/*- * Copyright (c) 2015-2016 Svatopluk Kraus * Copyright (c) 2015-2016 Michal Meloun * All rights reserved. * Copyright (c) 2015-2016 The FreeBSD Foundation * Copyright (c) 2021 Jessica Clarke * * Portions of this software were developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include /* * New-style Interrupt Framework * * TODO: - add support for disconnected PICs. * - to support IPI (PPI) enabling on other CPUs if already started. * - to complete things for removable PICs. */ #include "opt_ddb.h" #include "opt_hwpmc_hooks.h" #include "opt_iommu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif #include #include #include #include #ifdef DDB #include #endif #ifdef IOMMU #include #endif #include "pic_if.h" #include "msi_if.h" #define INTRNAME_LEN (2*MAXCOMLEN + 1) #ifdef DEBUG #define debugf(fmt, args...) do { printf("%s(): ", __func__); \ printf(fmt,##args); } while (0) #else #define debugf(fmt, args...) #endif MALLOC_DECLARE(M_INTRNG); MALLOC_DEFINE(M_INTRNG, "intr", "intr interrupt handling"); /* Root interrupt controller stuff. */ struct intr_irq_root { device_t dev; intr_irq_filter_t *filter; void *arg; }; static struct intr_irq_root intr_irq_roots[INTR_ROOT_COUNT]; struct intr_pic_child { SLIST_ENTRY(intr_pic_child) pc_next; struct intr_pic *pc_pic; intr_child_irq_filter_t *pc_filter; void *pc_filter_arg; uintptr_t pc_start; uintptr_t pc_length; }; /* Interrupt controller definition. */ struct intr_pic { SLIST_ENTRY(intr_pic) pic_next; intptr_t pic_xref; /* hardware identification */ device_t pic_dev; /* Only one of FLAG_PIC or FLAG_MSI may be set */ #define FLAG_PIC (1 << 0) #define FLAG_MSI (1 << 1) #define FLAG_TYPE_MASK (FLAG_PIC | FLAG_MSI) u_int pic_flags; struct mtx pic_child_lock; SLIST_HEAD(, intr_pic_child) pic_children; }; #ifdef SMP #define INTR_IPI_NAMELEN (MAXCOMLEN + 1) struct intr_ipi { intr_ipi_handler_t *ii_handler; void *ii_handler_arg; struct intr_irqsrc *ii_isrc; char ii_name[INTR_IPI_NAMELEN]; u_long *ii_count; }; static device_t intr_ipi_dev; static u_int intr_ipi_dev_priority; static bool intr_ipi_dev_frozen; #endif static struct mtx pic_list_lock; static SLIST_HEAD(, intr_pic) pic_list; static struct intr_pic *pic_lookup(device_t dev, intptr_t xref, u_int flags); /* Interrupt source definition. */ static struct mtx isrc_table_lock; static struct intr_irqsrc **irq_sources; static u_int irq_next_free; #ifdef SMP #ifdef EARLY_AP_STARTUP static bool irq_assign_cpu = true; #else static bool irq_assign_cpu = false; #endif static struct intr_ipi ipi_sources[INTR_IPI_COUNT]; #endif u_int intr_nirq = NIRQ; SYSCTL_UINT(_machdep, OID_AUTO, nirq, CTLFLAG_RDTUN, &intr_nirq, 0, "Number of IRQs"); /* Data for MI statistics reporting. */ u_long *intrcnt; char *intrnames; size_t sintrcnt; size_t sintrnames; int nintrcnt; static bitstr_t *intrcnt_bitmap; static struct intr_irqsrc *intr_map_get_isrc(u_int res_id); static void intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc); static struct intr_map_data * intr_map_get_map_data(u_int res_id); static void intr_map_copy_map_data(u_int res_id, device_t *dev, intptr_t *xref, struct intr_map_data **data); /* * Interrupt framework initialization routine. */ static void intr_irq_init(void *dummy __unused) { SLIST_INIT(&pic_list); mtx_init(&pic_list_lock, "intr pic list", NULL, MTX_DEF); mtx_init(&isrc_table_lock, "intr isrc table", NULL, MTX_DEF); /* * - 2 counters for each I/O interrupt. * - mp_maxid + 1 counters for each IPI counters for SMP. */ nintrcnt = intr_nirq * 2; #ifdef SMP nintrcnt += INTR_IPI_COUNT * (mp_maxid + 1); #endif intrcnt = mallocarray(nintrcnt, sizeof(u_long), M_INTRNG, M_WAITOK | M_ZERO); intrnames = mallocarray(nintrcnt, INTRNAME_LEN, M_INTRNG, M_WAITOK | M_ZERO); sintrcnt = nintrcnt * sizeof(u_long); sintrnames = nintrcnt * INTRNAME_LEN; /* Allocate the bitmap tracking counter allocations. */ intrcnt_bitmap = bit_alloc(nintrcnt, M_INTRNG, M_WAITOK | M_ZERO); irq_sources = mallocarray(intr_nirq, sizeof(struct intr_irqsrc*), M_INTRNG, M_WAITOK | M_ZERO); } SYSINIT(intr_irq_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_irq_init, NULL); static void intrcnt_setname(const char *name, int index) { snprintf(intrnames + INTRNAME_LEN * index, INTRNAME_LEN, "%-*s", INTRNAME_LEN - 1, name); } /* * Update name for interrupt source with interrupt event. */ static void intrcnt_updatename(struct intr_irqsrc *isrc) { /* QQQ: What about stray counter name? */ mtx_assert(&isrc_table_lock, MA_OWNED); intrcnt_setname(isrc->isrc_event->ie_fullname, isrc->isrc_index); } /* * Virtualization for interrupt source interrupt counter increment. */ static inline void isrc_increment_count(struct intr_irqsrc *isrc) { if (isrc->isrc_flags & INTR_ISRCF_PPI) atomic_add_long(&isrc->isrc_count[0], 1); else isrc->isrc_count[0]++; } /* * Virtualization for interrupt source interrupt stray counter increment. */ static inline void isrc_increment_straycount(struct intr_irqsrc *isrc) { isrc->isrc_count[1]++; } /* * Virtualization for interrupt source interrupt name update. */ static void isrc_update_name(struct intr_irqsrc *isrc, const char *name) { char str[INTRNAME_LEN]; mtx_assert(&isrc_table_lock, MA_OWNED); if (name != NULL) { snprintf(str, INTRNAME_LEN, "%s: %s", isrc->isrc_name, name); intrcnt_setname(str, isrc->isrc_index); snprintf(str, INTRNAME_LEN, "stray %s: %s", isrc->isrc_name, name); intrcnt_setname(str, isrc->isrc_index + 1); } else { snprintf(str, INTRNAME_LEN, "%s:", isrc->isrc_name); intrcnt_setname(str, isrc->isrc_index); snprintf(str, INTRNAME_LEN, "stray %s:", isrc->isrc_name); intrcnt_setname(str, isrc->isrc_index + 1); } } /* * Virtualization for interrupt source interrupt counters setup. */ static void isrc_setup_counters(struct intr_irqsrc *isrc) { int index; mtx_assert(&isrc_table_lock, MA_OWNED); /* * Allocate two counter values, the second tracking "stray" interrupts. */ bit_ffc_area(intrcnt_bitmap, nintrcnt, 2, &index); if (index == -1) panic("Failed to allocate 2 counters. Array exhausted?"); bit_nset(intrcnt_bitmap, index, index + 1); isrc->isrc_index = index; isrc->isrc_count = &intrcnt[index]; isrc_update_name(isrc, NULL); } /* * Virtualization for interrupt source interrupt counters release. */ static void isrc_release_counters(struct intr_irqsrc *isrc) { int idx = isrc->isrc_index; mtx_assert(&isrc_table_lock, MA_OWNED); bit_nclear(intrcnt_bitmap, idx, idx + 1); } /* * Main interrupt dispatch handler. It's called straight * from the assembler, where CPU interrupt is served. */ void intr_irq_handler(struct trapframe *tf, uint32_t rootnum) { struct trapframe * oldframe; struct thread * td; struct intr_irq_root *root; KASSERT(rootnum < INTR_ROOT_COUNT, ("%s: invalid interrupt root %d", __func__, rootnum)); root = &intr_irq_roots[rootnum]; KASSERT(root->filter != NULL, ("%s: no filter", __func__)); kasan_mark(tf, sizeof(*tf), sizeof(*tf), 0); kmsan_mark(tf, sizeof(*tf), KMSAN_STATE_INITED); VM_CNT_INC(v_intr); critical_enter(); td = curthread; oldframe = td->td_intr_frame; td->td_intr_frame = tf; (root->filter)(root->arg); td->td_intr_frame = oldframe; critical_exit(); #ifdef HWPMC_HOOKS if (pmc_hook && TRAPF_USERMODE(tf) && (PCPU_GET(curthread)->td_pflags & TDP_CALLCHAIN)) pmc_hook(PCPU_GET(curthread), PMC_FN_USER_CALLCHAIN, tf); #endif } int intr_child_irq_handler(struct intr_pic *parent, uintptr_t irq) { struct intr_pic_child *child; bool found; found = false; mtx_lock_spin(&parent->pic_child_lock); SLIST_FOREACH(child, &parent->pic_children, pc_next) { if (child->pc_start <= irq && irq < (child->pc_start + child->pc_length)) { found = true; break; } } mtx_unlock_spin(&parent->pic_child_lock); if (found) return (child->pc_filter(child->pc_filter_arg, irq)); return (FILTER_STRAY); } /* * interrupt controller dispatch function for interrupts. It should * be called straight from the interrupt controller, when associated interrupt * source is learned. */ int intr_isrc_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf) { KASSERT(isrc != NULL, ("%s: no source", __func__)); if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) isrc_increment_count(isrc); #ifdef INTR_SOLO if (isrc->isrc_filter != NULL) { int error; error = isrc->isrc_filter(isrc->isrc_arg, tf); PIC_POST_FILTER(isrc->isrc_dev, isrc); if (error == FILTER_HANDLED) return (0); } else #endif if (isrc->isrc_event != NULL) { if (intr_event_handle(isrc->isrc_event, tf) == 0) return (0); } if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) isrc_increment_straycount(isrc); return (EINVAL); } /* * Alloc unique interrupt number (resource handle) for interrupt source. * * There could be various strategies how to allocate free interrupt number * (resource handle) for new interrupt source. * * 1. Handles are always allocated forward, so handles are not recycled * immediately. However, if only one free handle left which is reused * constantly... */ static inline int isrc_alloc_irq(struct intr_irqsrc *isrc) { u_int irq; mtx_assert(&isrc_table_lock, MA_OWNED); if (irq_next_free >= intr_nirq) return (ENOSPC); for (irq = irq_next_free; irq < intr_nirq; irq++) { if (irq_sources[irq] == NULL) goto found; } for (irq = 0; irq < irq_next_free; irq++) { if (irq_sources[irq] == NULL) goto found; } irq_next_free = intr_nirq; return (ENOSPC); found: isrc->isrc_irq = irq; irq_sources[irq] = isrc; irq_next_free = irq + 1; if (irq_next_free >= intr_nirq) irq_next_free = 0; return (0); } /* * Free unique interrupt number (resource handle) from interrupt source. */ static inline int isrc_free_irq(struct intr_irqsrc *isrc) { mtx_assert(&isrc_table_lock, MA_OWNED); if (isrc->isrc_irq >= intr_nirq) return (EINVAL); if (irq_sources[isrc->isrc_irq] != isrc) return (EINVAL); irq_sources[isrc->isrc_irq] = NULL; isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */ /* * If we are recovering from the state irq_sources table is full, * then the following allocation should check the entire table. This * will ensure maximum separation of allocation order from release * order. */ if (irq_next_free >= intr_nirq) irq_next_free = 0; return (0); } device_t intr_irq_root_device(uint32_t rootnum) { KASSERT(rootnum < INTR_ROOT_COUNT, ("%s: invalid interrupt root %d", __func__, rootnum)); return (intr_irq_roots[rootnum].dev); } /* * Initialize interrupt source and register it into global interrupt table. */ int intr_isrc_register(struct intr_irqsrc *isrc, device_t dev, u_int flags, const char *fmt, ...) { int error; va_list ap; bzero(isrc, sizeof(struct intr_irqsrc)); isrc->isrc_dev = dev; isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */ isrc->isrc_flags = flags; va_start(ap, fmt); vsnprintf(isrc->isrc_name, INTR_ISRC_NAMELEN, fmt, ap); va_end(ap); mtx_lock(&isrc_table_lock); error = isrc_alloc_irq(isrc); if (error != 0) { mtx_unlock(&isrc_table_lock); return (error); } /* * Setup interrupt counters, but not for IPI sources. Those are setup * later and only for used ones (up to INTR_IPI_COUNT) to not exhaust * our counter pool. */ if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) isrc_setup_counters(isrc); mtx_unlock(&isrc_table_lock); return (0); } /* * Deregister interrupt source from global interrupt table. */ int intr_isrc_deregister(struct intr_irqsrc *isrc) { int error; mtx_lock(&isrc_table_lock); if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) isrc_release_counters(isrc); error = isrc_free_irq(isrc); mtx_unlock(&isrc_table_lock); return (error); } #ifdef SMP /* * A support function for a PIC to decide if provided ISRC should be inited * on given cpu. The logic of INTR_ISRCF_BOUND flag and isrc_cpu member of * struct intr_irqsrc is the following: * * If INTR_ISRCF_BOUND is set, the ISRC should be inited only on cpus * set in isrc_cpu. If not, the ISRC should be inited on every cpu and * isrc_cpu is kept consistent with it. Thus isrc_cpu is always correct. */ bool intr_isrc_init_on_cpu(struct intr_irqsrc *isrc, u_int cpu) { if (isrc->isrc_handlers == 0) return (false); if ((isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) == 0) return (false); if (isrc->isrc_flags & INTR_ISRCF_BOUND) return (CPU_ISSET(cpu, &isrc->isrc_cpu)); CPU_SET(cpu, &isrc->isrc_cpu); return (true); } #endif #ifdef INTR_SOLO /* * Setup filter into interrupt source. */ static int iscr_setup_filter(struct intr_irqsrc *isrc, const char *name, intr_irq_filter_t *filter, void *arg, void **cookiep) { if (filter == NULL) return (EINVAL); mtx_lock(&isrc_table_lock); /* * Make sure that we do not mix the two ways * how we handle interrupt sources. */ if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) { mtx_unlock(&isrc_table_lock); return (EBUSY); } isrc->isrc_filter = filter; isrc->isrc_arg = arg; isrc_update_name(isrc, name); mtx_unlock(&isrc_table_lock); *cookiep = isrc; return (0); } #endif /* * Interrupt source pre_ithread method for MI interrupt framework. */ static void intr_isrc_pre_ithread(void *arg) { struct intr_irqsrc *isrc = arg; PIC_PRE_ITHREAD(isrc->isrc_dev, isrc); } /* * Interrupt source post_ithread method for MI interrupt framework. */ static void intr_isrc_post_ithread(void *arg) { struct intr_irqsrc *isrc = arg; PIC_POST_ITHREAD(isrc->isrc_dev, isrc); } /* * Interrupt source post_filter method for MI interrupt framework. */ static void intr_isrc_post_filter(void *arg) { struct intr_irqsrc *isrc = arg; PIC_POST_FILTER(isrc->isrc_dev, isrc); } /* * Interrupt source assign_cpu method for MI interrupt framework. */ static int intr_isrc_assign_cpu(void *arg, int cpu) { #ifdef SMP struct intr_irqsrc *isrc = arg; int error; mtx_lock(&isrc_table_lock); if (cpu == NOCPU) { CPU_ZERO(&isrc->isrc_cpu); isrc->isrc_flags &= ~INTR_ISRCF_BOUND; } else { CPU_SETOF(cpu, &isrc->isrc_cpu); isrc->isrc_flags |= INTR_ISRCF_BOUND; } /* * In NOCPU case, it's up to PIC to either leave ISRC on same CPU or * re-balance it to another CPU or enable it on more CPUs. However, * PIC is expected to change isrc_cpu appropriately to keep us well * informed if the call is successful. */ if (irq_assign_cpu) { error = PIC_BIND_INTR(isrc->isrc_dev, isrc); if (error) { CPU_ZERO(&isrc->isrc_cpu); mtx_unlock(&isrc_table_lock); return (error); } } mtx_unlock(&isrc_table_lock); return (0); #else return (EOPNOTSUPP); #endif } /* * Create interrupt event for interrupt source. */ static int isrc_event_create(struct intr_irqsrc *isrc) { struct intr_event *ie; int error; error = intr_event_create(&ie, isrc, 0, isrc->isrc_irq, intr_isrc_pre_ithread, intr_isrc_post_ithread, intr_isrc_post_filter, intr_isrc_assign_cpu, "%s:", isrc->isrc_name); if (error) return (error); mtx_lock(&isrc_table_lock); /* * Make sure that we do not mix the two ways * how we handle interrupt sources. Let contested event wins. */ #ifdef INTR_SOLO if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) { #else if (isrc->isrc_event != NULL) { #endif mtx_unlock(&isrc_table_lock); intr_event_destroy(ie); return (isrc->isrc_event != NULL ? EBUSY : 0); } isrc->isrc_event = ie; mtx_unlock(&isrc_table_lock); return (0); } #ifdef notyet /* * Destroy interrupt event for interrupt source. */ static void isrc_event_destroy(struct intr_irqsrc *isrc) { struct intr_event *ie; mtx_lock(&isrc_table_lock); ie = isrc->isrc_event; isrc->isrc_event = NULL; mtx_unlock(&isrc_table_lock); if (ie != NULL) intr_event_destroy(ie); } #endif /* * Add handler to interrupt source. */ static int isrc_add_handler(struct intr_irqsrc *isrc, const char *name, driver_filter_t filter, driver_intr_t handler, void *arg, enum intr_type flags, void **cookiep) { int error; if (isrc->isrc_event == NULL) { error = isrc_event_create(isrc); if (error) return (error); } error = intr_event_add_handler(isrc->isrc_event, name, filter, handler, arg, intr_priority(flags), flags, cookiep); if (error == 0) { mtx_lock(&isrc_table_lock); intrcnt_updatename(isrc); mtx_unlock(&isrc_table_lock); } return (error); } /* * Lookup interrupt controller locked. */ static inline struct intr_pic * pic_lookup_locked(device_t dev, intptr_t xref, u_int flags) { struct intr_pic *pic; mtx_assert(&pic_list_lock, MA_OWNED); if (dev == NULL && xref == 0) return (NULL); /* Note that pic->pic_dev is never NULL on registered PIC. */ SLIST_FOREACH(pic, &pic_list, pic_next) { if ((pic->pic_flags & FLAG_TYPE_MASK) != (flags & FLAG_TYPE_MASK)) continue; if (dev == NULL) { if (xref == pic->pic_xref) return (pic); } else if (xref == 0 || pic->pic_xref == 0) { if (dev == pic->pic_dev) return (pic); } else if (xref == pic->pic_xref && dev == pic->pic_dev) return (pic); } return (NULL); } /* * Lookup interrupt controller. */ static struct intr_pic * pic_lookup(device_t dev, intptr_t xref, u_int flags) { struct intr_pic *pic; mtx_lock(&pic_list_lock); pic = pic_lookup_locked(dev, xref, flags); mtx_unlock(&pic_list_lock); return (pic); } /* * Create interrupt controller. */ static struct intr_pic * pic_create(device_t dev, intptr_t xref, u_int flags) { struct intr_pic *pic; mtx_lock(&pic_list_lock); pic = pic_lookup_locked(dev, xref, flags); if (pic != NULL) { mtx_unlock(&pic_list_lock); return (pic); } pic = malloc(sizeof(*pic), M_INTRNG, M_NOWAIT | M_ZERO); if (pic == NULL) { mtx_unlock(&pic_list_lock); return (NULL); } pic->pic_xref = xref; pic->pic_dev = dev; pic->pic_flags = flags; mtx_init(&pic->pic_child_lock, "pic child lock", NULL, MTX_SPIN); SLIST_INSERT_HEAD(&pic_list, pic, pic_next); mtx_unlock(&pic_list_lock); return (pic); } #ifdef notyet /* * Destroy interrupt controller. */ static void pic_destroy(device_t dev, intptr_t xref, u_int flags) { struct intr_pic *pic; mtx_lock(&pic_list_lock); pic = pic_lookup_locked(dev, xref, flags); if (pic == NULL) { mtx_unlock(&pic_list_lock); return; } SLIST_REMOVE(&pic_list, pic, intr_pic, pic_next); mtx_unlock(&pic_list_lock); free(pic, M_INTRNG); } #endif /* * Register interrupt controller. */ struct intr_pic * intr_pic_register(device_t dev, intptr_t xref) { struct intr_pic *pic; if (dev == NULL) return (NULL); pic = pic_create(dev, xref, FLAG_PIC); if (pic == NULL) return (NULL); debugf("PIC %p registered for %s \n", pic, device_get_nameunit(dev), dev, (uintmax_t)xref); return (pic); } /* * Unregister interrupt controller. */ int intr_pic_deregister(device_t dev, intptr_t xref) { panic("%s: not implemented", __func__); } /* * Mark interrupt controller (itself) as a root one. * * Note that only an interrupt controller can really know its position * in interrupt controller's tree. So root PIC must claim itself as a root. * * In FDT case, according to ePAPR approved version 1.1 from 08 April 2011, * page 30: * "The root of the interrupt tree is determined when traversal * of the interrupt tree reaches an interrupt controller node without * an interrupts property and thus no explicit interrupt parent." */ int intr_pic_claim_root(device_t dev, intptr_t xref, intr_irq_filter_t *filter, void *arg, uint32_t rootnum) { struct intr_pic *pic; struct intr_irq_root *root; pic = pic_lookup(dev, xref, FLAG_PIC); if (pic == NULL) { device_printf(dev, "not registered\n"); return (EINVAL); } KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_PIC, ("%s: Found a non-PIC controller: %s", __func__, device_get_name(pic->pic_dev))); if (filter == NULL) { device_printf(dev, "filter missing\n"); return (EINVAL); } /* * Only one interrupt controllers could be on the root for now. * Note that we further suppose that there is not threaded interrupt * routine (handler) on the root. See intr_irq_handler(). */ KASSERT(rootnum < INTR_ROOT_COUNT, ("%s: invalid interrupt root %d", __func__, rootnum)); root = &intr_irq_roots[rootnum]; if (root->dev != NULL) { device_printf(dev, "another root already set\n"); return (EBUSY); } root->dev = dev; root->filter = filter; root->arg = arg; debugf("irq root set to %s\n", device_get_nameunit(dev)); return (0); } /* * Add a handler to manage a sub range of a parents interrupts. */ int intr_pic_add_handler(device_t parent, struct intr_pic *pic, intr_child_irq_filter_t *filter, void *arg, uintptr_t start, uintptr_t length) { struct intr_pic *parent_pic; struct intr_pic_child *newchild; #ifdef INVARIANTS struct intr_pic_child *child; #endif /* Find the parent PIC */ parent_pic = pic_lookup(parent, 0, FLAG_PIC); if (parent_pic == NULL) return (ENXIO); newchild = malloc(sizeof(*newchild), M_INTRNG, M_WAITOK | M_ZERO); newchild->pc_pic = pic; newchild->pc_filter = filter; newchild->pc_filter_arg = arg; newchild->pc_start = start; newchild->pc_length = length; mtx_lock_spin(&parent_pic->pic_child_lock); #ifdef INVARIANTS SLIST_FOREACH(child, &parent_pic->pic_children, pc_next) { KASSERT(child->pc_pic != pic, ("%s: Adding a child PIC twice", __func__)); } #endif SLIST_INSERT_HEAD(&parent_pic->pic_children, newchild, pc_next); mtx_unlock_spin(&parent_pic->pic_child_lock); return (0); } static int intr_resolve_irq(device_t dev, intptr_t xref, struct intr_map_data *data, struct intr_irqsrc **isrc) { struct intr_pic *pic; struct intr_map_data_msi *msi; if (data == NULL) return (EINVAL); pic = pic_lookup(dev, xref, (data->type == INTR_MAP_DATA_MSI) ? FLAG_MSI : FLAG_PIC); if (pic == NULL) return (ESRCH); switch (data->type) { case INTR_MAP_DATA_MSI: KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); msi = (struct intr_map_data_msi *)data; *isrc = msi->isrc; return (0); default: KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_PIC, ("%s: Found a non-PIC controller: %s", __func__, device_get_name(pic->pic_dev))); return (PIC_MAP_INTR(pic->pic_dev, data, isrc)); } } bool intr_is_per_cpu(struct resource *res) { u_int res_id; struct intr_irqsrc *isrc; res_id = (u_int)rman_get_start(res); isrc = intr_map_get_isrc(res_id); if (isrc == NULL) panic("Attempt to get isrc for non-active resource id: %u\n", res_id); return ((isrc->isrc_flags & INTR_ISRCF_PPI) != 0); } int intr_activate_irq(device_t dev, struct resource *res) { device_t map_dev; intptr_t map_xref; struct intr_map_data *data; struct intr_irqsrc *isrc; u_int res_id; int error; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); res_id = (u_int)rman_get_start(res); if (intr_map_get_isrc(res_id) != NULL) panic("Attempt to double activation of resource id: %u\n", res_id); intr_map_copy_map_data(res_id, &map_dev, &map_xref, &data); error = intr_resolve_irq(map_dev, map_xref, data, &isrc); if (error != 0) { free(data, M_INTRNG); /* XXX TODO DISCONECTED PICs */ /* if (error == EINVAL) return(0); */ return (error); } intr_map_set_isrc(res_id, isrc); rman_set_virtual(res, data); return (PIC_ACTIVATE_INTR(isrc->isrc_dev, isrc, res, data)); } int intr_deactivate_irq(device_t dev, struct resource *res) { struct intr_map_data *data; struct intr_irqsrc *isrc; u_int res_id; int error; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); res_id = (u_int)rman_get_start(res); isrc = intr_map_get_isrc(res_id); if (isrc == NULL) panic("Attempt to deactivate non-active resource id: %u\n", res_id); data = rman_get_virtual(res); error = PIC_DEACTIVATE_INTR(isrc->isrc_dev, isrc, res, data); intr_map_set_isrc(res_id, NULL); rman_set_virtual(res, NULL); free(data, M_INTRNG); return (error); } int intr_setup_irq(device_t dev, struct resource *res, driver_filter_t filt, driver_intr_t hand, void *arg, int flags, void **cookiep) { int error; struct intr_map_data *data; struct intr_irqsrc *isrc; const char *name; u_int res_id; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); res_id = (u_int)rman_get_start(res); isrc = intr_map_get_isrc(res_id); if (isrc == NULL) { /* XXX TODO DISCONECTED PICs */ return (EINVAL); } data = rman_get_virtual(res); name = device_get_nameunit(dev); #ifdef INTR_SOLO /* * Standard handling is done through MI interrupt framework. However, * some interrupts could request solely own special handling. This * non standard handling can be used for interrupt controllers without * handler (filter only), so in case that interrupt controllers are * chained, MI interrupt framework is called only in leaf controller. * * Note that root interrupt controller routine is served as well, * however in intr_irq_handler(), i.e. main system dispatch routine. */ if (flags & INTR_SOLO && hand != NULL) { debugf("irq %u cannot solo on %s\n", irq, name); return (EINVAL); } if (flags & INTR_SOLO) { error = iscr_setup_filter(isrc, name, (intr_irq_filter_t *)filt, arg, cookiep); debugf("irq %u setup filter error %d on %s\n", isrc->isrc_irq, error, name); } else #endif { error = isrc_add_handler(isrc, name, filt, hand, arg, flags, cookiep); debugf("irq %u add handler error %d on %s\n", isrc->isrc_irq, error, name); } if (error != 0) return (error); mtx_lock(&isrc_table_lock); error = PIC_SETUP_INTR(isrc->isrc_dev, isrc, res, data); if (error == 0) { isrc->isrc_handlers++; if (isrc->isrc_handlers == 1) PIC_ENABLE_INTR(isrc->isrc_dev, isrc); } mtx_unlock(&isrc_table_lock); if (error != 0) intr_event_remove_handler(*cookiep); return (error); } int intr_teardown_irq(device_t dev, struct resource *res, void *cookie) { int error; struct intr_map_data *data; struct intr_irqsrc *isrc; u_int res_id; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); res_id = (u_int)rman_get_start(res); isrc = intr_map_get_isrc(res_id); if (isrc == NULL || isrc->isrc_handlers == 0) return (EINVAL); data = rman_get_virtual(res); #ifdef INTR_SOLO if (isrc->isrc_filter != NULL) { if (isrc != cookie) return (EINVAL); mtx_lock(&isrc_table_lock); isrc->isrc_filter = NULL; isrc->isrc_arg = NULL; isrc->isrc_handlers = 0; PIC_DISABLE_INTR(isrc->isrc_dev, isrc); PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data); isrc_update_name(isrc, NULL); mtx_unlock(&isrc_table_lock); return (0); } #endif if (isrc != intr_handler_source(cookie)) return (EINVAL); error = intr_event_remove_handler(cookie); if (error == 0) { mtx_lock(&isrc_table_lock); isrc->isrc_handlers--; if (isrc->isrc_handlers == 0) PIC_DISABLE_INTR(isrc->isrc_dev, isrc); PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data); intrcnt_updatename(isrc); mtx_unlock(&isrc_table_lock); } return (error); } int intr_describe_irq(device_t dev, struct resource *res, void *cookie, const char *descr) { int error; struct intr_irqsrc *isrc; u_int res_id; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); res_id = (u_int)rman_get_start(res); isrc = intr_map_get_isrc(res_id); if (isrc == NULL || isrc->isrc_handlers == 0) return (EINVAL); #ifdef INTR_SOLO if (isrc->isrc_filter != NULL) { if (isrc != cookie) return (EINVAL); mtx_lock(&isrc_table_lock); isrc_update_name(isrc, descr); mtx_unlock(&isrc_table_lock); return (0); } #endif error = intr_event_describe_handler(isrc->isrc_event, cookie, descr); if (error == 0) { mtx_lock(&isrc_table_lock); intrcnt_updatename(isrc); mtx_unlock(&isrc_table_lock); } return (error); } #ifdef SMP int intr_bind_irq(device_t dev, struct resource *res, int cpu) { struct intr_irqsrc *isrc; u_int res_id; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); res_id = (u_int)rman_get_start(res); isrc = intr_map_get_isrc(res_id); if (isrc == NULL || isrc->isrc_handlers == 0) return (EINVAL); #ifdef INTR_SOLO if (isrc->isrc_filter != NULL) return (intr_isrc_assign_cpu(isrc, cpu)); #endif return (intr_event_bind(isrc->isrc_event, cpu)); } /* * Return the CPU that the next interrupt source should use. * For now just returns the next CPU according to round-robin. */ u_int intr_irq_next_cpu(u_int last_cpu, cpuset_t *cpumask) { u_int cpu; KASSERT(!CPU_EMPTY(cpumask), ("%s: Empty CPU mask", __func__)); if (!irq_assign_cpu || mp_ncpus == 1) { cpu = PCPU_GET(cpuid); if (CPU_ISSET(cpu, cpumask)) return (curcpu); return (CPU_FFS(cpumask) - 1); } do { last_cpu++; if (last_cpu > mp_maxid) last_cpu = 0; } while (!CPU_ISSET(last_cpu, cpumask)); return (last_cpu); } #ifndef EARLY_AP_STARTUP /* * Distribute all the interrupt sources among the available * CPUs once the AP's have been launched. */ static void intr_irq_shuffle(void *arg __unused) { struct intr_irqsrc *isrc; u_int i; if (mp_ncpus == 1) return; mtx_lock(&isrc_table_lock); irq_assign_cpu = true; for (i = 0; i < intr_nirq; i++) { isrc = irq_sources[i]; if (isrc == NULL || isrc->isrc_handlers == 0 || isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) continue; if (isrc->isrc_event != NULL && isrc->isrc_flags & INTR_ISRCF_BOUND && isrc->isrc_event->ie_cpu != CPU_FFS(&isrc->isrc_cpu) - 1) panic("%s: CPU inconsistency", __func__); if ((isrc->isrc_flags & INTR_ISRCF_BOUND) == 0) CPU_ZERO(&isrc->isrc_cpu); /* start again */ /* * We are in wicked position here if the following call fails * for bound ISRC. The best thing we can do is to clear * isrc_cpu so inconsistency with ie_cpu will be detectable. */ if (PIC_BIND_INTR(isrc->isrc_dev, isrc) != 0) CPU_ZERO(&isrc->isrc_cpu); } mtx_unlock(&isrc_table_lock); } SYSINIT(intr_irq_shuffle, SI_SUB_SMP, SI_ORDER_SECOND, intr_irq_shuffle, NULL); #endif /* !EARLY_AP_STARTUP */ #else u_int intr_irq_next_cpu(u_int current_cpu, cpuset_t *cpumask) { return (PCPU_GET(cpuid)); } #endif /* SMP */ /* * Allocate memory for new intr_map_data structure. * Initialize common fields. */ struct intr_map_data * intr_alloc_map_data(enum intr_map_data_type type, size_t len, int flags) { struct intr_map_data *data; data = malloc(len, M_INTRNG, flags); data->type = type; data->len = len; return (data); } void intr_free_intr_map_data(struct intr_map_data *data) { free(data, M_INTRNG); } /* * Register a MSI/MSI-X interrupt controller */ int intr_msi_register(device_t dev, intptr_t xref) { struct intr_pic *pic; if (dev == NULL) return (EINVAL); pic = pic_create(dev, xref, FLAG_MSI); if (pic == NULL) return (ENOMEM); debugf("PIC %p registered for %s \n", pic, device_get_nameunit(dev), dev, (uintmax_t)xref); return (0); } int intr_alloc_msi(device_t pci, device_t child, intptr_t xref, int count, int maxcount, int *irqs) { struct iommu_domain *domain; struct intr_irqsrc **isrc; struct intr_pic *pic; device_t pdev; struct intr_map_data_msi *msi; int err, i; pic = pic_lookup(NULL, xref, FLAG_MSI); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); /* * If this is the first time we have used this context ask the * interrupt controller to map memory the msi source will need. */ err = MSI_IOMMU_INIT(pic->pic_dev, child, &domain); if (err != 0) return (err); isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK); err = MSI_ALLOC_MSI(pic->pic_dev, child, count, maxcount, &pdev, isrc); if (err != 0) { free(isrc, M_INTRNG); return (err); } for (i = 0; i < count; i++) { isrc[i]->isrc_iommu = domain; msi = (struct intr_map_data_msi *)intr_alloc_map_data( INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO); msi-> isrc = isrc[i]; irqs[i] = intr_map_irq(pic->pic_dev, xref, (struct intr_map_data *)msi); } free(isrc, M_INTRNG); return (err); } int intr_release_msi(device_t pci, device_t child, intptr_t xref, int count, int *irqs) { struct intr_irqsrc **isrc; struct intr_pic *pic; struct intr_map_data_msi *msi; int i, err; pic = pic_lookup(NULL, xref, FLAG_MSI); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK); for (i = 0; i < count; i++) { msi = (struct intr_map_data_msi *) intr_map_get_map_data(irqs[i]); KASSERT(msi->hdr.type == INTR_MAP_DATA_MSI, ("%s: irq %d map data is not MSI", __func__, irqs[i])); isrc[i] = msi->isrc; } MSI_IOMMU_DEINIT(pic->pic_dev, child); err = MSI_RELEASE_MSI(pic->pic_dev, child, count, isrc); for (i = 0; i < count; i++) { if (isrc[i] != NULL) intr_unmap_irq(irqs[i]); } free(isrc, M_INTRNG); return (err); } int intr_alloc_msix(device_t pci, device_t child, intptr_t xref, int *irq) { struct iommu_domain *domain; struct intr_irqsrc *isrc; struct intr_pic *pic; device_t pdev; struct intr_map_data_msi *msi; int err; pic = pic_lookup(NULL, xref, FLAG_MSI); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); /* * If this is the first time we have used this context ask the * interrupt controller to map memory the msi source will need. */ err = MSI_IOMMU_INIT(pic->pic_dev, child, &domain); if (err != 0) return (err); err = MSI_ALLOC_MSIX(pic->pic_dev, child, &pdev, &isrc); if (err != 0) return (err); isrc->isrc_iommu = domain; msi = (struct intr_map_data_msi *)intr_alloc_map_data( INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO); msi->isrc = isrc; *irq = intr_map_irq(pic->pic_dev, xref, (struct intr_map_data *)msi); return (0); } int intr_release_msix(device_t pci, device_t child, intptr_t xref, int irq) { struct intr_irqsrc *isrc; struct intr_pic *pic; struct intr_map_data_msi *msi; int err; pic = pic_lookup(NULL, xref, FLAG_MSI); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); msi = (struct intr_map_data_msi *) intr_map_get_map_data(irq); KASSERT(msi->hdr.type == INTR_MAP_DATA_MSI, ("%s: irq %d map data is not MSI", __func__, irq)); isrc = msi->isrc; if (isrc == NULL) { intr_unmap_irq(irq); return (EINVAL); } MSI_IOMMU_DEINIT(pic->pic_dev, child); err = MSI_RELEASE_MSIX(pic->pic_dev, child, isrc); intr_unmap_irq(irq); return (err); } int intr_map_msi(device_t pci, device_t child, intptr_t xref, int irq, uint64_t *addr, uint32_t *data) { struct intr_irqsrc *isrc; struct intr_pic *pic; int err; pic = pic_lookup(NULL, xref, FLAG_MSI); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); isrc = intr_map_get_isrc(irq); if (isrc == NULL) return (EINVAL); err = MSI_MAP_MSI(pic->pic_dev, child, isrc, addr, data); #ifdef IOMMU if (isrc->isrc_iommu != NULL) iommu_translate_msi(isrc->isrc_iommu, addr); #endif return (err); } void dosoftints(void); void dosoftints(void) { } #ifdef SMP /* * Init interrupt controller on another CPU. */ void intr_pic_init_secondary(void) { device_t dev; uint32_t rootnum; /* * QQQ: Only root PICs are aware of other CPUs ??? */ //mtx_lock(&isrc_table_lock); for (rootnum = 0; rootnum < INTR_ROOT_COUNT; rootnum++) { dev = intr_irq_roots[rootnum].dev; if (dev != NULL) { PIC_INIT_SECONDARY(dev, rootnum); } } //mtx_unlock(&isrc_table_lock); } #endif #ifdef DDB DB_SHOW_COMMAND_FLAGS(irqs, db_show_irqs, DB_CMD_MEMSAFE) { u_int i, irqsum; u_long num; struct intr_irqsrc *isrc; for (irqsum = 0, i = 0; i < intr_nirq; i++) { isrc = irq_sources[i]; if (isrc == NULL) continue; num = isrc->isrc_count != NULL ? isrc->isrc_count[0] : 0; db_printf("irq%-3u <%s>: cpu %02lx%s cnt %lu\n", i, isrc->isrc_name, isrc->isrc_cpu.__bits[0], isrc->isrc_flags & INTR_ISRCF_BOUND ? " (bound)" : "", num); irqsum += num; } db_printf("irq total %u\n", irqsum); } #endif /* * Interrupt mapping table functions. * * Please, keep this part separately, it can be transformed to * extension of standard resources. */ struct intr_map_entry { device_t dev; intptr_t xref; struct intr_map_data *map_data; struct intr_irqsrc *isrc; /* XXX TODO DISCONECTED PICs */ /*int flags */ }; /* XXX Convert irq_map[] to dynamicaly expandable one. */ static struct intr_map_entry **irq_map; static u_int irq_map_count; static u_int irq_map_first_free_idx; static struct mtx irq_map_lock; static struct intr_irqsrc * intr_map_get_isrc(u_int res_id) { struct intr_irqsrc *isrc; isrc = NULL; mtx_lock(&irq_map_lock); if (res_id < irq_map_count && irq_map[res_id] != NULL) isrc = irq_map[res_id]->isrc; mtx_unlock(&irq_map_lock); return (isrc); } static void intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc) { mtx_lock(&irq_map_lock); if (res_id < irq_map_count && irq_map[res_id] != NULL) irq_map[res_id]->isrc = isrc; mtx_unlock(&irq_map_lock); } /* * Get a copy of intr_map_entry data */ static struct intr_map_data * intr_map_get_map_data(u_int res_id) { struct intr_map_data *data; data = NULL; mtx_lock(&irq_map_lock); if (res_id >= irq_map_count || irq_map[res_id] == NULL) panic("Attempt to copy invalid resource id: %u\n", res_id); data = irq_map[res_id]->map_data; mtx_unlock(&irq_map_lock); return (data); } /* * Get a copy of intr_map_entry data */ static void intr_map_copy_map_data(u_int res_id, device_t *map_dev, intptr_t *map_xref, struct intr_map_data **data) { size_t len; len = 0; mtx_lock(&irq_map_lock); if (res_id >= irq_map_count || irq_map[res_id] == NULL) panic("Attempt to copy invalid resource id: %u\n", res_id); if (irq_map[res_id]->map_data != NULL) len = irq_map[res_id]->map_data->len; mtx_unlock(&irq_map_lock); if (len == 0) *data = NULL; else *data = malloc(len, M_INTRNG, M_WAITOK | M_ZERO); mtx_lock(&irq_map_lock); if (irq_map[res_id] == NULL) panic("Attempt to copy invalid resource id: %u\n", res_id); if (len != 0) { if (len != irq_map[res_id]->map_data->len) panic("Resource id: %u has changed.\n", res_id); memcpy(*data, irq_map[res_id]->map_data, len); } *map_dev = irq_map[res_id]->dev; *map_xref = irq_map[res_id]->xref; mtx_unlock(&irq_map_lock); } /* * Allocate and fill new entry in irq_map table. */ u_int intr_map_irq(device_t dev, intptr_t xref, struct intr_map_data *data) { u_int i; struct intr_map_entry *entry; /* Prepare new entry first. */ entry = malloc(sizeof(*entry), M_INTRNG, M_WAITOK | M_ZERO); entry->dev = dev; entry->xref = xref; entry->map_data = data; entry->isrc = NULL; mtx_lock(&irq_map_lock); for (i = irq_map_first_free_idx; i < irq_map_count; i++) { if (irq_map[i] == NULL) { irq_map[i] = entry; irq_map_first_free_idx = i + 1; mtx_unlock(&irq_map_lock); return (i); } } for (i = 0; i < irq_map_first_free_idx; i++) { if (irq_map[i] == NULL) { irq_map[i] = entry; irq_map_first_free_idx = i + 1; mtx_unlock(&irq_map_lock); return (i); } } mtx_unlock(&irq_map_lock); /* XXX Expand irq_map table */ panic("IRQ mapping table is full."); } /* * Remove and free mapping entry. */ void intr_unmap_irq(u_int res_id) { struct intr_map_entry *entry; mtx_lock(&irq_map_lock); if ((res_id >= irq_map_count) || (irq_map[res_id] == NULL)) panic("Attempt to unmap invalid resource id: %u\n", res_id); entry = irq_map[res_id]; irq_map[res_id] = NULL; irq_map_first_free_idx = res_id; mtx_unlock(&irq_map_lock); intr_free_intr_map_data(entry->map_data); free(entry, M_INTRNG); } /* * Clone mapping entry. */ u_int intr_map_clone_irq(u_int old_res_id) { device_t map_dev; intptr_t map_xref; struct intr_map_data *data; intr_map_copy_map_data(old_res_id, &map_dev, &map_xref, &data); return (intr_map_irq(map_dev, map_xref, data)); } static void intr_map_init(void *dummy __unused) { mtx_init(&irq_map_lock, "intr map table", NULL, MTX_DEF); irq_map_count = 2 * intr_nirq; irq_map = mallocarray(irq_map_count, sizeof(struct intr_map_entry*), M_INTRNG, M_WAITOK | M_ZERO); } SYSINIT(intr_map_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_map_init, NULL); #ifdef SMP /* Virtualization for interrupt source IPI counter increment. */ static inline void intr_ipi_increment_count(u_long *counter, u_int cpu) { KASSERT(cpu < mp_maxid + 1, ("%s: too big cpu %u", __func__, cpu)); counter[cpu]++; } /* * Virtualization for interrupt source IPI counters setup. */ static u_long * intr_ipi_setup_counters(const char *name) { u_int index, i; char str[INTRNAME_LEN]; mtx_lock(&isrc_table_lock); /* * We should never have a problem finding mp_maxid + 1 contiguous * counters, in practice. Interrupts will be allocated sequentially * during boot, so the array should fill from low to high index. Once * reserved, the IPI counters will never be released. Similarly, we * will not need to allocate more IPIs once the system is running. */ bit_ffc_area(intrcnt_bitmap, nintrcnt, mp_maxid + 1, &index); if (index == -1) panic("Failed to allocate %d counters. Array exhausted?", mp_maxid + 1); bit_nset(intrcnt_bitmap, index, index + mp_maxid); for (i = 0; i < mp_maxid + 1; i++) { snprintf(str, INTRNAME_LEN, "cpu%d:%s", i, name); intrcnt_setname(str, index + i); } mtx_unlock(&isrc_table_lock); return (&intrcnt[index]); } /* * Lookup IPI source. */ static struct intr_ipi * intr_ipi_lookup(u_int ipi) { if (ipi >= INTR_IPI_COUNT) panic("%s: no such IPI %u", __func__, ipi); return (&ipi_sources[ipi]); } int intr_ipi_pic_register(device_t dev, u_int priority) { if (intr_ipi_dev_frozen) { device_printf(dev, "IPI device already frozen"); return (EBUSY); } if (intr_ipi_dev == NULL || priority > intr_ipi_dev_priority) { intr_ipi_dev_priority = priority; intr_ipi_dev = dev; } return (0); } /* * Setup IPI handler on interrupt controller. * * Not SMP coherent. */ void intr_ipi_setup(u_int ipi, const char *name, intr_ipi_handler_t *hand, void *arg) { struct intr_irqsrc *isrc; struct intr_ipi *ii; int error; if (!intr_ipi_dev_frozen) { if (intr_ipi_dev == NULL) panic("%s: no IPI PIC attached", __func__); intr_ipi_dev_frozen = true; device_printf(intr_ipi_dev, "using for IPIs\n"); } KASSERT(hand != NULL, ("%s: ipi %u no handler", __func__, ipi)); error = PIC_IPI_SETUP(intr_ipi_dev, ipi, &isrc); if (error != 0) return; isrc->isrc_handlers++; ii = intr_ipi_lookup(ipi); KASSERT(ii->ii_count == NULL, ("%s: ipi %u reused", __func__, ipi)); ii->ii_handler = hand; ii->ii_handler_arg = arg; ii->ii_isrc = isrc; strlcpy(ii->ii_name, name, INTR_IPI_NAMELEN); ii->ii_count = intr_ipi_setup_counters(name); PIC_ENABLE_INTR(intr_ipi_dev, isrc); } void intr_ipi_send(cpuset_t cpus, u_int ipi) { struct intr_ipi *ii; KASSERT(intr_ipi_dev_frozen, ("%s: IPI device not yet frozen", __func__)); ii = intr_ipi_lookup(ipi); if (ii->ii_count == NULL) panic("%s: not setup IPI %u", __func__, ipi); /* * XXX: Surely needed on other architectures too? Either way should be * some kind of MI hook defined in an MD header, or the responsibility * of the MD caller if not widespread. */ #ifdef __aarch64__ /* * Ensure that this CPU's stores will be visible to IPI * recipients before starting to send the interrupts. */ dsb(ishst); #endif PIC_IPI_SEND(intr_ipi_dev, ii->ii_isrc, cpus, ipi); } /* * interrupt controller dispatch function for IPIs. It should * be called straight from the interrupt controller, when associated * interrupt source is learned. Or from anybody who has an interrupt * source mapped. */ void intr_ipi_dispatch(u_int ipi) { struct intr_ipi *ii; ii = intr_ipi_lookup(ipi); if (ii->ii_count == NULL) panic("%s: not setup IPI %u", __func__, ipi); intr_ipi_increment_count(ii->ii_count, PCPU_GET(cpuid)); ii->ii_handler(ii->ii_handler_arg); } #endif