb **acb_list; struct sigevent *sigp, sig; struct osigevent osig; int error, nent; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return (EINVAL); nent = uap->nent; if (nent < 0 || nent > max_aio_queue_per_proc) return (EINVAL); if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &osig, sizeof(osig)); if (error) return (error); error = convert_old_sigevent(&osig, &sig); if (error) return (error); sigp = &sig; } else sigp = NULL; acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); if (error == 0) error = kern_lio_listio(td, uap->mode, (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, &aiocb_ops_osigevent); free(acb_list, M_LIO); return (error); } #endif /* syscall - list directed I/O (REALTIME) */ int sys_lio_listio(struct thread *td, struct lio_listio_args *uap) { struct aiocb **acb_list; struct sigevent *sigp, sig; int error, nent; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return (EINVAL); nent = uap->nent; if (nent < 0 || nent > max_aio_queue_per_proc) return (EINVAL); if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &sig, sizeof(sig)); if (error) return (error); sigp = &sig; } else sigp = NULL; acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); if (error == 0) error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, nent, sigp, &aiocb_ops); free(acb_list, M_LIO); return (error); } static void aio_biocleanup(struct bio *bp) { struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; struct kaioinfo *ki; struct buf *pbuf = (struct buf *)bp->bio_caller2; /* Release mapping into kernel space. */ if (pbuf != NULL) { MPASS(pbuf->b_npages <= atop(maxphys) + 1); pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages); vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages); uma_zfree(pbuf_zone, pbuf); atomic_subtract_int(&num_buf_aio, 1); ki = job->userproc->p_aioinfo; AIO_LOCK(ki); ki->kaio_buffer_count--; AIO_UNLOCK(ki); } else { MPASS(bp->bio_ma_n <= atop(maxphys) + 1); vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n); free(bp->bio_ma, M_TEMP); atomic_subtract_int(&num_unmapped_aio, 1); } g_destroy_bio(bp); } static void aio_biowakeup(struct bio *bp) { struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; size_t nbytes; long bcount = bp->bio_bcount; long resid = bp->bio_resid; int error, opcode, nblks; int bio_error = bp->bio_error; uint16_t flags = bp->bio_flags; opcode = job->uaiocb.aio_lio_opcode; aio_biocleanup(bp); nbytes =bcount - resid; atomic_add_acq_long(&job->nbytes, nbytes); nblks = btodb(nbytes); error = 0; /* * If multiple bios experienced an error, the job will reflect the * error of whichever failed bio completed last. */ if (flags & BIO_ERROR) atomic_set_int(&job->error, bio_error); if (opcode & LIO_WRITE) atomic_add_int(&job->outblock, nblks); else atomic_add_int(&job->inblock, nblks); atomic_subtract_int(&job->nbio, 1); if (atomic_load_int(&job->nbio) == 0) { if (atomic_load_int(&job->error)) aio_complete(job, -1, job->error); else aio_complete(job, atomic_load_long(&job->nbytes), 0); } } /* syscall - wait for the next completion of an aio request */ static int kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, struct timespec *ts, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct timeval atv; struct kaioinfo *ki; struct kaiocb *job; struct aiocb *ujob; long error, status; int timo; ops->store_aiocb(ujobp, NULL); if (ts == NULL) { timo = 0; } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { timo = -1; } else { if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) return (EINVAL); TIMESPEC_TO_TIMEVAL(&atv, ts); if (itimerfix(&atv)) return (EINVAL); timo = tvtohz(&atv); } if (p->p_aioinfo == NULL) aio_init_aioinfo(p); ki = p->p_aioinfo; error = 0; job = NULL; AIO_LOCK(ki); while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { if (timo == -1) { error = EWOULDBLOCK; break; } ki->kaio_flags |= KAIO_WAKEUP; error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, "aiowc", timo); if (timo && error == ERESTART) error = EINTR; if (error) break; } if (job != NULL) { MPASS(job->jobflags & KAIOCB_FINISHED); ujob = job->ujob; status = job->uaiocb._aiocb_private.status; error = job->uaiocb._aiocb_private.error; td->td_retval[0] = status; td->td_ru.ru_oublock += job->outblock; td->td_ru.ru_inblock += job->inblock; td->td_ru.ru_msgsnd += job->msgsnd; td->td_ru.ru_msgrcv += job->msgrcv; aio_free_entry(job); AIO_UNLOCK(ki); ops->store_aiocb(ujobp, ujob); ops->store_error(ujob, error); ops->store_status(ujob, status); } else AIO_UNLOCK(ki); return (error); } int sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) { struct timespec ts, *tsp; int error; if (uap->timeout) { /* Get timespec struct. */ error = copyin(uap->timeout, &ts, sizeof(ts)); if (error) return (error); tsp = &ts; } else tsp = NULL; return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); } static int kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, struct aiocb_ops *ops) { int listop; switch (op) { case O_SYNC: listop = LIO_SYNC; break; case O_DSYNC: listop = LIO_DSYNC; break; default: return (EINVAL); } return (aio_aqueue(td, ujob, NULL, listop, ops)); } int sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) { return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); } /* kqueue attach function */ static int filt_aioattach(struct knote *kn) { struct kaiocb *job; job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; /* * The job pointer must be validated before using it, so * registration is restricted to the kernel; the user cannot * set EV_FLAG1. */ if ((kn->kn_flags & EV_FLAG1) == 0) return (EPERM); kn->kn_ptr.p_aio = job; kn->kn_flags &= ~EV_FLAG1; knlist_add(&job->klist, kn, 0); return (0); } /* kqueue detach function */ static void filt_aiodetach(struct knote *kn) { struct knlist *knl; knl = &kn->kn_ptr.p_aio->klist; knl->kl_lock(knl->kl_lockarg); if (!knlist_empty(knl)) knlist_remove(knl, kn, 1); knl->kl_unlock(knl->kl_lockarg); } /* kqueue filter function */ /*ARGSUSED*/ static int filt_aio(struct knote *kn, long hint) { struct kaiocb *job = kn->kn_ptr.p_aio; kn->kn_data = job->uaiocb._aiocb_private.error; if (!(job->jobflags & KAIOCB_FINISHED)) return (0); kn->kn_flags |= EV_EOF; return (1); } /* kqueue attach function */ static int filt_lioattach(struct knote *kn) { struct aioliojob *lj; lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; /* * The aioliojob pointer must be validated before using it, so * registration is restricted to the kernel; the user cannot * set EV_FLAG1. */ if ((kn->kn_flags & EV_FLAG1) == 0) return (EPERM); kn->kn_ptr.p_lio = lj; kn->kn_flags &= ~EV_FLAG1; knlist_add(&lj->klist, kn, 0); return (0); } /* kqueue detach function */ static void filt_liodetach(struct knote *kn) { struct knlist *knl; knl = &kn->kn_ptr.p_lio->klist; knl->kl_lock(knl->kl_lockarg); if (!knlist_empty(knl)) knlist_remove(knl, kn, 1); knl->kl_unlock(knl->kl_lockarg); } /* kqueue filter function */ /*ARGSUSED*/ static int filt_lio(struct knote *kn, long hint) { struct aioliojob * lj = kn->kn_ptr.p_lio; return (lj->lioj_flags & LIOJ_KEVENT_POSTED); } #ifdef COMPAT_FREEBSD32 #include #include #include #include #include #include #include struct __aiocb_private32 { int32_t status; int32_t error; uint32_t kernelinfo; }; #ifdef COMPAT_FREEBSD6 typedef struct oaiocb32 { int aio_fildes; /* File descriptor */ uint64_t aio_offset __packed; /* File offset for I/O */ uint32_t aio_buf; /* I/O buffer in process space */ uint32_t aio_nbytes; /* Number of bytes for I/O */ struct osigevent32 aio_sigevent; /* Signal to deliver */ int aio_lio_opcode; /* LIO opcode */ int aio_reqprio; /* Request priority -- ignored */ struct __aiocb_private32 _aiocb_private; } oaiocb32_t; #endif typedef struct aiocb32 { int32_t aio_fildes; /* File descriptor */ uint64_t aio_offset __packed; /* File offset for I/O */ uint32_t aio_buf; /* I/O buffer in process space */ uint32_t aio_nbytes; /* Number of bytes for I/O */ int __spare__[2]; uint32_t __spare2__; int aio_lio_opcode; /* LIO opcode */ int aio_reqprio; /* Request priority -- ignored */ struct __aiocb_private32 _aiocb_private; struct sigevent32 aio_sigevent; /* Signal to deliver */ } aiocb32_t; #ifdef COMPAT_FREEBSD6 static int convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) { /* * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are * supported by AIO with the old sigevent structure. */ CP(*osig, *nsig, sigev_notify); switch (nsig->sigev_notify) { case SIGEV_NONE: break; case SIGEV_SIGNAL: nsig->sigev_signo = osig->__sigev_u.__sigev_signo; break; case SIGEV_KEVENT: nsig->sigev_notify_kqueue = osig->__sigev_u.__sigev_notify_kqueue; PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); break; default: return (EINVAL); } return (0); } static int aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, int type __unused) { struct oaiocb32 job32; struct aiocb *kcb = &kjob->uaiocb; int error; bzero(kcb, sizeof(struct aiocb)); error = copyin(ujob, &job32, sizeof(job32)); if (error) return (error); /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ CP(job32, *kcb, aio_fildes); CP(job32, *kcb, aio_offset); PTRIN_CP(job32, *kcb, aio_buf); CP(job32, *kcb, aio_nbytes); CP(job32, *kcb, aio_lio_opcode); CP(job32, *kcb, aio_reqprio); CP(job32, *kcb, _aiocb_private.status); CP(job32, *kcb, _aiocb_private.error); PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); return (convert_old_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent)); } #endif static int aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) { struct aiocb32 job32; struct aiocb *kcb = &kjob->uaiocb; struct iovec32 *iov32; int error; error = copyin(ujob, &job32, sizeof(job32)); if (error) return (error); CP(job32, *kcb, aio_fildes); CP(job32, *kcb, aio_offset); CP(job32, *kcb, aio_lio_opcode); if (type == LIO_NOP) type = kcb->aio_lio_opcode; if (type & LIO_VECTORED) { iov32 = PTRIN(job32.aio_iov); CP(job32, *kcb, aio_iovcnt); /* malloc a uio and copy in the iovec */ error = freebsd32_copyinuio(iov32, kcb->aio_iovcnt, &kjob->uiop); if (error) return (error); } else { PTRIN_CP(job32, *kcb, aio_buf); CP(job32, *kcb, aio_nbytes); } CP(job32, *kcb, aio_reqprio); CP(job32, *kcb, _aiocb_private.status); CP(job32, *kcb, _aiocb_private.error); PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent); return (error); } static long aiocb32_fetch_status(struct aiocb *ujob) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (fuword32(&ujob32->_aiocb_private.status)); } static long aiocb32_fetch_error(struct aiocb *ujob) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (fuword32(&ujob32->_aiocb_private.error)); } static int aiocb32_store_status(struct aiocb *ujob, long status) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (suword32(&ujob32->_aiocb_private.status, status)); } static int aiocb32_store_error(struct aiocb *ujob, long error) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (suword32(&ujob32->_aiocb_private.error, error)); } static int aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); } static int aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) { return (suword32(ujobp, (long)ujob)); } static struct aiocb_ops aiocb32_ops = { .aio_copyin = aiocb32_copyin, .fetch_status = aiocb32_fetch_status, .fetch_error = aiocb32_fetch_error, .store_status = aiocb32_store_status, .store_error = aiocb32_store_error, .store_kernelinfo = aiocb32_store_kernelinfo, .store_aiocb = aiocb32_store_aiocb, }; #ifdef COMPAT_FREEBSD6 static struct aiocb_ops aiocb32_ops_osigevent = { .aio_copyin = aiocb32_copyin_old_sigevent, .fetch_status = aiocb32_fetch_status, .fetch_error = aiocb32_fetch_error, .store_status = aiocb32_store_status, .store_error = aiocb32_store_error, .store_kernelinfo = aiocb32_store_kernelinfo, .store_aiocb = aiocb32_store_aiocb, }; #endif int freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) { return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); } int freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; struct aiocb **ujoblist; uint32_t *ujoblist32; int error, i; if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) return (EINVAL); if (uap->timeout) { /* Get timespec struct. */ if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); tsp = &ts; } else tsp = NULL; ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); ujoblist32 = (uint32_t *)ujoblist; error = copyin(uap->aiocbp, ujoblist32, uap->nent * sizeof(ujoblist32[0])); if (error == 0) { for (i = uap->nent - 1; i >= 0; i--) ujoblist[i] = PTRIN(ujoblist32[i]); error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); } free(ujoblist, M_AIOS); return (error); } int freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) { return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); } #ifdef COMPAT_FREEBSD6 int freebsd6_freebsd32_aio_read(struct thread *td, struct freebsd6_freebsd32_aio_read_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, &aiocb32_ops_osigevent)); } #endif int freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, &aiocb32_ops)); } int freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV, &aiocb32_ops)); } #ifdef COMPAT_FREEBSD6 int freebsd6_freebsd32_aio_write(struct thread *td, struct freebsd6_freebsd32_aio_write_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, &aiocb32_ops_osigevent)); } #endif int freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, &aiocb32_ops)); } int freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV, &aiocb32_ops)); } int freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, &aiocb32_ops)); } int freebsd32_aio_waitcomplete(struct thread *td, struct freebsd32_aio_waitcomplete_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; int error; if (uap->timeout) { /* Get timespec struct. */ error = copyin(uap->timeout, &ts32, sizeof(ts32)); if (error) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); tsp = &ts; } else tsp = NULL; return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, &aiocb32_ops)); } int freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) { return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); } #ifdef COMPAT_FREEBSD6 int freebsd6_freebsd32_lio_listio(struct thread *td, struct freebsd6_freebsd32_lio_listio_args *uap) { struct aiocb **acb_list; struct sigevent *sigp, sig; struct osigevent32 osig; uint32_t *acb_list32; int error, i, nent; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return (EINVAL); nent = uap->nent; if (nent < 0 || nent > max_aio_queue_per_proc) return (EINVAL); if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &osig, sizeof(osig)); if (error) return (error); error = convert_old_sigevent32(&osig, &sig); if (error) return (error); sigp = &sig; } else sigp = NULL; acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); if (error) { free(acb_list32, M_LIO); return (error); } acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); for (i = 0; i < nent; i++) acb_list[i] = PTRIN(acb_list32[i]); free(acb_list32, M_LIO); error = kern_lio_listio(td, uap->mode, (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, &aiocb32_ops_osigevent); free(acb_list, M_LIO); return (error); } #endif int freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) { struct aiocb **acb_list; struct sigevent *sigp, sig; struct sigevent32 sig32; uint32_t *acb_list32; int error, i, nent; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return (EINVAL); nent = uap->nent; if (nent < 0 || nent > max_aio_queue_per_proc) return (EINVAL); if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &sig32, sizeof(sig32)); if (error) return (error); error = convert_sigevent32(&sig32, &sig); if (error) return (error); sigp = &sig; } else sigp = NULL; acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); if (error) { free(acb_list32, M_LIO); return (error); } acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); for (i = 0; i < nent; i++) acb_list[i] = PTRIN(acb_list32[i]); free(acb_list32, M_LIO); error = kern_lio_listio(td, uap->mode, (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, &aiocb32_ops); free(acb_list, M_LIO); return (error); } #endif