/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static SYSCTL_NODE(_kern_ipc, OID_AUTO, aio, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "socket AIO stats"); static int empty_results; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, empty_results, CTLFLAG_RD, &empty_results, 0, "socket operation returned EAGAIN"); static int empty_retries; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, empty_retries, CTLFLAG_RD, &empty_retries, 0, "socket operation retries"); static fo_rdwr_t soo_read; static fo_rdwr_t soo_write; static fo_ioctl_t soo_ioctl; static fo_poll_t soo_poll; extern fo_kqfilter_t soo_kqfilter; static fo_stat_t soo_stat; static fo_close_t soo_close; static fo_chmod_t soo_chmod; static fo_fill_kinfo_t soo_fill_kinfo; static fo_aio_queue_t soo_aio_queue; static void soo_aio_cancel(struct kaiocb *job); struct fileops socketops = { .fo_read = soo_read, .fo_write = soo_write, .fo_truncate = invfo_truncate, .fo_ioctl = soo_ioctl, .fo_poll = soo_poll, .fo_kqfilter = soo_kqfilter, .fo_stat = soo_stat, .fo_close = soo_close, .fo_chmod = soo_chmod, .fo_chown = invfo_chown, .fo_sendfile = invfo_sendfile, .fo_fill_kinfo = soo_fill_kinfo, .fo_aio_queue = soo_aio_queue, .fo_cmp = file_kcmp_generic, .fo_flags = DFLAG_PASSABLE }; static int soo_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct socket *so = fp->f_data; int error; #ifdef MAC error = mac_socket_check_receive(active_cred, so); if (error) return (error); #endif error = soreceive(so, 0, uio, 0, 0, 0); return (error); } static int soo_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct socket *so = fp->f_data; int error; #ifdef MAC error = mac_socket_check_send(active_cred, so); if (error) return (error); #endif error = sousrsend(so, NULL, uio, NULL, 0, NULL); return (error); } static int soo_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred, struct thread *td) { struct socket *so = fp->f_data; int error = 0; switch (cmd) { case FIONBIO: SOCK_LOCK(so); if (*(int *)data) so->so_state |= SS_NBIO; else so->so_state &= ~SS_NBIO; SOCK_UNLOCK(so); break; case FIOASYNC: if (*(int *)data) { SOCK_LOCK(so); so->so_state |= SS_ASYNC; if (SOLISTENING(so)) { so->sol_sbrcv_flags |= SB_ASYNC; so->sol_sbsnd_flags |= SB_ASYNC; } else { SOCK_RECVBUF_LOCK(so); so->so_rcv.sb_flags |= SB_ASYNC; SOCK_RECVBUF_UNLOCK(so); SOCK_SENDBUF_LOCK(so); so->so_snd.sb_flags |= SB_ASYNC; SOCK_SENDBUF_UNLOCK(so); } SOCK_UNLOCK(so); } else { SOCK_LOCK(so); so->so_state &= ~SS_ASYNC; if (SOLISTENING(so)) { so->sol_sbrcv_flags &= ~SB_ASYNC; so->sol_sbsnd_flags &= ~SB_ASYNC; } else { SOCK_RECVBUF_LOCK(so); so->so_rcv.sb_flags &= ~SB_ASYNC; SOCK_RECVBUF_UNLOCK(so); SOCK_SENDBUF_LOCK(so); so->so_snd.sb_flags &= ~SB_ASYNC; SOCK_SENDBUF_UNLOCK(so); } SOCK_UNLOCK(so); } break; case FIONREAD: SOCK_RECVBUF_LOCK(so); if (SOLISTENING(so)) { error = EINVAL; } else { *(int *)data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; } SOCK_RECVBUF_UNLOCK(so); break; case FIONWRITE: /* Unlocked read. */ if (SOLISTENING(so)) { error = EINVAL; } else { *(int *)data = sbavail(&so->so_snd); } break; case FIONSPACE: /* Unlocked read. */ if (SOLISTENING(so)) { error = EINVAL; } else { if ((so->so_snd.sb_hiwat < sbused(&so->so_snd)) || (so->so_snd.sb_mbmax < so->so_snd.sb_mbcnt)) { *(int *)data = 0; } else { *(int *)data = sbspace(&so->so_snd); } } break; case FIOSETOWN: error = fsetown(*(int *)data, &so->so_sigio); break; case FIOGETOWN: *(int *)data = fgetown(&so->so_sigio); break; case SIOCSPGRP: error = fsetown(-(*(int *)data), &so->so_sigio); break; case SIOCGPGRP: *(int *)data = -fgetown(&so->so_sigio); break; case SIOCATMARK: /* Unlocked read. */ if (SOLISTENING(so)) { error = EINVAL; } else { *(int *)data = (so->so_rcv.sb_state & SBS_RCVATMARK) != 0; } break; default: /* * Interface/routing/protocol specific ioctls: interface and * routing ioctls should have a different entry since a * socket is unnecessary. */ if (IOCGROUP(cmd) == 'i') error = ifioctl(so, cmd, data, td); else if (IOCGROUP(cmd) == 'r') { CURVNET_SET(so->so_vnet); error = rtioctl_fib(cmd, data, so->so_fibnum); CURVNET_RESTORE(); } else { CURVNET_SET(so->so_vnet); error = so->so_proto->pr_control(so, cmd, data, 0, td); CURVNET_RESTORE(); } break; } return (error); } static int soo_poll(struct file *fp, int events, struct ucred *active_cred, struct thread *td) { struct socket *so = fp->f_data; #ifdef MAC int error; error = mac_socket_check_poll(active_cred, so); if (error) return (error); #endif return (sopoll(so, events, fp->f_cred, td)); } static int soo_stat(struct file *fp, struct stat *ub, struct ucred *active_cred) { struct socket *so = fp->f_data; int error = 0; bzero((caddr_t)ub, sizeof (*ub)); ub->st_mode = S_IFSOCK; #ifdef MAC error = mac_socket_check_stat(active_cred, so); if (error) return (error); #endif SOCK_LOCK(so); if (!SOLISTENING(so)) { struct sockbuf *sb; /* * If SBS_CANTRCVMORE is set, but there's still data left * in the receive buffer, the socket is still readable. */ sb = &so->so_rcv; SOCK_RECVBUF_LOCK(so); if ((sb->sb_state & SBS_CANTRCVMORE) == 0 || sbavail(sb)) ub->st_mode |= S_IRUSR | S_IRGRP | S_IROTH; ub->st_size = sbavail(sb) - sb->sb_ctl; SOCK_RECVBUF_UNLOCK(so); sb = &so->so_snd; SOCK_SENDBUF_LOCK(so); if ((sb->sb_state & SBS_CANTSENDMORE) == 0) ub->st_mode |= S_IWUSR | S_IWGRP | S_IWOTH; SOCK_SENDBUF_UNLOCK(so); } ub->st_uid = so->so_cred->cr_uid; ub->st_gid = so->so_cred->cr_gid; if (so->so_proto->pr_sense) error = so->so_proto->pr_sense(so, ub); SOCK_UNLOCK(so); return (error); } /* * API socket close on file pointer. We call soclose() to close the socket * (including initiating closing protocols). soclose() will sorele() the * file reference but the actual socket will not go away until the socket's * ref count hits 0. */ static int soo_close(struct file *fp, struct thread *td) { int error = 0; struct socket *so; so = fp->f_data; fp->f_ops = &badfileops; fp->f_data = NULL; if (so) error = soclose(so); return (error); } static int soo_chmod(struct file *fp, mode_t mode, struct ucred *cred, struct thread *td) { struct socket *so; int error; so = fp->f_data; if (so->so_proto->pr_chmod != NULL) error = so->so_proto->pr_chmod(so, mode, cred, td); else error = EINVAL; return (error); } static int soo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) { struct sockaddr_storage ss = { .ss_len = sizeof(ss) }; struct unpcb *unpcb; struct socket *so; int error; kif->kf_type = KF_TYPE_SOCKET; so = fp->f_data; CURVNET_SET(so->so_vnet); kif->kf_un.kf_sock.kf_sock_domain0 = so->so_proto->pr_domain->dom_family; kif->kf_un.kf_sock.kf_sock_type0 = so->so_type; kif->kf_un.kf_sock.kf_sock_protocol0 = so->so_proto->pr_protocol; kif->kf_un.kf_sock.kf_sock_pcb = (uintptr_t)so->so_pcb; switch (kif->kf_un.kf_sock.kf_sock_domain0) { case AF_INET: case AF_INET6: /* XXX: kf_sock_inpcb is obsolete. It may be removed. */ kif->kf_un.kf_sock.kf_sock_inpcb = (uintptr_t)so->so_pcb; kif->kf_un.kf_sock.kf_sock_rcv_sb_state = so->so_rcv.sb_state; kif->kf_un.kf_sock.kf_sock_snd_sb_state = so->so_snd.sb_state; kif->kf_un.kf_sock.kf_sock_sendq = sbused(&so->so_snd); kif->kf_un.kf_sock.kf_sock_recvq = sbused(&so->so_rcv); break; case AF_UNIX: if (so->so_pcb != NULL) { unpcb = (struct unpcb *)(so->so_pcb); if (unpcb->unp_conn) { kif->kf_un.kf_sock.kf_sock_unpconn = (uintptr_t)unpcb->unp_conn; kif->kf_un.kf_sock.kf_sock_rcv_sb_state = so->so_rcv.sb_state; kif->kf_un.kf_sock.kf_sock_snd_sb_state = so->so_snd.sb_state; kif->kf_un.kf_sock.kf_sock_sendq = sbused(&so->so_snd); kif->kf_un.kf_sock.kf_sock_recvq = sbused(&so->so_rcv); } } break; } error = sosockaddr(so, (struct sockaddr *)&ss); if (error == 0 && ss.ss_len <= sizeof(kif->kf_un.kf_sock.kf_sa_local)) { bcopy(&ss, &kif->kf_un.kf_sock.kf_sa_local, ss.ss_len); } ss.ss_len = sizeof(ss); error = sopeeraddr(so, (struct sockaddr *)&ss); if (error == 0 && ss.ss_len <= sizeof(kif->kf_un.kf_sock.kf_sa_peer)) { bcopy(&ss, &kif->kf_un.kf_sock.kf_sa_peer, ss.ss_len); } strncpy(kif->kf_path, so->so_proto->pr_domain->dom_name, sizeof(kif->kf_path)); CURVNET_RESTORE(); return (0); } /* * Use the 'backend3' field in AIO jobs to store the amount of data * completed by the AIO job so far. */ #define aio_done backend3 static STAILQ_HEAD(, task) soaio_jobs; static struct mtx soaio_jobs_lock; static struct task soaio_kproc_task; static int soaio_starting, soaio_idle, soaio_queued; static struct unrhdr *soaio_kproc_unr; static int soaio_max_procs = MAX_AIO_PROCS; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, max_procs, CTLFLAG_RW, &soaio_max_procs, 0, "Maximum number of kernel processes to use for async socket IO"); static int soaio_num_procs; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, num_procs, CTLFLAG_RD, &soaio_num_procs, 0, "Number of active kernel processes for async socket IO"); static int soaio_target_procs = TARGET_AIO_PROCS; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, target_procs, CTLFLAG_RD, &soaio_target_procs, 0, "Preferred number of ready kernel processes for async socket IO"); static int soaio_lifetime; SYSCTL_INT(_kern_ipc_aio, OID_AUTO, lifetime, CTLFLAG_RW, &soaio_lifetime, 0, "Maximum lifetime for idle aiod"); static void soaio_kproc_loop(void *arg) { struct proc *p; struct vmspace *myvm; struct task *task; int error, id, pending; id = (intptr_t)arg; /* * Grab an extra reference on the daemon's vmspace so that it * doesn't get freed by jobs that switch to a different * vmspace. */ p = curproc; myvm = vmspace_acquire_ref(p); mtx_lock(&soaio_jobs_lock); MPASS(soaio_starting > 0); soaio_starting--; for (;;) { while (!STAILQ_EMPTY(&soaio_jobs)) { task = STAILQ_FIRST(&soaio_jobs); STAILQ_REMOVE_HEAD(&soaio_jobs, ta_link); soaio_queued--; pending = task->ta_pending; task->ta_pending = 0; mtx_unlock(&soaio_jobs_lock); task->ta_func(task->ta_context, pending); mtx_lock(&soaio_jobs_lock); } MPASS(soaio_queued == 0); if (p->p_vmspace != myvm) { mtx_unlock(&soaio_jobs_lock); vmspace_switch_aio(myvm); mtx_lock(&soaio_jobs_lock); continue; } soaio_idle++; error = mtx_sleep(&soaio_idle, &soaio_jobs_lock, 0, "-", soaio_lifetime); soaio_idle--; if (error == EWOULDBLOCK && STAILQ_EMPTY(&soaio_jobs) && soaio_num_procs > soaio_target_procs) break; } soaio_num_procs--; mtx_unlock(&soaio_jobs_lock); free_unr(soaio_kproc_unr, id); kproc_exit(0); } static void soaio_kproc_create(void *context, int pending) { struct proc *p; int error, id; mtx_lock(&soaio_jobs_lock); for (;;) { if (soaio_num_procs < soaio_target_procs) { /* Must create */ } else if (soaio_num_procs >= soaio_max_procs) { /* * Hit the limit on kernel processes, don't * create another one. */ break; } else if (soaio_queued <= soaio_idle + soaio_starting) { /* * No more AIO jobs waiting for a process to be * created, so stop. */ break; } soaio_starting++; mtx_unlock(&soaio_jobs_lock); id = alloc_unr(soaio_kproc_unr); error = kproc_create(soaio_kproc_loop, (void *)(intptr_t)id, &p, 0, 0, "soaiod%d", id); if (error != 0) { free_unr(soaio_kproc_unr, id); mtx_lock(&soaio_jobs_lock); soaio_starting--; break; } mtx_lock(&soaio_jobs_lock); soaio_num_procs++; } mtx_unlock(&soaio_jobs_lock); } void soaio_enqueue(struct task *task) { mtx_lock(&soaio_jobs_lock); MPASS(task->ta_pending == 0); task->ta_pending++; STAILQ_INSERT_TAIL(&soaio_jobs, task, ta_link); soaio_queued++; if (soaio_queued <= soaio_idle) wakeup_one(&soaio_idle); else if (soaio_num_procs < soaio_max_procs) taskqueue_enqueue(taskqueue_thread, &soaio_kproc_task); mtx_unlock(&soaio_jobs_lock); } static void soaio_init(void) { soaio_lifetime = AIOD_LIFETIME_DEFAULT; STAILQ_INIT(&soaio_jobs); mtx_init(&soaio_jobs_lock, "soaio jobs", NULL, MTX_DEF); soaio_kproc_unr = new_unrhdr(1, INT_MAX, NULL); TASK_INIT(&soaio_kproc_task, 0, soaio_kproc_create, NULL); } SYSINIT(soaio, SI_SUB_VFS, SI_ORDER_ANY, soaio_init, NULL); static __inline int soaio_ready(struct socket *so, struct sockbuf *sb) { return (sb == &so->so_rcv ? soreadable(so) : sowriteable(so)); } static void soaio_process_job(struct socket *so, sb_which which, struct kaiocb *job) { struct ucred *td_savedcred; struct thread *td; struct sockbuf *sb = sobuf(so, which); #ifdef MAC struct file *fp = job->fd_file; #endif size_t cnt, done, job_total_nbytes __diagused; long ru_before; int error, flags; SOCK_BUF_UNLOCK(so, which); aio_switch_vmspace(job); td = curthread; retry: td_savedcred = td->td_ucred; td->td_ucred = job->cred; job_total_nbytes = job->uiop->uio_resid + job->aio_done; done = job->aio_done; cnt = job->uiop->uio_resid; job->uiop->uio_offset = 0; job->uiop->uio_td = td; flags = MSG_NBIO; /* * For resource usage accounting, only count a completed request * as a single message to avoid counting multiple calls to * sosend/soreceive on a blocking socket. */ if (sb == &so->so_rcv) { ru_before = td->td_ru.ru_msgrcv; #ifdef MAC error = mac_socket_check_receive(fp->f_cred, so); if (error == 0) #endif error = soreceive(so, NULL, job->uiop, NULL, NULL, &flags); if (td->td_ru.ru_msgrcv != ru_before) job->msgrcv = 1; } else { if (!TAILQ_EMPTY(&sb->sb_aiojobq)) flags |= MSG_MORETOCOME; ru_before = td->td_ru.ru_msgsnd; #ifdef MAC error = mac_socket_check_send(fp->f_cred, so); if (error == 0) #endif error = sousrsend(so, NULL, job->uiop, NULL, flags, job->userproc); if (td->td_ru.ru_msgsnd != ru_before) job->msgsnd = 1; } done += cnt - job->uiop->uio_resid; job->aio_done = done; td->td_ucred = td_savedcred; if (error == EWOULDBLOCK) { /* * The request was either partially completed or not * completed at all due to racing with a read() or * write() on the socket. If the socket is * non-blocking, return with any partial completion. * If the socket is blocking or if no progress has * been made, requeue this request at the head of the * queue to try again when the socket is ready. */ MPASS(done != job_total_nbytes); SOCK_BUF_LOCK(so, which); if (done == 0 || !(so->so_state & SS_NBIO)) { empty_results++; if (soaio_ready(so, sb)) { empty_retries++; SOCK_BUF_UNLOCK(so, which); goto retry; } if (!aio_set_cancel_function(job, soo_aio_cancel)) { SOCK_BUF_UNLOCK(so, which); if (done != 0) aio_complete(job, done, 0); else aio_cancel(job); SOCK_BUF_LOCK(so, which); } else { TAILQ_INSERT_HEAD(&sb->sb_aiojobq, job, list); } return; } SOCK_BUF_UNLOCK(so, which); } if (done != 0 && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; if (error) aio_complete(job, -1, error); else aio_complete(job, done, 0); SOCK_BUF_LOCK(so, which); } static void soaio_process_sb(struct socket *so, sb_which which) { struct kaiocb *job; struct sockbuf *sb = sobuf(so, which); CURVNET_SET(so->so_vnet); SOCK_BUF_LOCK(so, which); while (!TAILQ_EMPTY(&sb->sb_aiojobq) && soaio_ready(so, sb)) { job = TAILQ_FIRST(&sb->sb_aiojobq); TAILQ_REMOVE(&sb->sb_aiojobq, job, list); if (!aio_clear_cancel_function(job)) continue; soaio_process_job(so, which, job); } /* * If there are still pending requests, the socket must not be * ready so set SB_AIO to request a wakeup when the socket * becomes ready. */ if (!TAILQ_EMPTY(&sb->sb_aiojobq)) sb->sb_flags |= SB_AIO; sb->sb_flags &= ~SB_AIO_RUNNING; SOCK_BUF_UNLOCK(so, which); sorele(so); CURVNET_RESTORE(); } void soaio_rcv(void *context, int pending) { struct socket *so; so = context; soaio_process_sb(so, SO_RCV); } void soaio_snd(void *context, int pending) { struct socket *so; so = context; soaio_process_sb(so, SO_SND); } void sowakeup_aio(struct socket *so, sb_which which) { struct sockbuf *sb = sobuf(so, which); SOCK_BUF_LOCK_ASSERT(so, which); sb->sb_flags &= ~SB_AIO; if (sb->sb_flags & SB_AIO_RUNNING) return; sb->sb_flags |= SB_AIO_RUNNING; soref(so); soaio_enqueue(&sb->sb_aiotask); } static void soo_aio_cancel(struct kaiocb *job) { struct socket *so; struct sockbuf *sb; long done; int opcode; sb_which which; so = job->fd_file->f_data; opcode = job->uaiocb.aio_lio_opcode; if (opcode & LIO_READ) { sb = &so->so_rcv; which = SO_RCV; } else { MPASS(opcode & LIO_WRITE); sb = &so->so_snd; which = SO_SND; } SOCK_BUF_LOCK(so, which); if (!aio_cancel_cleared(job)) TAILQ_REMOVE(&sb->sb_aiojobq, job, list); if (TAILQ_EMPTY(&sb->sb_aiojobq)) sb->sb_flags &= ~SB_AIO; SOCK_BUF_UNLOCK(so, which); done = job->aio_done; if (done != 0) aio_complete(job, done, 0); else aio_cancel(job); } static int soo_aio_queue(struct file *fp, struct kaiocb *job) { struct socket *so; struct sockbuf *sb; sb_which which; int error; so = fp->f_data; error = so->so_proto->pr_aio_queue(so, job); if (error == 0) return (0); /* Lock through the socket, since this may be a listening socket. */ switch (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) { case LIO_READ: SOCK_RECVBUF_LOCK(so); sb = &so->so_rcv; which = SO_RCV; break; case LIO_WRITE: SOCK_SENDBUF_LOCK(so); sb = &so->so_snd; which = SO_SND; break; default: return (EINVAL); } if (SOLISTENING(so)) { SOCK_BUF_UNLOCK(so, which); return (EINVAL); } if (!aio_set_cancel_function(job, soo_aio_cancel)) panic("new job was cancelled"); TAILQ_INSERT_TAIL(&sb->sb_aiojobq, job, list); if (!(sb->sb_flags & SB_AIO_RUNNING)) { if (soaio_ready(so, sb)) sowakeup_aio(so, which); else sb->sb_flags |= SB_AIO; } SOCK_BUF_UNLOCK(so, which); return (0); }