/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Common code for managing bounce pages for bus_dma backends. As * this code currently assumes it can access internal members of * opaque types like bus_dma_tag_t and bus_dmamap it is #include'd in * backends rather than being compiled standalone. * * Prerequisites: * * - M_BUSDMA malloc type * - struct bus_dmamap * - hw_busdma SYSCTL_NODE * - macros to access the following fields of bus_dma_tag_t: * - dmat_alignment() * - dmat_flags() * - dmat_lowaddr() * - dmat_lockfunc() * - dmat_lockarg() */ #include #include struct bounce_page { vm_offset_t vaddr; /* kva of bounce buffer */ bus_addr_t busaddr; /* Physical address */ vm_offset_t datavaddr; /* kva of client data */ #if defined(__amd64__) || defined(__i386__) vm_page_t datapage[2]; /* physical page(s) of client data */ #else vm_page_t datapage; /* physical page of client data */ #endif vm_offset_t dataoffs; /* page offset of client data */ bus_size_t datacount; /* client data count */ STAILQ_ENTRY(bounce_page) links; }; struct bounce_zone { STAILQ_ENTRY(bounce_zone) links; STAILQ_HEAD(, bounce_page) bounce_page_list; STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist; int total_bpages; int free_bpages; int reserved_bpages; int active_bpages; int total_bounced; int total_deferred; int map_count; #ifdef dmat_domain int domain; #endif sbintime_t total_deferred_time; bus_size_t alignment; bus_addr_t lowaddr; char zoneid[8]; char lowaddrid[20]; struct sysctl_ctx_list sysctl_tree; struct sysctl_oid *sysctl_tree_top; }; static struct mtx bounce_lock; MTX_SYSINIT(bounce_lock, &bounce_lock, "bounce pages lock", MTX_DEF); static int total_bpages; static int busdma_zonecount; static STAILQ_HEAD(, bounce_zone) bounce_zone_list = STAILQ_HEAD_INITIALIZER(bounce_zone_list); static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist = STAILQ_HEAD_INITIALIZER(bounce_map_callbacklist); static MALLOC_DEFINE(M_BOUNCE, "bounce", "busdma bounce pages"); SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0, "Total bounce pages"); static void busdma_thread(void *); static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit); static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags) { struct bounce_zone *bz; /* Reserve Necessary Bounce Pages */ mtx_lock(&bounce_lock); if (flags & BUS_DMA_NOWAIT) { if (reserve_bounce_pages(dmat, map, 0) != 0) { map->pagesneeded = 0; mtx_unlock(&bounce_lock); return (ENOMEM); } } else { if (reserve_bounce_pages(dmat, map, 1) != 0) { /* Queue us for resources */ bz = dmat->bounce_zone; STAILQ_INSERT_TAIL(&bz->bounce_map_waitinglist, map, links); map->queued_time = sbinuptime(); mtx_unlock(&bounce_lock); return (EINPROGRESS); } } mtx_unlock(&bounce_lock); return (0); } static struct sysctl_ctx_list * busdma_sysctl_tree(struct bounce_zone *bz) { return (&bz->sysctl_tree); } static struct sysctl_oid * busdma_sysctl_tree_top(struct bounce_zone *bz) { return (bz->sysctl_tree_top); } /* * Returns true if the address falls within the tag's exclusion window, or * fails to meet its alignment requirements. */ static bool addr_needs_bounce(bus_dma_tag_t dmat, bus_addr_t paddr) { if (paddr > dmat_lowaddr(dmat) && paddr <= dmat_highaddr(dmat)) return (true); if (!vm_addr_align_ok(paddr, dmat_alignment(dmat))) return (true); return (false); } static int alloc_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz; bool start_thread; /* Check to see if we already have a suitable zone */ STAILQ_FOREACH(bz, &bounce_zone_list, links) { if ((dmat_alignment(dmat) <= bz->alignment) && #ifdef dmat_domain dmat_domain(dmat) == bz->domain && #endif (dmat_lowaddr(dmat) >= bz->lowaddr)) { dmat->bounce_zone = bz; return (0); } } if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_BUSDMA, M_NOWAIT | M_ZERO)) == NULL) return (ENOMEM); STAILQ_INIT(&bz->bounce_page_list); STAILQ_INIT(&bz->bounce_map_waitinglist); bz->free_bpages = 0; bz->reserved_bpages = 0; bz->active_bpages = 0; bz->lowaddr = dmat_lowaddr(dmat); bz->alignment = MAX(dmat_alignment(dmat), PAGE_SIZE); bz->map_count = 0; #ifdef dmat_domain bz->domain = dmat_domain(dmat); #endif snprintf(bz->zoneid, sizeof(bz->zoneid), "zone%d", busdma_zonecount); busdma_zonecount++; snprintf(bz->lowaddrid, sizeof(bz->lowaddrid), "%#jx", (uintmax_t)bz->lowaddr); start_thread = STAILQ_EMPTY(&bounce_zone_list); STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links); dmat->bounce_zone = bz; sysctl_ctx_init(&bz->sysctl_tree); bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree, SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (bz->sysctl_tree_top == NULL) { sysctl_ctx_free(&bz->sysctl_tree); return (0); /* XXX error code? */ } SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0, "Total bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0, "Free bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0, "Reserved bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0, "Active bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0, "Total bounce requests (pages bounced)"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0, "Total bounce requests that were deferred"); SYSCTL_ADD_STRING(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, ""); SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "alignment", CTLFLAG_RD, &bz->alignment, ""); #ifdef dmat_domain SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "domain", CTLFLAG_RD, &bz->domain, 0, "memory domain"); #endif SYSCTL_ADD_SBINTIME_USEC(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_deferred_time", CTLFLAG_RD, &bz->total_deferred_time, "Cumulative time busdma requests are deferred (us)"); if (start_thread) { if (kproc_create(busdma_thread, NULL, NULL, 0, 0, "busdma") != 0) printf("failed to create busdma thread"); } return (0); } static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages) { struct bounce_zone *bz; int count; bz = dmat->bounce_zone; count = 0; while (numpages > 0) { struct bounce_page *bpage; #ifdef dmat_domain bpage = malloc_domainset(sizeof(*bpage), M_BUSDMA, DOMAINSET_PREF(bz->domain), M_NOWAIT | M_ZERO); #else bpage = malloc(sizeof(*bpage), M_BUSDMA, M_NOWAIT | M_ZERO); #endif if (bpage == NULL) break; #ifdef dmat_domain bpage->vaddr = (vm_offset_t)contigmalloc_domainset(PAGE_SIZE, M_BOUNCE, DOMAINSET_PREF(bz->domain), M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0); #else bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_BOUNCE, M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0); #endif if (bpage->vaddr == 0) { free(bpage, M_BUSDMA); break; } bpage->busaddr = pmap_kextract(bpage->vaddr); mtx_lock(&bounce_lock); STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links); total_bpages++; bz->total_bpages++; bz->free_bpages++; mtx_unlock(&bounce_lock); count++; numpages--; } return (count); } static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit) { struct bounce_zone *bz; int pages; mtx_assert(&bounce_lock, MA_OWNED); bz = dmat->bounce_zone; pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved); if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages)) return (map->pagesneeded - (map->pagesreserved + pages)); bz->free_bpages -= pages; bz->reserved_bpages += pages; map->pagesreserved += pages; pages = map->pagesneeded - map->pagesreserved; return (pages); } #if defined(__amd64__) || defined(__i386__) static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, vm_paddr_t addr1, vm_paddr_t addr2, bus_size_t size) #else static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size) #endif { struct bounce_zone *bz; struct bounce_page *bpage; KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag")); KASSERT(map != NULL, ("add_bounce_page: bad map %p", map)); #if defined(__amd64__) || defined(__i386__) KASSERT(map != &nobounce_dmamap, ("add_bounce_page: bad map %p", map)); #endif #ifdef __riscv KASSERT((map->flags & DMAMAP_COULD_BOUNCE) != 0, ("add_bounce_page: bad map %p", map)); #endif bz = dmat->bounce_zone; if (map->pagesneeded == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesneeded--; if (map->pagesreserved == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesreserved--; mtx_lock(&bounce_lock); bpage = STAILQ_FIRST(&bz->bounce_page_list); if (bpage == NULL) panic("add_bounce_page: free page list is empty"); STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); bz->reserved_bpages--; bz->active_bpages++; mtx_unlock(&bounce_lock); if (dmat_flags(dmat) & BUS_DMA_KEEP_PG_OFFSET) { /* Page offset needs to be preserved. */ #if defined(__amd64__) || defined(__i386__) bpage->vaddr |= addr1 & PAGE_MASK; bpage->busaddr |= addr1 & PAGE_MASK; KASSERT(addr2 == 0, ("Trying to bounce multiple pages with BUS_DMA_KEEP_PG_OFFSET")); #else bpage->vaddr |= addr & PAGE_MASK; bpage->busaddr |= addr & PAGE_MASK; #endif } bpage->datavaddr = vaddr; #if defined(__amd64__) || defined(__i386__) bpage->datapage[0] = PHYS_TO_VM_PAGE(addr1); KASSERT((addr2 & PAGE_MASK) == 0, ("Second page is not aligned")); bpage->datapage[1] = PHYS_TO_VM_PAGE(addr2); bpage->dataoffs = addr1 & PAGE_MASK; #else bpage->datapage = PHYS_TO_VM_PAGE(addr); bpage->dataoffs = addr & PAGE_MASK; #endif bpage->datacount = size; STAILQ_INSERT_TAIL(&(map->bpages), bpage, links); return (bpage->busaddr); } static void free_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_page *bpage; struct bounce_zone *bz; bool schedule_thread; u_int count; if (STAILQ_EMPTY(&map->bpages)) return; bz = dmat->bounce_zone; count = 0; schedule_thread = false; STAILQ_FOREACH(bpage, &map->bpages, links) { bpage->datavaddr = 0; bpage->datacount = 0; if (dmat_flags(dmat) & BUS_DMA_KEEP_PG_OFFSET) { /* * Reset the bounce page to start at offset 0. * Other uses of this bounce page may need to * store a full page of data and/or assume it * starts on a page boundary. */ bpage->vaddr &= ~PAGE_MASK; bpage->busaddr &= ~PAGE_MASK; } count++; } mtx_lock(&bounce_lock); STAILQ_CONCAT(&bz->bounce_page_list, &map->bpages); bz->free_bpages += count; bz->active_bpages -= count; while ((map = STAILQ_FIRST(&bz->bounce_map_waitinglist)) != NULL) { if (reserve_bounce_pages(map->dmat, map, 1) != 0) break; STAILQ_REMOVE_HEAD(&bz->bounce_map_waitinglist, links); STAILQ_INSERT_TAIL(&bounce_map_callbacklist, map, links); bz->total_deferred++; schedule_thread = true; } mtx_unlock(&bounce_lock); if (schedule_thread) wakeup(&bounce_map_callbacklist); } /* * Add a single contiguous physical range to the segment list. */ static bus_size_t _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr, bus_size_t sgsize, bus_dma_segment_t *segs, int *segp) { int seg; KASSERT(curaddr <= BUS_SPACE_MAXADDR, ("ds_addr %#jx > BUS_SPACE_MAXADDR %#jx; dmat %p fl %#x low %#jx " "hi %#jx", (uintmax_t)curaddr, (uintmax_t)BUS_SPACE_MAXADDR, dmat, dmat_bounce_flags(dmat), (uintmax_t)dmat_lowaddr(dmat), (uintmax_t)dmat_highaddr(dmat))); /* * Make sure we don't cross any boundaries. */ if (!vm_addr_bound_ok(curaddr, sgsize, dmat_boundary(dmat))) sgsize = roundup2(curaddr, dmat_boundary(dmat)) - curaddr; /* * Insert chunk into a segment, coalescing with * previous segment if possible. */ seg = *segp; if (seg == -1) { seg = 0; segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } else { if (curaddr == segs[seg].ds_addr + segs[seg].ds_len && (segs[seg].ds_len + sgsize) <= dmat_maxsegsz(dmat) && vm_addr_bound_ok(segs[seg].ds_addr, segs[seg].ds_len + sgsize, dmat_boundary(dmat))) segs[seg].ds_len += sgsize; else { if (++seg >= dmat_nsegments(dmat)) return (0); segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } } *segp = seg; return (sgsize); } /* * Add a contiguous physical range to the segment list, respecting the tag's * maximum segment size and splitting it into multiple segments as necessary. */ static bool _bus_dmamap_addsegs(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr, bus_size_t sgsize, bus_dma_segment_t *segs, int *segp) { bus_size_t done, todo; while (sgsize > 0) { todo = MIN(sgsize, dmat_maxsegsz(dmat)); done = _bus_dmamap_addseg(dmat, map, curaddr, todo, segs, segp); if (done == 0) return (false); curaddr += done; sgsize -= done; } return (true); } static void busdma_thread(void *dummy __unused) { STAILQ_HEAD(, bus_dmamap) callbacklist; bus_dma_tag_t dmat; struct bus_dmamap *map, *nmap; struct bounce_zone *bz; thread_lock(curthread); sched_class(curthread, PRI_ITHD); sched_ithread_prio(curthread, PI_SWI(SWI_BUSDMA)); thread_unlock(curthread); for (;;) { mtx_lock(&bounce_lock); while (STAILQ_EMPTY(&bounce_map_callbacklist)) mtx_sleep(&bounce_map_callbacklist, &bounce_lock, 0, "-", 0); STAILQ_INIT(&callbacklist); STAILQ_CONCAT(&callbacklist, &bounce_map_callbacklist); mtx_unlock(&bounce_lock); STAILQ_FOREACH_SAFE(map, &callbacklist, links, nmap) { dmat = map->dmat; bz = dmat->bounce_zone; dmat_lockfunc(dmat)(dmat_lockfuncarg(dmat), BUS_DMA_LOCK); bz->total_deferred_time += (sbinuptime() - map->queued_time); bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback, map->callback_arg, BUS_DMA_WAITOK); dmat_lockfunc(dmat)(dmat_lockfuncarg(dmat), BUS_DMA_UNLOCK); } } }