/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013 EMC Corp. * Copyright (c) 2011 Jeffrey Roberson * Copyright (c) 2008 Mayur Shardul * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Path-compressed radix trie implementation. * * The implementation takes into account the following rationale: * - Size of the nodes should be as small as possible but still big enough * to avoid a large maximum depth for the trie. This is a balance * between the necessity to not wire too much physical memory for the nodes * and the necessity to avoid too much cache pollution during the trie * operations. * - There is not a huge bias toward the number of lookup operations over * the number of insert and remove operations. This basically implies * that optimizations supposedly helping one operation but hurting the * other might be carefully evaluated. * - On average not many nodes are expected to be fully populated, hence * level compression may just complicate things. */ #include #include "opt_ddb.h" #include #include #include #include #include #include /* smr.h depends on struct thread. */ #include #include #ifdef DDB #include #endif #if PCTRIE_WIDTH == 3 typedef uint8_t pn_popmap_t; #elif PCTRIE_WIDTH == 4 typedef uint16_t pn_popmap_t; #elif PCTRIE_WIDTH == 5 typedef uint32_t pn_popmap_t; #else #error Unsupported width #endif _Static_assert(sizeof(pn_popmap_t) <= sizeof(int), "pn_popmap_t too wide"); struct pctrie_node; typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t; struct pctrie_node { uint64_t pn_owner; /* Owner of record. */ pn_popmap_t pn_popmap; /* Valid children. */ uint8_t pn_clev; /* Level * WIDTH. */ smr_pctnode_t pn_child[PCTRIE_COUNT]; /* Child nodes. */ }; /* * Map index to an array position for the children of node, */ static __inline int pctrie_slot(struct pctrie_node *node, uint64_t index) { return ((index >> node->pn_clev) & (PCTRIE_COUNT - 1)); } /* * Returns true if index does not belong to the specified node. Otherwise, * sets slot value, and returns false. */ static __inline bool pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot) { index = (index - node->pn_owner) >> node->pn_clev; if (index >= PCTRIE_COUNT) return (true); *slot = index; return (false); } /* * Check radix node. */ static __inline void pctrie_node_put(struct pctrie_node *node) { #ifdef INVARIANTS int slot; KASSERT(powerof2(node->pn_popmap), ("pctrie_node_put: node %p has too many children %04x", node, node->pn_popmap)); for (slot = 0; slot < PCTRIE_COUNT; slot++) { if ((node->pn_popmap & (1 << slot)) != 0) continue; KASSERT(smr_unserialized_load(&node->pn_child[slot], true) == PCTRIE_NULL, ("pctrie_node_put: node %p has a child", node)); } #endif } enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED }; /* * Fetch a node pointer from a slot. */ static __inline struct pctrie_node * pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access) { switch (access) { case PCTRIE_UNSERIALIZED: return (smr_unserialized_load(p, true)); case PCTRIE_LOCKED: return (smr_serialized_load(p, true)); case PCTRIE_SMR: return (smr_entered_load(p, smr)); } __assert_unreachable(); } static __inline void pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access) { switch (access) { case PCTRIE_UNSERIALIZED: smr_unserialized_store(p, v, true); break; case PCTRIE_LOCKED: smr_serialized_store(p, v, true); break; case PCTRIE_SMR: panic("%s: Not supported in SMR section.", __func__); break; default: __assert_unreachable(); break; } } /* * Get the root address, cast to proper type for load/store. */ static __inline smr_pctnode_t * pctrie_root(struct pctrie *ptree) { return ((smr_pctnode_t *)&ptree->pt_root); } /* * Get the root node for a tree. */ static __inline struct pctrie_node * pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access) { return (pctrie_node_load(pctrie_root(ptree), smr, access)); } /* * Returns TRUE if the specified node is a leaf and FALSE otherwise. */ static __inline bool pctrie_isleaf(struct pctrie_node *node) { return (((uintptr_t)node & PCTRIE_ISLEAF) != 0); } /* * Returns val with leaf bit set. */ static __inline void * pctrie_toleaf(uint64_t *val) { return ((void *)((uintptr_t)val | PCTRIE_ISLEAF)); } /* * Returns the associated val extracted from node. */ static __inline uint64_t * pctrie_toval(struct pctrie_node *node) { return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS)); } /* * Returns the associated pointer extracted from node and field offset. */ static __inline void * pctrie_toptr(struct pctrie_node *node, int keyoff) { return ((void *)(((uintptr_t)node & ~PCTRIE_FLAGS) - keyoff)); } /* * Make 'child' a child of 'node'. */ static __inline void pctrie_addnode(struct pctrie_node *node, uint64_t index, struct pctrie_node *child, enum pctrie_access access) { int slot; slot = pctrie_slot(node, index); pctrie_node_store(&node->pn_child[slot], child, access); node->pn_popmap ^= 1 << slot; KASSERT((node->pn_popmap & (1 << slot)) != 0, ("%s: bad popmap slot %d in node %p", __func__, slot, node)); } /* * pctrie node zone initializer. */ int pctrie_zone_init(void *mem, int size __unused, int flags __unused) { struct pctrie_node *node; node = mem; node->pn_popmap = 0; for (int i = 0; i < nitems(node->pn_child); i++) pctrie_node_store(&node->pn_child[i], PCTRIE_NULL, PCTRIE_UNSERIALIZED); return (0); } size_t pctrie_node_size(void) { return (sizeof(struct pctrie_node)); } enum pctrie_insert_neighbor_mode { PCTRIE_INSERT_NEIGHBOR_NONE, PCTRIE_INSERT_NEIGHBOR_LT, PCTRIE_INSERT_NEIGHBOR_GT, }; /* * Look for where to insert the key-value pair into the trie. Complete the * insertion if it replaces a null leaf. Return the insertion location if the * insertion needs to be completed by the caller; otherwise return NULL. * * If the key is already present in the trie, populate *found_out as if by * pctrie_lookup(). * * With mode PCTRIE_INSERT_NEIGHBOR_GT or PCTRIE_INSERT_NEIGHBOR_LT, set * *neighbor_out to the lowest level node we encounter during the insert lookup * that is a parent of the next greater or lesser entry. The value is not * defined if the key was already present in the trie. * * Note that mode is expected to be a compile-time constant, and this procedure * is expected to be inlined into callers with extraneous code optimized out. */ static __always_inline void * pctrie_insert_lookup_compound(struct pctrie *ptree, uint64_t *val, uint64_t **found_out, struct pctrie_node **neighbor_out, enum pctrie_insert_neighbor_mode mode) { uint64_t index; struct pctrie_node *node, *parent; int slot; index = *val; /* * The owner of record for root is not really important because it * will never be used. */ node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); parent = NULL; for (;;) { if (pctrie_isleaf(node)) { if (node == PCTRIE_NULL) { if (parent == NULL) pctrie_node_store(pctrie_root(ptree), pctrie_toleaf(val), PCTRIE_LOCKED); else pctrie_addnode(parent, index, pctrie_toleaf(val), PCTRIE_LOCKED); return (NULL); } if (*pctrie_toval(node) == index) { *found_out = pctrie_toval(node); return (NULL); } break; } if (pctrie_keybarr(node, index, &slot)) break; /* * Descend. If we're tracking the next neighbor and this node * contains a neighboring entry in the right direction, record * it. */ if (mode == PCTRIE_INSERT_NEIGHBOR_LT) { if ((node->pn_popmap & ((1 << slot) - 1)) != 0) *neighbor_out = node; } else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) { if ((node->pn_popmap >> slot) > 1) *neighbor_out = node; } parent = node; node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } /* * The caller will split this node. If we're tracking the next * neighbor, record the old node if the old entry is in the right * direction. */ if (mode == PCTRIE_INSERT_NEIGHBOR_LT) { if (*pctrie_toval(node) < index) *neighbor_out = node; } else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) { if (*pctrie_toval(node) > index) *neighbor_out = node; } /* * 'node' must be replaced in the tree with a new branch node, with * children 'node' and 'val'. Return the place that points to 'node' * now, and will point to to the new branching node later. */ return ((parent == NULL) ? pctrie_root(ptree): &parent->pn_child[slot]); } /* * Wrap pctrie_insert_lookup_compound to implement a strict insertion. Panic * if the key already exists, and do not look for neighboring entries. */ void * pctrie_insert_lookup_strict(struct pctrie *ptree, uint64_t *val) { void *parentp; uint64_t *found; found = NULL; parentp = pctrie_insert_lookup_compound(ptree, val, &found, NULL, PCTRIE_INSERT_NEIGHBOR_NONE); if (__predict_false(found != NULL)) panic("%s: key %jx is already present", __func__, (uintmax_t)*val); return (parentp); } /* * Wrap pctrie_insert_lookup_compound to implement find-or-insert. Do not look * for neighboring entries. */ void * pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val, uint64_t **found_out) { *found_out = NULL; return (pctrie_insert_lookup_compound(ptree, val, found_out, NULL, PCTRIE_INSERT_NEIGHBOR_NONE)); } /* * Wrap pctrie_insert_lookup_compound to implement find or insert and find next * greater entry. Find a subtree that contains the next entry greater than the * newly-inserted or to-be-inserted entry. */ void * pctrie_insert_lookup_gt(struct pctrie *ptree, uint64_t *val, uint64_t **found_out, struct pctrie_node **neighbor_out) { *found_out = NULL; *neighbor_out = NULL; return (pctrie_insert_lookup_compound(ptree, val, found_out, neighbor_out, PCTRIE_INSERT_NEIGHBOR_GT)); } /* * Wrap pctrie_insert_lookup_compound to implement find or insert and find next * lesser entry. Find a subtree that contains the next entry less than the * newly-inserted or to-be-inserted entry. */ void * pctrie_insert_lookup_lt(struct pctrie *ptree, uint64_t *val, uint64_t **found_out, struct pctrie_node **neighbor_out) { *found_out = NULL; *neighbor_out = NULL; return (pctrie_insert_lookup_compound(ptree, val, found_out, neighbor_out, PCTRIE_INSERT_NEIGHBOR_LT)); } /* * Uses new node to insert key-value pair into the trie at given location. */ void pctrie_insert_node(void *parentp, struct pctrie_node *parent, uint64_t *val) { struct pctrie_node *node; uint64_t index, newind; /* * Clear the last child pointer of the newly allocated parent. We want * to clear it after the final section has exited so lookup can not * return false negatives. It is done here because it will be * cache-cold in the dtor callback. */ if (parent->pn_popmap != 0) { pctrie_node_store(&parent->pn_child[ffs(parent->pn_popmap) - 1], PCTRIE_NULL, PCTRIE_UNSERIALIZED); parent->pn_popmap = 0; } /* * Recover the values of the two children of the new parent node. If * 'node' is not a leaf, this stores into 'newind' the 'owner' field, * which must be first in the node. */ index = *val; node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED); newind = *pctrie_toval(node); /* * From the highest-order bit where the indexes differ, * compute the highest level in the trie where they differ. Then, * compute the least index of this subtrie. */ _Static_assert(sizeof(long long) >= sizeof(uint64_t), "uint64 too wide"); _Static_assert(sizeof(uint64_t) * NBBY <= (1 << (sizeof(parent->pn_clev) * NBBY)), "pn_clev too narrow"); parent->pn_clev = rounddown(ilog2(index ^ newind), PCTRIE_WIDTH); parent->pn_owner = PCTRIE_COUNT; parent->pn_owner = index & -(parent->pn_owner << parent->pn_clev); /* These writes are not yet visible due to ordering. */ pctrie_addnode(parent, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED); pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED); /* Synchronize to make the above visible. */ pctrie_node_store(parentp, parent, PCTRIE_LOCKED); } /* * Return the value associated with the node, if the node is a leaf that matches * the index; otherwise NULL. */ static __always_inline uint64_t * pctrie_match_value(struct pctrie_node *node, uint64_t index) { uint64_t *m; if (!pctrie_isleaf(node) || (m = pctrie_toval(node)) == NULL || *m != index) m = NULL; return (m); } /* * Returns the value stored at the index. If the index is not present, * NULL is returned. */ static __always_inline uint64_t * _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr, enum pctrie_access access) { struct pctrie_node *node; int slot; node = pctrie_root_load(ptree, smr, access); /* Seek a node that matches index. */ while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot)) node = pctrie_node_load(&node->pn_child[slot], smr, access); return (pctrie_match_value(node, index)); } /* * Returns the value stored at the index, assuming access is externally * synchronized by a lock. * * If the index is not present, NULL is returned. */ uint64_t * pctrie_lookup(struct pctrie *ptree, uint64_t index) { return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED)); } /* * Returns the value stored at the index without requiring an external lock. * * If the index is not present, NULL is returned. */ uint64_t * pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr) { uint64_t *res; smr_enter(smr); res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR); smr_exit(smr); return (res); } /* * Returns the last node examined in the search for the index, and updates the * search path to that node. */ static __always_inline struct pctrie_node * _pctrie_iter_lookup_node(struct pctrie_iter *it, uint64_t index, smr_t smr, enum pctrie_access access) { struct pctrie_node *node; int slot; /* * Climb the search path to find the lowest node from which to start the * search for a value matching 'index'. */ while (it->top != 0) { node = it->path[it->top - 1]; KASSERT(!powerof2(node->pn_popmap), ("%s: freed node in iter path", __func__)); if (!pctrie_keybarr(node, index, &slot)) { node = pctrie_node_load( &node->pn_child[slot], smr, access); break; } --it->top; } if (it->top == 0) node = pctrie_root_load(it->ptree, smr, access); /* Seek a node that matches index. */ while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot)) { KASSERT(it->top < nitems(it->path), ("%s: path overflow in trie %p", __func__, it->ptree)); it->path[it->top++] = node; node = pctrie_node_load(&node->pn_child[slot], smr, access); } return (node); } /* * Returns the value stored at a given index value, possibly NULL. */ static __always_inline uint64_t * _pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index, smr_t smr, enum pctrie_access access) { struct pctrie_node *node; it->index = index; node = _pctrie_iter_lookup_node(it, index, smr, access); return (pctrie_match_value(node, index)); } /* * Returns the value stored at a given index value, possibly NULL. */ uint64_t * pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index) { return (_pctrie_iter_lookup(it, index, NULL, PCTRIE_LOCKED)); } /* * Insert the val in the trie, starting search with iterator. Return a pointer * to indicate where a new node must be allocated to complete insertion. * Assumes access is externally synchronized by a lock. */ void * pctrie_iter_insert_lookup(struct pctrie_iter *it, uint64_t *val) { struct pctrie_node *node; it->index = *val; node = _pctrie_iter_lookup_node(it, *val, NULL, PCTRIE_LOCKED); if (node == PCTRIE_NULL) { if (it->top == 0) pctrie_node_store(pctrie_root(it->ptree), pctrie_toleaf(val), PCTRIE_LOCKED); else pctrie_addnode(it->path[it->top - 1], it->index, pctrie_toleaf(val), PCTRIE_LOCKED); return (NULL); } if (__predict_false(pctrie_match_value(node, it->index) != NULL)) panic("%s: key %jx is already present", __func__, (uintmax_t)it->index); /* * 'node' must be replaced in the tree with a new branch node, with * children 'node' and 'val'. Return the place that points to 'node' * now, and will point to to the new branching node later. */ if (it->top == 0) return (pctrie_root(it->ptree)); node = it->path[it->top - 1]; return (&node->pn_child[pctrie_slot(node, it->index)]); } /* * Returns the value stored at a fixed offset from the current index value, * possibly NULL. */ static __always_inline uint64_t * _pctrie_iter_stride(struct pctrie_iter *it, int stride, smr_t smr, enum pctrie_access access) { uint64_t index = it->index + stride; /* Detect stride overflow. */ if ((stride > 0) != (index > it->index)) return (NULL); /* Detect crossing limit */ if ((index < it->limit) != (it->index < it->limit)) return (NULL); return (_pctrie_iter_lookup(it, index, smr, access)); } /* * Returns the value stored at a fixed offset from the current index value, * possibly NULL. */ uint64_t * pctrie_iter_stride(struct pctrie_iter *it, int stride) { return (_pctrie_iter_stride(it, stride, NULL, PCTRIE_LOCKED)); } /* * Returns the value stored at one more than the current index value, possibly * NULL, assuming access is externally synchronized by a lock. */ uint64_t * pctrie_iter_next(struct pctrie_iter *it) { return (_pctrie_iter_stride(it, 1, NULL, PCTRIE_LOCKED)); } /* * Returns the value stored at one less than the current index value, possibly * NULL, assuming access is externally synchronized by a lock. */ uint64_t * pctrie_iter_prev(struct pctrie_iter *it) { return (_pctrie_iter_stride(it, -1, NULL, PCTRIE_LOCKED)); } /* * Returns the value with the least index that is greater than or equal to the * specified index, or NULL if there are no such values. * * Requires that access be externally synchronized by a lock. */ static __inline uint64_t * pctrie_lookup_ge_node(struct pctrie_node *node, uint64_t index) { struct pctrie_node *succ; uint64_t *m; int slot; /* * Descend the trie as if performing an ordinary lookup for the * specified value. However, unlike an ordinary lookup, as we descend * the trie, we use "succ" to remember the last branching-off point, * that is, the interior node under which the least value that is both * outside our current path down the trie and greater than the specified * index resides. (The node's popmap makes it fast and easy to * recognize a branching-off point.) If our ordinary lookup fails to * yield a value that is greater than or equal to the specified index, * then we will exit this loop and perform a lookup starting from * "succ". If "succ" is not NULL, then that lookup is guaranteed to * succeed. */ succ = NULL; for (;;) { if (pctrie_isleaf(node)) { if ((m = pctrie_toval(node)) != NULL && *m >= index) return (m); break; } if (pctrie_keybarr(node, index, &slot)) { /* * If all values in this subtree are > index, then the * least value in this subtree is the answer. */ if (node->pn_owner > index) succ = node; break; } /* * Just in case the next search step leads to a subtree of all * values < index, check popmap to see if a next bigger step, to * a subtree of all pages with values > index, is available. If * so, remember to restart the search here. */ if ((node->pn_popmap >> slot) > 1) succ = node; node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } /* * Restart the search from the last place visited in the subtree that * included some values > index, if there was such a place. */ if (succ == NULL) return (NULL); if (succ != node) { /* * Take a step to the next bigger sibling of the node chosen * last time. In that subtree, all values > index. */ slot = pctrie_slot(succ, index) + 1; KASSERT((succ->pn_popmap >> slot) != 0, ("%s: no popmap siblings past slot %d in node %p", __func__, slot, succ)); slot += ffs(succ->pn_popmap >> slot) - 1; succ = pctrie_node_load(&succ->pn_child[slot], NULL, PCTRIE_LOCKED); } /* * Find the value in the subtree rooted at "succ" with the least index. */ while (!pctrie_isleaf(succ)) { KASSERT(succ->pn_popmap != 0, ("%s: no popmap children in node %p", __func__, succ)); slot = ffs(succ->pn_popmap) - 1; succ = pctrie_node_load(&succ->pn_child[slot], NULL, PCTRIE_LOCKED); } return (pctrie_toval(succ)); } uint64_t * pctrie_lookup_ge(struct pctrie *ptree, uint64_t index) { return (pctrie_lookup_ge_node( pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index)); } uint64_t * pctrie_subtree_lookup_gt(struct pctrie_node *node, uint64_t index) { if (node == NULL || index + 1 == 0) return (NULL); return (pctrie_lookup_ge_node(node, index + 1)); } /* * Find first leaf >= index, and fill iter with the path to the parent of that * leaf. Return NULL if there is no such leaf less than limit. */ uint64_t * pctrie_iter_lookup_ge(struct pctrie_iter *it, uint64_t index) { struct pctrie_node *node; uint64_t *m; int slot; /* Seek a node that matches index. */ node = _pctrie_iter_lookup_node(it, index, NULL, PCTRIE_LOCKED); /* * If no such node was found, and instead this path leads only to nodes * < index, back up to find a subtrie with the least value > index. */ if (node == PCTRIE_NULL || *pctrie_toval(node) < index) { /* Climb the path to find a node with a descendant > index. */ while (it->top != 0) { node = it->path[it->top - 1]; slot = pctrie_slot(node, index) + 1; if ((node->pn_popmap >> slot) != 0) break; --it->top; } if (it->top == 0) return (NULL); /* Step to the least child with a descendant > index. */ slot += ffs(node->pn_popmap >> slot) - 1; node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } /* Descend to the least leaf of the subtrie. */ while (!pctrie_isleaf(node)) { if (it->limit != 0 && node->pn_owner >= it->limit) return (NULL); slot = ffs(node->pn_popmap) - 1; KASSERT(it->top < nitems(it->path), ("%s: path overflow in trie %p", __func__, it->ptree)); it->path[it->top++] = node; node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } m = pctrie_toval(node); if (it->limit != 0 && *m >= it->limit) return (NULL); it->index = *m; return (m); } /* * Find the first leaf with value at least 'jump' greater than the previous * leaf. Return NULL if that value is >= limit. */ uint64_t * pctrie_iter_jump_ge(struct pctrie_iter *it, int64_t jump) { uint64_t index = it->index + jump; /* Detect jump overflow. */ if ((jump > 0) != (index > it->index)) return (NULL); if (it->limit != 0 && index >= it->limit) return (NULL); return (pctrie_iter_lookup_ge(it, index)); } #ifdef INVARIANTS void pctrie_subtree_lookup_gt_assert(struct pctrie_node *node, uint64_t index, struct pctrie *ptree, uint64_t *res) { uint64_t *expected; if (index + 1 == 0) expected = NULL; else expected = pctrie_lookup_ge(ptree, index + 1); KASSERT(res == expected, ("pctrie subtree lookup gt result different from root lookup: " "ptree %p, index %ju, subtree %p, found %p, expected %p", ptree, (uintmax_t)index, node, res, expected)); } #endif /* * Returns the value with the greatest index that is less than or equal to the * specified index, or NULL if there are no such values. * * Requires that access be externally synchronized by a lock. */ static __inline uint64_t * pctrie_lookup_le_node(struct pctrie_node *node, uint64_t index) { struct pctrie_node *pred; uint64_t *m; int slot; /* * Mirror the implementation of pctrie_lookup_ge_node, described above. */ pred = NULL; for (;;) { if (pctrie_isleaf(node)) { if ((m = pctrie_toval(node)) != NULL && *m <= index) return (m); break; } if (pctrie_keybarr(node, index, &slot)) { if (node->pn_owner < index) pred = node; break; } if ((node->pn_popmap & ((1 << slot) - 1)) != 0) pred = node; node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } if (pred == NULL) return (NULL); if (pred != node) { slot = pctrie_slot(pred, index); KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0, ("%s: no popmap siblings before slot %d in node %p", __func__, slot, pred)); slot = ilog2(pred->pn_popmap & ((1 << slot) - 1)); pred = pctrie_node_load(&pred->pn_child[slot], NULL, PCTRIE_LOCKED); } while (!pctrie_isleaf(pred)) { KASSERT(pred->pn_popmap != 0, ("%s: no popmap children in node %p", __func__, pred)); slot = ilog2(pred->pn_popmap); pred = pctrie_node_load(&pred->pn_child[slot], NULL, PCTRIE_LOCKED); } return (pctrie_toval(pred)); } uint64_t * pctrie_lookup_le(struct pctrie *ptree, uint64_t index) { return (pctrie_lookup_le_node( pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index)); } uint64_t * pctrie_subtree_lookup_lt(struct pctrie_node *node, uint64_t index) { if (node == NULL || index == 0) return (NULL); return (pctrie_lookup_le_node(node, index - 1)); } /* * Find first leaf <= index, and fill iter with the path to the parent of that * leaf. Return NULL if there is no such leaf greater than limit. */ uint64_t * pctrie_iter_lookup_le(struct pctrie_iter *it, uint64_t index) { struct pctrie_node *node; uint64_t *m; int slot; /* Seek a node that matches index. */ node = _pctrie_iter_lookup_node(it, index, NULL, PCTRIE_LOCKED); /* * If no such node was found, and instead this path leads only to nodes * > index, back up to find a subtrie with the greatest value < index. */ if (node == PCTRIE_NULL || *pctrie_toval(node) > index) { /* Climb the path to find a node with a descendant < index. */ while (it->top != 0) { node = it->path[it->top - 1]; slot = pctrie_slot(node, index); if ((node->pn_popmap & ((1 << slot) - 1)) != 0) break; --it->top; } if (it->top == 0) return (NULL); /* Step to the greatest child with a descendant < index. */ slot = ilog2(node->pn_popmap & ((1 << slot) - 1)); node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } /* Descend to the greatest leaf of the subtrie. */ while (!pctrie_isleaf(node)) { if (it->limit != 0 && it->limit >= node->pn_owner + (PCTRIE_COUNT << node->pn_clev) - 1) return (NULL); slot = ilog2(node->pn_popmap); KASSERT(it->top < nitems(it->path), ("%s: path overflow in trie %p", __func__, it->ptree)); it->path[it->top++] = node; node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } m = pctrie_toval(node); if (it->limit != 0 && *m <= it->limit) return (NULL); it->index = *m; return (m); } /* * Find the first leaf with value at most 'jump' less than the previous * leaf. Return NULL if that value is <= limit. */ uint64_t * pctrie_iter_jump_le(struct pctrie_iter *it, int64_t jump) { uint64_t index = it->index - jump; /* Detect jump overflow. */ if ((jump > 0) != (index < it->index)) return (NULL); if (it->limit != 0 && index <= it->limit) return (NULL); return (pctrie_iter_lookup_le(it, index)); } #ifdef INVARIANTS void pctrie_subtree_lookup_lt_assert(struct pctrie_node *node, uint64_t index, struct pctrie *ptree, uint64_t *res) { uint64_t *expected; if (index == 0) expected = NULL; else expected = pctrie_lookup_le(ptree, index - 1); KASSERT(res == expected, ("pctrie subtree lookup lt result different from root lookup: " "ptree %p, index %ju, subtree %p, found %p, expected %p", ptree, (uintmax_t)index, node, res, expected)); } #endif static void pctrie_remove(struct pctrie *ptree, uint64_t index, struct pctrie_node *parent, struct pctrie_node *node, struct pctrie_node **freenode) { struct pctrie_node *child; int slot; if (node == NULL) { pctrie_node_store(pctrie_root(ptree), PCTRIE_NULL, PCTRIE_LOCKED); return; } slot = pctrie_slot(node, index); KASSERT((node->pn_popmap & (1 << slot)) != 0, ("%s: bad popmap slot %d in node %p", __func__, slot, node)); node->pn_popmap ^= 1 << slot; pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED); if (!powerof2(node->pn_popmap)) return; KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__)); slot = ffs(node->pn_popmap) - 1; child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); KASSERT(child != PCTRIE_NULL, ("%s: bad popmap slot %d in node %p", __func__, slot, node)); if (parent == NULL) pctrie_node_store(pctrie_root(ptree), child, PCTRIE_LOCKED); else { slot = pctrie_slot(parent, index); KASSERT(node == pctrie_node_load(&parent->pn_child[slot], NULL, PCTRIE_LOCKED), ("%s: invalid child value", __func__)); pctrie_node_store(&parent->pn_child[slot], child, PCTRIE_LOCKED); } /* * The child is still valid and we can not zero the * pointer until all SMR references are gone. */ pctrie_node_put(node); *freenode = node; } /* * Remove the specified index from the tree, and return the value stored at * that index. If the index is not present, return NULL. */ uint64_t * pctrie_remove_lookup(struct pctrie *ptree, uint64_t index, struct pctrie_node **freenode) { struct pctrie_node *child, *node, *parent; uint64_t *m; int slot; DEBUG_POISON_POINTER(parent); *freenode = node = NULL; child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); while (!pctrie_isleaf(child)) { parent = node; node = child; slot = pctrie_slot(node, index); child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } m = pctrie_match_value(child, index); if (m != NULL) pctrie_remove(ptree, index, parent, node, freenode); return (m); } /* * Remove from the trie the leaf last chosen by the iterator, and * adjust the path if it's last member is to be freed. */ uint64_t * pctrie_iter_remove(struct pctrie_iter *it, struct pctrie_node **freenode) { struct pctrie_node *child, *node, *parent; uint64_t *m; int slot; DEBUG_POISON_POINTER(parent); *freenode = NULL; if (it->top >= 1) { parent = (it->top >= 2) ? it->path[it->top - 2] : NULL; node = it->path[it->top - 1]; slot = pctrie_slot(node, it->index); child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } else { node = NULL; child = pctrie_root_load(it->ptree, NULL, PCTRIE_LOCKED); } m = pctrie_match_value(child, it->index); if (m != NULL) pctrie_remove(it->ptree, it->index, parent, node, freenode); if (*freenode != NULL) --it->top; return (m); } /* * Return the current leaf, assuming access is externally synchronized by a * lock. */ uint64_t * pctrie_iter_value(struct pctrie_iter *it) { struct pctrie_node *node; int slot; if (it->top == 0) node = pctrie_root_load(it->ptree, NULL, PCTRIE_LOCKED); else { node = it->path[it->top - 1]; slot = pctrie_slot(node, it->index); node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } return (pctrie_toval(node)); } /* * Walk the subtrie rooted at *pnode in order, invoking callback on leaves and * using the leftmost child pointer for path reversal, until an interior node * is stripped of all children, and returned for deallocation, with *pnode left * pointing to the parent of that node. */ static __always_inline struct pctrie_node * pctrie_reclaim_prune(struct pctrie_node **pnode, struct pctrie_node *parent, pctrie_cb_t callback, int keyoff, void *arg) { struct pctrie_node *child, *node; int slot; node = *pnode; while (node->pn_popmap != 0) { slot = ffs(node->pn_popmap) - 1; node->pn_popmap ^= 1 << slot; child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_UNSERIALIZED); pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_UNSERIALIZED); if (pctrie_isleaf(child)) { if (callback != NULL) callback(pctrie_toptr(child, keyoff), arg); continue; } /* Climb one level down the trie. */ pctrie_node_store(&node->pn_child[0], parent, PCTRIE_UNSERIALIZED); parent = node; node = child; } *pnode = parent; return (node); } /* * Recover the node parent from its first child and continue pruning. */ static __always_inline struct pctrie_node * pctrie_reclaim_resume_compound(struct pctrie_node **pnode, pctrie_cb_t callback, int keyoff, void *arg) { struct pctrie_node *parent, *node; node = *pnode; if (node == NULL) return (NULL); /* Climb one level up the trie. */ parent = pctrie_node_load(&node->pn_child[0], NULL, PCTRIE_UNSERIALIZED); pctrie_node_store(&node->pn_child[0], PCTRIE_NULL, PCTRIE_UNSERIALIZED); return (pctrie_reclaim_prune(pnode, parent, callback, keyoff, arg)); } /* * Find the trie root, and start pruning with a NULL parent. */ static __always_inline struct pctrie_node * pctrie_reclaim_begin_compound(struct pctrie_node **pnode, struct pctrie *ptree, pctrie_cb_t callback, int keyoff, void *arg) { struct pctrie_node *node; node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED); pctrie_node_store(pctrie_root(ptree), PCTRIE_NULL, PCTRIE_UNSERIALIZED); if (pctrie_isleaf(node)) { if (callback != NULL && node != PCTRIE_NULL) callback(pctrie_toptr(node, keyoff), arg); return (NULL); } *pnode = node; return (pctrie_reclaim_prune(pnode, NULL, callback, keyoff, arg)); } struct pctrie_node * pctrie_reclaim_resume(struct pctrie_node **pnode) { return (pctrie_reclaim_resume_compound(pnode, NULL, 0, NULL)); } struct pctrie_node * pctrie_reclaim_begin(struct pctrie_node **pnode, struct pctrie *ptree) { return (pctrie_reclaim_begin_compound(pnode, ptree, NULL, 0, NULL)); } struct pctrie_node * pctrie_reclaim_resume_cb(struct pctrie_node **pnode, pctrie_cb_t callback, int keyoff, void *arg) { return (pctrie_reclaim_resume_compound(pnode, callback, keyoff, arg)); } struct pctrie_node * pctrie_reclaim_begin_cb(struct pctrie_node **pnode, struct pctrie *ptree, pctrie_cb_t callback, int keyoff, void *arg) { return (pctrie_reclaim_begin_compound(pnode, ptree, callback, keyoff, arg)); } /* * Replace an existing value in the trie with another one. * Panics if there is not an old value in the trie at the new value's index. */ uint64_t * pctrie_replace(struct pctrie *ptree, uint64_t *newval) { struct pctrie_node *leaf, *parent, *node; uint64_t *m; uint64_t index; int slot; leaf = pctrie_toleaf(newval); index = *newval; node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); parent = NULL; for (;;) { if (pctrie_isleaf(node)) { if ((m = pctrie_toval(node)) != NULL && *m == index) { if (parent == NULL) pctrie_node_store(pctrie_root(ptree), leaf, PCTRIE_LOCKED); else pctrie_node_store( &parent->pn_child[slot], leaf, PCTRIE_LOCKED); return (m); } break; } if (pctrie_keybarr(node, index, &slot)) break; parent = node; node = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); } panic("%s: original replacing value not found", __func__); } #ifdef DDB /* * Show details about the given node. */ DB_SHOW_COMMAND(pctrienode, db_show_pctrienode) { struct pctrie_node *node, *tmp; int slot; pn_popmap_t popmap; if (!have_addr) return; node = (struct pctrie_node *)addr; db_printf("node %p, owner %jx, children popmap %04x, level %u:\n", (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap, node->pn_clev / PCTRIE_WIDTH); for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) { slot = ffs(popmap) - 1; tmp = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_UNSERIALIZED); db_printf("slot: %d, val: %p, value: %p, clev: %d\n", slot, (void *)tmp, pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL, node->pn_clev / PCTRIE_WIDTH); } } #endif /* DDB */