/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2004 John Baldwin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Implementation of sleep queues used to hold queue of threads blocked on * a wait channel. Sleep queues are different from turnstiles in that wait * channels are not owned by anyone, so there is no priority propagation. * Sleep queues can also provide a timeout and can also be interrupted by * signals. That said, there are several similarities between the turnstile * and sleep queue implementations. (Note: turnstiles were implemented * first.) For example, both use a hash table of the same size where each * bucket is referred to as a "chain" that contains both a spin lock and * a linked list of queues. An individual queue is located by using a hash * to pick a chain, locking the chain, and then walking the chain searching * for the queue. This means that a wait channel object does not need to * embed its queue head just as locks do not embed their turnstile queue * head. Threads also carry around a sleep queue that they lend to the * wait channel when blocking. Just as in turnstiles, the queue includes * a free list of the sleep queues of other threads blocked on the same * wait channel in the case of multiple waiters. * * Some additional functionality provided by sleep queues include the * ability to set a timeout. The timeout is managed using a per-thread * callout that resumes a thread if it is asleep. A thread may also * catch signals while it is asleep (aka an interruptible sleep). The * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, * sleep queues also provide some extra assertions. One is not allowed to * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one * must consistently use the same lock to synchronize with a wait channel, * though this check is currently only a warning for sleep/wakeup due to * pre-existing abuse of that API. The same lock must also be held when * awakening threads, though that is currently only enforced for condition * variables. */ #include #include "opt_sleepqueue_profiling.h" #include "opt_ddb.h" #include "opt_sched.h" #include "opt_stack.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef EPOCH_TRACE #include #endif #include #include #ifdef DDB #include #endif /* * Constants for the hash table of sleep queue chains. * SC_TABLESIZE must be a power of two for SC_MASK to work properly. */ #ifndef SC_TABLESIZE #define SC_TABLESIZE 256 #endif CTASSERT(powerof2(SC_TABLESIZE)); #define SC_MASK (SC_TABLESIZE - 1) #define SC_SHIFT 8 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ SC_MASK) #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] #define NR_SLEEPQS 2 /* * There are two different lists of sleep queues. Both lists are connected * via the sq_hash entries. The first list is the sleep queue chain list * that a sleep queue is on when it is attached to a wait channel. The * second list is the free list hung off of a sleep queue that is attached * to a wait channel. * * Each sleep queue also contains the wait channel it is attached to, the * list of threads blocked on that wait channel, flags specific to the * wait channel, and the lock used to synchronize with a wait channel. * The flags are used to catch mismatches between the various consumers * of the sleep queue API (e.g. sleep/wakeup and condition variables). * The lock pointer is only used when invariants are enabled for various * debugging checks. * * Locking key: * c - sleep queue chain lock */ struct sleepqueue { struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ const void *sq_wchan; /* (c) Wait channel. */ int sq_type; /* (c) Queue type. */ #ifdef INVARIANTS struct lock_object *sq_lock; /* (c) Associated lock. */ #endif }; struct sleepqueue_chain { LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ struct mtx sc_lock; /* Spin lock for this chain. */ #ifdef SLEEPQUEUE_PROFILING u_int sc_depth; /* Length of sc_queues. */ u_int sc_max_depth; /* Max length of sc_queues. */ #endif } __aligned(CACHE_LINE_SIZE); #ifdef SLEEPQUEUE_PROFILING static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "sleepq profiling"); static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "sleepq chain stats"); static u_int sleepq_max_depth; SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 0, "maxmimum depth achieved of a single chain"); static void sleepq_profile(const char *wmesg); static int prof_enabled; #endif static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; static uma_zone_t sleepq_zone; /* * Prototypes for non-exported routines. */ static int sleepq_catch_signals(const void *wchan, int pri); static inline int sleepq_check_signals(void); static inline int sleepq_check_timeout(void); #ifdef INVARIANTS static void sleepq_dtor(void *mem, int size, void *arg); #endif static int sleepq_init(void *mem, int size, int flags); static void sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri, int srqflags); static void sleepq_remove_thread(struct sleepqueue *sq, struct thread *td); static void sleepq_switch(const void *wchan, int pri); static void sleepq_timeout(void *arg); SDT_PROBE_DECLARE(sched, , , sleep); SDT_PROBE_DECLARE(sched, , , wakeup); /* * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. * Note that it must happen after sleepinit() has been fully executed, so * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. */ #ifdef SLEEPQUEUE_PROFILING static void init_sleepqueue_profiling(void) { char chain_name[10]; struct sysctl_oid *chain_oid; u_int i; for (i = 0; i < SC_TABLESIZE; i++) { snprintf(chain_name, sizeof(chain_name), "%u", i); chain_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "sleepq chain stats"); SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, NULL); } } SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, init_sleepqueue_profiling, NULL); #endif /* * Early initialization of sleep queues that is called from the sleepinit() * SYSINIT. */ void init_sleepqueues(void) { int i; for (i = 0; i < SC_TABLESIZE; i++) { LIST_INIT(&sleepq_chains[i].sc_queues); mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, MTX_SPIN); } sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), #ifdef INVARIANTS NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); #else NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); #endif thread0.td_sleepqueue = sleepq_alloc(); } /* * Get a sleep queue for a new thread. */ struct sleepqueue * sleepq_alloc(void) { return (uma_zalloc(sleepq_zone, M_WAITOK)); } /* * Free a sleep queue when a thread is destroyed. */ void sleepq_free(struct sleepqueue *sq) { uma_zfree(sleepq_zone, sq); } /* * Lock the sleep queue chain associated with the specified wait channel. */ void sleepq_lock(const void *wchan) { struct sleepqueue_chain *sc; sc = SC_LOOKUP(wchan); mtx_lock_spin(&sc->sc_lock); } /* * Look up the sleep queue associated with a given wait channel in the hash * table locking the associated sleep queue chain. If no queue is found in * the table, NULL is returned. */ struct sleepqueue * sleepq_lookup(const void *wchan) { struct sleepqueue_chain *sc; struct sleepqueue *sq; KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); sc = SC_LOOKUP(wchan); mtx_assert(&sc->sc_lock, MA_OWNED); LIST_FOREACH(sq, &sc->sc_queues, sq_hash) if (sq->sq_wchan == wchan) return (sq); return (NULL); } /* * Unlock the sleep queue chain associated with a given wait channel. */ void sleepq_release(const void *wchan) { struct sleepqueue_chain *sc; sc = SC_LOOKUP(wchan); mtx_unlock_spin(&sc->sc_lock); } /* * Places the current thread on the sleep queue for the specified wait * channel. If INVARIANTS is enabled, then it associates the passed in * lock with the sleepq to make sure it is held when that sleep queue is * woken up. */ void sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg, int flags, int queue) { struct sleepqueue_chain *sc; struct sleepqueue *sq; struct thread *td; td = curthread; sc = SC_LOOKUP(wchan); mtx_assert(&sc->sc_lock, MA_OWNED); MPASS(td->td_sleepqueue != NULL); MPASS(wchan != NULL); MPASS((queue >= 0) && (queue < NR_SLEEPQS)); /* If this thread is not allowed to sleep, die a horrible death. */ if (__predict_false(!THREAD_CAN_SLEEP())) { #ifdef EPOCH_TRACE epoch_trace_list(curthread); #endif KASSERT(0, ("%s: td %p to sleep on wchan %p with sleeping prohibited", __func__, td, wchan)); } /* Look up the sleep queue associated with the wait channel 'wchan'. */ sq = sleepq_lookup(wchan); /* * If the wait channel does not already have a sleep queue, use * this thread's sleep queue. Otherwise, insert the current thread * into the sleep queue already in use by this wait channel. */ if (sq == NULL) { #ifdef INVARIANTS int i; sq = td->td_sleepqueue; for (i = 0; i < NR_SLEEPQS; i++) { KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), ("thread's sleep queue %d is not empty", i)); KASSERT(sq->sq_blockedcnt[i] == 0, ("thread's sleep queue %d count mismatches", i)); } KASSERT(LIST_EMPTY(&sq->sq_free), ("thread's sleep queue has a non-empty free list")); KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); sq->sq_lock = lock; #endif #ifdef SLEEPQUEUE_PROFILING sc->sc_depth++; if (sc->sc_depth > sc->sc_max_depth) { sc->sc_max_depth = sc->sc_depth; if (sc->sc_max_depth > sleepq_max_depth) sleepq_max_depth = sc->sc_max_depth; } #endif sq = td->td_sleepqueue; LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); sq->sq_wchan = wchan; sq->sq_type = flags & SLEEPQ_TYPE; } else { MPASS(wchan == sq->sq_wchan); MPASS(lock == sq->sq_lock); MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); } thread_lock(td); TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); sq->sq_blockedcnt[queue]++; td->td_sleepqueue = NULL; td->td_sqqueue = queue; td->td_wchan = wchan; td->td_wmesg = wmesg; if (flags & SLEEPQ_INTERRUPTIBLE) { td->td_intrval = 0; td->td_flags |= TDF_SINTR; } td->td_flags &= ~TDF_TIMEOUT; thread_unlock(td); } /* * Sets a timeout that will remove the current thread from the * specified sleep queue at the specified time if the thread has not * already been awakened. Flags are from C_* (callout) namespace. */ void sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr, int flags) { struct sleepqueue_chain *sc __unused; struct thread *td; sbintime_t pr1; td = curthread; sc = SC_LOOKUP(wchan); mtx_assert(&sc->sc_lock, MA_OWNED); MPASS(TD_ON_SLEEPQ(td)); MPASS(td->td_sleepqueue == NULL); MPASS(wchan != NULL); if (cold && td == &thread0) panic("timed sleep before timers are working"); KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", td->td_tid, td, (uintmax_t)td->td_sleeptimo)); thread_lock(td); callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); thread_unlock(td); callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | C_DIRECT_EXEC); } /* * Return the number of actual sleepers for the specified queue. */ u_int sleepq_sleepcnt(const void *wchan, int queue) { struct sleepqueue *sq; KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); MPASS((queue >= 0) && (queue < NR_SLEEPQS)); sq = sleepq_lookup(wchan); if (sq == NULL) return (0); return (sq->sq_blockedcnt[queue]); } static int sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc) { struct proc *p; int ret; mtx_assert(&sc->sc_lock, MA_OWNED); if ((td->td_pflags & TDP_WAKEUP) != 0) { td->td_pflags &= ~TDP_WAKEUP; thread_lock(td); return (EINTR); } /* * See if there are any pending signals or suspension requests for this * thread. If not, we can switch immediately. */ thread_lock(td); if (!td_ast_pending(td, TDA_SIG) && !td_ast_pending(td, TDA_SUSPEND)) return (0); thread_unlock(td); mtx_unlock_spin(&sc->sc_lock); p = td->td_proc; CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", (void *)td, (long)p->p_pid, td->td_name); PROC_LOCK(p); /* * Check for suspension first. Checking for signals and then * suspending could result in a missed signal, since a signal * can be delivered while this thread is suspended. */ ret = sig_ast_checksusp(td); if (ret != 0) { PROC_UNLOCK(p); mtx_lock_spin(&sc->sc_lock); thread_lock(td); return (ret); } ret = sig_ast_needsigchk(td); /* * Lock the per-process spinlock prior to dropping the * PROC_LOCK to avoid a signal delivery race. * PROC_LOCK, PROC_SLOCK, and thread_lock() are * currently held in tdsendsignal() and thread_single(). */ PROC_SLOCK(p); mtx_lock_spin(&sc->sc_lock); PROC_UNLOCK(p); thread_lock(td); PROC_SUNLOCK(p); return (ret); } /* * Marks the pending sleep of the current thread as interruptible and * makes an initial check for pending signals before putting a thread * to sleep. Enters and exits with the thread lock held. Thread lock * may have transitioned from the sleepq lock to a run lock. */ static int sleepq_catch_signals(const void *wchan, int pri) { struct thread *td; struct sleepqueue_chain *sc; struct sleepqueue *sq; int ret; sc = SC_LOOKUP(wchan); mtx_assert(&sc->sc_lock, MA_OWNED); MPASS(wchan != NULL); td = curthread; ret = sleepq_check_ast_sc_locked(td, sc); THREAD_LOCK_ASSERT(td, MA_OWNED); mtx_assert(&sc->sc_lock, MA_OWNED); if (ret == 0) { /* * No pending signals and no suspension requests found. * Switch the thread off the cpu. */ sleepq_switch(wchan, pri); } else { /* * There were pending signals and this thread is still * on the sleep queue, remove it from the sleep queue. */ if (TD_ON_SLEEPQ(td)) { sq = sleepq_lookup(wchan); sleepq_remove_thread(sq, td); } MPASS(td->td_lock != &sc->sc_lock); mtx_unlock_spin(&sc->sc_lock); thread_unlock(td); } return (ret); } /* * Switches to another thread if we are still asleep on a sleep queue. * * The thread lock is required on entry and is no longer held on return. */ static void sleepq_switch(const void *wchan, int pri) { struct sleepqueue_chain *sc; struct sleepqueue *sq; struct thread *td; bool rtc_changed; td = curthread; sc = SC_LOOKUP(wchan); mtx_assert(&sc->sc_lock, MA_OWNED); THREAD_LOCK_ASSERT(td, MA_OWNED); /* * If we have a sleep queue, then we've already been woken up, so * just return. */ if (td->td_sleepqueue != NULL) { mtx_unlock_spin(&sc->sc_lock); thread_unlock(td); return; } /* * If TDF_TIMEOUT is set, then our sleep has been timed out * already but we are still on the sleep queue, so dequeue the * thread and return. * * Do the same if the real-time clock has been adjusted since this * thread calculated its timeout based on that clock. This handles * the following race: * - The Ts thread needs to sleep until an absolute real-clock time. * It copies the global rtc_generation into curthread->td_rtcgen, * reads the RTC, and calculates a sleep duration based on that time. * See umtxq_sleep() for an example. * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes * threads that are sleeping until an absolute real-clock time. * See tc_setclock() and the POSIX specification of clock_settime(). * - Ts reaches the code below. It holds the sleepqueue chain lock, * so Tc has finished waking, so this thread must test td_rtcgen. * (The declaration of td_rtcgen refers to this comment.) */ rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation; if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) { if (rtc_changed) { td->td_rtcgen = 0; } MPASS(TD_ON_SLEEPQ(td)); sq = sleepq_lookup(wchan); sleepq_remove_thread(sq, td); mtx_unlock_spin(&sc->sc_lock); thread_unlock(td); return; } #ifdef SLEEPQUEUE_PROFILING if (prof_enabled) sleepq_profile(td->td_wmesg); #endif MPASS(td->td_sleepqueue == NULL); sched_sleep(td, pri); thread_lock_set(td, &sc->sc_lock); SDT_PROBE0(sched, , , sleep); TD_SET_SLEEPING(td); mi_switch(SW_VOL | SWT_SLEEPQ); KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); } /* * Check to see if we timed out. */ static inline int sleepq_check_timeout(void) { struct thread *td; int res; res = 0; td = curthread; if (td->td_sleeptimo != 0) { if (td->td_sleeptimo <= sbinuptime()) res = EWOULDBLOCK; td->td_sleeptimo = 0; } return (res); } /* * Check to see if we were awoken by a signal. */ static inline int sleepq_check_signals(void) { struct thread *td; td = curthread; KASSERT((td->td_flags & TDF_SINTR) == 0, ("thread %p still in interruptible sleep?", td)); return (td->td_intrval); } /* * Block the current thread until it is awakened from its sleep queue. */ void sleepq_wait(const void *wchan, int pri) { struct thread *td; td = curthread; MPASS(!(td->td_flags & TDF_SINTR)); thread_lock(td); sleepq_switch(wchan, pri); } /* * Block the current thread until it is awakened from its sleep queue * or it is interrupted by a signal. */ int sleepq_wait_sig(const void *wchan, int pri) { int rcatch; rcatch = sleepq_catch_signals(wchan, pri); if (rcatch) return (rcatch); return (sleepq_check_signals()); } /* * Block the current thread until it is awakened from its sleep queue * or it times out while waiting. */ int sleepq_timedwait(const void *wchan, int pri) { struct thread *td; td = curthread; MPASS(!(td->td_flags & TDF_SINTR)); thread_lock(td); sleepq_switch(wchan, pri); return (sleepq_check_timeout()); } /* * Block the current thread until it is awakened from its sleep queue, * it is interrupted by a signal, or it times out waiting to be awakened. */ int sleepq_timedwait_sig(const void *wchan, int pri) { int rcatch, rvalt, rvals; rcatch = sleepq_catch_signals(wchan, pri); /* We must always call check_timeout() to clear sleeptimo. */ rvalt = sleepq_check_timeout(); rvals = sleepq_check_signals(); if (rcatch) return (rcatch); if (rvals) return (rvals); return (rvalt); } /* * Returns the type of sleepqueue given a waitchannel. */ int sleepq_type(const void *wchan) { struct sleepqueue *sq; int type; MPASS(wchan != NULL); sq = sleepq_lookup(wchan); if (sq == NULL) return (-1); type = sq->sq_type; return (type); } /* * Removes a thread from a sleep queue and makes it runnable. * * Requires the sc chain locked on entry. If SRQ_HOLD is specified it will * be locked on return. Returns without the thread lock held. */ static void sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri, int srqflags) { struct sleepqueue_chain *sc; bool drop; MPASS(td != NULL); MPASS(sq->sq_wchan != NULL); MPASS(td->td_wchan == sq->sq_wchan); sc = SC_LOOKUP(sq->sq_wchan); mtx_assert(&sc->sc_lock, MA_OWNED); /* * Avoid recursing on the chain lock. If the locks don't match we * need to acquire the thread lock which setrunnable will drop for * us. In this case we need to drop the chain lock afterwards. * * There is no race that will make td_lock equal to sc_lock because * we hold sc_lock. */ drop = false; if (!TD_IS_SLEEPING(td)) { thread_lock(td); drop = true; } else thread_lock_block_wait(td); /* Remove thread from the sleepq. */ sleepq_remove_thread(sq, td); /* If we're done with the sleepqueue release it. */ if ((srqflags & SRQ_HOLD) == 0 && drop) mtx_unlock_spin(&sc->sc_lock); /* Adjust priority if requested. */ MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); if (pri != 0 && td->td_priority > pri && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) sched_prio(td, pri); /* * Note that thread td might not be sleeping if it is running * sleepq_catch_signals() on another CPU or is blocked on its * proc lock to check signals. There's no need to mark the * thread runnable in that case. */ if (TD_IS_SLEEPING(td)) { MPASS(!drop); TD_CLR_SLEEPING(td); setrunnable(td, srqflags); } else { MPASS(drop); thread_unlock(td); } } static void sleepq_remove_thread(struct sleepqueue *sq, struct thread *td) { struct sleepqueue_chain *sc __unused; MPASS(td != NULL); MPASS(sq->sq_wchan != NULL); MPASS(td->td_wchan == sq->sq_wchan); MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); THREAD_LOCK_ASSERT(td, MA_OWNED); sc = SC_LOOKUP(sq->sq_wchan); mtx_assert(&sc->sc_lock, MA_OWNED); SDT_PROBE2(sched, , , wakeup, td, td->td_proc); /* Remove the thread from the queue. */ sq->sq_blockedcnt[td->td_sqqueue]--; TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); /* * Get a sleep queue for this thread. If this is the last waiter, * use the queue itself and take it out of the chain, otherwise, * remove a queue from the free list. */ if (LIST_EMPTY(&sq->sq_free)) { td->td_sleepqueue = sq; #ifdef INVARIANTS sq->sq_wchan = NULL; #endif #ifdef SLEEPQUEUE_PROFILING sc->sc_depth--; #endif } else td->td_sleepqueue = LIST_FIRST(&sq->sq_free); LIST_REMOVE(td->td_sleepqueue, sq_hash); if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0 && td->td_lock == &sc->sc_lock) { /* * We ignore the situation where timeout subsystem was * unable to stop our callout. The struct thread is * type-stable, the callout will use the correct * memory when running. The checks of the * td_sleeptimo value in this function and in * sleepq_timeout() ensure that the thread does not * get spurious wakeups, even if the callout was reset * or thread reused. * * We also cannot safely stop the callout if a scheduler * lock is held since softclock_thread() forces a lock * order of callout lock -> scheduler lock. The thread * lock will be a scheduler lock only if the thread is * preparing to go to sleep, so this is hopefully a rare * scenario. */ callout_stop(&td->td_slpcallout); } td->td_wmesg = NULL; td->td_wchan = NULL; td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT); CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", (void *)td, (long)td->td_proc->p_pid, td->td_name); } void sleepq_remove_nested(struct thread *td) { struct sleepqueue_chain *sc; struct sleepqueue *sq; const void *wchan; MPASS(TD_ON_SLEEPQ(td)); wchan = td->td_wchan; sc = SC_LOOKUP(wchan); mtx_lock_spin(&sc->sc_lock); sq = sleepq_lookup(wchan); MPASS(sq != NULL); thread_lock(td); sleepq_remove_thread(sq, td); mtx_unlock_spin(&sc->sc_lock); /* Returns with the thread lock owned. */ } #ifdef INVARIANTS /* * UMA zone item deallocator. */ static void sleepq_dtor(void *mem, int size, void *arg) { struct sleepqueue *sq; int i; sq = mem; for (i = 0; i < NR_SLEEPQS; i++) { MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); MPASS(sq->sq_blockedcnt[i] == 0); } } #endif /* * UMA zone item initializer. */ static int sleepq_init(void *mem, int size, int flags) { struct sleepqueue *sq; int i; bzero(mem, size); sq = mem; for (i = 0; i < NR_SLEEPQS; i++) { TAILQ_INIT(&sq->sq_blocked[i]); sq->sq_blockedcnt[i] = 0; } LIST_INIT(&sq->sq_free); return (0); } /* * Find thread sleeping on a wait channel and resume it. */ void sleepq_signal(const void *wchan, int flags, int pri, int queue) { struct sleepqueue_chain *sc; struct sleepqueue *sq; struct threadqueue *head; struct thread *td, *besttd; CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); MPASS((queue >= 0) && (queue < NR_SLEEPQS)); sq = sleepq_lookup(wchan); if (sq == NULL) { if (flags & SLEEPQ_DROP) sleepq_release(wchan); return; } KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), ("%s: mismatch between sleep/wakeup and cv_*", __func__)); head = &sq->sq_blocked[queue]; if (flags & SLEEPQ_UNFAIR) { /* * Find the most recently sleeping thread, but try to * skip threads still in process of context switch to * avoid spinning on the thread lock. */ sc = SC_LOOKUP(wchan); besttd = TAILQ_LAST_FAST(head, thread, td_slpq); while (besttd->td_lock != &sc->sc_lock) { td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq); if (td == NULL) break; besttd = td; } } else { /* * Find the highest priority thread on the queue. If there * is a tie, use the thread that first appears in the queue * as it has been sleeping the longest since threads are * always added to the tail of sleep queues. */ besttd = td = TAILQ_FIRST(head); while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) { if (td->td_priority < besttd->td_priority) besttd = td; } } MPASS(besttd != NULL); sleepq_resume_thread(sq, besttd, pri, (flags & SLEEPQ_DROP) ? 0 : SRQ_HOLD); } static bool match_any(struct thread *td __unused) { return (true); } /* * Resume all threads sleeping on a specified wait channel. */ void sleepq_broadcast(const void *wchan, int flags, int pri, int queue) { struct sleepqueue *sq; CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); MPASS((queue >= 0) && (queue < NR_SLEEPQS)); sq = sleepq_lookup(wchan); if (sq != NULL) { KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), ("%s: mismatch between sleep/wakeup and cv_*", __func__)); sleepq_remove_matching(sq, queue, match_any, pri); } } /* * Resume threads on the sleep queue that match the given predicate. */ void sleepq_remove_matching(struct sleepqueue *sq, int queue, bool (*matches)(struct thread *), int pri) { struct thread *td, *tdn; /* * The last thread will be given ownership of sq and may * re-enqueue itself before sleepq_resume_thread() returns, * so we must cache the "next" queue item at the beginning * of the final iteration. */ TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { if (matches(td)) sleepq_resume_thread(sq, td, pri, SRQ_HOLD); } } /* * Time sleeping threads out. When the timeout expires, the thread is * removed from the sleep queue and made runnable if it is still asleep. */ static void sleepq_timeout(void *arg) { struct sleepqueue_chain *sc __unused; struct sleepqueue *sq; struct thread *td; const void *wchan; td = arg; CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); thread_lock(td); if (td->td_sleeptimo == 0 || td->td_sleeptimo > td->td_slpcallout.c_time) { /* * The thread does not want a timeout (yet). */ } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { /* * See if the thread is asleep and get the wait * channel if it is. */ wchan = td->td_wchan; sc = SC_LOOKUP(wchan); THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); sq = sleepq_lookup(wchan); MPASS(sq != NULL); td->td_flags |= TDF_TIMEOUT; sleepq_resume_thread(sq, td, 0, 0); return; } else if (TD_ON_SLEEPQ(td)) { /* * If the thread is on the SLEEPQ but isn't sleeping * yet, it can either be on another CPU in between * sleepq_add() and one of the sleepq_*wait*() * routines or it can be in sleepq_catch_signals(). */ td->td_flags |= TDF_TIMEOUT; } thread_unlock(td); } /* * Resumes a specific thread from the sleep queue associated with a specific * wait channel if it is on that queue. */ void sleepq_remove(struct thread *td, const void *wchan) { struct sleepqueue_chain *sc; struct sleepqueue *sq; /* * Look up the sleep queue for this wait channel, then re-check * that the thread is asleep on that channel, if it is not, then * bail. */ MPASS(wchan != NULL); sc = SC_LOOKUP(wchan); mtx_lock_spin(&sc->sc_lock); /* * We can not lock the thread here as it may be sleeping on a * different sleepq. However, holding the sleepq lock for this * wchan can guarantee that we do not miss a wakeup for this * channel. The asserts below will catch any false positives. */ if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { mtx_unlock_spin(&sc->sc_lock); return; } /* Thread is asleep on sleep queue sq, so wake it up. */ sq = sleepq_lookup(wchan); MPASS(sq != NULL); MPASS(td->td_wchan == wchan); sleepq_resume_thread(sq, td, 0, 0); } /* * Abort a thread as if an interrupt had occurred. Only abort * interruptible waits (unfortunately it isn't safe to abort others). * * Requires thread lock on entry, releases on return. */ void sleepq_abort(struct thread *td, int intrval) { struct sleepqueue *sq; const void *wchan; THREAD_LOCK_ASSERT(td, MA_OWNED); MPASS(TD_ON_SLEEPQ(td)); MPASS(td->td_flags & TDF_SINTR); MPASS((intrval == 0 && (td->td_flags & TDF_SIGWAIT) != 0) || intrval == EINTR || intrval == ERESTART); /* * If the TDF_TIMEOUT flag is set, just leave. A * timeout is scheduled anyhow. */ if (td->td_flags & TDF_TIMEOUT) { thread_unlock(td); return; } CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); td->td_intrval = intrval; /* * If the thread has not slept yet it will find the signal in * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise * we have to do it here. */ if (!TD_IS_SLEEPING(td)) { thread_unlock(td); return; } wchan = td->td_wchan; MPASS(wchan != NULL); sq = sleepq_lookup(wchan); MPASS(sq != NULL); /* Thread is asleep on sleep queue sq, so wake it up. */ sleepq_resume_thread(sq, td, 0, 0); } void sleepq_chains_remove_matching(bool (*matches)(struct thread *)) { struct sleepqueue_chain *sc; struct sleepqueue *sq, *sq1; int i; for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) { if (LIST_EMPTY(&sc->sc_queues)) { continue; } mtx_lock_spin(&sc->sc_lock); LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) { for (i = 0; i < NR_SLEEPQS; ++i) sleepq_remove_matching(sq, i, matches, 0); } mtx_unlock_spin(&sc->sc_lock); } } /* * Prints the stacks of all threads presently sleeping on wchan/queue to * the sbuf sb. Sets count_stacks_printed to the number of stacks actually * printed. Typically, this will equal the number of threads sleeping on the * queue, but may be less if sb overflowed before all stacks were printed. */ #ifdef STACK int sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue, int *count_stacks_printed) { struct thread *td, *td_next; struct sleepqueue *sq; struct stack **st; struct sbuf **td_infos; int i, stack_idx, error, stacks_to_allocate; bool finished; error = 0; finished = false; KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); MPASS((queue >= 0) && (queue < NR_SLEEPQS)); stacks_to_allocate = 10; for (i = 0; i < 3 && !finished ; i++) { /* We cannot malloc while holding the queue's spinlock, so * we do our mallocs now, and hope it is enough. If it * isn't, we will free these, drop the lock, malloc more, * and try again, up to a point. After that point we will * give up and report ENOMEM. We also cannot write to sb * during this time since the client may have set the * SBUF_AUTOEXTEND flag on their sbuf, which could cause a * malloc as we print to it. So we defer actually printing * to sb until after we drop the spinlock. */ /* Where we will store the stacks. */ st = malloc(sizeof(struct stack *) * stacks_to_allocate, M_TEMP, M_WAITOK); for (stack_idx = 0; stack_idx < stacks_to_allocate; stack_idx++) st[stack_idx] = stack_create(M_WAITOK); /* Where we will store the td name, tid, etc. */ td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, M_TEMP, M_WAITOK); for (stack_idx = 0; stack_idx < stacks_to_allocate; stack_idx++) td_infos[stack_idx] = sbuf_new(NULL, NULL, MAXCOMLEN + sizeof(struct thread *) * 2 + 40, SBUF_FIXEDLEN); sleepq_lock(wchan); sq = sleepq_lookup(wchan); if (sq == NULL) { /* This sleepq does not exist; exit and return ENOENT. */ error = ENOENT; finished = true; sleepq_release(wchan); goto loop_end; } stack_idx = 0; /* Save thread info */ TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, td_next) { if (stack_idx >= stacks_to_allocate) goto loop_end; /* Note the td_lock is equal to the sleepq_lock here. */ (void)stack_save_td(st[stack_idx], td); sbuf_printf(td_infos[stack_idx], "%d: %s %p", td->td_tid, td->td_name, td); ++stack_idx; } finished = true; sleepq_release(wchan); /* Print the stacks */ for (i = 0; i < stack_idx; i++) { sbuf_finish(td_infos[i]); sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); stack_sbuf_print(sb, st[i]); sbuf_putc(sb, '\n'); error = sbuf_error(sb); if (error == 0) *count_stacks_printed = stack_idx; } loop_end: if (!finished) sleepq_release(wchan); for (stack_idx = 0; stack_idx < stacks_to_allocate; stack_idx++) stack_destroy(st[stack_idx]); for (stack_idx = 0; stack_idx < stacks_to_allocate; stack_idx++) sbuf_delete(td_infos[stack_idx]); free(st, M_TEMP); free(td_infos, M_TEMP); stacks_to_allocate *= 10; } if (!finished && error == 0) error = ENOMEM; return (error); } #endif #ifdef SLEEPQUEUE_PROFILING #define SLEEPQ_PROF_LOCATIONS 1024 #define SLEEPQ_SBUFSIZE 512 struct sleepq_prof { LIST_ENTRY(sleepq_prof) sp_link; const char *sp_wmesg; long sp_count; }; LIST_HEAD(sqphead, sleepq_prof); struct sqphead sleepq_prof_free; struct sqphead sleepq_hash[SC_TABLESIZE]; static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; static struct mtx sleepq_prof_lock; MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); static void sleepq_profile(const char *wmesg) { struct sleepq_prof *sp; mtx_lock_spin(&sleepq_prof_lock); if (prof_enabled == 0) goto unlock; LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) if (sp->sp_wmesg == wmesg) goto done; sp = LIST_FIRST(&sleepq_prof_free); if (sp == NULL) goto unlock; sp->sp_wmesg = wmesg; LIST_REMOVE(sp, sp_link); LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); done: sp->sp_count++; unlock: mtx_unlock_spin(&sleepq_prof_lock); return; } static void sleepq_prof_reset(void) { struct sleepq_prof *sp; int enabled; int i; mtx_lock_spin(&sleepq_prof_lock); enabled = prof_enabled; prof_enabled = 0; for (i = 0; i < SC_TABLESIZE; i++) LIST_INIT(&sleepq_hash[i]); LIST_INIT(&sleepq_prof_free); for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { sp = &sleepq_profent[i]; sp->sp_wmesg = NULL; sp->sp_count = 0; LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); } prof_enabled = enabled; mtx_unlock_spin(&sleepq_prof_lock); } static int enable_sleepq_prof(SYSCTL_HANDLER_ARGS) { int error, v; v = prof_enabled; error = sysctl_handle_int(oidp, &v, v, req); if (error) return (error); if (req->newptr == NULL) return (error); if (v == prof_enabled) return (0); if (v == 1) sleepq_prof_reset(); mtx_lock_spin(&sleepq_prof_lock); prof_enabled = !!v; mtx_unlock_spin(&sleepq_prof_lock); return (0); } static int reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) { int error, v; v = 0; error = sysctl_handle_int(oidp, &v, 0, req); if (error) return (error); if (req->newptr == NULL) return (error); if (v == 0) return (0); sleepq_prof_reset(); return (0); } static int dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) { struct sleepq_prof *sp; struct sbuf *sb; int enabled; int error; int i; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); sbuf_cat(sb, "\nwmesg\tcount\n"); enabled = prof_enabled; mtx_lock_spin(&sleepq_prof_lock); prof_enabled = 0; mtx_unlock_spin(&sleepq_prof_lock); for (i = 0; i < SC_TABLESIZE; i++) { LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { sbuf_printf(sb, "%s\t%ld\n", sp->sp_wmesg, sp->sp_count); } } mtx_lock_spin(&sleepq_prof_lock); prof_enabled = enabled; mtx_unlock_spin(&sleepq_prof_lock); error = sbuf_finish(sb); sbuf_delete(sb); return (error); } SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, reset_sleepq_prof_stats, "I", "Reset sleepqueue profiling statistics"); SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); #endif #ifdef DDB DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) { struct sleepqueue_chain *sc; struct sleepqueue *sq; #ifdef INVARIANTS struct lock_object *lock; #endif struct thread *td; void *wchan; int i; if (!have_addr) return; /* * First, see if there is an active sleep queue for the wait channel * indicated by the address. */ wchan = (void *)addr; sc = SC_LOOKUP(wchan); LIST_FOREACH(sq, &sc->sc_queues, sq_hash) if (sq->sq_wchan == wchan) goto found; /* * Second, see if there is an active sleep queue at the address * indicated. */ for (i = 0; i < SC_TABLESIZE; i++) LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { if (sq == (struct sleepqueue *)addr) goto found; } db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); return; found: db_printf("Wait channel: %p\n", sq->sq_wchan); db_printf("Queue type: %d\n", sq->sq_type); #ifdef INVARIANTS if (sq->sq_lock) { lock = sq->sq_lock; db_printf("Associated Interlock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, lock->lo_name); } #endif db_printf("Blocked threads:\n"); for (i = 0; i < NR_SLEEPQS; i++) { db_printf("\nQueue[%d]:\n", i); if (TAILQ_EMPTY(&sq->sq_blocked[i])) db_printf("\tempty\n"); else TAILQ_FOREACH(td, &sq->sq_blocked[i], td_slpq) { db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, td->td_tid, td->td_proc->p_pid, td->td_name); } db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); } } /* Alias 'show sleepqueue' to 'show sleepq'. */ DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); #endif