/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting * * This module implements a general bitmap allocator/deallocator. The * allocator eats around 2 bits per 'block'. The module does not * try to interpret the meaning of a 'block' other than to return * SWAPBLK_NONE on an allocation failure. * * A radix tree controls access to pieces of the bitmap, and includes * auxiliary information at each interior node about the availabilty of * contiguous free blocks in the subtree rooted at that node. A radix * constant defines the size of the bitmaps contained in a leaf node * and the number of descendents of each of the meta (interior) nodes. * Each subtree is associated with a range of blocks. The root of any * subtree stores a hint field that defines an upper bound on the size * of the largest allocation that can begin in the associated block * range. A hint is an upper bound on a potential allocation, but not * necessarily a tight upper bound. * * The bitmap field in each node directs the search for available blocks. * For a leaf node, a bit is set if the corresponding block is free. For a * meta node, a bit is set if the corresponding subtree contains a free * block somewhere within it. The search at a meta node considers only * children of that node that represent a range that includes a free block. * * The hinting greatly increases code efficiency for allocations while * the general radix structure optimizes both allocations and frees. The * radix tree should be able to operate well no matter how much * fragmentation there is and no matter how large a bitmap is used. * * The blist code wires all necessary memory at creation time. Neither * allocations nor frees require interaction with the memory subsystem. * The non-blocking nature of allocations and frees is required by swap * code (vm/swap_pager.c). * * LAYOUT: The radix tree is laid out recursively using a linear array. * Each meta node is immediately followed (laid out sequentially in * memory) by BLIST_RADIX lower-level nodes. This is a recursive * structure but one that can be easily scanned through a very simple * 'skip' calculation. The memory allocation is only large enough to * cover the number of blocks requested at creation time. Nodes that * represent blocks beyond that limit, nodes that would never be read * or written, are not allocated, so that the last of the * BLIST_RADIX lower-level nodes of a some nodes may not be allocated. * * NOTE: the allocator cannot currently allocate more than * BLIST_RADIX blocks per call. It will panic with 'allocation too * large' if you try. This is an area that could use improvement. The * radix is large enough that this restriction does not effect the swap * system, though. Currently only the allocation code is affected by * this algorithmic unfeature. The freeing code can handle arbitrary * ranges. * * This code can be compiled stand-alone for debugging. */ #include __FBSDID("$FreeBSD$"); #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #else #ifndef BLIST_NO_DEBUG #define BLIST_DEBUG #endif #include #include #include #include #include #include #include #include #include #include #include #define bitcount64(x) __bitcount64((uint64_t)(x)) #define malloc(a,b,c) calloc(a, 1) #define free(a,b) free(a) #define ummin(a,b) ((a) < (b) ? (a) : (b)) #define imin(a,b) ((a) < (b) ? (a) : (b)) #define KASSERT(a,b) assert(a) #include #endif /* * static support functions */ static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int *count, int maxcount); static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t cursor, int *count, int maxcount, u_daddr_t radix); static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count); static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, u_daddr_t radix); static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, blist_t dest, daddr_t count); static daddr_t blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count); static daddr_t blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, u_daddr_t radix); #ifndef _KERNEL static void blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int tab); #endif #ifdef _KERNEL static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space"); #endif #define BLIST_MASK (BLIST_RADIX - 1) /* * For a subtree that can represent the state of up to 'radix' blocks, the * number of leaf nodes of the subtree is L=radix/BLIST_RADIX. If 'm' * is short for BLIST_RADIX, then for a tree of height h with L=m**h * leaf nodes, the total number of tree nodes is 1 + m + m**2 + ... + m**h, * or, equivalently, (m**(h+1)-1)/(m-1). This quantity is called 'skip' * in the 'meta' functions that process subtrees. Since integer division * discards remainders, we can express this computation as * skip = (m * m**h) / (m - 1) * skip = (m * (radix / m)) / (m - 1) * skip = radix / (m - 1) * so that simple integer division by a constant can safely be used for the * calculation. */ static inline daddr_t radix_to_skip(daddr_t radix) { return (radix / BLIST_MASK); } /* * Provide a mask with count bits set, starting as position n. */ static inline u_daddr_t bitrange(int n, int count) { return (((u_daddr_t)-1 << n) & ((u_daddr_t)-1 >> (BLIST_RADIX - (n + count)))); } static inline int bitpos(u_daddr_t mask) { _Static_assert(sizeof(long long) >= sizeof(mask), "mask too big for ffsll()"); return (ffsll(mask) - 1); } /* * blist_create() - create a blist capable of handling up to the specified * number of blocks * * blocks - must be greater than 0 * flags - malloc flags * * The smallest blist consists of a single leaf node capable of * managing BLIST_RADIX blocks. */ blist_t blist_create(daddr_t blocks, int flags) { blist_t bl; u_daddr_t nodes, radix; KASSERT(blocks > 0, ("invalid block count")); /* * Calculate the radix and node count used for scanning. */ nodes = 1; for (radix = 1; (blocks - 1) / BLIST_RADIX / radix > 0; radix *= BLIST_RADIX) nodes += 1 + (blocks - 1) / BLIST_RADIX / radix; /* * Include a sentinel node to ensure that cross-leaf scans stay within * the bounds of the allocation. */ if (blocks % BLIST_RADIX == 0) nodes++; bl = malloc(offsetof(struct blist, bl_root[nodes]), M_SWAP, flags | M_ZERO); if (bl == NULL) return (NULL); bl->bl_blocks = blocks; bl->bl_radix = radix; #if defined(BLIST_DEBUG) printf( "BLIST representing %lld blocks (%lld MB of swap)" ", requiring %lldK of ram\n", (long long)bl->bl_blocks, (long long)bl->bl_blocks * 4 / 1024, (long long)(nodes * sizeof(blmeta_t) + 1023) / 1024 ); printf("BLIST raw radix tree contains %lld records\n", (long long)nodes); #endif return (bl); } void blist_destroy(blist_t bl) { free(bl, M_SWAP); } /* * blist_alloc() - reserve space in the block bitmap. Return the base * of a contiguous region or SWAPBLK_NONE if space could * not be allocated. */ daddr_t blist_alloc(blist_t bl, int *count, int maxcount) { daddr_t blk, cursor; KASSERT(*count <= maxcount, ("invalid parameters %d > %d", *count, maxcount)); KASSERT(*count <= BLIST_MAX_ALLOC, ("minimum allocation too large: %d", *count)); /* * This loop iterates at most twice. An allocation failure in the * first iteration leads to a second iteration only if the cursor was * non-zero. When the cursor is zero, an allocation failure will * stop further iterations. */ for (cursor = bl->bl_cursor;; cursor = 0) { blk = blst_meta_alloc(bl->bl_root, cursor, count, maxcount, bl->bl_radix); if (blk != SWAPBLK_NONE) { bl->bl_avail -= *count; bl->bl_cursor = blk + *count; if (bl->bl_cursor == bl->bl_blocks) bl->bl_cursor = 0; return (blk); } if (cursor == 0) return (SWAPBLK_NONE); } } /* * blist_avail() - return the number of free blocks. */ daddr_t blist_avail(blist_t bl) { return (bl->bl_avail); } /* * blist_free() - free up space in the block bitmap. Return the base * of a contiguous region. */ void blist_free(blist_t bl, daddr_t blkno, daddr_t count) { KASSERT(blkno >= 0 && blkno + count <= bl->bl_blocks, ("freeing invalid range: blkno %jx, count %d, blocks %jd", (uintmax_t)blkno, (int)count, (uintmax_t)bl->bl_blocks)); blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix); bl->bl_avail += count; } /* * blist_fill() - mark a region in the block bitmap as off-limits * to the allocator (i.e. allocate it), ignoring any * existing allocations. Return the number of blocks * actually filled that were free before the call. */ daddr_t blist_fill(blist_t bl, daddr_t blkno, daddr_t count) { daddr_t filled; KASSERT(blkno >= 0 && blkno + count <= bl->bl_blocks, ("filling invalid range: blkno %jx, count %d, blocks %jd", (uintmax_t)blkno, (int)count, (uintmax_t)bl->bl_blocks)); filled = blst_meta_fill(bl->bl_root, blkno, count, bl->bl_radix); bl->bl_avail -= filled; return (filled); } /* * blist_resize() - resize an existing radix tree to handle the * specified number of blocks. This will reallocate * the tree and transfer the previous bitmap to the new * one. When extending the tree you can specify whether * the new blocks are to left allocated or freed. */ void blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags) { blist_t newbl = blist_create(count, flags); blist_t save = *pbl; *pbl = newbl; if (count > save->bl_blocks) count = save->bl_blocks; blst_copy(save->bl_root, 0, save->bl_radix, newbl, count); /* * If resizing upwards, should we free the new space or not? */ if (freenew && count < newbl->bl_blocks) { blist_free(newbl, count, newbl->bl_blocks - count); } blist_destroy(save); } #ifdef BLIST_DEBUG /* * blist_print() - dump radix tree */ void blist_print(blist_t bl) { printf("BLIST avail = %jd, cursor = %08jx {\n", (uintmax_t)bl->bl_avail, (uintmax_t)bl->bl_cursor); if (bl->bl_root->bm_bitmap != 0) blst_radix_print(bl->bl_root, 0, bl->bl_radix, 4); printf("}\n"); } #endif static const u_daddr_t fib[] = { 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, }; /* * Use 'gap' to describe a maximal range of unallocated blocks/bits. */ struct gap_stats { daddr_t start; /* current gap start, or SWAPBLK_NONE */ daddr_t num; /* number of gaps observed */ daddr_t max; /* largest gap size */ daddr_t avg; /* average gap size */ daddr_t err; /* sum - num * avg */ daddr_t histo[nitems(fib)]; /* # gaps in each size range */ int max_bucket; /* last histo elt with nonzero val */ }; /* * gap_stats_counting() - is the state 'counting 1 bits'? * or 'skipping 0 bits'? */ static inline bool gap_stats_counting(const struct gap_stats *stats) { return (stats->start != SWAPBLK_NONE); } /* * init_gap_stats() - initialize stats on gap sizes */ static inline void init_gap_stats(struct gap_stats *stats) { bzero(stats, sizeof(*stats)); stats->start = SWAPBLK_NONE; } /* * update_gap_stats() - update stats on gap sizes */ static void update_gap_stats(struct gap_stats *stats, daddr_t posn) { daddr_t size; int hi, lo, mid; if (!gap_stats_counting(stats)) { stats->start = posn; return; } size = posn - stats->start; stats->start = SWAPBLK_NONE; if (size > stats->max) stats->max = size; /* * Find the fibonacci range that contains size, * expecting to find it in an early range. */ lo = 0; hi = 1; while (hi < nitems(fib) && fib[hi] <= size) { lo = hi; hi *= 2; } if (hi >= nitems(fib)) hi = nitems(fib); while (lo + 1 != hi) { mid = (lo + hi) >> 1; if (fib[mid] <= size) lo = mid; else hi = mid; } stats->histo[lo]++; if (lo > stats->max_bucket) stats->max_bucket = lo; stats->err += size - stats->avg; stats->num++; stats->avg += stats->err / stats->num; stats->err %= stats->num; } /* * dump_gap_stats() - print stats on gap sizes */ static inline void dump_gap_stats(const struct gap_stats *stats, struct sbuf *s) { int i; sbuf_printf(s, "number of maximal free ranges: %jd\n", (intmax_t)stats->num); sbuf_printf(s, "largest free range: %jd\n", (intmax_t)stats->max); sbuf_printf(s, "average maximal free range size: %jd\n", (intmax_t)stats->avg); sbuf_printf(s, "number of maximal free ranges of different sizes:\n"); sbuf_printf(s, " count | size range\n"); sbuf_printf(s, " ----- | ----------\n"); for (i = 0; i < stats->max_bucket; i++) { if (stats->histo[i] != 0) { sbuf_printf(s, "%20jd | ", (intmax_t)stats->histo[i]); if (fib[i] != fib[i + 1] - 1) sbuf_printf(s, "%jd to %jd\n", (intmax_t)fib[i], (intmax_t)fib[i + 1] - 1); else sbuf_printf(s, "%jd\n", (intmax_t)fib[i]); } } sbuf_printf(s, "%20jd | ", (intmax_t)stats->histo[i]); if (stats->histo[i] > 1) sbuf_printf(s, "%jd to %jd\n", (intmax_t)fib[i], (intmax_t)stats->max); else sbuf_printf(s, "%jd\n", (intmax_t)stats->max); } /* * blist_stats() - dump radix tree stats */ void blist_stats(blist_t bl, struct sbuf *s) { struct gap_stats gstats; struct gap_stats *stats = &gstats; daddr_t i, nodes, radix; u_daddr_t diff, mask; int digit; init_gap_stats(stats); nodes = 0; radix = bl->bl_radix; for (i = 0; i < bl->bl_blocks; ) { /* * Check for skippable subtrees starting at i. */ while (radix != 1) { if (bl->bl_root[nodes].bm_bitmap == 0) { if (gap_stats_counting(stats)) update_gap_stats(stats, i); break; } /* * Skip subtree root. */ nodes++; radix /= BLIST_RADIX; } if (radix == 1) { /* * Scan leaf. */ mask = bl->bl_root[nodes].bm_bitmap; diff = mask ^ (mask << 1); if (gap_stats_counting(stats)) diff ^= 1; while (diff != 0) { digit = bitpos(diff); update_gap_stats(stats, i + digit); diff ^= bitrange(digit, 1); } } nodes += radix_to_skip(radix * BLIST_RADIX); i += radix * BLIST_RADIX; /* * Find max size subtree starting at i. */ for (radix = 1; ((i / BLIST_RADIX / radix) & BLIST_MASK) == 0; radix *= BLIST_RADIX) ; } update_gap_stats(stats, i); dump_gap_stats(stats, s); } /************************************************************************ * ALLOCATION SUPPORT FUNCTIONS * ************************************************************************ * * These support functions do all the actual work. They may seem * rather longish, but that's because I've commented them up. The * actual code is straight forward. * */ /* * BLST_NEXT_LEAF_ALLOC() - allocate the blocks starting with the next leaf. * * 'scan' is a leaf node, and its first block is at address 'start'. The * next leaf node could be adjacent, or several nodes away if the least * common ancestor of 'scan' and its neighbor is several levels up. Use * addresses to determine how many meta-nodes lie between the leaves. If * sequence of leaves starting with the next one has enough initial bits * set, clear them and clear the bits in the meta nodes on the path up to * the least common ancestor to mark any subtrees made completely empty. */ static int blst_next_leaf_alloc(blmeta_t *scan, daddr_t start, int count, int maxcount) { u_daddr_t radix; daddr_t blk; int avail, digit; start += BLIST_RADIX; for (blk = start; blk - start < maxcount; blk += BLIST_RADIX) { /* Skip meta-nodes, as long as they promise more free blocks. */ radix = BLIST_RADIX; while (((++scan)->bm_bitmap & 1) == 1 && ((blk / radix) & BLIST_MASK) == 0) radix *= BLIST_RADIX; if (~scan->bm_bitmap != 0) { /* * Either there is no next leaf with any free blocks, * or we've reached the next leaf and found that some * of its blocks are not free. In the first case, * bitpos() returns zero here. */ avail = blk - start + bitpos(~scan->bm_bitmap); if (avail < count || avail == 0) { /* * There isn't a next leaf with enough free * blocks at its beginning to bother * allocating. */ return (avail); } maxcount = imin(avail, maxcount); if (maxcount % BLIST_RADIX == 0) { /* * There was no next leaf. Back scan up to * last leaf. */ do { radix /= BLIST_RADIX; --scan; } while (radix != 1); blk -= BLIST_RADIX; } } } /* * 'scan' is the last leaf that provides blocks. Clear from 1 to * BLIST_RADIX bits to represent the allocation of those last blocks. */ if (maxcount % BLIST_RADIX != 0) scan->bm_bitmap &= ~bitrange(0, maxcount % BLIST_RADIX); else scan->bm_bitmap = 0; for (;;) { /* Back up over meta-nodes, clearing bits if necessary. */ blk -= BLIST_RADIX; for (radix = BLIST_RADIX; (digit = ((blk / radix) & BLIST_MASK)) == 0; radix *= BLIST_RADIX) { if ((scan--)->bm_bitmap == 0) scan->bm_bitmap ^= 1; } if ((scan--)->bm_bitmap == 0) scan[-digit * radix_to_skip(radix)].bm_bitmap ^= (u_daddr_t)1 << digit; if (blk == start) break; /* Clear all the bits of this leaf. */ scan->bm_bitmap = 0; } return (maxcount); } /* * BLST_LEAF_ALLOC() - allocate at a leaf in the radix tree (a bitmap). * * This function is the core of the allocator. Its execution time is * proportional to log(count), plus height of the tree if the allocation * crosses a leaf boundary. */ static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int *count, int maxcount) { u_daddr_t mask; int bighint, count1, hi, lo, num_shifts; count1 = *count - 1; num_shifts = fls(count1); mask = ~scan->bm_bitmap; while ((mask & (mask + 1)) != 0 && num_shifts > 0) { /* * If bit i is 0 in mask, then bits in [i, i + (count1 >> * num_shifts)] are 1 in scan->bm_bitmap. Reduce num_shifts to * 0, while preserving this invariant. The updates to mask * leave fewer bits 0, but each bit that remains 0 represents a * longer string of consecutive 1-bits in scan->bm_bitmap. If * more updates to mask cannot set more bits, because mask is * partitioned with all 1 bits following all 0 bits, the loop * terminates immediately. */ num_shifts--; mask |= mask >> ((count1 >> num_shifts) + 1) / 2; } bighint = count1 >> num_shifts; if (~mask == 0) { /* * Update bighint. There is no allocation bigger than * count1 >> num_shifts starting in this leaf. */ scan->bm_bighint = bighint; return (SWAPBLK_NONE); } /* Discard any candidates that appear before blk. */ if ((blk & BLIST_MASK) != 0) { if ((~mask & bitrange(0, blk & BLIST_MASK)) != 0) { /* Grow bighint in case all discarded bits are set. */ bighint += blk & BLIST_MASK; mask |= bitrange(0, blk & BLIST_MASK); if (~mask == 0) { scan->bm_bighint = bighint; return (SWAPBLK_NONE); } } blk -= blk & BLIST_MASK; } /* * The least significant set bit in mask marks the start of the first * available range of sufficient size. Find its position. */ lo = bitpos(~mask); /* * Find how much space is available starting at that position. */ if ((mask & (mask + 1)) != 0) { /* Count the 1 bits starting at position lo. */ hi = bitpos(mask & (mask + 1)) + count1; if (maxcount < hi - lo) hi = lo + maxcount; *count = hi - lo; mask = ~bitrange(lo, *count); } else if (maxcount <= BLIST_RADIX - lo) { /* All the blocks we can use are available here. */ hi = lo + maxcount; *count = maxcount; mask = ~bitrange(lo, *count); if (hi == BLIST_RADIX) scan->bm_bighint = bighint; } else { /* Check next leaf for some of the blocks we want or need. */ count1 = *count - (BLIST_RADIX - lo); maxcount -= BLIST_RADIX - lo; hi = blst_next_leaf_alloc(scan, blk, count1, maxcount); if (hi < count1) /* * The next leaf cannot supply enough blocks to reach * the minimum required allocation. The hint cannot be * updated, because the same allocation request could * be satisfied later, by this leaf, if the state of * the next leaf changes, and without any changes to * this leaf. */ return (SWAPBLK_NONE); *count = BLIST_RADIX - lo + hi; scan->bm_bighint = bighint; } /* Clear the allocated bits from this leaf. */ scan->bm_bitmap &= mask; return (blk + lo); } /* * blist_meta_alloc() - allocate at a meta in the radix tree. * * Attempt to allocate at a meta node. If we can't, we update * bighint and return a failure. Updating bighint optimize future * calls that hit this node. We have to check for our collapse cases * and we have a few optimizations strewn in as well. */ static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t cursor, int *count, int maxcount, u_daddr_t radix) { daddr_t blk, i, r, skip; u_daddr_t mask; bool scan_from_start; int digit; if (radix == 1) return (blst_leaf_alloc(scan, cursor, count, maxcount)); blk = cursor & -(radix * BLIST_RADIX); scan_from_start = (cursor == blk); skip = radix_to_skip(radix); mask = scan->bm_bitmap; /* Discard any candidates that appear before cursor. */ digit = (cursor / radix) & BLIST_MASK; mask &= (u_daddr_t)-1 << digit; if (mask == 0) return (SWAPBLK_NONE); /* * If the first try is for a block that includes the cursor, pre-undo * the digit * radix offset in the first call; otherwise, ignore the * cursor entirely. */ if (((mask >> digit) & 1) == 1) cursor -= digit * radix; else cursor = blk; /* * Examine the nonempty subtree associated with each bit set in mask. */ do { digit = bitpos(mask); i = 1 + digit * skip; if (*count <= scan[i].bm_bighint) { /* * The allocation might fit beginning in the i'th subtree. */ r = blst_meta_alloc(&scan[i], cursor + digit * radix, count, maxcount, radix / BLIST_RADIX); if (r != SWAPBLK_NONE) { if (scan[i].bm_bitmap == 0) scan->bm_bitmap ^= bitrange(digit, 1); return (r); } } cursor = blk; } while ((mask ^= bitrange(digit, 1)) != 0); /* * We couldn't allocate count in this subtree. If the whole tree was * scanned, and the last tree node is allocated, update bighint. */ if (scan_from_start && !(digit == BLIST_RADIX - 1 && scan[i].bm_bighint == BLIST_MAX_ALLOC)) scan->bm_bighint = *count - 1; return (SWAPBLK_NONE); } /* * BLST_LEAF_FREE() - free allocated block from leaf bitmap * */ static void blst_leaf_free(blmeta_t *scan, daddr_t blk, int count) { u_daddr_t mask; /* * free some data in this bitmap * mask=0000111111111110000 * \_________/\__/ * count n */ mask = bitrange(blk & BLIST_MASK, count); KASSERT((scan->bm_bitmap & mask) == 0, ("freeing free block: %jx, size %d, mask %jx", (uintmax_t)blk, count, (uintmax_t)scan->bm_bitmap & mask)); scan->bm_bitmap |= mask; } /* * BLST_META_FREE() - free allocated blocks from radix tree meta info * * This support routine frees a range of blocks from the bitmap. * The range must be entirely enclosed by this radix node. If a * meta node, we break the range down recursively to free blocks * in subnodes (which means that this code can free an arbitrary * range whereas the allocation code cannot allocate an arbitrary * range). */ static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, u_daddr_t radix) { daddr_t blk, endBlk, i, skip; int digit, endDigit; /* * We could probably do a better job here. We are required to make * bighint at least as large as the biggest allocable block of data. * If we just shoehorn it, a little extra overhead will be incurred * on the next allocation (but only that one typically). */ scan->bm_bighint = BLIST_MAX_ALLOC; if (radix == 1) return (blst_leaf_free(scan, freeBlk, count)); endBlk = freeBlk + count; blk = (freeBlk + radix * BLIST_RADIX) & -(radix * BLIST_RADIX); /* * blk is first block past the end of the range of this meta node, * or 0 in case of overflow. */ if (blk != 0) endBlk = ummin(endBlk, blk); skip = radix_to_skip(radix); blk = freeBlk & -radix; digit = (blk / radix) & BLIST_MASK; endDigit = 1 + (((endBlk - 1) / radix) & BLIST_MASK); scan->bm_bitmap |= bitrange(digit, endDigit - digit); for (i = 1 + digit * skip; blk < endBlk; i += skip) { blk += radix; count = ummin(blk, endBlk) - freeBlk; blst_meta_free(&scan[i], freeBlk, count, radix / BLIST_RADIX); freeBlk = blk; } } /* * BLST_COPY() - copy one radix tree to another * * Locates free space in the source tree and frees it in the destination * tree. The space may not already be free in the destination. */ static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, blist_t dest, daddr_t count) { daddr_t endBlk, i, skip; /* * Leaf node */ if (radix == 1) { u_daddr_t v = scan->bm_bitmap; if (v == (u_daddr_t)-1) { blist_free(dest, blk, count); } else if (v != 0) { int i; for (i = 0; i < count; ++i) { if (v & ((u_daddr_t)1 << i)) blist_free(dest, blk + i, 1); } } return; } /* * Meta node */ if (scan->bm_bitmap == 0) { /* * Source all allocated, leave dest allocated */ return; } endBlk = blk + count; skip = radix_to_skip(radix); for (i = 1; blk < endBlk; i += skip) { blk += radix; count = radix; if (blk >= endBlk) count -= blk - endBlk; blst_copy(&scan[i], blk - radix, radix / BLIST_RADIX, dest, count); } } /* * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap * * This routine allocates all blocks in the specified range * regardless of any existing allocations in that range. Returns * the number of blocks allocated by the call. */ static daddr_t blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count) { daddr_t nblks; u_daddr_t mask; mask = bitrange(blk & BLIST_MASK, count); /* Count the number of blocks that we are allocating. */ nblks = bitcount64(scan->bm_bitmap & mask); scan->bm_bitmap &= ~mask; return (nblks); } /* * BLIST_META_FILL() - allocate specific blocks at a meta node * * This routine allocates the specified range of blocks, * regardless of any existing allocations in the range. The * range must be within the extent of this node. Returns the * number of blocks allocated by the call. */ static daddr_t blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, u_daddr_t radix) { daddr_t blk, endBlk, i, nblks, skip; int digit; if (radix == 1) return (blst_leaf_fill(scan, allocBlk, count)); endBlk = allocBlk + count; blk = (allocBlk + radix * BLIST_RADIX) & -(radix * BLIST_RADIX); /* * blk is first block past the end of the range of this meta node, * or 0 in case of overflow. */ if (blk != 0) endBlk = ummin(endBlk, blk); skip = radix_to_skip(radix); blk = allocBlk & -radix; nblks = 0; while (blk < endBlk) { digit = (blk / radix) & BLIST_MASK; i = 1 + digit * skip; blk += radix; count = ummin(blk, endBlk) - allocBlk; nblks += blst_meta_fill(&scan[i], allocBlk, count, radix / BLIST_RADIX); if (scan[i].bm_bitmap == 0) scan->bm_bitmap &= ~((u_daddr_t)1 << digit); allocBlk = blk; } return (nblks); } #ifdef BLIST_DEBUG static void blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int tab) { daddr_t skip; u_daddr_t mask; int digit; if (radix == 1) { printf( "%*.*s(%08llx,%lld): bitmap %0*llx big=%lld\n", tab, tab, "", (long long)blk, (long long)BLIST_RADIX, (int)(1 + (BLIST_RADIX - 1) / 4), (long long)scan->bm_bitmap, (long long)scan->bm_bighint ); return; } printf( "%*.*s(%08llx): subtree (%lld/%lld) bitmap %0*llx big=%lld {\n", tab, tab, "", (long long)blk, (long long)radix * BLIST_RADIX, (long long)radix * BLIST_RADIX, (int)(1 + (BLIST_RADIX - 1) / 4), (long long)scan->bm_bitmap, (long long)scan->bm_bighint ); skip = radix_to_skip(radix); tab += 4; mask = scan->bm_bitmap; /* Examine the nonempty subtree associated with each bit set in mask */ do { digit = bitpos(mask); blst_radix_print(&scan[1 + digit * skip], blk + digit * radix, radix / BLIST_RADIX, tab); } while ((mask ^= bitrange(digit, 1)) != 0); tab -= 4; printf( "%*.*s}\n", tab, tab, "" ); } #endif #ifdef BLIST_DEBUG int main(int ac, char **av) { daddr_t size = BLIST_RADIX * BLIST_RADIX; int i; blist_t bl; struct sbuf *s; for (i = 1; i < ac; ++i) { const char *ptr = av[i]; if (*ptr != '-') { size = strtoll(ptr, NULL, 0); continue; } ptr += 2; fprintf(stderr, "Bad option: %s\n", ptr - 2); exit(1); } bl = blist_create(size, M_WAITOK); if (bl == NULL) { fprintf(stderr, "blist_create failed\n"); exit(1); } blist_free(bl, 0, size); for (;;) { char buf[1024]; long long da = 0; int count = 0, maxcount = 0; printf("%lld/%lld/%lld> ", (long long)blist_avail(bl), (long long)size, (long long)bl->bl_radix * BLIST_RADIX); fflush(stdout); if (fgets(buf, sizeof(buf), stdin) == NULL) break; switch(buf[0]) { case 'r': if (sscanf(buf + 1, "%d", &count) == 1) { blist_resize(&bl, count, 1, M_WAITOK); } else { printf("?\n"); } case 'p': blist_print(bl); break; case 's': s = sbuf_new_auto(); blist_stats(bl, s); sbuf_finish(s); printf("%s", sbuf_data(s)); sbuf_delete(s); break; case 'a': if (sscanf(buf + 1, "%d%d", &count, &maxcount) == 2) { daddr_t blk = blist_alloc(bl, &count, maxcount); printf(" R=%08llx, c=%08d\n", (long long)blk, count); } else { printf("?\n"); } break; case 'f': if (sscanf(buf + 1, "%llx %d", &da, &count) == 2) { blist_free(bl, da, count); } else { printf("?\n"); } break; case 'l': if (sscanf(buf + 1, "%llx %d", &da, &count) == 2) { printf(" n=%jd\n", (intmax_t)blist_fill(bl, da, count)); } else { printf("?\n"); } break; case '?': case 'h': puts( "p -print\n" "s -stats\n" "a %d %d -allocate\n" "f %x %d -free\n" "l %x %d -fill\n" "r %d -resize\n" "h/? -help\n" "q -quit" ); break; case 'q': break; default: printf("?\n"); break; } if (buf[0] == 'q') break; } return (0); } #endif