/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_43 #include #endif #include #include #include #ifdef KTRACE #include #endif #ifdef COMPAT_FREEBSD32 #include #endif #include #include #include static int sendit(struct thread *td, int s, struct msghdr *mp, int flags); static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp); static int accept1(struct thread *td, int s, struct sockaddr *uname, socklen_t *anamelen, int flags); static int sockargs(struct mbuf **, char *, socklen_t, int); /* * Convert a user file descriptor to a kernel file entry and check if required * capability rights are present. * If required copy of current set of capability rights is returned. * A reference on the file entry is held upon returning. */ int getsock_cap(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp, u_int *fflagp, struct filecaps *havecapsp) { struct file *fp; int error; error = fget_cap(td, fd, rightsp, &fp, havecapsp); if (error != 0) return (error); if (fp->f_type != DTYPE_SOCKET) { fdrop(fp, td); if (havecapsp != NULL) filecaps_free(havecapsp); return (ENOTSOCK); } if (fflagp != NULL) *fflagp = fp->f_flag; *fpp = fp; return (0); } /* * System call interface to the socket abstraction. */ #if defined(COMPAT_43) #define COMPAT_OLDSOCK #endif int sys_socket(struct thread *td, struct socket_args *uap) { return (kern_socket(td, uap->domain, uap->type, uap->protocol)); } int kern_socket(struct thread *td, int domain, int type, int protocol) { struct socket *so; struct file *fp; int fd, error, oflag, fflag; AUDIT_ARG_SOCKET(domain, type, protocol); oflag = 0; fflag = 0; if ((type & SOCK_CLOEXEC) != 0) { type &= ~SOCK_CLOEXEC; oflag |= O_CLOEXEC; } if ((type & SOCK_NONBLOCK) != 0) { type &= ~SOCK_NONBLOCK; fflag |= FNONBLOCK; } #ifdef MAC error = mac_socket_check_create(td->td_ucred, domain, type, protocol); if (error != 0) return (error); #endif error = falloc(td, &fp, &fd, oflag); if (error != 0) return (error); /* An extra reference on `fp' has been held for us by falloc(). */ error = socreate(domain, &so, type, protocol, td->td_ucred, td); if (error != 0) { fdclose(td, fp, fd); } else { finit(fp, FREAD | FWRITE | fflag, DTYPE_SOCKET, so, &socketops); if ((fflag & FNONBLOCK) != 0) (void) fo_ioctl(fp, FIONBIO, &fflag, td->td_ucred, td); td->td_retval[0] = fd; } fdrop(fp, td); return (error); } int sys_bind(struct thread *td, struct bind_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_bindat(td, AT_FDCWD, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; int error; #ifdef CAPABILITY_MODE if (IN_CAPABILITY_MODE(td) && (dirfd == AT_FDCWD)) return (ECAPMODE); #endif AUDIT_ARG_FD(fd); AUDIT_ARG_SOCKADDR(td, dirfd, sa); error = getsock_cap(td, fd, &cap_bind_rights, &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_bind(td->td_ucred, so, sa); if (error == 0) { #endif if (dirfd == AT_FDCWD) error = sobind(so, sa, td); else error = sobindat(dirfd, so, sa, td); #ifdef MAC } #endif fdrop(fp, td); return (error); } int sys_bindat(struct thread *td, struct bindat_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_bindat(td, uap->fd, uap->s, sa); free(sa, M_SONAME); } return (error); } int sys_listen(struct thread *td, struct listen_args *uap) { return (kern_listen(td, uap->s, uap->backlog)); } int kern_listen(struct thread *td, int s, int backlog) { struct socket *so; struct file *fp; int error; AUDIT_ARG_FD(s); error = getsock_cap(td, s, &cap_listen_rights, &fp, NULL, NULL); if (error == 0) { so = fp->f_data; #ifdef MAC error = mac_socket_check_listen(td->td_ucred, so); if (error == 0) #endif error = solisten(so, backlog, td); fdrop(fp, td); } return (error); } /* * accept1() */ static int accept1(td, s, uname, anamelen, flags) struct thread *td; int s; struct sockaddr *uname; socklen_t *anamelen; int flags; { struct sockaddr *name; socklen_t namelen; struct file *fp; int error; if (uname == NULL) return (kern_accept4(td, s, NULL, NULL, flags, NULL)); error = copyin(anamelen, &namelen, sizeof (namelen)); if (error != 0) return (error); error = kern_accept4(td, s, &name, &namelen, flags, &fp); if (error != 0) return (error); if (error == 0 && uname != NULL) { #ifdef COMPAT_OLDSOCK if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && (flags & ACCEPT4_COMPAT) != 0) ((struct osockaddr *)name)->sa_family = name->sa_family; #endif error = copyout(name, uname, namelen); } if (error == 0) error = copyout(&namelen, anamelen, sizeof(namelen)); if (error != 0) fdclose(td, fp, td->td_retval[0]); fdrop(fp, td); free(name, M_SONAME); return (error); } int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp) { return (kern_accept4(td, s, name, namelen, ACCEPT4_INHERIT, fp)); } int kern_accept4(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, int flags, struct file **fp) { struct file *headfp, *nfp = NULL; struct sockaddr *sa = NULL; struct socket *head, *so; struct filecaps fcaps; u_int fflag; pid_t pgid; int error, fd, tmp; if (name != NULL) *name = NULL; AUDIT_ARG_FD(s); error = getsock_cap(td, s, &cap_accept_rights, &headfp, &fflag, &fcaps); if (error != 0) return (error); head = headfp->f_data; if (!SOLISTENING(head)) { error = EINVAL; goto done; } #ifdef MAC error = mac_socket_check_accept(td->td_ucred, head); if (error != 0) goto done; #endif error = falloc_caps(td, &nfp, &fd, (flags & SOCK_CLOEXEC) ? O_CLOEXEC : 0, &fcaps); if (error != 0) goto done; SOCK_LOCK(head); if (!SOLISTENING(head)) { SOCK_UNLOCK(head); error = EINVAL; goto noconnection; } error = solisten_dequeue(head, &so, flags); if (error != 0) goto noconnection; /* An extra reference on `nfp' has been held for us by falloc(). */ td->td_retval[0] = fd; /* Connection has been removed from the listen queue. */ KNOTE_UNLOCKED(&head->so_rdsel.si_note, 0); if (flags & ACCEPT4_INHERIT) { pgid = fgetown(&head->so_sigio); if (pgid != 0) fsetown(pgid, &so->so_sigio); } else { fflag &= ~(FNONBLOCK | FASYNC); if (flags & SOCK_NONBLOCK) fflag |= FNONBLOCK; } finit(nfp, fflag, DTYPE_SOCKET, so, &socketops); /* Sync socket nonblocking/async state with file flags */ tmp = fflag & FNONBLOCK; (void) fo_ioctl(nfp, FIONBIO, &tmp, td->td_ucred, td); tmp = fflag & FASYNC; (void) fo_ioctl(nfp, FIOASYNC, &tmp, td->td_ucred, td); error = soaccept(so, &sa); if (error != 0) goto noconnection; if (sa == NULL) { if (name) *namelen = 0; goto done; } AUDIT_ARG_SOCKADDR(td, AT_FDCWD, sa); if (name) { /* check sa_len before it is destroyed */ if (*namelen > sa->sa_len) *namelen = sa->sa_len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif *name = sa; sa = NULL; } noconnection: free(sa, M_SONAME); /* * close the new descriptor, assuming someone hasn't ripped it * out from under us. */ if (error != 0) fdclose(td, nfp, fd); /* * Release explicitly held references before returning. We return * a reference on nfp to the caller on success if they request it. */ done: if (nfp == NULL) filecaps_free(&fcaps); if (fp != NULL) { if (error == 0) { *fp = nfp; nfp = NULL; } else *fp = NULL; } if (nfp != NULL) fdrop(nfp, td); fdrop(headfp, td); return (error); } int sys_accept(td, uap) struct thread *td; struct accept_args *uap; { return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT)); } int sys_accept4(td, uap) struct thread *td; struct accept4_args *uap; { if (uap->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return (EINVAL); return (accept1(td, uap->s, uap->name, uap->anamelen, uap->flags)); } #ifdef COMPAT_OLDSOCK int oaccept(struct thread *td, struct oaccept_args *uap) { return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT | ACCEPT4_COMPAT)); } #endif /* COMPAT_OLDSOCK */ int sys_connect(struct thread *td, struct connect_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_connectat(td, AT_FDCWD, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; int error; #ifdef CAPABILITY_MODE if (IN_CAPABILITY_MODE(td) && (dirfd == AT_FDCWD)) return (ECAPMODE); #endif AUDIT_ARG_FD(fd); AUDIT_ARG_SOCKADDR(td, dirfd, sa); error = getsock_cap(td, fd, &cap_connect_rights, &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; if (so->so_state & SS_ISCONNECTING) { error = EALREADY; goto done1; } #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_connect(td->td_ucred, so, sa); if (error != 0) goto bad; #endif error = soconnectat(dirfd, so, sa, td); if (error != 0) goto bad; if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) { error = EINPROGRESS; goto done1; } SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, &so->so_lock, PSOCK | PCATCH, "connec", 0); if (error != 0) break; } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); bad: if (error == ERESTART) error = EINTR; done1: fdrop(fp, td); return (error); } int sys_connectat(struct thread *td, struct connectat_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_connectat(td, uap->fd, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv) { struct file *fp1, *fp2; struct socket *so1, *so2; int fd, error, oflag, fflag; AUDIT_ARG_SOCKET(domain, type, protocol); oflag = 0; fflag = 0; if ((type & SOCK_CLOEXEC) != 0) { type &= ~SOCK_CLOEXEC; oflag |= O_CLOEXEC; } if ((type & SOCK_NONBLOCK) != 0) { type &= ~SOCK_NONBLOCK; fflag |= FNONBLOCK; } #ifdef MAC /* We might want to have a separate check for socket pairs. */ error = mac_socket_check_create(td->td_ucred, domain, type, protocol); if (error != 0) return (error); #endif error = socreate(domain, &so1, type, protocol, td->td_ucred, td); if (error != 0) return (error); error = socreate(domain, &so2, type, protocol, td->td_ucred, td); if (error != 0) goto free1; /* On success extra reference to `fp1' and 'fp2' is set by falloc. */ error = falloc(td, &fp1, &fd, oflag); if (error != 0) goto free2; rsv[0] = fd; fp1->f_data = so1; /* so1 already has ref count */ error = falloc(td, &fp2, &fd, oflag); if (error != 0) goto free3; fp2->f_data = so2; /* so2 already has ref count */ rsv[1] = fd; error = soconnect2(so1, so2); if (error != 0) goto free4; if (type == SOCK_DGRAM) { /* * Datagram socket connection is asymmetric. */ error = soconnect2(so2, so1); if (error != 0) goto free4; } else if (so1->so_proto->pr_flags & PR_CONNREQUIRED) { struct unpcb *unp, *unp2; unp = sotounpcb(so1); unp2 = sotounpcb(so2); /* * No need to lock the unps, because the sockets are brand-new. * No other threads can be using them yet */ unp_copy_peercred(td, unp, unp2, unp); } finit(fp1, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp1->f_data, &socketops); finit(fp2, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp2->f_data, &socketops); if ((fflag & FNONBLOCK) != 0) { (void) fo_ioctl(fp1, FIONBIO, &fflag, td->td_ucred, td); (void) fo_ioctl(fp2, FIONBIO, &fflag, td->td_ucred, td); } fdrop(fp1, td); fdrop(fp2, td); return (0); free4: fdclose(td, fp2, rsv[1]); fdrop(fp2, td); free3: fdclose(td, fp1, rsv[0]); fdrop(fp1, td); free2: if (so2 != NULL) (void)soclose(so2); free1: if (so1 != NULL) (void)soclose(so1); return (error); } int sys_socketpair(struct thread *td, struct socketpair_args *uap) { int error, sv[2]; error = kern_socketpair(td, uap->domain, uap->type, uap->protocol, sv); if (error != 0) return (error); error = copyout(sv, uap->rsv, 2 * sizeof(int)); if (error != 0) { (void)kern_close(td, sv[0]); (void)kern_close(td, sv[1]); } return (error); } static int sendit(struct thread *td, int s, struct msghdr *mp, int flags) { struct mbuf *control; struct sockaddr *to; int error; #ifdef CAPABILITY_MODE if (IN_CAPABILITY_MODE(td) && (mp->msg_name != NULL)) return (ECAPMODE); #endif if (mp->msg_name != NULL) { error = getsockaddr(&to, mp->msg_name, mp->msg_namelen); if (error != 0) { to = NULL; goto bad; } mp->msg_name = to; } else { to = NULL; } if (mp->msg_control) { if (mp->msg_controllen < sizeof(struct cmsghdr) #ifdef COMPAT_OLDSOCK && (mp->msg_flags != MSG_COMPAT || !SV_PROC_FLAG(td->td_proc, SV_AOUT)) #endif ) { error = EINVAL; goto bad; } error = sockargs(&control, mp->msg_control, mp->msg_controllen, MT_CONTROL); if (error != 0) goto bad; #ifdef COMPAT_OLDSOCK if (mp->msg_flags == MSG_COMPAT && SV_PROC_FLAG(td->td_proc, SV_AOUT)) { struct cmsghdr *cm; M_PREPEND(control, sizeof(*cm), M_WAITOK); cm = mtod(control, struct cmsghdr *); cm->cmsg_len = control->m_len; cm->cmsg_level = SOL_SOCKET; cm->cmsg_type = SCM_RIGHTS; } #endif } else { control = NULL; } error = kern_sendit(td, s, mp, flags, control, UIO_USERSPACE); bad: free(to, M_SONAME); return (error); } int kern_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg) { struct file *fp; struct uio auio; struct iovec *iov; struct socket *so; cap_rights_t *rights; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int i, error; AUDIT_ARG_FD(s); rights = &cap_send_rights; if (mp->msg_name != NULL) { AUDIT_ARG_SOCKADDR(td, AT_FDCWD, mp->msg_name); rights = &cap_send_connect_rights; } error = getsock_cap(td, s, rights, &fp, NULL, NULL); if (error != 0) { m_freem(control); return (error); } so = (struct socket *)fp->f_data; #ifdef KTRACE if (mp->msg_name != NULL && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(mp->msg_name); #endif #ifdef MAC if (mp->msg_name != NULL) { error = mac_socket_check_connect(td->td_ucred, so, mp->msg_name); if (error != 0) { m_freem(control); goto bad; } } error = mac_socket_check_send(td->td_ucred, so); if (error != 0) { m_freem(control); goto bad; } #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = segflg; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { error = EINVAL; m_freem(control); goto bad; } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif len = auio.uio_resid; error = sosend(so, mp->msg_name, &auio, 0, control, flags, td); if (error != 0) { if (auio.uio_resid != len && (so->so_proto->pr_flags & PR_ATOMIC) == 0 && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket */ if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) && !(flags & MSG_NOSIGNAL)) { PROC_LOCK(td->td_proc); tdsignal(td, SIGPIPE); PROC_UNLOCK(td->td_proc); } } if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(s, UIO_WRITE, ktruio, error); } #endif bad: fdrop(fp, td); return (error); } int sys_sendto(struct thread *td, struct sendto_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = __DECONST(void *, uap->to); msg.msg_namelen = uap->tolen; msg.msg_iov = &aiov; msg.msg_iovlen = 1; msg.msg_control = 0; #ifdef COMPAT_OLDSOCK if (SV_PROC_FLAG(td->td_proc, SV_AOUT)) msg.msg_flags = 0; #endif aiov.iov_base = __DECONST(void *, uap->buf); aiov.iov_len = uap->len; return (sendit(td, uap->s, &msg, uap->flags)); } #ifdef COMPAT_OLDSOCK int osend(struct thread *td, struct osend_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = __DECONST(void *, uap->buf); aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = 0; return (sendit(td, uap->s, &msg, uap->flags)); } int osendmsg(struct thread *td, struct osendmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_iov = iov; msg.msg_flags = MSG_COMPAT; error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } #endif int sys_sendmsg(struct thread *td, struct sendmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_iov = iov; #ifdef COMPAT_OLDSOCK if (SV_PROC_FLAG(td->td_proc, SV_AOUT)) msg.msg_flags = 0; #endif error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } int kern_recvit(struct thread *td, int s, struct msghdr *mp, enum uio_seg fromseg, struct mbuf **controlp) { struct uio auio; struct iovec *iov; struct mbuf *control, *m; caddr_t ctlbuf; struct file *fp; struct socket *so; struct sockaddr *fromsa = NULL; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int error, i; if (controlp != NULL) *controlp = NULL; AUDIT_ARG_FD(s); error = getsock_cap(td, s, &cap_recv_rights, &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; #ifdef MAC error = mac_socket_check_receive(td->td_ucred, so); if (error != 0) { fdrop(fp, td); return (error); } #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { fdrop(fp, td); return (EINVAL); } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif control = NULL; len = auio.uio_resid; error = soreceive(so, &fromsa, &auio, NULL, (mp->msg_control || controlp) ? &control : NULL, &mp->msg_flags); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } if (fromsa != NULL) AUDIT_ARG_SOCKADDR(td, AT_FDCWD, fromsa); #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = len - auio.uio_resid; ktrgenio(s, UIO_READ, ktruio, error); } #endif if (error != 0) goto out; td->td_retval[0] = len - auio.uio_resid; if (mp->msg_name) { len = mp->msg_namelen; if (len <= 0 || fromsa == NULL) len = 0; else { /* save sa_len before it is destroyed by MSG_COMPAT */ len = MIN(len, fromsa->sa_len); #ifdef COMPAT_OLDSOCK if ((mp->msg_flags & MSG_COMPAT) != 0 && SV_PROC_FLAG(td->td_proc, SV_AOUT)) ((struct osockaddr *)fromsa)->sa_family = fromsa->sa_family; #endif if (fromseg == UIO_USERSPACE) { error = copyout(fromsa, mp->msg_name, (unsigned)len); if (error != 0) goto out; } else bcopy(fromsa, mp->msg_name, len); } mp->msg_namelen = len; } if (mp->msg_control && controlp == NULL) { #ifdef COMPAT_OLDSOCK /* * We assume that old recvmsg calls won't receive access * rights and other control info, esp. as control info * is always optional and those options didn't exist in 4.3. * If we receive rights, trim the cmsghdr; anything else * is tossed. */ if (control && (mp->msg_flags & MSG_COMPAT) != 0 && SV_PROC_FLAG(td->td_proc, SV_AOUT)) { if (mtod(control, struct cmsghdr *)->cmsg_level != SOL_SOCKET || mtod(control, struct cmsghdr *)->cmsg_type != SCM_RIGHTS) { mp->msg_controllen = 0; goto out; } control->m_len -= sizeof (struct cmsghdr); control->m_data += sizeof (struct cmsghdr); } #endif ctlbuf = mp->msg_control; len = mp->msg_controllen; mp->msg_controllen = 0; for (m = control; m != NULL && len >= m->m_len; m = m->m_next) { if ((error = copyout(mtod(m, caddr_t), ctlbuf, m->m_len)) != 0) goto out; ctlbuf += m->m_len; len -= m->m_len; mp->msg_controllen += m->m_len; } if (m != NULL) { mp->msg_flags |= MSG_CTRUNC; m_dispose_extcontrolm(m); } } out: fdrop(fp, td); #ifdef KTRACE if (fromsa && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(fromsa); #endif free(fromsa, M_SONAME); if (error == 0 && controlp != NULL) *controlp = control; else if (control != NULL) { if (error != 0) m_dispose_extcontrolm(control); m_freem(control); } return (error); } static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp) { int error; error = kern_recvit(td, s, mp, UIO_USERSPACE, NULL); if (error != 0) return (error); if (namelenp != NULL) { error = copyout(&mp->msg_namelen, namelenp, sizeof (socklen_t)); #ifdef COMPAT_OLDSOCK if ((mp->msg_flags & MSG_COMPAT) != 0 && SV_PROC_FLAG(td->td_proc, SV_AOUT)) error = 0; /* old recvfrom didn't check */ #endif } return (error); } static int kern_recvfrom(struct thread *td, int s, void *buf, size_t len, int flags, struct sockaddr *from, socklen_t *fromlenaddr) { struct msghdr msg; struct iovec aiov; int error; if (fromlenaddr != NULL) { error = copyin(fromlenaddr, &msg.msg_namelen, sizeof (msg.msg_namelen)); if (error != 0) goto done2; } else { msg.msg_namelen = 0; } msg.msg_name = from; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = buf; aiov.iov_len = len; msg.msg_control = 0; msg.msg_flags = flags; error = recvit(td, s, &msg, fromlenaddr); done2: return (error); } int sys_recvfrom(struct thread *td, struct recvfrom_args *uap) { return (kern_recvfrom(td, uap->s, uap->buf, uap->len, uap->flags, uap->from, uap->fromlenaddr)); } #ifdef COMPAT_OLDSOCK int orecvfrom(struct thread *td, struct orecvfrom_args *uap) { return (kern_recvfrom(td, uap->s, uap->buf, uap->len, uap->flags | MSG_COMPAT, uap->from, uap->fromlenaddr)); } #endif #ifdef COMPAT_OLDSOCK int orecv(struct thread *td, struct orecv_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; return (recvit(td, uap->s, &msg, NULL)); } /* * Old recvmsg. This code takes advantage of the fact that the old msghdr * overlays the new one, missing only the flags, and with the (old) access * rights where the control fields are now. */ int orecvmsg(struct thread *td, struct orecvmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_flags = uap->flags | MSG_COMPAT; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, &uap->msg->msg_namelen); if (msg.msg_controllen && error == 0) error = copyout(&msg.msg_controllen, &uap->msg->msg_accrightslen, sizeof (int)); free(iov, M_IOV); return (error); } #endif int sys_recvmsg(struct thread *td, struct recvmsg_args *uap) { struct msghdr msg; struct iovec *uiov, *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_flags = uap->flags; #ifdef COMPAT_OLDSOCK if (SV_PROC_FLAG(td->td_proc, SV_AOUT)) msg.msg_flags &= ~MSG_COMPAT; #endif uiov = msg.msg_iov; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, NULL); if (error == 0) { msg.msg_iov = uiov; error = copyout(&msg, uap->msg, sizeof(msg)); } free(iov, M_IOV); return (error); } int sys_shutdown(struct thread *td, struct shutdown_args *uap) { return (kern_shutdown(td, uap->s, uap->how)); } int kern_shutdown(struct thread *td, int s, int how) { struct socket *so; struct file *fp; int error; AUDIT_ARG_FD(s); error = getsock_cap(td, s, &cap_shutdown_rights, &fp, NULL, NULL); if (error == 0) { so = fp->f_data; error = soshutdown(so, how); /* * Previous versions did not return ENOTCONN, but 0 in * case the socket was not connected. Some important * programs like syslogd up to r279016, 2015-02-19, * still depend on this behavior. */ if (error == ENOTCONN && td->td_proc->p_osrel < P_OSREL_SHUTDOWN_ENOTCONN) error = 0; fdrop(fp, td); } return (error); } int sys_setsockopt(struct thread *td, struct setsockopt_args *uap) { return (kern_setsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, uap->valsize)); } int kern_setsockopt(struct thread *td, int s, int level, int name, const void *val, enum uio_seg valseg, socklen_t valsize) { struct socket *so; struct file *fp; struct sockopt sopt; int error; if (val == NULL && valsize != 0) return (EFAULT); if ((int)valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = __DECONST(void *, val); sopt.sopt_valsize = valsize; switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_setsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock_cap(td, s, &cap_setsockopt_rights, &fp, NULL, NULL); if (error == 0) { so = fp->f_data; error = sosetopt(so, &sopt); fdrop(fp, td); } return(error); } int sys_getsockopt(struct thread *td, struct getsockopt_args *uap) { socklen_t valsize; int error; if (uap->val) { error = copyin(uap->avalsize, &valsize, sizeof (valsize)); if (error != 0) return (error); } error = kern_getsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, &valsize); if (error == 0) error = copyout(&valsize, uap->avalsize, sizeof (valsize)); return (error); } /* * Kernel version of getsockopt. * optval can be a userland or userspace. optlen is always a kernel pointer. */ int kern_getsockopt(struct thread *td, int s, int level, int name, void *val, enum uio_seg valseg, socklen_t *valsize) { struct socket *so; struct file *fp; struct sockopt sopt; int error; if (val == NULL) *valsize = 0; if ((int)*valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_GET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = val; sopt.sopt_valsize = (size_t)*valsize; /* checked non-negative above */ switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_getsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock_cap(td, s, &cap_getsockopt_rights, &fp, NULL, NULL); if (error == 0) { so = fp->f_data; error = sogetopt(so, &sopt); *valsize = sopt.sopt_valsize; fdrop(fp, td); } return (error); } static int user_getsockname(struct thread *td, int fdes, struct sockaddr *asa, socklen_t *alen, bool compat) { struct sockaddr *sa; socklen_t len; int error; error = copyin(alen, &len, sizeof(len)); if (error != 0) return (error); error = kern_getsockname(td, fdes, &sa, &len); if (error != 0) return (error); if (len != 0) { #ifdef COMPAT_OLDSOCK if (compat && SV_PROC_FLAG(td->td_proc, SV_AOUT)) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, asa, len); } free(sa, M_SONAME); if (error == 0) error = copyout(&len, alen, sizeof(len)); return (error); } int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen) { struct socket *so; struct file *fp; socklen_t len; int error; AUDIT_ARG_FD(fd); error = getsock_cap(td, fd, &cap_getsockname_rights, &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; *sa = NULL; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_sockaddr(so, sa); CURVNET_RESTORE(); if (error != 0) goto bad; if (*sa == NULL) len = 0; else len = MIN(*alen, (*sa)->sa_len); *alen = len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(*sa); #endif bad: fdrop(fp, td); if (error != 0 && *sa != NULL) { free(*sa, M_SONAME); *sa = NULL; } return (error); } int sys_getsockname(struct thread *td, struct getsockname_args *uap) { return (user_getsockname(td, uap->fdes, uap->asa, uap->alen, false)); } #ifdef COMPAT_OLDSOCK int ogetsockname(struct thread *td, struct ogetsockname_args *uap) { return (user_getsockname(td, uap->fdes, uap->asa, uap->alen, true)); } #endif /* COMPAT_OLDSOCK */ static int user_getpeername(struct thread *td, int fdes, struct sockaddr *asa, socklen_t *alen, bool compat) { struct sockaddr *sa; socklen_t len; int error; error = copyin(alen, &len, sizeof (len)); if (error != 0) return (error); error = kern_getpeername(td, fdes, &sa, &len); if (error != 0) return (error); if (len != 0) { #ifdef COMPAT_OLDSOCK if (compat && SV_PROC_FLAG(td->td_proc, SV_AOUT)) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, asa, len); } free(sa, M_SONAME); if (error == 0) error = copyout(&len, alen, sizeof(len)); return (error); } int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen) { struct socket *so; struct file *fp; socklen_t len; int error; AUDIT_ARG_FD(fd); error = getsock_cap(td, fd, &cap_getpeername_rights, &fp, NULL, NULL); if (error != 0) return (error); so = fp->f_data; if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) { error = ENOTCONN; goto done; } *sa = NULL; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_peeraddr(so, sa); CURVNET_RESTORE(); if (error != 0) goto bad; if (*sa == NULL) len = 0; else len = MIN(*alen, (*sa)->sa_len); *alen = len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(*sa); #endif bad: if (error != 0 && *sa != NULL) { free(*sa, M_SONAME); *sa = NULL; } done: fdrop(fp, td); return (error); } int sys_getpeername(struct thread *td, struct getpeername_args *uap) { return (user_getpeername(td, uap->fdes, uap->asa, uap->alen, false)); } #ifdef COMPAT_OLDSOCK int ogetpeername(struct thread *td, struct ogetpeername_args *uap) { return (user_getpeername(td, uap->fdes, uap->asa, uap->alen, true)); } #endif /* COMPAT_OLDSOCK */ static int sockargs(struct mbuf **mp, char *buf, socklen_t buflen, int type) { struct sockaddr *sa; struct mbuf *m; int error; if (buflen > MLEN) { #ifdef COMPAT_OLDSOCK if (type == MT_SONAME && buflen <= 112 && SV_CURPROC_FLAG(SV_AOUT)) buflen = MLEN; /* unix domain compat. hack */ else #endif if (buflen > MCLBYTES) return (EMSGSIZE); } m = m_get2(buflen, M_WAITOK, type, 0); m->m_len = buflen; error = copyin(buf, mtod(m, void *), buflen); if (error != 0) (void) m_free(m); else { *mp = m; if (type == MT_SONAME) { sa = mtod(m, struct sockaddr *); #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX && SV_CURPROC_FLAG(SV_AOUT)) sa->sa_family = sa->sa_len; #endif sa->sa_len = buflen; } } return (error); } int getsockaddr(struct sockaddr **namp, const struct sockaddr *uaddr, size_t len) { struct sockaddr *sa; int error; if (len > SOCK_MAXADDRLEN) return (ENAMETOOLONG); if (len < offsetof(struct sockaddr, sa_data[0])) return (EINVAL); sa = malloc(len, M_SONAME, M_WAITOK); error = copyin(uaddr, sa, len); if (error != 0) { free(sa, M_SONAME); } else { #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX && SV_CURPROC_FLAG(SV_AOUT)) sa->sa_family = sa->sa_len; #endif sa->sa_len = len; *namp = sa; } return (error); } /* * Dispose of externalized rights from an SCM_RIGHTS message. This function * should be used in error or truncation cases to avoid leaking file descriptors * into the recipient's (the current thread's) table. */ void m_dispose_extcontrolm(struct mbuf *m) { struct cmsghdr *cm; struct file *fp; struct thread *td; socklen_t clen, datalen; int error, fd, *fds, nfd; td = curthread; for (; m != NULL; m = m->m_next) { if (m->m_type != MT_EXTCONTROL) continue; cm = mtod(m, struct cmsghdr *); clen = m->m_len; while (clen > 0) { if (clen < sizeof(*cm)) panic("%s: truncated mbuf %p", __func__, m); datalen = CMSG_SPACE(cm->cmsg_len - CMSG_SPACE(0)); if (clen < datalen) panic("%s: truncated mbuf %p", __func__, m); if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_RIGHTS) { fds = (int *)CMSG_DATA(cm); nfd = (cm->cmsg_len - CMSG_SPACE(0)) / sizeof(int); while (nfd-- > 0) { fd = *fds++; error = fget(td, fd, &cap_no_rights, &fp); if (error == 0) { fdclose(td, fp, fd); fdrop(fp, td); } } } clen -= datalen; cm = (struct cmsghdr *)((uint8_t *)cm + datalen); } m_chtype(m, MT_CONTROL); } }