/*- * Copyright (c) 2015-2016 Svatopluk Kraus * Copyright (c) 2015-2016 Michal Meloun * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * New-style Interrupt Framework * * TODO: - to support IPI (PPI) enabling on other CPUs if already started * - to complete things for removable PICs */ #include "opt_acpi.h" #include "opt_ddb.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #include #endif #ifdef DDB #include #endif #include "pic_if.h" #include "msi_if.h" #define INTRNAME_LEN (2*MAXCOMLEN + 1) #ifdef DEBUG #define debugf(fmt, args...) do { printf("%s(): ", __func__); \ printf(fmt,##args); } while (0) #else #define debugf(fmt, args...) #endif MALLOC_DECLARE(M_INTRNG); MALLOC_DEFINE(M_INTRNG, "intr", "intr interrupt handling"); /* Main interrupt handler called from assembler -> 'hidden' for C code. */ void intr_irq_handler(struct trapframe *tf); /* Root interrupt controller stuff. */ device_t intr_irq_root_dev; static intr_irq_filter_t *irq_root_filter; static void *irq_root_arg; static u_int irq_root_ipicount; /* Interrupt controller definition. */ struct intr_pic { SLIST_ENTRY(intr_pic) pic_next; intptr_t pic_xref; /* hardware identification */ device_t pic_dev; #define FLAG_PIC (1 << 0) #define FLAG_MSI (1 << 1) u_int pic_flags; }; static struct mtx pic_list_lock; static SLIST_HEAD(, intr_pic) pic_list; static struct intr_pic *pic_lookup(device_t dev, intptr_t xref); /* Interrupt source definition. */ static struct mtx isrc_table_lock; static struct intr_irqsrc *irq_sources[NIRQ]; u_int irq_next_free; /* * XXX - All stuff around struct intr_dev_data is considered as temporary * until better place for storing struct intr_map_data will be find. * * For now, there are two global interrupt numbers spaces: * <0, NIRQ) ... interrupts without config data * managed in irq_sources[] * IRQ_DDATA_BASE + <0, 2 * NIRQ) ... interrupts with config data * managed in intr_ddata_tab[] * * Read intr_ddata_lookup() to see how these spaces are worked with. * Note that each interrupt number from second space duplicates some number * from first space at this moment. An interrupt number from first space can * be duplicated even multiple times in second space. */ struct intr_dev_data { device_t idd_dev; intptr_t idd_xref; u_int idd_irq; struct intr_map_data * idd_data; struct intr_irqsrc * idd_isrc; }; static struct intr_dev_data *intr_ddata_tab[2 * NIRQ]; static u_int intr_ddata_first_unused; #define IRQ_DDATA_BASE 10000 CTASSERT(IRQ_DDATA_BASE > nitems(irq_sources)); #ifdef SMP static boolean_t irq_assign_cpu = FALSE; #endif /* * - 2 counters for each I/O interrupt. * - MAXCPU counters for each IPI counters for SMP. */ #ifdef SMP #define INTRCNT_COUNT (NIRQ * 2 + INTR_IPI_COUNT * MAXCPU) #else #define INTRCNT_COUNT (NIRQ * 2) #endif /* Data for MI statistics reporting. */ u_long intrcnt[INTRCNT_COUNT]; char intrnames[INTRCNT_COUNT * INTRNAME_LEN]; size_t sintrcnt = sizeof(intrcnt); size_t sintrnames = sizeof(intrnames); static u_int intrcnt_index; /* * Interrupt framework initialization routine. */ static void intr_irq_init(void *dummy __unused) { SLIST_INIT(&pic_list); mtx_init(&pic_list_lock, "intr pic list", NULL, MTX_DEF); mtx_init(&isrc_table_lock, "intr isrc table", NULL, MTX_DEF); } SYSINIT(intr_irq_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_irq_init, NULL); static void intrcnt_setname(const char *name, int index) { snprintf(intrnames + INTRNAME_LEN * index, INTRNAME_LEN, "%-*s", INTRNAME_LEN - 1, name); } /* * Update name for interrupt source with interrupt event. */ static void intrcnt_updatename(struct intr_irqsrc *isrc) { /* QQQ: What about stray counter name? */ mtx_assert(&isrc_table_lock, MA_OWNED); intrcnt_setname(isrc->isrc_event->ie_fullname, isrc->isrc_index); } /* * Virtualization for interrupt source interrupt counter increment. */ static inline void isrc_increment_count(struct intr_irqsrc *isrc) { if (isrc->isrc_flags & INTR_ISRCF_PPI) atomic_add_long(&isrc->isrc_count[0], 1); else isrc->isrc_count[0]++; } /* * Virtualization for interrupt source interrupt stray counter increment. */ static inline void isrc_increment_straycount(struct intr_irqsrc *isrc) { isrc->isrc_count[1]++; } /* * Virtualization for interrupt source interrupt name update. */ static void isrc_update_name(struct intr_irqsrc *isrc, const char *name) { char str[INTRNAME_LEN]; mtx_assert(&isrc_table_lock, MA_OWNED); if (name != NULL) { snprintf(str, INTRNAME_LEN, "%s: %s", isrc->isrc_name, name); intrcnt_setname(str, isrc->isrc_index); snprintf(str, INTRNAME_LEN, "stray %s: %s", isrc->isrc_name, name); intrcnt_setname(str, isrc->isrc_index + 1); } else { snprintf(str, INTRNAME_LEN, "%s:", isrc->isrc_name); intrcnt_setname(str, isrc->isrc_index); snprintf(str, INTRNAME_LEN, "stray %s:", isrc->isrc_name); intrcnt_setname(str, isrc->isrc_index + 1); } } /* * Virtualization for interrupt source interrupt counters setup. */ static void isrc_setup_counters(struct intr_irqsrc *isrc) { u_int index; /* * XXX - it does not work well with removable controllers and * interrupt sources !!! */ index = atomic_fetchadd_int(&intrcnt_index, 2); isrc->isrc_index = index; isrc->isrc_count = &intrcnt[index]; isrc_update_name(isrc, NULL); } /* * Virtualization for interrupt source interrupt counters release. */ static void isrc_release_counters(struct intr_irqsrc *isrc) { panic("%s: not implemented", __func__); } #ifdef SMP /* * Virtualization for interrupt source IPI counters setup. */ u_long * intr_ipi_setup_counters(const char *name) { u_int index, i; char str[INTRNAME_LEN]; index = atomic_fetchadd_int(&intrcnt_index, MAXCPU); for (i = 0; i < MAXCPU; i++) { snprintf(str, INTRNAME_LEN, "cpu%d:%s", i, name); intrcnt_setname(str, index + i); } return (&intrcnt[index]); } #endif /* * Main interrupt dispatch handler. It's called straight * from the assembler, where CPU interrupt is served. */ void intr_irq_handler(struct trapframe *tf) { struct trapframe * oldframe; struct thread * td; KASSERT(irq_root_filter != NULL, ("%s: no filter", __func__)); PCPU_INC(cnt.v_intr); critical_enter(); td = curthread; oldframe = td->td_intr_frame; td->td_intr_frame = tf; irq_root_filter(irq_root_arg); td->td_intr_frame = oldframe; critical_exit(); } /* * interrupt controller dispatch function for interrupts. It should * be called straight from the interrupt controller, when associated interrupt * source is learned. */ int intr_isrc_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf) { KASSERT(isrc != NULL, ("%s: no source", __func__)); isrc_increment_count(isrc); #ifdef INTR_SOLO if (isrc->isrc_filter != NULL) { int error; error = isrc->isrc_filter(isrc->isrc_arg, tf); PIC_POST_FILTER(isrc->isrc_dev, isrc); if (error == FILTER_HANDLED) return (0); } else #endif if (isrc->isrc_event != NULL) { if (intr_event_handle(isrc->isrc_event, tf) == 0) return (0); } isrc_increment_straycount(isrc); return (EINVAL); } /* * Alloc unique interrupt number (resource handle) for interrupt source. * * There could be various strategies how to allocate free interrupt number * (resource handle) for new interrupt source. * * 1. Handles are always allocated forward, so handles are not recycled * immediately. However, if only one free handle left which is reused * constantly... */ static inline int isrc_alloc_irq(struct intr_irqsrc *isrc) { u_int maxirqs, irq; mtx_assert(&isrc_table_lock, MA_OWNED); maxirqs = nitems(irq_sources); if (irq_next_free >= maxirqs) return (ENOSPC); for (irq = irq_next_free; irq < maxirqs; irq++) { if (irq_sources[irq] == NULL) goto found; } for (irq = 0; irq < irq_next_free; irq++) { if (irq_sources[irq] == NULL) goto found; } irq_next_free = maxirqs; return (ENOSPC); found: isrc->isrc_irq = irq; irq_sources[irq] = isrc; irq_next_free = irq + 1; if (irq_next_free >= maxirqs) irq_next_free = 0; return (0); } /* * Free unique interrupt number (resource handle) from interrupt source. */ static inline int isrc_free_irq(struct intr_irqsrc *isrc) { mtx_assert(&isrc_table_lock, MA_OWNED); if (isrc->isrc_irq >= nitems(irq_sources)) return (EINVAL); if (irq_sources[isrc->isrc_irq] != isrc) return (EINVAL); irq_sources[isrc->isrc_irq] = NULL; isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */ return (0); } /* * Lookup interrupt source by interrupt number (resource handle). */ static inline struct intr_irqsrc * isrc_lookup(u_int irq) { if (irq < nitems(irq_sources)) return (irq_sources[irq]); return (NULL); } /* * Initialize interrupt source and register it into global interrupt table. */ int intr_isrc_register(struct intr_irqsrc *isrc, device_t dev, u_int flags, const char *fmt, ...) { int error; va_list ap; bzero(isrc, sizeof(struct intr_irqsrc)); isrc->isrc_dev = dev; isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */ isrc->isrc_flags = flags; va_start(ap, fmt); vsnprintf(isrc->isrc_name, INTR_ISRC_NAMELEN, fmt, ap); va_end(ap); mtx_lock(&isrc_table_lock); error = isrc_alloc_irq(isrc); if (error != 0) { mtx_unlock(&isrc_table_lock); return (error); } /* * Setup interrupt counters, but not for IPI sources. Those are setup * later and only for used ones (up to INTR_IPI_COUNT) to not exhaust * our counter pool. */ if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) isrc_setup_counters(isrc); mtx_unlock(&isrc_table_lock); return (0); } /* * Deregister interrupt source from global interrupt table. */ int intr_isrc_deregister(struct intr_irqsrc *isrc) { int error; mtx_lock(&isrc_table_lock); if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0) isrc_release_counters(isrc); error = isrc_free_irq(isrc); mtx_unlock(&isrc_table_lock); return (error); } #ifdef SMP /* * A support function for a PIC to decide if provided ISRC should be inited * on given cpu. The logic of INTR_ISRCF_BOUND flag and isrc_cpu member of * struct intr_irqsrc is the following: * * If INTR_ISRCF_BOUND is set, the ISRC should be inited only on cpus * set in isrc_cpu. If not, the ISRC should be inited on every cpu and * isrc_cpu is kept consistent with it. Thus isrc_cpu is always correct. */ bool intr_isrc_init_on_cpu(struct intr_irqsrc *isrc, u_int cpu) { if (isrc->isrc_handlers == 0) return (false); if ((isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) == 0) return (false); if (isrc->isrc_flags & INTR_ISRCF_BOUND) return (CPU_ISSET(cpu, &isrc->isrc_cpu)); CPU_SET(cpu, &isrc->isrc_cpu); return (true); } #endif static struct intr_dev_data * intr_ddata_alloc(u_int extsize) { struct intr_dev_data *ddata; size_t size; size = sizeof(*ddata); ddata = malloc(size + extsize, M_INTRNG, M_WAITOK | M_ZERO); mtx_lock(&isrc_table_lock); if (intr_ddata_first_unused >= nitems(intr_ddata_tab)) { mtx_unlock(&isrc_table_lock); free(ddata, M_INTRNG); return (NULL); } intr_ddata_tab[intr_ddata_first_unused] = ddata; ddata->idd_irq = IRQ_DDATA_BASE + intr_ddata_first_unused++; mtx_unlock(&isrc_table_lock); ddata->idd_data = (struct intr_map_data *)((uintptr_t)ddata + size); ddata->idd_data->size = extsize; return (ddata); } static struct intr_irqsrc * intr_ddata_lookup(u_int irq, struct intr_map_data **datap) { int error; struct intr_irqsrc *isrc; struct intr_dev_data *ddata; isrc = isrc_lookup(irq); if (isrc != NULL) { if (datap != NULL) *datap = NULL; return (isrc); } if (irq < IRQ_DDATA_BASE) return (NULL); irq -= IRQ_DDATA_BASE; if (irq >= nitems(intr_ddata_tab)) return (NULL); ddata = intr_ddata_tab[irq]; if (ddata->idd_isrc == NULL) { error = intr_map_irq(ddata->idd_dev, ddata->idd_xref, ddata->idd_data, &irq); if (error != 0) return (NULL); ddata->idd_isrc = isrc_lookup(irq); } if (datap != NULL) *datap = ddata->idd_data; return (ddata->idd_isrc); } #ifdef DEV_ACPI /* * Map interrupt source according to ACPI info into framework. If such mapping * does not exist, create it. Return unique interrupt number (resource handle) * associated with mapped interrupt source. */ u_int intr_acpi_map_irq(device_t dev, u_int irq, enum intr_polarity pol, enum intr_trigger trig) { struct intr_map_data_acpi *daa; struct intr_dev_data *ddata; ddata = intr_ddata_alloc(sizeof(struct intr_map_data_acpi)); if (ddata == NULL) return (INTR_IRQ_INVALID); /* no space left */ ddata->idd_dev = dev; ddata->idd_data->type = INTR_MAP_DATA_ACPI; daa = (struct intr_map_data_acpi *)ddata->idd_data; daa->irq = irq; daa->pol = pol; daa->trig = trig; return (ddata->idd_irq); } #endif #ifdef FDT /* * Map interrupt source according to FDT data into framework. If such mapping * does not exist, create it. Return unique interrupt number (resource handle) * associated with mapped interrupt source. */ u_int intr_fdt_map_irq(phandle_t node, pcell_t *cells, u_int ncells) { size_t cellsize; struct intr_dev_data *ddata; struct intr_map_data_fdt *daf; cellsize = ncells * sizeof(*cells); ddata = intr_ddata_alloc(sizeof(struct intr_map_data_fdt) + cellsize); if (ddata == NULL) return (INTR_IRQ_INVALID); /* no space left */ ddata->idd_xref = (intptr_t)node; ddata->idd_data->type = INTR_MAP_DATA_FDT; daf = (struct intr_map_data_fdt *)ddata->idd_data; daf->ncells = ncells; memcpy(daf->cells, cells, cellsize); return (ddata->idd_irq); } #endif /* * Store GPIO interrupt decription in framework and return unique interrupt * number (resource handle) associated with it. */ u_int intr_gpio_map_irq(device_t dev, u_int pin_num, u_int pin_flags, u_int intr_mode) { struct intr_dev_data *ddata; struct intr_map_data_gpio *dag; ddata = intr_ddata_alloc(sizeof(struct intr_map_data_gpio)); if (ddata == NULL) return (INTR_IRQ_INVALID); /* no space left */ ddata->idd_dev = dev; ddata->idd_data->type = INTR_MAP_DATA_GPIO; dag = (struct intr_map_data_gpio *)ddata->idd_data; dag->gpio_pin_num = pin_num; dag->gpio_pin_flags = pin_flags; dag->gpio_intr_mode = intr_mode; return (ddata->idd_irq); } #ifdef INTR_SOLO /* * Setup filter into interrupt source. */ static int iscr_setup_filter(struct intr_irqsrc *isrc, const char *name, intr_irq_filter_t *filter, void *arg, void **cookiep) { if (filter == NULL) return (EINVAL); mtx_lock(&isrc_table_lock); /* * Make sure that we do not mix the two ways * how we handle interrupt sources. */ if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) { mtx_unlock(&isrc_table_lock); return (EBUSY); } isrc->isrc_filter = filter; isrc->isrc_arg = arg; isrc_update_name(isrc, name); mtx_unlock(&isrc_table_lock); *cookiep = isrc; return (0); } #endif /* * Interrupt source pre_ithread method for MI interrupt framework. */ static void intr_isrc_pre_ithread(void *arg) { struct intr_irqsrc *isrc = arg; PIC_PRE_ITHREAD(isrc->isrc_dev, isrc); } /* * Interrupt source post_ithread method for MI interrupt framework. */ static void intr_isrc_post_ithread(void *arg) { struct intr_irqsrc *isrc = arg; PIC_POST_ITHREAD(isrc->isrc_dev, isrc); } /* * Interrupt source post_filter method for MI interrupt framework. */ static void intr_isrc_post_filter(void *arg) { struct intr_irqsrc *isrc = arg; PIC_POST_FILTER(isrc->isrc_dev, isrc); } /* * Interrupt source assign_cpu method for MI interrupt framework. */ static int intr_isrc_assign_cpu(void *arg, int cpu) { #ifdef SMP struct intr_irqsrc *isrc = arg; int error; if (isrc->isrc_dev != intr_irq_root_dev) return (EINVAL); mtx_lock(&isrc_table_lock); if (cpu == NOCPU) { CPU_ZERO(&isrc->isrc_cpu); isrc->isrc_flags &= ~INTR_ISRCF_BOUND; } else { CPU_SETOF(cpu, &isrc->isrc_cpu); isrc->isrc_flags |= INTR_ISRCF_BOUND; } /* * In NOCPU case, it's up to PIC to either leave ISRC on same CPU or * re-balance it to another CPU or enable it on more CPUs. However, * PIC is expected to change isrc_cpu appropriately to keep us well * informed if the call is successful. */ if (irq_assign_cpu) { error = PIC_BIND_INTR(isrc->isrc_dev, isrc); if (error) { CPU_ZERO(&isrc->isrc_cpu); mtx_unlock(&isrc_table_lock); return (error); } } mtx_unlock(&isrc_table_lock); return (0); #else return (EOPNOTSUPP); #endif } /* * Create interrupt event for interrupt source. */ static int isrc_event_create(struct intr_irqsrc *isrc) { struct intr_event *ie; int error; error = intr_event_create(&ie, isrc, 0, isrc->isrc_irq, intr_isrc_pre_ithread, intr_isrc_post_ithread, intr_isrc_post_filter, intr_isrc_assign_cpu, "%s:", isrc->isrc_name); if (error) return (error); mtx_lock(&isrc_table_lock); /* * Make sure that we do not mix the two ways * how we handle interrupt sources. Let contested event wins. */ #ifdef INTR_SOLO if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) { #else if (isrc->isrc_event != NULL) { #endif mtx_unlock(&isrc_table_lock); intr_event_destroy(ie); return (isrc->isrc_event != NULL ? EBUSY : 0); } isrc->isrc_event = ie; mtx_unlock(&isrc_table_lock); return (0); } #ifdef notyet /* * Destroy interrupt event for interrupt source. */ static void isrc_event_destroy(struct intr_irqsrc *isrc) { struct intr_event *ie; mtx_lock(&isrc_table_lock); ie = isrc->isrc_event; isrc->isrc_event = NULL; mtx_unlock(&isrc_table_lock); if (ie != NULL) intr_event_destroy(ie); } #endif /* * Add handler to interrupt source. */ static int isrc_add_handler(struct intr_irqsrc *isrc, const char *name, driver_filter_t filter, driver_intr_t handler, void *arg, enum intr_type flags, void **cookiep) { int error; if (isrc->isrc_event == NULL) { error = isrc_event_create(isrc); if (error) return (error); } error = intr_event_add_handler(isrc->isrc_event, name, filter, handler, arg, intr_priority(flags), flags, cookiep); if (error == 0) { mtx_lock(&isrc_table_lock); intrcnt_updatename(isrc); mtx_unlock(&isrc_table_lock); } return (error); } /* * Lookup interrupt controller locked. */ static inline struct intr_pic * pic_lookup_locked(device_t dev, intptr_t xref) { struct intr_pic *pic; mtx_assert(&pic_list_lock, MA_OWNED); if (dev == NULL && xref == 0) return (NULL); /* Note that pic->pic_dev is never NULL on registered PIC. */ SLIST_FOREACH(pic, &pic_list, pic_next) { if (dev == NULL) { if (xref == pic->pic_xref) return (pic); } else if (xref == 0 || pic->pic_xref == 0) { if (dev == pic->pic_dev) return (pic); } else if (xref == pic->pic_xref && dev == pic->pic_dev) return (pic); } return (NULL); } /* * Lookup interrupt controller. */ static struct intr_pic * pic_lookup(device_t dev, intptr_t xref) { struct intr_pic *pic; mtx_lock(&pic_list_lock); pic = pic_lookup_locked(dev, xref); mtx_unlock(&pic_list_lock); return (pic); } /* * Create interrupt controller. */ static struct intr_pic * pic_create(device_t dev, intptr_t xref) { struct intr_pic *pic; mtx_lock(&pic_list_lock); pic = pic_lookup_locked(dev, xref); if (pic != NULL) { mtx_unlock(&pic_list_lock); return (pic); } pic = malloc(sizeof(*pic), M_INTRNG, M_NOWAIT | M_ZERO); if (pic == NULL) { mtx_unlock(&pic_list_lock); return (NULL); } pic->pic_xref = xref; pic->pic_dev = dev; SLIST_INSERT_HEAD(&pic_list, pic, pic_next); mtx_unlock(&pic_list_lock); return (pic); } #ifdef notyet /* * Destroy interrupt controller. */ static void pic_destroy(device_t dev, intptr_t xref) { struct intr_pic *pic; mtx_lock(&pic_list_lock); pic = pic_lookup_locked(dev, xref); if (pic == NULL) { mtx_unlock(&pic_list_lock); return; } SLIST_REMOVE(&pic_list, pic, intr_pic, pic_next); mtx_unlock(&pic_list_lock); free(pic, M_INTRNG); } #endif /* * Register interrupt controller. */ int intr_pic_register(device_t dev, intptr_t xref) { struct intr_pic *pic; if (dev == NULL) return (EINVAL); pic = pic_create(dev, xref); if (pic == NULL) return (ENOMEM); pic->pic_flags |= FLAG_PIC; debugf("PIC %p registered for %s \n", pic, device_get_nameunit(dev), dev, xref); return (0); } /* * Unregister interrupt controller. */ int intr_pic_deregister(device_t dev, intptr_t xref) { panic("%s: not implemented", __func__); } /* * Mark interrupt controller (itself) as a root one. * * Note that only an interrupt controller can really know its position * in interrupt controller's tree. So root PIC must claim itself as a root. * * In FDT case, according to ePAPR approved version 1.1 from 08 April 2011, * page 30: * "The root of the interrupt tree is determined when traversal * of the interrupt tree reaches an interrupt controller node without * an interrupts property and thus no explicit interrupt parent." */ int intr_pic_claim_root(device_t dev, intptr_t xref, intr_irq_filter_t *filter, void *arg, u_int ipicount) { struct intr_pic *pic; pic = pic_lookup(dev, xref); if (pic == NULL) { device_printf(dev, "not registered\n"); return (EINVAL); } KASSERT((pic->pic_flags & FLAG_PIC) != 0, ("%s: Found a non-PIC controller: %s", __func__, device_get_name(pic->pic_dev))); if (filter == NULL) { device_printf(dev, "filter missing\n"); return (EINVAL); } /* * Only one interrupt controllers could be on the root for now. * Note that we further suppose that there is not threaded interrupt * routine (handler) on the root. See intr_irq_handler(). */ if (intr_irq_root_dev != NULL) { device_printf(dev, "another root already set\n"); return (EBUSY); } intr_irq_root_dev = dev; irq_root_filter = filter; irq_root_arg = arg; irq_root_ipicount = ipicount; debugf("irq root set to %s\n", device_get_nameunit(dev)); return (0); } int intr_map_irq(device_t dev, intptr_t xref, struct intr_map_data *data, u_int *irqp) { int error; struct intr_irqsrc *isrc; struct intr_pic *pic; if (data == NULL) return (EINVAL); pic = pic_lookup(dev, xref); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_PIC) != 0, ("%s: Found a non-PIC controller: %s", __func__, device_get_name(pic->pic_dev))); error = PIC_MAP_INTR(pic->pic_dev, data, &isrc); if (error == 0) *irqp = isrc->isrc_irq; return (error); } int intr_alloc_irq(device_t dev, struct resource *res) { struct intr_map_data *data; struct intr_irqsrc *isrc; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); isrc = intr_ddata_lookup(rman_get_start(res), &data); if (isrc == NULL) return (EINVAL); return (PIC_ALLOC_INTR(isrc->isrc_dev, isrc, res, data)); } int intr_release_irq(device_t dev, struct resource *res) { struct intr_map_data *data; struct intr_irqsrc *isrc; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); isrc = intr_ddata_lookup(rman_get_start(res), &data); if (isrc == NULL) return (EINVAL); return (PIC_RELEASE_INTR(isrc->isrc_dev, isrc, res, data)); } int intr_setup_irq(device_t dev, struct resource *res, driver_filter_t filt, driver_intr_t hand, void *arg, int flags, void **cookiep) { int error; struct intr_map_data *data; struct intr_irqsrc *isrc; const char *name; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); isrc = intr_ddata_lookup(rman_get_start(res), &data); if (isrc == NULL) return (EINVAL); name = device_get_nameunit(dev); #ifdef INTR_SOLO /* * Standard handling is done through MI interrupt framework. However, * some interrupts could request solely own special handling. This * non standard handling can be used for interrupt controllers without * handler (filter only), so in case that interrupt controllers are * chained, MI interrupt framework is called only in leaf controller. * * Note that root interrupt controller routine is served as well, * however in intr_irq_handler(), i.e. main system dispatch routine. */ if (flags & INTR_SOLO && hand != NULL) { debugf("irq %u cannot solo on %s\n", irq, name); return (EINVAL); } if (flags & INTR_SOLO) { error = iscr_setup_filter(isrc, name, (intr_irq_filter_t *)filt, arg, cookiep); debugf("irq %u setup filter error %d on %s\n", irq, error, name); } else #endif { error = isrc_add_handler(isrc, name, filt, hand, arg, flags, cookiep); debugf("irq %u add handler error %d on %s\n", irq, error, name); } if (error != 0) return (error); mtx_lock(&isrc_table_lock); error = PIC_SETUP_INTR(isrc->isrc_dev, isrc, res, data); if (error == 0) { isrc->isrc_handlers++; if (isrc->isrc_handlers == 1) PIC_ENABLE_INTR(isrc->isrc_dev, isrc); } mtx_unlock(&isrc_table_lock); if (error != 0) intr_event_remove_handler(*cookiep); return (error); } int intr_teardown_irq(device_t dev, struct resource *res, void *cookie) { int error; struct intr_map_data *data; struct intr_irqsrc *isrc; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); isrc = intr_ddata_lookup(rman_get_start(res), &data); if (isrc == NULL || isrc->isrc_handlers == 0) return (EINVAL); #ifdef INTR_SOLO if (isrc->isrc_filter != NULL) { if (isrc != cookie) return (EINVAL); mtx_lock(&isrc_table_lock); isrc->isrc_filter = NULL; isrc->isrc_arg = NULL; isrc->isrc_handlers = 0; PIC_DISABLE_INTR(isrc->isrc_dev, isrc); PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data); isrc_update_name(isrc, NULL); mtx_unlock(&isrc_table_lock); return (0); } #endif if (isrc != intr_handler_source(cookie)) return (EINVAL); error = intr_event_remove_handler(cookie); if (error == 0) { mtx_lock(&isrc_table_lock); isrc->isrc_handlers--; if (isrc->isrc_handlers == 0) PIC_DISABLE_INTR(isrc->isrc_dev, isrc); PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data); intrcnt_updatename(isrc); mtx_unlock(&isrc_table_lock); } return (error); } int intr_describe_irq(device_t dev, struct resource *res, void *cookie, const char *descr) { int error; struct intr_irqsrc *isrc; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); isrc = intr_ddata_lookup(rman_get_start(res), NULL); if (isrc == NULL || isrc->isrc_handlers == 0) return (EINVAL); #ifdef INTR_SOLO if (isrc->isrc_filter != NULL) { if (isrc != cookie) return (EINVAL); mtx_lock(&isrc_table_lock); isrc_update_name(isrc, descr); mtx_unlock(&isrc_table_lock); return (0); } #endif error = intr_event_describe_handler(isrc->isrc_event, cookie, descr); if (error == 0) { mtx_lock(&isrc_table_lock); intrcnt_updatename(isrc); mtx_unlock(&isrc_table_lock); } return (error); } #ifdef SMP int intr_bind_irq(device_t dev, struct resource *res, int cpu) { struct intr_irqsrc *isrc; KASSERT(rman_get_start(res) == rman_get_end(res), ("%s: more interrupts in resource", __func__)); isrc = intr_ddata_lookup(rman_get_start(res), NULL); if (isrc == NULL || isrc->isrc_handlers == 0) return (EINVAL); #ifdef INTR_SOLO if (isrc->isrc_filter != NULL) return (intr_isrc_assign_cpu(isrc, cpu)); #endif return (intr_event_bind(isrc->isrc_event, cpu)); } /* * Return the CPU that the next interrupt source should use. * For now just returns the next CPU according to round-robin. */ u_int intr_irq_next_cpu(u_int last_cpu, cpuset_t *cpumask) { if (!irq_assign_cpu || mp_ncpus == 1) return (PCPU_GET(cpuid)); do { last_cpu++; if (last_cpu > mp_maxid) last_cpu = 0; } while (!CPU_ISSET(last_cpu, cpumask)); return (last_cpu); } /* * Distribute all the interrupt sources among the available * CPUs once the AP's have been launched. */ static void intr_irq_shuffle(void *arg __unused) { struct intr_irqsrc *isrc; u_int i; if (mp_ncpus == 1) return; mtx_lock(&isrc_table_lock); irq_assign_cpu = TRUE; for (i = 0; i < NIRQ; i++) { isrc = irq_sources[i]; if (isrc == NULL || isrc->isrc_handlers == 0 || isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) continue; if (isrc->isrc_event != NULL && isrc->isrc_flags & INTR_ISRCF_BOUND && isrc->isrc_event->ie_cpu != CPU_FFS(&isrc->isrc_cpu) - 1) panic("%s: CPU inconsistency", __func__); if ((isrc->isrc_flags & INTR_ISRCF_BOUND) == 0) CPU_ZERO(&isrc->isrc_cpu); /* start again */ /* * We are in wicked position here if the following call fails * for bound ISRC. The best thing we can do is to clear * isrc_cpu so inconsistency with ie_cpu will be detectable. */ if (PIC_BIND_INTR(isrc->isrc_dev, isrc) != 0) CPU_ZERO(&isrc->isrc_cpu); } mtx_unlock(&isrc_table_lock); } SYSINIT(intr_irq_shuffle, SI_SUB_SMP, SI_ORDER_SECOND, intr_irq_shuffle, NULL); #else u_int intr_irq_next_cpu(u_int current_cpu, cpuset_t *cpumask) { return (PCPU_GET(cpuid)); } #endif /* * Register a MSI/MSI-X interrupt controller */ int intr_msi_register(device_t dev, intptr_t xref) { struct intr_pic *pic; if (dev == NULL) return (EINVAL); pic = pic_create(dev, xref); if (pic == NULL) return (ENOMEM); pic->pic_flags |= FLAG_MSI; debugf("PIC %p registered for %s \n", pic, device_get_nameunit(dev), dev, (uintmax_t)xref); return (0); } int intr_alloc_msi(device_t pci, device_t child, intptr_t xref, int count, int maxcount, int *irqs) { struct intr_irqsrc **isrc; struct intr_pic *pic; device_t pdev; int err, i; pic = pic_lookup(NULL, xref); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_MSI) != 0, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK); err = MSI_ALLOC_MSI(pic->pic_dev, child, count, maxcount, &pdev, isrc); if (err == 0) { for (i = 0; i < count; i++) { irqs[i] = isrc[i]->isrc_irq; } } free(isrc, M_INTRNG); return (err); } int intr_release_msi(device_t pci, device_t child, intptr_t xref, int count, int *irqs) { struct intr_irqsrc **isrc; struct intr_pic *pic; int i, err; pic = pic_lookup(NULL, xref); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_MSI) != 0, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK); for (i = 0; i < count; i++) { isrc[i] = isrc_lookup(irqs[i]); if (isrc == NULL) { free(isrc, M_INTRNG); return (EINVAL); } } err = MSI_RELEASE_MSI(pic->pic_dev, child, count, isrc); free(isrc, M_INTRNG); return (err); } int intr_alloc_msix(device_t pci, device_t child, intptr_t xref, int *irq) { struct intr_irqsrc *isrc; struct intr_pic *pic; device_t pdev; int err; pic = pic_lookup(NULL, xref); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_MSI) != 0, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); err = MSI_ALLOC_MSIX(pic->pic_dev, child, &pdev, &isrc); if (err != 0) return (err); *irq = isrc->isrc_irq; return (0); } int intr_release_msix(device_t pci, device_t child, intptr_t xref, int irq) { struct intr_irqsrc *isrc; struct intr_pic *pic; int err; pic = pic_lookup(NULL, xref); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_MSI) != 0, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); isrc = isrc_lookup(irq); if (isrc == NULL) return (EINVAL); err = MSI_RELEASE_MSIX(pic->pic_dev, child, isrc); return (err); } int intr_map_msi(device_t pci, device_t child, intptr_t xref, int irq, uint64_t *addr, uint32_t *data) { struct intr_irqsrc *isrc; struct intr_pic *pic; int err; pic = pic_lookup(NULL, xref); if (pic == NULL) return (ESRCH); KASSERT((pic->pic_flags & FLAG_MSI) != 0, ("%s: Found a non-MSI controller: %s", __func__, device_get_name(pic->pic_dev))); isrc = isrc_lookup(irq); if (isrc == NULL) return (EINVAL); err = MSI_MAP_MSI(pic->pic_dev, child, isrc, addr, data); return (err); } void dosoftints(void); void dosoftints(void) { } #ifdef SMP /* * Init interrupt controller on another CPU. */ void intr_pic_init_secondary(void) { /* * QQQ: Only root PIC is aware of other CPUs ??? */ KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__)); //mtx_lock(&isrc_table_lock); PIC_INIT_SECONDARY(intr_irq_root_dev); //mtx_unlock(&isrc_table_lock); } #endif #ifdef DDB DB_SHOW_COMMAND(irqs, db_show_irqs) { u_int i, irqsum; u_long num; struct intr_irqsrc *isrc; for (irqsum = 0, i = 0; i < NIRQ; i++) { isrc = irq_sources[i]; if (isrc == NULL) continue; num = isrc->isrc_count != NULL ? isrc->isrc_count[0] : 0; db_printf("irq%-3u <%s>: cpu %02lx%s cnt %lu\n", i, isrc->isrc_name, isrc->isrc_cpu.__bits[0], isrc->isrc_flags & INTR_ISRCF_BOUND ? " (bound)" : "", num); irqsum += num; } db_printf("irq total %u\n", irqsum); } #endif