/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1990, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_ktrace.h" #include "opt_sched.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #ifdef EPOCH_TRACE #include #endif #include static void synch_setup(void *dummy); SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL); int hogticks; static const char pause_wchan[MAXCPU]; static struct callout loadav_callout; struct loadavg averunnable = { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */ /* * Constants for averages over 1, 5, and 15 minutes * when sampling at 5 second intervals. */ static uint64_t cexp[3] = { 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 0.9944598480048967 * FSCALE, /* exp(-1/180) */ }; /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */ SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "Fixed-point scale factor used for calculating load average values"); static void loadav(void *arg); SDT_PROVIDER_DECLARE(sched); SDT_PROBE_DEFINE(sched, , , preempt); static void sleepinit(void *unused) { hogticks = (hz / 10) * 2; /* Default only. */ init_sleepqueues(); } /* * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure * it is available. */ SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL); /* * General sleep call. Suspends the current thread until a wakeup is * performed on the specified identifier. The thread will then be made * runnable with the specified priority. Sleeps at most sbt units of time * (0 means no timeout). If pri includes the PCATCH flag, let signals * interrupt the sleep, otherwise ignore them while sleeping. Returns 0 if * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a * signal becomes pending, ERESTART is returned if the current system * call should be restarted if possible, and EINTR is returned if the system * call should be interrupted by the signal (return EINTR). * * The lock argument is unlocked before the caller is suspended, and * re-locked before _sleep() returns. If priority includes the PDROP * flag the lock is not re-locked before returning. */ int _sleep(const void *ident, struct lock_object *lock, int priority, const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags) { struct thread *td __ktrace_used; struct lock_class *class; uintptr_t lock_state; int catch, pri, rval, sleepq_flags; WITNESS_SAVE_DECL(lock_witness); TSENTER(); td = curthread; #ifdef KTRACE if (KTRPOINT(td, KTR_CSW)) ktrcsw(1, 0, wmesg); #endif WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock, "Sleeping on \"%s\"", wmesg); KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL || (priority & PNOLOCK) != 0, ("sleeping without a lock")); KASSERT(ident != NULL, ("_sleep: NULL ident")); KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running")); if (priority & PDROP) KASSERT(lock != NULL && lock != &Giant.lock_object, ("PDROP requires a non-Giant lock")); if (lock != NULL) class = LOCK_CLASS(lock); else class = NULL; if (SCHEDULER_STOPPED()) { if (lock != NULL && priority & PDROP) class->lc_unlock(lock); return (0); } catch = priority & PCATCH; pri = priority & PRIMASK; KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep")); if ((uintptr_t)ident >= (uintptr_t)&pause_wchan[0] && (uintptr_t)ident <= (uintptr_t)&pause_wchan[MAXCPU - 1]) sleepq_flags = SLEEPQ_PAUSE; else sleepq_flags = SLEEPQ_SLEEP; if (catch) sleepq_flags |= SLEEPQ_INTERRUPTIBLE; sleepq_lock(ident); CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)", td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident); if (lock == &Giant.lock_object) mtx_assert(&Giant, MA_OWNED); DROP_GIANT(); if (lock != NULL && lock != &Giant.lock_object && !(class->lc_flags & LC_SLEEPABLE)) { KASSERT(!(class->lc_flags & LC_SPINLOCK), ("spin locks can only use msleep_spin")); WITNESS_SAVE(lock, lock_witness); lock_state = class->lc_unlock(lock); } else /* GCC needs to follow the Yellow Brick Road */ lock_state = -1; /* * We put ourselves on the sleep queue and start our timeout * before calling thread_suspend_check, as we could stop there, * and a wakeup or a SIGCONT (or both) could occur while we were * stopped without resuming us. Thus, we must be ready for sleep * when cursig() is called. If the wakeup happens while we're * stopped, then td will no longer be on a sleep queue upon * return from cursig(). */ sleepq_add(ident, lock, wmesg, sleepq_flags, 0); if (sbt != 0) sleepq_set_timeout_sbt(ident, sbt, pr, flags); if (lock != NULL && class->lc_flags & LC_SLEEPABLE) { sleepq_release(ident); WITNESS_SAVE(lock, lock_witness); lock_state = class->lc_unlock(lock); sleepq_lock(ident); } if (sbt != 0 && catch) rval = sleepq_timedwait_sig(ident, pri); else if (sbt != 0) rval = sleepq_timedwait(ident, pri); else if (catch) rval = sleepq_wait_sig(ident, pri); else { sleepq_wait(ident, pri); rval = 0; } #ifdef KTRACE if (KTRPOINT(td, KTR_CSW)) ktrcsw(0, 0, wmesg); #endif PICKUP_GIANT(); if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) { class->lc_lock(lock, lock_state); WITNESS_RESTORE(lock, lock_witness); } TSEXIT(); return (rval); } int msleep_spin_sbt(const void *ident, struct mtx *mtx, const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags) { struct thread *td __ktrace_used; int rval; WITNESS_SAVE_DECL(mtx); td = curthread; KASSERT(mtx != NULL, ("sleeping without a mutex")); KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident")); KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running")); if (SCHEDULER_STOPPED()) return (0); sleepq_lock(ident); CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)", td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident); DROP_GIANT(); mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED); WITNESS_SAVE(&mtx->lock_object, mtx); mtx_unlock_spin(mtx); /* * We put ourselves on the sleep queue and start our timeout. */ sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0); if (sbt != 0) sleepq_set_timeout_sbt(ident, sbt, pr, flags); /* * Can't call ktrace with any spin locks held so it can lock the * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold * any spin lock. Thus, we have to drop the sleepq spin lock while * we handle those requests. This is safe since we have placed our * thread on the sleep queue already. */ #ifdef KTRACE if (KTRPOINT(td, KTR_CSW)) { sleepq_release(ident); ktrcsw(1, 0, wmesg); sleepq_lock(ident); } #endif #ifdef WITNESS sleepq_release(ident); WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"", wmesg); sleepq_lock(ident); #endif if (sbt != 0) rval = sleepq_timedwait(ident, 0); else { sleepq_wait(ident, 0); rval = 0; } #ifdef KTRACE if (KTRPOINT(td, KTR_CSW)) ktrcsw(0, 0, wmesg); #endif PICKUP_GIANT(); mtx_lock_spin(mtx); WITNESS_RESTORE(&mtx->lock_object, mtx); return (rval); } /* * pause_sbt() delays the calling thread by the given signed binary * time. During cold bootup, pause_sbt() uses the DELAY() function * instead of the _sleep() function to do the waiting. The "sbt" * argument must be greater than or equal to zero. A "sbt" value of * zero is equivalent to a "sbt" value of one tick. */ int pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags) { KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0")); /* silently convert invalid timeouts */ if (sbt == 0) sbt = tick_sbt; if ((cold && curthread == &thread0) || kdb_active || SCHEDULER_STOPPED()) { /* * We delay one second at a time to avoid overflowing the * system specific DELAY() function(s): */ while (sbt >= SBT_1S) { DELAY(1000000); sbt -= SBT_1S; } /* Do the delay remainder, if any */ sbt = howmany(sbt, SBT_1US); if (sbt > 0) DELAY(sbt); return (EWOULDBLOCK); } return (_sleep(&pause_wchan[curcpu], NULL, (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags)); } /* * Make all threads sleeping on the specified identifier runnable. */ void wakeup(const void *ident) { sleepq_lock(ident); sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0); sleepq_release(ident); } /* * Make a thread sleeping on the specified identifier runnable. * May wake more than one thread if a target thread is currently * swapped out. */ void wakeup_one(const void *ident) { sleepq_lock(ident); sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_DROP, 0, 0); } void wakeup_any(const void *ident) { sleepq_lock(ident); sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR | SLEEPQ_DROP, 0, 0); } /* * Signal sleeping waiters after the counter has reached zero. */ void _blockcount_wakeup(blockcount_t *bc, u_int old) { KASSERT(_BLOCKCOUNT_WAITERS(old), ("%s: no waiters on %p", __func__, bc)); if (atomic_cmpset_int(&bc->__count, _BLOCKCOUNT_WAITERS_FLAG, 0)) wakeup(bc); } /* * Wait for a wakeup or a signal. This does not guarantee that the count is * still zero on return. Callers wanting a precise answer should use * blockcount_wait() with an interlock. * * If there is no work to wait for, return 0. If the sleep was interrupted by a * signal, return EINTR or ERESTART, and return EAGAIN otherwise. */ int _blockcount_sleep(blockcount_t *bc, struct lock_object *lock, const char *wmesg, int prio) { void *wchan; uintptr_t lock_state; u_int old; int ret; bool catch, drop; KASSERT(lock != &Giant.lock_object, ("%s: cannot use Giant as the interlock", __func__)); catch = (prio & PCATCH) != 0; drop = (prio & PDROP) != 0; prio &= PRIMASK; /* * Synchronize with the fence in blockcount_release(). If we end up * waiting, the sleepqueue lock acquisition will provide the required * side effects. * * If there is no work to wait for, but waiters are present, try to put * ourselves to sleep to avoid jumping ahead. */ if (atomic_load_acq_int(&bc->__count) == 0) { if (lock != NULL && drop) LOCK_CLASS(lock)->lc_unlock(lock); return (0); } lock_state = 0; wchan = bc; sleepq_lock(wchan); DROP_GIANT(); if (lock != NULL) lock_state = LOCK_CLASS(lock)->lc_unlock(lock); old = blockcount_read(bc); ret = 0; do { if (_BLOCKCOUNT_COUNT(old) == 0) { sleepq_release(wchan); goto out; } if (_BLOCKCOUNT_WAITERS(old)) break; } while (!atomic_fcmpset_int(&bc->__count, &old, old | _BLOCKCOUNT_WAITERS_FLAG)); sleepq_add(wchan, NULL, wmesg, catch ? SLEEPQ_INTERRUPTIBLE : 0, 0); if (catch) ret = sleepq_wait_sig(wchan, prio); else sleepq_wait(wchan, prio); if (ret == 0) ret = EAGAIN; out: PICKUP_GIANT(); if (lock != NULL && !drop) LOCK_CLASS(lock)->lc_lock(lock, lock_state); return (ret); } static void kdb_switch(void) { thread_unlock(curthread); kdb_backtrace(); kdb_reenter(); panic("%s: did not reenter debugger", __func__); } /* * mi_switch(9): The machine-independent parts of context switching. * * The thread lock is required on entry and is no longer held on return. */ void mi_switch(int flags) { uint64_t runtime, new_switchtime; struct thread *td; td = curthread; /* XXX */ THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED); KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code")); #ifdef INVARIANTS if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td)) mtx_assert(&Giant, MA_NOTOWNED); #endif /* thread_lock() performs spinlock_enter(). */ KASSERT(td->td_critnest == 1 || KERNEL_PANICKED(), ("mi_switch: switch in a critical section")); KASSERT((flags & (SW_INVOL | SW_VOL)) != 0, ("mi_switch: switch must be voluntary or involuntary")); KASSERT((flags & SW_TYPE_MASK) != 0, ("mi_switch: a switch reason (type) must be specified")); KASSERT((flags & SW_TYPE_MASK) < SWT_COUNT, ("mi_switch: invalid switch reason %d", (flags & SW_TYPE_MASK))); /* * Don't perform context switches from the debugger. */ if (kdb_active) kdb_switch(); if (SCHEDULER_STOPPED()) return; if (flags & SW_VOL) { td->td_ru.ru_nvcsw++; td->td_swvoltick = ticks; } else { td->td_ru.ru_nivcsw++; td->td_swinvoltick = ticks; } #ifdef SCHED_STATS SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]); #endif /* * Compute the amount of time during which the current * thread was running, and add that to its total so far. */ new_switchtime = cpu_ticks(); runtime = new_switchtime - PCPU_GET(switchtime); td->td_runtime += runtime; td->td_incruntime += runtime; PCPU_SET(switchtime, new_switchtime); td->td_generation++; /* bump preempt-detect counter */ VM_CNT_INC(v_swtch); PCPU_SET(switchticks, ticks); CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)", td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name); #ifdef KDTRACE_HOOKS if (SDT_PROBES_ENABLED() && ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 && (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED))) SDT_PROBE0(sched, , , preempt); #endif sched_switch(td, flags); CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)", td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name); /* * If the last thread was exiting, finish cleaning it up. */ if ((td = PCPU_GET(deadthread))) { PCPU_SET(deadthread, NULL); thread_stash(td); } spinlock_exit(); } /* * Change thread state to be runnable, placing it on the run queue. * * Requires the thread lock on entry, drops on exit. */ void setrunnable(struct thread *td, int srqflags) { THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT(td->td_proc->p_state != PRS_ZOMBIE, ("setrunnable: pid %d is a zombie", td->td_proc->p_pid)); switch (TD_GET_STATE(td)) { case TDS_RUNNING: case TDS_RUNQ: case TDS_INHIBITED: if ((srqflags & (SRQ_HOLD | SRQ_HOLDTD)) == 0) thread_unlock(td); break; case TDS_CAN_RUN: KASSERT((td->td_flags & TDF_INMEM) != 0, ("setrunnable: td %p not in mem, flags 0x%X inhibit 0x%X", td, td->td_flags, td->td_inhibitors)); /* unlocks thread lock according to flags */ sched_wakeup(td, srqflags); break; default: panic("setrunnable: state 0x%x", TD_GET_STATE(td)); } } /* * Compute a tenex style load average of a quantity on * 1, 5 and 15 minute intervals. */ static void loadav(void *arg) { int i; uint64_t nrun; struct loadavg *avg; nrun = (uint64_t)sched_load(); avg = &averunnable; for (i = 0; i < 3; i++) avg->ldavg[i] = (cexp[i] * (uint64_t)avg->ldavg[i] + nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; /* * Schedule the next update to occur after 5 seconds, but add a * random variation to avoid synchronisation with processes that * run at regular intervals. */ callout_reset_sbt(&loadav_callout, SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US, loadav, NULL, C_DIRECT_EXEC | C_PREL(32)); } static void ast_scheduler(struct thread *td, int tda __unused) { #ifdef KTRACE if (KTRPOINT(td, KTR_CSW)) ktrcsw(1, 1, __func__); #endif thread_lock(td); sched_prio(td, td->td_user_pri); mi_switch(SW_INVOL | SWT_NEEDRESCHED); #ifdef KTRACE if (KTRPOINT(td, KTR_CSW)) ktrcsw(0, 1, __func__); #endif } static void synch_setup(void *dummy __unused) { callout_init(&loadav_callout, 1); ast_register(TDA_SCHED, ASTR_ASTF_REQUIRED, 0, ast_scheduler); /* Kick off timeout driven events by calling first time. */ loadav(NULL); } bool should_yield(void) { return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks); } void maybe_yield(void) { if (should_yield()) kern_yield(PRI_USER); } void kern_yield(int prio) { struct thread *td; td = curthread; DROP_GIANT(); thread_lock(td); if (prio == PRI_USER) prio = td->td_user_pri; if (prio >= 0) sched_prio(td, prio); mi_switch(SW_VOL | SWT_RELINQUISH); PICKUP_GIANT(); } /* * General purpose yield system call. */ int sys_yield(struct thread *td, struct yield_args *uap) { thread_lock(td); if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) sched_prio(td, PRI_MAX_TIMESHARE); mi_switch(SW_VOL | SWT_RELINQUISH); td->td_retval[0] = 0; return (0); } int sys_sched_getcpu(struct thread *td, struct sched_getcpu_args *uap) { td->td_retval[0] = td->td_oncpu; return (0); }