/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Berkeley Software Design Inc's name may not be used to endorse or * promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ */ /* * Machine independent bits of mutex implementation. */ #include #include "opt_adaptive_mutexes.h" #include "opt_ddb.h" #include "opt_hwpmc_hooks.h" #include "opt_sched.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES) #define ADAPTIVE_MUTEXES #endif #ifdef HWPMC_HOOKS #include PMC_SOFT_DEFINE( , , lock, failed); #endif /* * Return the mutex address when the lock cookie address is provided. * This functionality assumes that struct mtx* have a member named mtx_lock. */ #define mtxlock2mtx(c) (__containerof(c, struct mtx, mtx_lock)) /* * Internal utility macros. */ #define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED) #define mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED) static void assert_mtx(const struct lock_object *lock, int what); #ifdef DDB static void db_show_mtx(const struct lock_object *lock); #endif static void lock_mtx(struct lock_object *lock, uintptr_t how); static void lock_spin(struct lock_object *lock, uintptr_t how); #ifdef KDTRACE_HOOKS static int owner_mtx(const struct lock_object *lock, struct thread **owner); #endif static uintptr_t unlock_mtx(struct lock_object *lock); static uintptr_t unlock_spin(struct lock_object *lock); /* * Lock classes for sleep and spin mutexes. */ struct lock_class lock_class_mtx_sleep = { .lc_name = "sleep mutex", .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE, .lc_assert = assert_mtx, #ifdef DDB .lc_ddb_show = db_show_mtx, #endif .lc_lock = lock_mtx, .lc_unlock = unlock_mtx, #ifdef KDTRACE_HOOKS .lc_owner = owner_mtx, #endif }; struct lock_class lock_class_mtx_spin = { .lc_name = "spin mutex", .lc_flags = LC_SPINLOCK | LC_RECURSABLE, .lc_assert = assert_mtx, #ifdef DDB .lc_ddb_show = db_show_mtx, #endif .lc_lock = lock_spin, .lc_unlock = unlock_spin, #ifdef KDTRACE_HOOKS .lc_owner = owner_mtx, #endif }; #ifdef ADAPTIVE_MUTEXES #ifdef MUTEX_CUSTOM_BACKOFF static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "mtx debugging"); static struct lock_delay_config __read_frequently mtx_delay; SYSCTL_U16(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base, 0, ""); SYSCTL_U16(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max, 0, ""); LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay); #else #define mtx_delay locks_delay #endif #endif #ifdef MUTEX_SPIN_CUSTOM_BACKOFF static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "mtx spin debugging"); static struct lock_delay_config __read_frequently mtx_spin_delay; SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_spin_delay.base, 0, ""); SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_spin_delay.max, 0, ""); LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay); #else #define mtx_spin_delay locks_delay #endif /* * System-wide mutexes */ struct mtx blocked_lock; struct mtx __exclusive_cache_line Giant; static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *); void assert_mtx(const struct lock_object *lock, int what) { /* * Treat LA_LOCKED as if LA_XLOCKED was asserted. * * Some callers of lc_assert uses LA_LOCKED to indicate that either * a shared lock or write lock was held, while other callers uses * the more strict LA_XLOCKED (used as MA_OWNED). * * Mutex is the only lock class that can not be shared, as a result, * we can reasonably consider the caller really intends to assert * LA_XLOCKED when they are asserting LA_LOCKED on a mutex object. */ if (what & LA_LOCKED) { what &= ~LA_LOCKED; what |= LA_XLOCKED; } mtx_assert((const struct mtx *)lock, what); } void lock_mtx(struct lock_object *lock, uintptr_t how) { mtx_lock((struct mtx *)lock); } void lock_spin(struct lock_object *lock, uintptr_t how) { mtx_lock_spin((struct mtx *)lock); } uintptr_t unlock_mtx(struct lock_object *lock) { struct mtx *m; m = (struct mtx *)lock; mtx_assert(m, MA_OWNED | MA_NOTRECURSED); mtx_unlock(m); return (0); } uintptr_t unlock_spin(struct lock_object *lock) { struct mtx *m; m = (struct mtx *)lock; mtx_assert(m, MA_OWNED | MA_NOTRECURSED); mtx_unlock_spin(m); return (0); } #ifdef KDTRACE_HOOKS int owner_mtx(const struct lock_object *lock, struct thread **owner) { const struct mtx *m; uintptr_t x; m = (const struct mtx *)lock; x = m->mtx_lock; *owner = (struct thread *)(x & ~MTX_FLAGMASK); return (*owner != NULL); } #endif /* * Function versions of the inlined __mtx_* macros. These are used by * modules and can also be called from assembly language if needed. */ void __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line) { struct mtx *m; uintptr_t tid, v; m = mtxlock2mtx(c); KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() || !TD_IS_IDLETHREAD(curthread), ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d", curthread, m->lock_object.lo_name, file, line)); KASSERT(m->mtx_lock != MTX_DESTROYED, ("mtx_lock() of destroyed mutex @ %s:%d", file, line)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, file, line)); WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); tid = (uintptr_t)curthread; v = MTX_UNOWNED; if (!_mtx_obtain_lock_fetch(m, &v, tid)) _mtx_lock_sleep(m, v, opts, file, line); else LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, 0, 0, file, line); LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, line); WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE, file, line); TD_LOCKS_INC(curthread); } void __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line) { struct mtx *m; m = mtxlock2mtx(c); KASSERT(m->mtx_lock != MTX_DESTROYED, ("mtx_unlock() of destroyed mutex @ %s:%d", file, line)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, file, line)); WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file, line); mtx_assert(m, MA_OWNED); #ifdef LOCK_PROFILING __mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line); #else __mtx_unlock(m, curthread, opts, file, line); #endif TD_LOCKS_DEC(curthread); } void __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file, int line) { struct mtx *m; #ifdef SMP uintptr_t tid, v; #endif m = mtxlock2mtx(c); KASSERT(m->mtx_lock != MTX_DESTROYED, ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, ("mtx_lock_spin() of sleep mutex %s @ %s:%d", m->lock_object.lo_name, file, line)); if (mtx_owned(m)) KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || (opts & MTX_RECURSE) != 0, ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n", m->lock_object.lo_name, file, line)); opts &= ~MTX_RECURSE; WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); #ifdef SMP spinlock_enter(); tid = (uintptr_t)curthread; v = MTX_UNOWNED; if (!_mtx_obtain_lock_fetch(m, &v, tid)) _mtx_lock_spin(m, v, opts, file, line); else LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m, 0, 0, file, line); #else __mtx_lock_spin(m, curthread, opts, file, line); #endif LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, line); WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); } int __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file, int line) { struct mtx *m; if (SCHEDULER_STOPPED()) return (1); m = mtxlock2mtx(c); KASSERT(m->mtx_lock != MTX_DESTROYED, ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, ("mtx_trylock_spin() of sleep mutex %s @ %s:%d", m->lock_object.lo_name, file, line)); KASSERT((opts & MTX_RECURSE) == 0, ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n", m->lock_object.lo_name, file, line)); if (__mtx_trylock_spin(m, curthread, opts, file, line)) { LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line); WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); return (1); } LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line); return (0); } void __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file, int line) { struct mtx *m; m = mtxlock2mtx(c); KASSERT(m->mtx_lock != MTX_DESTROYED, ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, ("mtx_unlock_spin() of sleep mutex %s @ %s:%d", m->lock_object.lo_name, file, line)); WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file, line); mtx_assert(m, MA_OWNED); __mtx_unlock_spin(m); } /* * The important part of mtx_trylock{,_flags}() * Tries to acquire lock `m.' If this function is called on a mutex that * is already owned, it will recursively acquire the lock. */ int _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF) { struct thread *td; uintptr_t tid, v; #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif int rval; bool recursed; td = curthread; tid = (uintptr_t)td; if (SCHEDULER_STOPPED_TD(td)) return (1); KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td), ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d", curthread, m->lock_object.lo_name, file, line)); KASSERT(m->mtx_lock != MTX_DESTROYED, ("mtx_trylock() of destroyed mutex @ %s:%d", file, line)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name, file, line)); rval = 1; recursed = false; v = MTX_UNOWNED; for (;;) { if (_mtx_obtain_lock_fetch(m, &v, tid)) break; if (v == MTX_UNOWNED) continue; if (v == tid && ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || (opts & MTX_RECURSE) != 0)) { m->mtx_recurse++; atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); recursed = true; break; } rval = 0; break; } opts &= ~MTX_RECURSE; LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line); if (rval) { WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK, file, line); TD_LOCKS_INC(curthread); if (!recursed) LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested, waittime, file, line); } return (rval); } int _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line) { struct mtx *m; m = mtxlock2mtx(c); return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG)); } /* * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock. * * We call this if the lock is either contested (i.e. we need to go to * sleep waiting for it), or if we need to recurse on it. */ #if LOCK_DEBUG > 0 void __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file, int line) #else void __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v) #endif { struct thread *td; struct mtx *m; struct turnstile *ts; uintptr_t tid; struct thread *owner; #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS) struct lock_delay_arg lda; #endif #ifdef KDTRACE_HOOKS u_int sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) int doing_lockprof = 0; #endif td = curthread; tid = (uintptr_t)td; m = mtxlock2mtx(c); #ifdef KDTRACE_HOOKS if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) { while (v == MTX_UNOWNED) { if (_mtx_obtain_lock_fetch(m, &v, tid)) goto out_lockstat; } doing_lockprof = 1; all_time -= lockstat_nsecs(&m->lock_object); } #endif #ifdef LOCK_PROFILING doing_lockprof = 1; #endif if (SCHEDULER_STOPPED_TD(td)) return; if (__predict_false(v == MTX_UNOWNED)) v = MTX_READ_VALUE(m); if (__predict_false(lv_mtx_owner(v) == td)) { KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || (opts & MTX_RECURSE) != 0, ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n", m->lock_object.lo_name, file, line)); #if LOCK_DEBUG > 0 opts &= ~MTX_RECURSE; #endif m->mtx_recurse++; atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m); return; } #if LOCK_DEBUG > 0 opts &= ~MTX_RECURSE; #endif #if defined(ADAPTIVE_MUTEXES) lock_delay_arg_init(&lda, &mtx_delay); #elif defined(KDTRACE_HOOKS) lock_delay_arg_init_noadapt(&lda); #endif #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&m->lock_object, false, &contested, &waittime); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR4(KTR_LOCK, "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d", m->lock_object.lo_name, (void *)m->mtx_lock, file, line); THREAD_CONTENDS_ON_LOCK(&m->lock_object); for (;;) { if (v == MTX_UNOWNED) { if (_mtx_obtain_lock_fetch(m, &v, tid)) break; continue; } #ifdef KDTRACE_HOOKS lda.spin_cnt++; #endif #ifdef ADAPTIVE_MUTEXES /* * If the owner is running on another CPU, spin until the * owner stops running or the state of the lock changes. */ owner = lv_mtx_owner(v); if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&m->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, m, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "spinning", "lockname:\"%s\"", m->lock_object.lo_name); do { lock_delay(&lda); v = MTX_READ_VALUE(m); owner = lv_mtx_owner(v); } while (v != MTX_UNOWNED && TD_IS_RUNNING(owner)); KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "running"); continue; } #endif ts = turnstile_trywait(&m->lock_object); v = MTX_READ_VALUE(m); retry_turnstile: /* * Check if the lock has been released while spinning for * the turnstile chain lock. */ if (v == MTX_UNOWNED) { turnstile_cancel(ts); continue; } #ifdef ADAPTIVE_MUTEXES /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the turnstile * chain lock. If so, drop the turnstile lock and try * again. */ owner = lv_mtx_owner(v); if (TD_IS_RUNNING(owner)) { turnstile_cancel(ts); continue; } #endif /* * If the mutex isn't already contested and a failure occurs * setting the contested bit, the mutex was either released * or the state of the MTX_RECURSED bit changed. */ if ((v & MTX_CONTESTED) == 0 && !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) { goto retry_turnstile; } /* * We definitely must sleep for this lock. */ mtx_assert(m, MA_NOTOWNED); /* * Block on the turnstile. */ #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&m->lock_object); #endif #ifndef ADAPTIVE_MUTEXES owner = mtx_owner(m); #endif MPASS(owner == mtx_owner(m)); turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&m->lock_object); sleep_cnt++; #endif v = MTX_READ_VALUE(m); } THREAD_CONTENTION_DONE(&m->lock_object); #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) if (__predict_true(!doing_lockprof)) return; #endif #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&m->lock_object); if (sleep_time) LOCKSTAT_RECORD1(adaptive__block, m, sleep_time); /* * Only record the loops spinning and not sleeping. */ if (lda.spin_cnt > sleep_cnt) LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time); out_lockstat: #endif LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested, waittime, file, line); } #ifdef SMP /* * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock. * * This is only called if we need to actually spin for the lock. Recursion * is handled inline. */ #if LOCK_DEBUG > 0 void _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts, const char *file, int line) #else void _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v) #endif { struct mtx *m; struct lock_delay_arg lda; uintptr_t tid; #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #ifdef KDTRACE_HOOKS int64_t spin_time = 0; #endif #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) int doing_lockprof = 0; #endif tid = (uintptr_t)curthread; m = mtxlock2mtx(c); #ifdef KDTRACE_HOOKS if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) { while (v == MTX_UNOWNED) { if (_mtx_obtain_lock_fetch(m, &v, tid)) goto out_lockstat; } doing_lockprof = 1; spin_time -= lockstat_nsecs(&m->lock_object); } #endif #ifdef LOCK_PROFILING doing_lockprof = 1; #endif if (__predict_false(v == MTX_UNOWNED)) v = MTX_READ_VALUE(m); if (__predict_false(v == tid)) { m->mtx_recurse++; return; } if (SCHEDULER_STOPPED()) return; if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m); KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "spinning", "lockname:\"%s\"", m->lock_object.lo_name); lock_delay_arg_init(&lda, &mtx_spin_delay); #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&m->lock_object, true, &contested, &waittime); for (;;) { if (v == MTX_UNOWNED) { if (_mtx_obtain_lock_fetch(m, &v, tid)) break; continue; } /* Give interrupts a chance while we spin. */ spinlock_exit(); do { if (__predict_true(lda.spin_cnt < 10000000)) { lock_delay(&lda); } else { _mtx_lock_indefinite_check(m, &lda); } v = MTX_READ_VALUE(m); } while (v != MTX_UNOWNED); spinlock_enter(); } if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m); KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "running"); #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) if (__predict_true(!doing_lockprof)) return; #endif #ifdef KDTRACE_HOOKS spin_time += lockstat_nsecs(&m->lock_object); if (lda.spin_cnt != 0) LOCKSTAT_RECORD1(spin__spin, m, spin_time); out_lockstat: #endif LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m, contested, waittime, file, line); } #endif /* SMP */ #ifdef INVARIANTS static void thread_lock_validate(struct mtx *m, int opts, const char *file, int line) { KASSERT(m->mtx_lock != MTX_DESTROYED, ("thread_lock() of destroyed mutex @ %s:%d", file, line)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, ("thread_lock() of sleep mutex %s @ %s:%d", m->lock_object.lo_name, file, line)); KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) == 0, ("thread_lock: got a recursive mutex %s @ %s:%d\n", m->lock_object.lo_name, file, line)); WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); } #else #define thread_lock_validate(m, opts, file, line) do { } while (0) #endif #ifndef LOCK_PROFILING #if LOCK_DEBUG > 0 void _thread_lock(struct thread *td, int opts, const char *file, int line) #else void _thread_lock(struct thread *td) #endif { struct mtx *m; uintptr_t tid; tid = (uintptr_t)curthread; if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire))) goto slowpath_noirq; spinlock_enter(); m = td->td_lock; thread_lock_validate(m, 0, file, line); if (__predict_false(m == &blocked_lock)) goto slowpath_unlocked; if (__predict_false(!_mtx_obtain_lock(m, tid))) goto slowpath_unlocked; if (__predict_true(m == td->td_lock)) { WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line); return; } _mtx_release_lock_quick(m); slowpath_unlocked: spinlock_exit(); slowpath_noirq: #if LOCK_DEBUG > 0 thread_lock_flags_(td, opts, file, line); #else thread_lock_flags_(td, 0, 0, 0); #endif } #endif void thread_lock_flags_(struct thread *td, int opts, const char *file, int line) { struct mtx *m; uintptr_t tid, v; struct lock_delay_arg lda; #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #ifdef KDTRACE_HOOKS int64_t spin_time = 0; #endif #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) int doing_lockprof = 1; #endif tid = (uintptr_t)curthread; if (SCHEDULER_STOPPED()) { /* * Ensure that spinlock sections are balanced even when the * scheduler is stopped, since we may otherwise inadvertently * re-enable interrupts while dumping core. */ spinlock_enter(); return; } lock_delay_arg_init(&lda, &mtx_spin_delay); #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif #ifdef LOCK_PROFILING doing_lockprof = 1; #elif defined(KDTRACE_HOOKS) doing_lockprof = lockstat_enabled; #endif #ifdef KDTRACE_HOOKS if (__predict_false(doing_lockprof)) spin_time -= lockstat_nsecs(&td->td_lock->lock_object); #endif spinlock_enter(); for (;;) { retry: m = td->td_lock; thread_lock_validate(m, opts, file, line); v = MTX_READ_VALUE(m); for (;;) { if (v == MTX_UNOWNED) { if (_mtx_obtain_lock_fetch(m, &v, tid)) break; continue; } MPASS(v != tid); lock_profile_obtain_lock_failed(&m->lock_object, true, &contested, &waittime); /* Give interrupts a chance while we spin. */ spinlock_exit(); do { if (__predict_true(lda.spin_cnt < 10000000)) { lock_delay(&lda); } else { _mtx_lock_indefinite_check(m, &lda); } if (m != td->td_lock) { spinlock_enter(); goto retry; } v = MTX_READ_VALUE(m); } while (v != MTX_UNOWNED); spinlock_enter(); } if (m == td->td_lock) break; _mtx_release_lock_quick(m); } LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, line); WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) if (__predict_true(!doing_lockprof)) return; #endif #ifdef KDTRACE_HOOKS spin_time += lockstat_nsecs(&m->lock_object); #endif LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m, contested, waittime, file, line); #ifdef KDTRACE_HOOKS if (lda.spin_cnt != 0) LOCKSTAT_RECORD1(thread__spin, m, spin_time); #endif } struct mtx * thread_lock_block(struct thread *td) { struct mtx *lock; lock = td->td_lock; mtx_assert(lock, MA_OWNED); td->td_lock = &blocked_lock; return (lock); } void thread_lock_unblock(struct thread *td, struct mtx *new) { mtx_assert(new, MA_OWNED); KASSERT(td->td_lock == &blocked_lock, ("thread %p lock %p not blocked_lock %p", td, td->td_lock, &blocked_lock)); atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new); } void thread_lock_block_wait(struct thread *td) { while (td->td_lock == &blocked_lock) cpu_spinwait(); /* Acquire fence to be certain that all thread state is visible. */ atomic_thread_fence_acq(); } void thread_lock_set(struct thread *td, struct mtx *new) { struct mtx *lock; mtx_assert(new, MA_OWNED); lock = td->td_lock; mtx_assert(lock, MA_OWNED); td->td_lock = new; mtx_unlock_spin(lock); } /* * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock. * * We are only called here if the lock is recursed, contested (i.e. we * need to wake up a blocked thread) or lockstat probe is active. */ #if LOCK_DEBUG > 0 void __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file, int line) #else void __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v) #endif { struct mtx *m; struct turnstile *ts; uintptr_t tid; if (SCHEDULER_STOPPED()) return; tid = (uintptr_t)curthread; m = mtxlock2mtx(c); if (__predict_false(v == tid)) v = MTX_READ_VALUE(m); if (__predict_false(v & MTX_RECURSED)) { if (--(m->mtx_recurse) == 0) atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m); return; } LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m); if (v == tid && _mtx_release_lock(m, tid)) return; /* * We have to lock the chain before the turnstile so this turnstile * can be removed from the hash list if it is empty. */ turnstile_chain_lock(&m->lock_object); _mtx_release_lock_quick(m); ts = turnstile_lookup(&m->lock_object); MPASS(ts != NULL); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m); turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE); /* * This turnstile is now no longer associated with the mutex. We can * unlock the chain lock so a new turnstile may take it's place. */ turnstile_unpend(ts); turnstile_chain_unlock(&m->lock_object); } /* * All the unlocking of MTX_SPIN locks is done inline. * See the __mtx_unlock_spin() macro for the details. */ /* * The backing function for the INVARIANTS-enabled mtx_assert() */ #ifdef INVARIANT_SUPPORT void __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line) { const struct mtx *m; if (KERNEL_PANICKED() || dumping || SCHEDULER_STOPPED()) return; m = mtxlock2mtx(c); switch (what) { case MA_OWNED: case MA_OWNED | MA_RECURSED: case MA_OWNED | MA_NOTRECURSED: if (!mtx_owned(m)) panic("mutex %s not owned at %s:%d", m->lock_object.lo_name, file, line); if (mtx_recursed(m)) { if ((what & MA_NOTRECURSED) != 0) panic("mutex %s recursed at %s:%d", m->lock_object.lo_name, file, line); } else if ((what & MA_RECURSED) != 0) { panic("mutex %s unrecursed at %s:%d", m->lock_object.lo_name, file, line); } break; case MA_NOTOWNED: if (mtx_owned(m)) panic("mutex %s owned at %s:%d", m->lock_object.lo_name, file, line); break; default: panic("unknown mtx_assert at %s:%d", file, line); } } #endif /* * General init routine used by the MTX_SYSINIT() macro. */ void mtx_sysinit(void *arg) { struct mtx_args *margs = arg; mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts); } /* * Mutex initialization routine; initialize lock `m' of type contained in * `opts' with options contained in `opts' and name `name.' The optional * lock type `type' is used as a general lock category name for use with * witness. */ void _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts) { struct mtx *m; struct lock_class *class; int flags; m = mtxlock2mtx(c); MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE | MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0); ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock, ("%s: mtx_lock not aligned for %s: %p", __func__, name, &m->mtx_lock)); /* Determine lock class and lock flags. */ if (opts & MTX_SPIN) class = &lock_class_mtx_spin; else class = &lock_class_mtx_sleep; flags = 0; if (opts & MTX_QUIET) flags |= LO_QUIET; if (opts & MTX_RECURSE) flags |= LO_RECURSABLE; if ((opts & MTX_NOWITNESS) == 0) flags |= LO_WITNESS; if (opts & MTX_DUPOK) flags |= LO_DUPOK; if (opts & MTX_NOPROFILE) flags |= LO_NOPROFILE; if (opts & MTX_NEW) flags |= LO_NEW; /* Initialize mutex. */ lock_init(&m->lock_object, class, name, type, flags); m->mtx_lock = MTX_UNOWNED; m->mtx_recurse = 0; } /* * Remove lock `m' from all_mtx queue. We don't allow MTX_QUIET to be * passed in as a flag here because if the corresponding mtx_init() was * called with MTX_QUIET set, then it will already be set in the mutex's * flags. */ void _mtx_destroy(volatile uintptr_t *c) { struct mtx *m; m = mtxlock2mtx(c); if (!mtx_owned(m)) MPASS(mtx_unowned(m)); else { MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0); /* Perform the non-mtx related part of mtx_unlock_spin(). */ if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin) { lock_profile_release_lock(&m->lock_object, true); spinlock_exit(); } else { TD_LOCKS_DEC(curthread); lock_profile_release_lock(&m->lock_object, false); } /* Tell witness this isn't locked to make it happy. */ WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__, __LINE__); } m->mtx_lock = MTX_DESTROYED; lock_destroy(&m->lock_object); } /* * Intialize the mutex code and system mutexes. This is called from the MD * startup code prior to mi_startup(). The per-CPU data space needs to be * setup before this is called. */ void mutex_init(void) { /* Setup turnstiles so that sleep mutexes work. */ init_turnstiles(); /* * Initialize mutexes. */ mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE); mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN); blocked_lock.mtx_lock = 0xdeadc0de; /* Always blocked. */ mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN); mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN); mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN); mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN); mtx_init(&devmtx, "cdev", NULL, MTX_DEF); mtx_lock(&Giant); } static void __noinline _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap) { struct thread *td; ldap->spin_cnt++; if (ldap->spin_cnt < 60000000 || kdb_active || KERNEL_PANICKED()) cpu_lock_delay(); else { td = mtx_owner(m); /* If the mutex is unlocked, try again. */ if (td == NULL) return; printf( "spin lock %p (%s) held by %p (tid %d) too long\n", m, m->lock_object.lo_name, td, td->td_tid); #ifdef WITNESS witness_display_spinlock(&m->lock_object, td, printf); #endif panic("spin lock held too long"); } cpu_spinwait(); } void mtx_spin_wait_unlocked(struct mtx *m) { struct lock_delay_arg lda; KASSERT(m->mtx_lock != MTX_DESTROYED, ("%s() of destroyed mutex %p", __func__, m)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, ("%s() of sleep mutex %p (%s)", __func__, m, m->lock_object.lo_name)); KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m, m->lock_object.lo_name)); lda.spin_cnt = 0; while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) { if (__predict_true(lda.spin_cnt < 10000000)) { cpu_spinwait(); lda.spin_cnt++; } else { _mtx_lock_indefinite_check(m, &lda); } } } void mtx_wait_unlocked(struct mtx *m) { struct thread *owner; uintptr_t v; KASSERT(m->mtx_lock != MTX_DESTROYED, ("%s() of destroyed mutex %p", __func__, m)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep, ("%s() not a sleep mutex %p (%s)", __func__, m, m->lock_object.lo_name)); KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m, m->lock_object.lo_name)); for (;;) { v = atomic_load_acq_ptr(&m->mtx_lock); if (v == MTX_UNOWNED) { break; } owner = lv_mtx_owner(v); if (!TD_IS_RUNNING(owner)) { mtx_lock(m); mtx_unlock(m); break; } cpu_spinwait(); } } #ifdef DDB void db_show_mtx(const struct lock_object *lock) { struct thread *td; const struct mtx *m; m = (const struct mtx *)lock; db_printf(" flags: {"); if (LOCK_CLASS(lock) == &lock_class_mtx_spin) db_printf("SPIN"); else db_printf("DEF"); if (m->lock_object.lo_flags & LO_RECURSABLE) db_printf(", RECURSE"); if (m->lock_object.lo_flags & LO_DUPOK) db_printf(", DUPOK"); db_printf("}\n"); db_printf(" state: {"); if (mtx_unowned(m)) db_printf("UNOWNED"); else if (mtx_destroyed(m)) db_printf("DESTROYED"); else { db_printf("OWNED"); if (m->mtx_lock & MTX_CONTESTED) db_printf(", CONTESTED"); if (m->mtx_lock & MTX_RECURSED) db_printf(", RECURSED"); } db_printf("}\n"); if (!mtx_unowned(m) && !mtx_destroyed(m)) { td = mtx_owner(m); db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td, td->td_tid, td->td_proc->p_pid, td->td_name); if (mtx_recursed(m)) db_printf(" recursed: %d\n", m->mtx_recurse); } } #endif