/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2007 Attilio Rao * Copyright (c) 2001 Jason Evans * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ /* * Shared/exclusive locks. This implementation attempts to ensure * deterministic lock granting behavior, so that slocks and xlocks are * interleaved. * * Priority propagation will not generally raise the priority of lock holders, * so should not be relied upon in combination with sx locks. */ #include "opt_ddb.h" #include "opt_hwpmc_hooks.h" #include "opt_no_adaptive_sx.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(SMP) && !defined(NO_ADAPTIVE_SX) #include #endif #ifdef DDB #include #endif #if defined(SMP) && !defined(NO_ADAPTIVE_SX) #define ADAPTIVE_SX #endif #ifdef HWPMC_HOOKS #include PMC_SOFT_DECLARE( , , lock, failed); #endif /* Handy macros for sleep queues. */ #define SQ_EXCLUSIVE_QUEUE 0 #define SQ_SHARED_QUEUE 1 /* * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We * drop Giant anytime we have to sleep or if we adaptively spin. */ #define GIANT_DECLARE \ int _giantcnt = 0; \ WITNESS_SAVE_DECL(Giant) \ #define GIANT_SAVE(work) do { \ if (__predict_false(mtx_owned(&Giant))) { \ work++; \ WITNESS_SAVE(&Giant.lock_object, Giant); \ while (mtx_owned(&Giant)) { \ _giantcnt++; \ mtx_unlock(&Giant); \ } \ } \ } while (0) #define GIANT_RESTORE() do { \ if (_giantcnt > 0) { \ mtx_assert(&Giant, MA_NOTOWNED); \ while (_giantcnt--) \ mtx_lock(&Giant); \ WITNESS_RESTORE(&Giant.lock_object, Giant); \ } \ } while (0) /* * Returns true if an exclusive lock is recursed. It assumes * curthread currently has an exclusive lock. */ #define sx_recursed(sx) ((sx)->sx_recurse != 0) static void assert_sx(const struct lock_object *lock, int what); #ifdef DDB static void db_show_sx(const struct lock_object *lock); #endif static void lock_sx(struct lock_object *lock, uintptr_t how); #ifdef KDTRACE_HOOKS static int owner_sx(const struct lock_object *lock, struct thread **owner); #endif static uintptr_t unlock_sx(struct lock_object *lock); struct lock_class lock_class_sx = { .lc_name = "sx", .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE, .lc_assert = assert_sx, #ifdef DDB .lc_ddb_show = db_show_sx, #endif .lc_lock = lock_sx, .lc_unlock = unlock_sx, #ifdef KDTRACE_HOOKS .lc_owner = owner_sx, #endif }; #ifndef INVARIANTS #define _sx_assert(sx, what, file, line) #endif #ifdef ADAPTIVE_SX #ifdef SX_CUSTOM_BACKOFF static u_short __read_frequently asx_retries; static u_short __read_frequently asx_loops; static SYSCTL_NODE(_debug, OID_AUTO, sx, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "sxlock debugging"); SYSCTL_U16(_debug_sx, OID_AUTO, retries, CTLFLAG_RW, &asx_retries, 0, ""); SYSCTL_U16(_debug_sx, OID_AUTO, loops, CTLFLAG_RW, &asx_loops, 0, ""); static struct lock_delay_config __read_frequently sx_delay; SYSCTL_U16(_debug_sx, OID_AUTO, delay_base, CTLFLAG_RW, &sx_delay.base, 0, ""); SYSCTL_U16(_debug_sx, OID_AUTO, delay_max, CTLFLAG_RW, &sx_delay.max, 0, ""); static void sx_lock_delay_init(void *arg __unused) { lock_delay_default_init(&sx_delay); asx_retries = 10; asx_loops = max(10000, sx_delay.max); } LOCK_DELAY_SYSINIT(sx_lock_delay_init); #else #define sx_delay locks_delay #define asx_retries locks_delay_retries #define asx_loops locks_delay_loops #endif #endif void assert_sx(const struct lock_object *lock, int what) { sx_assert((const struct sx *)lock, what); } void lock_sx(struct lock_object *lock, uintptr_t how) { struct sx *sx; sx = (struct sx *)lock; if (how) sx_slock(sx); else sx_xlock(sx); } uintptr_t unlock_sx(struct lock_object *lock) { struct sx *sx; sx = (struct sx *)lock; sx_assert(sx, SA_LOCKED | SA_NOTRECURSED); if (sx_xlocked(sx)) { sx_xunlock(sx); return (0); } else { sx_sunlock(sx); return (1); } } #ifdef KDTRACE_HOOKS int owner_sx(const struct lock_object *lock, struct thread **owner) { const struct sx *sx; uintptr_t x; sx = (const struct sx *)lock; x = sx->sx_lock; *owner = NULL; return ((x & SX_LOCK_SHARED) != 0 ? (SX_SHARERS(x) != 0) : ((*owner = (struct thread *)SX_OWNER(x)) != NULL)); } #endif void sx_sysinit(void *arg) { struct sx_args *sargs = arg; sx_init_flags(sargs->sa_sx, sargs->sa_desc, sargs->sa_flags); } void sx_init_flags(struct sx *sx, const char *description, int opts) { int flags; MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK | SX_NOPROFILE | SX_NEW)) == 0); ASSERT_ATOMIC_LOAD_PTR(sx->sx_lock, ("%s: sx_lock not aligned for %s: %p", __func__, description, &sx->sx_lock)); flags = LO_SLEEPABLE | LO_UPGRADABLE; if (opts & SX_DUPOK) flags |= LO_DUPOK; if (opts & SX_NOPROFILE) flags |= LO_NOPROFILE; if (!(opts & SX_NOWITNESS)) flags |= LO_WITNESS; if (opts & SX_RECURSE) flags |= LO_RECURSABLE; if (opts & SX_QUIET) flags |= LO_QUIET; if (opts & SX_NEW) flags |= LO_NEW; lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags); sx->sx_lock = SX_LOCK_UNLOCKED; sx->sx_recurse = 0; } void sx_destroy(struct sx *sx) { KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held")); KASSERT(sx->sx_recurse == 0, ("sx lock still recursed")); sx->sx_lock = SX_LOCK_DESTROYED; lock_destroy(&sx->lock_object); } int sx_try_slock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF) { uintptr_t x; if (SCHEDULER_STOPPED()) return (1); KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread), ("sx_try_slock() by idle thread %p on sx %s @ %s:%d", curthread, sx->lock_object.lo_name, file, line)); x = sx->sx_lock; for (;;) { KASSERT(x != SX_LOCK_DESTROYED, ("sx_try_slock() of destroyed sx @ %s:%d", file, line)); if (!(x & SX_LOCK_SHARED)) break; if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, x + SX_ONE_SHARER)) { LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line); WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line); LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx, 0, 0, file, line, LOCKSTAT_READER); TD_LOCKS_INC(curthread); curthread->td_sx_slocks++; return (1); } } LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line); return (0); } int sx_try_slock_(struct sx *sx, const char *file, int line) { return (sx_try_slock_int(sx LOCK_FILE_LINE_ARG)); } int _sx_xlock(struct sx *sx, int opts, const char *file, int line) { uintptr_t tid, x; int error = 0; KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() || !TD_IS_IDLETHREAD(curthread), ("sx_xlock() by idle thread %p on sx %s @ %s:%d", curthread, sx->lock_object.lo_name, file, line)); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_xlock() of destroyed sx @ %s:%d", file, line)); WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); tid = (uintptr_t)curthread; x = SX_LOCK_UNLOCKED; if (!atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid)) error = _sx_xlock_hard(sx, x, opts LOCK_FILE_LINE_ARG); else LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx, 0, 0, file, line, LOCKSTAT_WRITER); if (!error) { LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse, file, line); WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); TD_LOCKS_INC(curthread); } return (error); } int sx_try_xlock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF) { struct thread *td; uintptr_t tid, x; int rval; bool recursed; td = curthread; tid = (uintptr_t)td; if (SCHEDULER_STOPPED_TD(td)) return (1); KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td), ("sx_try_xlock() by idle thread %p on sx %s @ %s:%d", curthread, sx->lock_object.lo_name, file, line)); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_try_xlock() of destroyed sx @ %s:%d", file, line)); rval = 1; recursed = false; x = SX_LOCK_UNLOCKED; for (;;) { if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid)) break; if (x == SX_LOCK_UNLOCKED) continue; if (x == tid && (sx->lock_object.lo_flags & LO_RECURSABLE)) { sx->sx_recurse++; atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); break; } rval = 0; break; } LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line); if (rval) { WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, file, line); if (!recursed) LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx, 0, 0, file, line, LOCKSTAT_WRITER); TD_LOCKS_INC(curthread); } return (rval); } int sx_try_xlock_(struct sx *sx, const char *file, int line) { return (sx_try_xlock_int(sx LOCK_FILE_LINE_ARG)); } void _sx_xunlock(struct sx *sx, const char *file, int line) { KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_xunlock() of destroyed sx @ %s:%d", file, line)); _sx_assert(sx, SA_XLOCKED, file, line); WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line); LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file, line); #if LOCK_DEBUG > 0 _sx_xunlock_hard(sx, (uintptr_t)curthread, file, line); #else __sx_xunlock(sx, curthread, file, line); #endif TD_LOCKS_DEC(curthread); } /* * Try to do a non-blocking upgrade from a shared lock to an exclusive lock. * This will only succeed if this thread holds a single shared lock. * Return 1 if if the upgrade succeed, 0 otherwise. */ int sx_try_upgrade_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF) { uintptr_t x; uintptr_t waiters; int success; if (SCHEDULER_STOPPED()) return (1); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line)); _sx_assert(sx, SA_SLOCKED, file, line); /* * Try to switch from one shared lock to an exclusive lock. We need * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that * we will wake up the exclusive waiters when we drop the lock. */ success = 0; x = SX_READ_VALUE(sx); for (;;) { if (SX_SHARERS(x) > 1) break; waiters = (x & SX_LOCK_WAITERS); if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, (uintptr_t)curthread | waiters)) { success = 1; break; } } LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line); if (success) { curthread->td_sx_slocks--; WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, file, line); LOCKSTAT_RECORD0(sx__upgrade, sx); } return (success); } int sx_try_upgrade_(struct sx *sx, const char *file, int line) { return (sx_try_upgrade_int(sx LOCK_FILE_LINE_ARG)); } /* * Downgrade an unrecursed exclusive lock into a single shared lock. */ void sx_downgrade_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF) { uintptr_t x; int wakeup_swapper; if (SCHEDULER_STOPPED()) return; KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_downgrade() of destroyed sx @ %s:%d", file, line)); _sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line); #ifndef INVARIANTS if (sx_recursed(sx)) panic("downgrade of a recursed lock"); #endif WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line); /* * Try to switch from an exclusive lock with no shared waiters * to one sharer with no shared waiters. If there are * exclusive waiters, we don't need to lock the sleep queue so * long as we preserve the flag. We do one quick try and if * that fails we grab the sleepq lock to keep the flags from * changing and do it the slow way. * * We have to lock the sleep queue if there are shared waiters * so we can wake them up. */ x = sx->sx_lock; if (!(x & SX_LOCK_SHARED_WAITERS) && atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) | (x & SX_LOCK_EXCLUSIVE_WAITERS))) goto out; /* * Lock the sleep queue so we can read the waiters bits * without any races and wakeup any shared waiters. */ sleepq_lock(&sx->lock_object); /* * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single * shared lock. If there are any shared waiters, wake them up. */ wakeup_swapper = 0; x = sx->sx_lock; atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | (x & SX_LOCK_EXCLUSIVE_WAITERS)); if (x & SX_LOCK_SHARED_WAITERS) wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, SQ_SHARED_QUEUE); sleepq_release(&sx->lock_object); if (wakeup_swapper) kick_proc0(); out: curthread->td_sx_slocks++; LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line); LOCKSTAT_RECORD0(sx__downgrade, sx); } void sx_downgrade_(struct sx *sx, const char *file, int line) { sx_downgrade_int(sx LOCK_FILE_LINE_ARG); } #ifdef ADAPTIVE_SX static inline void sx_drop_critical(uintptr_t x, bool *in_critical, int *extra_work) { if (x & SX_LOCK_WRITE_SPINNER) return; if (*in_critical) { critical_exit(); *in_critical = false; (*extra_work)--; } } #else #define sx_drop_critical(x, in_critical, extra_work) do { } while (0) #endif /* * This function represents the so-called 'hard case' for sx_xlock * operation. All 'easy case' failures are redirected to this. Note * that ideally this would be a static function, but it needs to be * accessible from at least sx.h. */ int _sx_xlock_hard(struct sx *sx, uintptr_t x, int opts LOCK_FILE_LINE_ARG_DEF) { GIANT_DECLARE; uintptr_t tid, setx; #ifdef ADAPTIVE_SX struct thread *owner; u_int i, n, spintries = 0; enum { READERS, WRITER } sleep_reason = READERS; bool in_critical = false; #endif #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif int error = 0; #if defined(ADAPTIVE_SX) || defined(KDTRACE_HOOKS) struct lock_delay_arg lda; #endif #ifdef KDTRACE_HOOKS u_int sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) uintptr_t state = 0; int doing_lockprof = 0; #endif int extra_work = 0; tid = (uintptr_t)curthread; #ifdef KDTRACE_HOOKS if (LOCKSTAT_PROFILE_ENABLED(sx__acquire)) { while (x == SX_LOCK_UNLOCKED) { if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid)) goto out_lockstat; } extra_work = 1; doing_lockprof = 1; all_time -= lockstat_nsecs(&sx->lock_object); state = x; } #endif #ifdef LOCK_PROFILING extra_work = 1; doing_lockprof = 1; state = x; #endif if (SCHEDULER_STOPPED()) return (0); if (__predict_false(x == SX_LOCK_UNLOCKED)) x = SX_READ_VALUE(sx); /* If we already hold an exclusive lock, then recurse. */ if (__predict_false(lv_sx_owner(x) == (struct thread *)tid)) { KASSERT((sx->lock_object.lo_flags & LO_RECURSABLE) != 0, ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n", sx->lock_object.lo_name, file, line)); sx->sx_recurse++; atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx); return (0); } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, sx->lock_object.lo_name, (void *)sx->sx_lock, file, line); #if defined(ADAPTIVE_SX) lock_delay_arg_init(&lda, &sx_delay); #elif defined(KDTRACE_HOOKS) lock_delay_arg_init_noadapt(&lda); #endif #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&sx->lock_object, false, &contested, &waittime); #ifndef INVARIANTS GIANT_SAVE(extra_work); #endif for (;;) { if (x == SX_LOCK_UNLOCKED) { if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid)) break; continue; } #ifdef INVARIANTS GIANT_SAVE(extra_work); #endif #ifdef KDTRACE_HOOKS lda.spin_cnt++; #endif #ifdef ADAPTIVE_SX if (x == (SX_LOCK_SHARED | SX_LOCK_WRITE_SPINNER)) { if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid)) break; continue; } /* * If the lock is write locked and the owner is * running on another CPU, spin until the owner stops * running or the state of the lock changes. */ if ((x & SX_LOCK_SHARED) == 0) { sx_drop_critical(x, &in_critical, &extra_work); sleep_reason = WRITER; owner = lv_sx_owner(x); if (!TD_IS_RUNNING(owner)) goto sleepq; if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, sx, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", sx->lock_object.lo_name); do { lock_delay(&lda); x = SX_READ_VALUE(sx); owner = lv_sx_owner(x); } while (owner != NULL && TD_IS_RUNNING(owner)); KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); continue; } else if (SX_SHARERS(x) > 0) { sleep_reason = READERS; if (spintries == asx_retries) goto sleepq; if (!(x & SX_LOCK_WRITE_SPINNER)) { if (!in_critical) { critical_enter(); in_critical = true; extra_work++; } if (!atomic_fcmpset_ptr(&sx->sx_lock, &x, x | SX_LOCK_WRITE_SPINNER)) { critical_exit(); in_critical = false; extra_work--; continue; } } spintries++; KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", sx->lock_object.lo_name); n = SX_SHARERS(x); for (i = 0; i < asx_loops; i += n) { lock_delay_spin(n); x = SX_READ_VALUE(sx); if (!(x & SX_LOCK_WRITE_SPINNER)) break; if (!(x & SX_LOCK_SHARED)) break; n = SX_SHARERS(x); if (n == 0) break; } #ifdef KDTRACE_HOOKS lda.spin_cnt += i; #endif KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); if (i < asx_loops) continue; } sleepq: #endif sleepq_lock(&sx->lock_object); x = SX_READ_VALUE(sx); retry_sleepq: /* * If the lock was released while spinning on the * sleep queue chain lock, try again. */ if (x == SX_LOCK_UNLOCKED) { sleepq_release(&sx->lock_object); sx_drop_critical(x, &in_critical, &extra_work); continue; } #ifdef ADAPTIVE_SX /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the sleep queue * chain lock. If so, drop the sleep queue lock and try * again. */ if (!(x & SX_LOCK_SHARED)) { owner = (struct thread *)SX_OWNER(x); if (TD_IS_RUNNING(owner)) { sleepq_release(&sx->lock_object); sx_drop_critical(x, &in_critical, &extra_work); continue; } } else if (SX_SHARERS(x) > 0 && sleep_reason == WRITER) { sleepq_release(&sx->lock_object); sx_drop_critical(x, &in_critical, &extra_work); continue; } #endif /* * If an exclusive lock was released with both shared * and exclusive waiters and a shared waiter hasn't * woken up and acquired the lock yet, sx_lock will be * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS. * If we see that value, try to acquire it once. Note * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS * as there are other exclusive waiters still. If we * fail, restart the loop. */ setx = x & (SX_LOCK_WAITERS | SX_LOCK_WRITE_SPINNER); if ((x & ~setx) == SX_LOCK_SHARED) { setx &= ~SX_LOCK_WRITE_SPINNER; if (!atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid | setx)) goto retry_sleepq; sleepq_release(&sx->lock_object); CTR2(KTR_LOCK, "%s: %p claimed by new writer", __func__, sx); break; } #ifdef ADAPTIVE_SX /* * It is possible we set the SX_LOCK_WRITE_SPINNER bit. * It is an invariant that when the bit is set, there is * a writer ready to grab the lock. Thus clear the bit since * we are going to sleep. */ if (in_critical) { if ((x & SX_LOCK_WRITE_SPINNER) || !((x & SX_LOCK_EXCLUSIVE_WAITERS))) { setx = x & ~SX_LOCK_WRITE_SPINNER; setx |= SX_LOCK_EXCLUSIVE_WAITERS; if (!atomic_fcmpset_ptr(&sx->sx_lock, &x, setx)) { goto retry_sleepq; } } critical_exit(); in_critical = false; } else { #endif /* * Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail, * than loop back and retry. */ if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { if (!atomic_fcmpset_ptr(&sx->sx_lock, &x, x | SX_LOCK_EXCLUSIVE_WAITERS)) { goto retry_sleepq; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set excl waiters flag", __func__, sx); } #ifdef ADAPTIVE_SX } #endif /* * Since we have been unable to acquire the exclusive * lock and the exclusive waiters flag is set, we have * to sleep. */ if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", __func__, sx); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&sx->lock_object); #endif sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE); if (!(opts & SX_INTERRUPTIBLE)) sleepq_wait(&sx->lock_object, 0); else error = sleepq_wait_sig(&sx->lock_object, 0); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&sx->lock_object); sleep_cnt++; #endif if (error) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: interruptible sleep by %p suspended by signal", __func__, sx); break; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", __func__, sx); x = SX_READ_VALUE(sx); } if (__predict_true(!extra_work)) return (error); #ifdef ADAPTIVE_SX if (in_critical) critical_exit(); #endif GIANT_RESTORE(); #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) if (__predict_true(!doing_lockprof)) return (error); #endif #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&sx->lock_object); if (sleep_time) LOCKSTAT_RECORD4(sx__block, sx, sleep_time, LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0, (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state)); if (lda.spin_cnt > sleep_cnt) LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time, LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0, (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state)); out_lockstat: #endif if (!error) LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx, contested, waittime, file, line, LOCKSTAT_WRITER); return (error); } /* * This function represents the so-called 'hard case' for sx_xunlock * operation. All 'easy case' failures are redirected to this. Note * that ideally this would be a static function, but it needs to be * accessible from at least sx.h. */ void _sx_xunlock_hard(struct sx *sx, uintptr_t x LOCK_FILE_LINE_ARG_DEF) { uintptr_t tid, setx; int queue, wakeup_swapper; if (SCHEDULER_STOPPED()) return; tid = (uintptr_t)curthread; if (__predict_false(x == tid)) x = SX_READ_VALUE(sx); MPASS(!(x & SX_LOCK_SHARED)); if (__predict_false(x & SX_LOCK_RECURSED)) { /* The lock is recursed, unrecurse one level. */ if ((--sx->sx_recurse) == 0) atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED); if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx); return; } LOCKSTAT_PROFILE_RELEASE_RWLOCK(sx__release, sx, LOCKSTAT_WRITER); if (x == tid && atomic_cmpset_rel_ptr(&sx->sx_lock, tid, SX_LOCK_UNLOCKED)) return; if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p contested", __func__, sx); sleepq_lock(&sx->lock_object); x = SX_READ_VALUE(sx); MPASS(x & (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)); /* * The wake up algorithm here is quite simple and probably not * ideal. It gives precedence to shared waiters if they are * present. For this condition, we have to preserve the * state of the exclusive waiters flag. * If interruptible sleeps left the shared queue empty avoid a * starvation for the threads sleeping on the exclusive queue by giving * them precedence and cleaning up the shared waiters bit anyway. */ setx = SX_LOCK_UNLOCKED; queue = SQ_SHARED_QUEUE; if ((x & SX_LOCK_EXCLUSIVE_WAITERS) != 0 && sleepq_sleepcnt(&sx->lock_object, SQ_EXCLUSIVE_QUEUE) != 0) { queue = SQ_EXCLUSIVE_QUEUE; setx |= (x & SX_LOCK_SHARED_WAITERS); } atomic_store_rel_ptr(&sx->sx_lock, setx); /* Wake up all the waiters for the specific queue. */ if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue", __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" : "exclusive"); wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, queue); sleepq_release(&sx->lock_object); if (wakeup_swapper) kick_proc0(); } static bool __always_inline __sx_can_read(struct thread *td, uintptr_t x, bool fp) { if ((x & (SX_LOCK_SHARED | SX_LOCK_EXCLUSIVE_WAITERS | SX_LOCK_WRITE_SPINNER)) == SX_LOCK_SHARED) return (true); if (!fp && td->td_sx_slocks && (x & SX_LOCK_SHARED)) return (true); return (false); } static bool __always_inline __sx_slock_try(struct sx *sx, struct thread *td, uintptr_t *xp, bool fp LOCK_FILE_LINE_ARG_DEF) { /* * If no other thread has an exclusive lock then try to bump up * the count of sharers. Since we have to preserve the state * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the * shared lock loop back and retry. */ while (__sx_can_read(td, *xp, fp)) { if (atomic_fcmpset_acq_ptr(&sx->sx_lock, xp, *xp + SX_ONE_SHARER)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR4(KTR_LOCK, "%s: %p succeed %p -> %p", __func__, sx, (void *)*xp, (void *)(*xp + SX_ONE_SHARER)); td->td_sx_slocks++; return (true); } } return (false); } static int __noinline _sx_slock_hard(struct sx *sx, int opts, uintptr_t x LOCK_FILE_LINE_ARG_DEF) { GIANT_DECLARE; struct thread *td; #ifdef ADAPTIVE_SX struct thread *owner; u_int i, n, spintries = 0; #endif #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif int error = 0; #if defined(ADAPTIVE_SX) || defined(KDTRACE_HOOKS) struct lock_delay_arg lda; #endif #ifdef KDTRACE_HOOKS u_int sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) uintptr_t state = 0; #endif int extra_work __sdt_used = 0; td = curthread; #ifdef KDTRACE_HOOKS if (LOCKSTAT_PROFILE_ENABLED(sx__acquire)) { if (__sx_slock_try(sx, td, &x, false LOCK_FILE_LINE_ARG)) goto out_lockstat; extra_work = 1; all_time -= lockstat_nsecs(&sx->lock_object); state = x; } #endif #ifdef LOCK_PROFILING extra_work = 1; state = x; #endif if (SCHEDULER_STOPPED()) return (0); #if defined(ADAPTIVE_SX) lock_delay_arg_init(&lda, &sx_delay); #elif defined(KDTRACE_HOOKS) lock_delay_arg_init_noadapt(&lda); #endif #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&sx->lock_object, false, &contested, &waittime); #ifndef INVARIANTS GIANT_SAVE(extra_work); #endif /* * As with rwlocks, we don't make any attempt to try to block * shared locks once there is an exclusive waiter. */ for (;;) { if (__sx_slock_try(sx, td, &x, false LOCK_FILE_LINE_ARG)) break; #ifdef INVARIANTS GIANT_SAVE(extra_work); #endif #ifdef KDTRACE_HOOKS lda.spin_cnt++; #endif #ifdef ADAPTIVE_SX /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ if ((x & SX_LOCK_SHARED) == 0) { owner = lv_sx_owner(x); if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, sx, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", sx->lock_object.lo_name); do { lock_delay(&lda); x = SX_READ_VALUE(sx); owner = lv_sx_owner(x); } while (owner != NULL && TD_IS_RUNNING(owner)); KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); continue; } } else { if ((x & SX_LOCK_WRITE_SPINNER) && SX_SHARERS(x) == 0) { MPASS(!__sx_can_read(td, x, false)); lock_delay_spin(2); x = SX_READ_VALUE(sx); continue; } if (spintries < asx_retries) { KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", sx->lock_object.lo_name); n = SX_SHARERS(x); for (i = 0; i < asx_loops; i += n) { lock_delay_spin(n); x = SX_READ_VALUE(sx); if (!(x & SX_LOCK_SHARED)) break; n = SX_SHARERS(x); if (n == 0) break; if (__sx_can_read(td, x, false)) break; } #ifdef KDTRACE_HOOKS lda.spin_cnt += i; #endif KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); if (i < asx_loops) continue; } } #endif /* * Some other thread already has an exclusive lock, so * start the process of blocking. */ sleepq_lock(&sx->lock_object); x = SX_READ_VALUE(sx); retry_sleepq: if (((x & SX_LOCK_WRITE_SPINNER) && SX_SHARERS(x) == 0) || __sx_can_read(td, x, false)) { sleepq_release(&sx->lock_object); continue; } #ifdef ADAPTIVE_SX /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ if (!(x & SX_LOCK_SHARED)) { owner = (struct thread *)SX_OWNER(x); if (TD_IS_RUNNING(owner)) { sleepq_release(&sx->lock_object); x = SX_READ_VALUE(sx); continue; } } #endif /* * Try to set the SX_LOCK_SHARED_WAITERS flag. If we * fail to set it drop the sleep queue lock and loop * back. */ if (!(x & SX_LOCK_SHARED_WAITERS)) { if (!atomic_fcmpset_ptr(&sx->sx_lock, &x, x | SX_LOCK_SHARED_WAITERS)) goto retry_sleepq; if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set shared waiters flag", __func__, sx); } /* * Since we have been unable to acquire the shared lock, * we have to sleep. */ if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", __func__, sx); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&sx->lock_object); #endif sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE); if (!(opts & SX_INTERRUPTIBLE)) sleepq_wait(&sx->lock_object, 0); else error = sleepq_wait_sig(&sx->lock_object, 0); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&sx->lock_object); sleep_cnt++; #endif if (error) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: interruptible sleep by %p suspended by signal", __func__, sx); break; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", __func__, sx); x = SX_READ_VALUE(sx); } #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) if (__predict_true(!extra_work)) return (error); #endif #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&sx->lock_object); if (sleep_time) LOCKSTAT_RECORD4(sx__block, sx, sleep_time, LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0, (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state)); if (lda.spin_cnt > sleep_cnt) LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time, LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0, (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state)); out_lockstat: #endif if (error == 0) { LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx, contested, waittime, file, line, LOCKSTAT_READER); } GIANT_RESTORE(); return (error); } int _sx_slock_int(struct sx *sx, int opts LOCK_FILE_LINE_ARG_DEF) { struct thread *td; uintptr_t x; int error; KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() || !TD_IS_IDLETHREAD(curthread), ("sx_slock() by idle thread %p on sx %s @ %s:%d", curthread, sx->lock_object.lo_name, file, line)); KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_slock() of destroyed sx @ %s:%d", file, line)); WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line, NULL); error = 0; td = curthread; x = SX_READ_VALUE(sx); if (__predict_false(LOCKSTAT_PROFILE_ENABLED(sx__acquire) || !__sx_slock_try(sx, td, &x, true LOCK_FILE_LINE_ARG))) error = _sx_slock_hard(sx, opts, x LOCK_FILE_LINE_ARG); else lock_profile_obtain_lock_success(&sx->lock_object, false, 0, 0, file, line); if (error == 0) { LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line); WITNESS_LOCK(&sx->lock_object, 0, file, line); TD_LOCKS_INC(curthread); } return (error); } int _sx_slock(struct sx *sx, int opts, const char *file, int line) { return (_sx_slock_int(sx, opts LOCK_FILE_LINE_ARG)); } static bool __always_inline _sx_sunlock_try(struct sx *sx, struct thread *td, uintptr_t *xp) { for (;;) { if (SX_SHARERS(*xp) > 1 || !(*xp & SX_LOCK_WAITERS)) { if (atomic_fcmpset_rel_ptr(&sx->sx_lock, xp, *xp - SX_ONE_SHARER)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR4(KTR_LOCK, "%s: %p succeeded %p -> %p", __func__, sx, (void *)*xp, (void *)(*xp - SX_ONE_SHARER)); td->td_sx_slocks--; return (true); } continue; } break; } return (false); } static void __noinline _sx_sunlock_hard(struct sx *sx, struct thread *td, uintptr_t x LOCK_FILE_LINE_ARG_DEF) { int wakeup_swapper = 0; uintptr_t setx, queue; if (SCHEDULER_STOPPED()) return; if (_sx_sunlock_try(sx, td, &x)) goto out_lockstat; sleepq_lock(&sx->lock_object); x = SX_READ_VALUE(sx); for (;;) { if (_sx_sunlock_try(sx, td, &x)) break; /* * Wake up semantic here is quite simple: * Just wake up all the exclusive waiters. * Note that the state of the lock could have changed, * so if it fails loop back and retry. */ setx = SX_LOCK_UNLOCKED; queue = SQ_SHARED_QUEUE; if (x & SX_LOCK_EXCLUSIVE_WAITERS) { setx |= (x & SX_LOCK_SHARED_WAITERS); queue = SQ_EXCLUSIVE_QUEUE; } setx |= (x & SX_LOCK_WRITE_SPINNER); if (!atomic_fcmpset_rel_ptr(&sx->sx_lock, &x, setx)) continue; if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p waking up all thread on" "exclusive queue", __func__, sx); wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, queue); td->td_sx_slocks--; break; } sleepq_release(&sx->lock_object); if (wakeup_swapper) kick_proc0(); out_lockstat: LOCKSTAT_PROFILE_RELEASE_RWLOCK(sx__release, sx, LOCKSTAT_READER); } void _sx_sunlock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF) { struct thread *td; uintptr_t x; KASSERT(sx->sx_lock != SX_LOCK_DESTROYED, ("sx_sunlock() of destroyed sx @ %s:%d", file, line)); _sx_assert(sx, SA_SLOCKED, file, line); WITNESS_UNLOCK(&sx->lock_object, 0, file, line); LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line); td = curthread; x = SX_READ_VALUE(sx); if (__predict_false(LOCKSTAT_PROFILE_ENABLED(sx__release) || !_sx_sunlock_try(sx, td, &x))) _sx_sunlock_hard(sx, td, x LOCK_FILE_LINE_ARG); else lock_profile_release_lock(&sx->lock_object, false); TD_LOCKS_DEC(curthread); } void _sx_sunlock(struct sx *sx, const char *file, int line) { _sx_sunlock_int(sx LOCK_FILE_LINE_ARG); } #ifdef INVARIANT_SUPPORT #ifndef INVARIANTS #undef _sx_assert #endif /* * In the non-WITNESS case, sx_assert() can only detect that at least * *some* thread owns an slock, but it cannot guarantee that *this* * thread owns an slock. */ void _sx_assert(const struct sx *sx, int what, const char *file, int line) { #ifndef WITNESS int slocked = 0; #endif if (SCHEDULER_STOPPED()) return; switch (what) { case SA_SLOCKED: case SA_SLOCKED | SA_NOTRECURSED: case SA_SLOCKED | SA_RECURSED: #ifndef WITNESS slocked = 1; /* FALLTHROUGH */ #endif case SA_LOCKED: case SA_LOCKED | SA_NOTRECURSED: case SA_LOCKED | SA_RECURSED: #ifdef WITNESS witness_assert(&sx->lock_object, what, file, line); #else /* * If some other thread has an exclusive lock or we * have one and are asserting a shared lock, fail. * Also, if no one has a lock at all, fail. */ if (sx->sx_lock == SX_LOCK_UNLOCKED || (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked || sx_xholder(sx) != curthread))) panic("Lock %s not %slocked @ %s:%d\n", sx->lock_object.lo_name, slocked ? "share " : "", file, line); if (!(sx->sx_lock & SX_LOCK_SHARED)) { if (sx_recursed(sx)) { if (what & SA_NOTRECURSED) panic("Lock %s recursed @ %s:%d\n", sx->lock_object.lo_name, file, line); } else if (what & SA_RECURSED) panic("Lock %s not recursed @ %s:%d\n", sx->lock_object.lo_name, file, line); } #endif break; case SA_XLOCKED: case SA_XLOCKED | SA_NOTRECURSED: case SA_XLOCKED | SA_RECURSED: if (sx_xholder(sx) != curthread) panic("Lock %s not exclusively locked @ %s:%d\n", sx->lock_object.lo_name, file, line); if (sx_recursed(sx)) { if (what & SA_NOTRECURSED) panic("Lock %s recursed @ %s:%d\n", sx->lock_object.lo_name, file, line); } else if (what & SA_RECURSED) panic("Lock %s not recursed @ %s:%d\n", sx->lock_object.lo_name, file, line); break; case SA_UNLOCKED: #ifdef WITNESS witness_assert(&sx->lock_object, what, file, line); #else /* * If we hold an exclusve lock fail. We can't * reliably check to see if we hold a shared lock or * not. */ if (sx_xholder(sx) == curthread) panic("Lock %s exclusively locked @ %s:%d\n", sx->lock_object.lo_name, file, line); #endif break; default: panic("Unknown sx lock assertion: %d @ %s:%d", what, file, line); } } #endif /* INVARIANT_SUPPORT */ #ifdef DDB static void db_show_sx(const struct lock_object *lock) { struct thread *td; const struct sx *sx; sx = (const struct sx *)lock; db_printf(" state: "); if (sx->sx_lock == SX_LOCK_UNLOCKED) db_printf("UNLOCKED\n"); else if (sx->sx_lock == SX_LOCK_DESTROYED) { db_printf("DESTROYED\n"); return; } else if (sx->sx_lock & SX_LOCK_SHARED) db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); else { td = sx_xholder(sx); db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td, td->td_tid, td->td_proc->p_pid, td->td_name); if (sx_recursed(sx)) db_printf(" recursed: %d\n", sx->sx_recurse); } db_printf(" waiters: "); switch(sx->sx_lock & (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) { case SX_LOCK_SHARED_WAITERS: db_printf("shared\n"); break; case SX_LOCK_EXCLUSIVE_WAITERS: db_printf("exclusive\n"); break; case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS: db_printf("exclusive and shared\n"); break; default: db_printf("none\n"); } } /* * Check to see if a thread that is blocked on a sleep queue is actually * blocked on an sx lock. If so, output some details and return true. * If the lock has an exclusive owner, return that in *ownerp. */ int sx_chain(struct thread *td, struct thread **ownerp) { const struct sx *sx; /* * Check to see if this thread is blocked on an sx lock. * First, we check the lock class. If that is ok, then we * compare the lock name against the wait message. */ sx = td->td_wchan; if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx || sx->lock_object.lo_name != td->td_wmesg) return (0); /* We think we have an sx lock, so output some details. */ db_printf("blocked on sx \"%s\" ", td->td_wmesg); *ownerp = sx_xholder(sx); if (sx->sx_lock & SX_LOCK_SHARED) db_printf("SLOCK (count %ju)\n", (uintmax_t)SX_SHARERS(sx->sx_lock)); else db_printf("XLOCK\n"); return (1); } #endif