/* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 * $Id: kern_proc.c,v 1.21 1996/07/09 16:51:10 wollman Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct prochd qs[NQS]; /* as good a place as any... */ struct prochd rtqs[NQS]; /* Space for REALTIME queues too */ struct prochd idqs[NQS]; /* Space for IDLE queues too */ static void pgdelete __P((struct pgrp *)); /* * Structure associated with user cacheing. */ struct uidinfo { LIST_ENTRY(uidinfo) ui_hash; uid_t ui_uid; long ui_proccnt; }; #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) LIST_HEAD(uihashhead, uidinfo) *uihashtbl; static u_long uihash; /* size of hash table - 1 */ static void orphanpg __P((struct pgrp *pg)); /* * Other process lists */ struct pidhashhead *pidhashtbl; u_long pidhash; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc; struct proclist zombproc; /* * Initialize global process hashing structures. */ void procinit() { LIST_INIT(&allproc); LIST_INIT(&zombproc); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); uihashtbl = hashinit(maxproc / 16, M_PROC, &uihash); } /* * Change the count associated with number of processes * a given user is using. */ int chgproccnt(uid, diff) uid_t uid; int diff; { register struct uidinfo *uip; register struct uihashhead *uipp; uipp = UIHASH(uid); for (uip = uipp->lh_first; uip != 0; uip = uip->ui_hash.le_next) if (uip->ui_uid == uid) break; if (uip) { uip->ui_proccnt += diff; if (uip->ui_proccnt > 0) return (uip->ui_proccnt); if (uip->ui_proccnt < 0) panic("chgproccnt: procs < 0"); LIST_REMOVE(uip, ui_hash); FREE(uip, M_PROC); return (0); } if (diff <= 0) { if (diff == 0) return(0); panic("chgproccnt: lost user"); } MALLOC(uip, struct uidinfo *, sizeof(*uip), M_PROC, M_WAITOK); LIST_INSERT_HEAD(uipp, uip, ui_hash); uip->ui_uid = uid; uip->ui_proccnt = diff; return (diff); } /* * Is p an inferior of the current process? */ int inferior(p) register struct proc *p; { for (; p != curproc; p = p->p_pptr) if (p->p_pid == 0) return (0); return (1); } /* * Locate a process by number */ struct proc * pfind(pid) register pid_t pid; { register struct proc *p; for (p = PIDHASH(pid)->lh_first; p != 0; p = p->p_hash.le_next) if (p->p_pid == pid) return (p); return (NULL); } /* * Locate a process group by number */ struct pgrp * pgfind(pgid) register pid_t pgid; { register struct pgrp *pgrp; for (pgrp = PGRPHASH(pgid)->lh_first; pgrp != 0; pgrp = pgrp->pg_hash.le_next) if (pgrp->pg_id == pgid) return (pgrp); return (NULL); } /* * Move p to a new or existing process group (and session) */ int enterpgrp(p, pgid, mksess) register struct proc *p; pid_t pgid; int mksess; { register struct pgrp *pgrp = pgfind(pgid); #ifdef DIAGNOSTIC if (pgrp != NULL && mksess) /* firewalls */ panic("enterpgrp: setsid into non-empty pgrp"); if (SESS_LEADER(p)) panic("enterpgrp: session leader attempted setpgrp"); #endif if (pgrp == NULL) { pid_t savepid = p->p_pid; struct proc *np; /* * new process group */ #ifdef DIAGNOSTIC if (p->p_pid != pgid) panic("enterpgrp: new pgrp and pid != pgid"); #endif MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, M_WAITOK); if ((np = pfind(savepid)) == NULL || np != p) return (ESRCH); if (mksess) { register struct session *sess; /* * new session */ MALLOC(sess, struct session *, sizeof(struct session), M_SESSION, M_WAITOK); sess->s_leader = p; sess->s_count = 1; sess->s_ttyvp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); p->p_flag &= ~P_CONTROLT; pgrp->pg_session = sess; #ifdef DIAGNOSTIC if (p != curproc) panic("enterpgrp: mksession and p != curproc"); #endif } else { pgrp->pg_session = p->p_session; pgrp->pg_session->s_count++; } pgrp->pg_id = pgid; LIST_INIT(&pgrp->pg_members); LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); pgrp->pg_jobc = 0; } else if (pgrp == p->p_pgrp) return (0); /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); LIST_REMOVE(p, p_pglist); if (p->p_pgrp->pg_members.lh_first == 0) pgdelete(p->p_pgrp); p->p_pgrp = pgrp; LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); return (0); } /* * remove process from process group */ int leavepgrp(p) register struct proc *p; { LIST_REMOVE(p, p_pglist); if (p->p_pgrp->pg_members.lh_first == 0) pgdelete(p->p_pgrp); p->p_pgrp = 0; return (0); } /* * delete a process group */ static void pgdelete(pgrp) register struct pgrp *pgrp; { if (pgrp->pg_session->s_ttyp != NULL && pgrp->pg_session->s_ttyp->t_pgrp == pgrp) pgrp->pg_session->s_ttyp->t_pgrp = NULL; LIST_REMOVE(pgrp, pg_hash); if (--pgrp->pg_session->s_count == 0) FREE(pgrp->pg_session, M_SESSION); FREE(pgrp, M_PGRP); } /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(p, pgrp, entering) register struct proc *p; register struct pgrp *pgrp; int entering; { register struct pgrp *hispgrp; register struct session *mysession = pgrp->pg_session; /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) if (entering) pgrp->pg_jobc++; else if (--pgrp->pg_jobc == 0) orphanpg(pgrp); /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ for (p = p->p_children.lh_first; p != 0; p = p->p_sibling.le_next) if ((hispgrp = p->p_pgrp) != pgrp && hispgrp->pg_session == mysession && p->p_stat != SZOMB) if (entering) hispgrp->pg_jobc++; else if (--hispgrp->pg_jobc == 0) orphanpg(hispgrp); } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(pg) struct pgrp *pg; { register struct proc *p; for (p = pg->pg_members.lh_first; p != 0; p = p->p_pglist.le_next) { if (p->p_stat == SSTOP) { for (p = pg->pg_members.lh_first; p != 0; p = p->p_pglist.le_next) { psignal(p, SIGHUP); psignal(p, SIGCONT); } return; } } } #include "opt_ddb.h" #ifdef DDB #include DB_SHOW_COMMAND(pgrpdump, pgrpdump) { register struct pgrp *pgrp; register struct proc *p; register i; for (i = 0; i <= pgrphash; i++) { if (pgrp = pgrphashtbl[i].lh_first) { printf("\tindx %d\n", i); for (; pgrp != 0; pgrp = pgrp->pg_hash.le_next) { printf("\tpgrp %x, pgid %d, sess %x, sesscnt %d, mem %x\n", pgrp, pgrp->pg_id, pgrp->pg_session, pgrp->pg_session->s_count, pgrp->pg_members.lh_first); for (p = pgrp->pg_members.lh_first; p != 0; p = p->p_pglist.le_next) { printf("\t\tpid %d addr %x pgrp %x\n", p->p_pid, p, p->p_pgrp); } } } } } #endif /* DDB */ /* * Fill in an eproc structure for the specified process. */ void fill_eproc(p, ep) register struct proc *p; register struct eproc *ep; { register struct tty *tp; bzero(ep, sizeof(*ep)); ep->e_paddr = p; if (p->p_cred) { ep->e_pcred = *p->p_cred; if (p->p_ucred) ep->e_ucred = *p->p_ucred; } if (p->p_stat != SIDL && p->p_stat != SZOMB && p->p_vmspace != NULL) { register struct vmspace *vm = p->p_vmspace; #ifdef pmap_resident_count ep->e_vm.vm_rssize = pmap_resident_count(&vm->vm_pmap); /*XXX*/ #else ep->e_vm.vm_rssize = vm->vm_rssize; #endif ep->e_vm.vm_tsize = vm->vm_tsize; ep->e_vm.vm_dsize = vm->vm_dsize; ep->e_vm.vm_ssize = vm->vm_ssize; #ifndef sparc ep->e_vm.vm_pmap = vm->vm_pmap; #endif } if (p->p_pptr) ep->e_ppid = p->p_pptr->p_pid; if (p->p_pgrp) { ep->e_pgid = p->p_pgrp->pg_id; ep->e_jobc = p->p_pgrp->pg_jobc; ep->e_sess = p->p_pgrp->pg_session; if (ep->e_sess) { bcopy(ep->e_sess->s_login, ep->e_login, sizeof(ep->e_login)); if (ep->e_sess->s_ttyvp) ep->e_flag = EPROC_CTTY; if (p->p_session && SESS_LEADER(p)) ep->e_flag |= EPROC_SLEADER; } } if ((p->p_flag & P_CONTROLT) && (ep->e_sess != NULL) && ((tp = ep->e_sess->s_ttyp) != NULL)) { ep->e_tdev = tp->t_dev; ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; ep->e_tsess = tp->t_session; } else ep->e_tdev = NODEV; if (p->p_wmesg) { strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN); ep->e_wmesg[WMESGLEN] = 0; } } static struct proc * zpfind(pid_t pid) { struct proc *p; for (p = zombproc.lh_first; p != 0; p = p->p_list.le_next) if (p->p_pid == pid) return (p); return (NULL); } static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb) { struct eproc eproc; int error; pid_t pid = p->p_pid; fill_eproc(p, &eproc); error = SYSCTL_OUT(req,(caddr_t)p, sizeof(struct proc)); if (error) return (error); error = SYSCTL_OUT(req,(caddr_t)&eproc, sizeof(eproc)); if (error) return (error); if (!doingzomb && pid && (pfind(pid) != p)) return EAGAIN; if (doingzomb && zpfind(pid) != p) return EAGAIN; return (0); } static int sysctl_kern_proc SYSCTL_HANDLER_ARGS { int *name = (int*) arg1; u_int namelen = arg2; struct proc *p; int doingzomb; int error = 0; if (oidp->oid_number == KERN_PROC_PID) { if (namelen != 1) return (EINVAL); p = pfind((pid_t)name[0]); if (!p) return (0); error = sysctl_out_proc(p, req, 0); return (error); } if (oidp->oid_number == KERN_PROC_ALL && !namelen) ; else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) ; else return (EINVAL); if (!req->oldptr) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { if (!doingzomb) p = allproc.lh_first; else p = zombproc.lh_first; for (; p != 0; p = p->p_list.le_next) { /* * Skip embryonic processes. */ if (p->p_stat == SIDL) continue; /* * TODO - make more efficient (see notes below). * do by session. */ switch (oidp->oid_number) { case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) continue; break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL || p->p_session->s_ttyp == NULL || p->p_session->s_ttyp->t_dev != (dev_t)name[0]) continue; break; case KERN_PROC_UID: if (p->p_ucred == NULL || p->p_ucred->cr_uid != (uid_t)name[0]) continue; break; case KERN_PROC_RUID: if (p->p_ucred == NULL || p->p_cred->p_ruid != (uid_t)name[0]) continue; break; } error = sysctl_out_proc(p, req, doingzomb); if (error) return (error); } } return (0); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 0, 0, sysctl_kern_proc, "S,proc", ""); SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, sysctl_kern_proc, "Process table");