/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. * Copyright (c) 2005 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The ktrace facility allows the tracing of certain key events in user space * processes, such as system calls, signal delivery, context switches, and * user generated events using utrace(2). It works by streaming event * records and data to a vnode associated with the process using the * ktrace(2) system call. In general, records can be written directly from * the context that generates the event. One important exception to this is * during a context switch, where sleeping is not permitted. To handle this * case, trace events are generated using in-kernel ktr_request records, and * then delivered to disk at a convenient moment -- either immediately, the * next traceable event, at system call return, or at process exit. * * When dealing with multiple threads or processes writing to the same event * log, ordering guarantees are weak: specifically, if an event has multiple * records (i.e., system call enter and return), they may be interlaced with * records from another event. Process and thread ID information is provided * in the record, and user applications can de-interlace events if required. */ static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE"); #ifdef KTRACE FEATURE(ktrace, "Kernel support for system-call tracing"); #ifndef KTRACE_REQUEST_POOL #define KTRACE_REQUEST_POOL 100 #endif struct ktr_request { struct ktr_header ktr_header; void *ktr_buffer; union { struct ktr_proc_ctor ktr_proc_ctor; struct ktr_cap_fail ktr_cap_fail; struct ktr_syscall ktr_syscall; struct ktr_sysret ktr_sysret; struct ktr_genio ktr_genio; struct ktr_psig ktr_psig; struct ktr_csw ktr_csw; struct ktr_fault ktr_fault; struct ktr_faultend ktr_faultend; struct ktr_struct_array ktr_struct_array; } ktr_data; STAILQ_ENTRY(ktr_request) ktr_list; }; static const int data_lengths[] = { [KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args), [KTR_SYSRET] = sizeof(struct ktr_sysret), [KTR_NAMEI] = 0, [KTR_GENIO] = sizeof(struct ktr_genio), [KTR_PSIG] = sizeof(struct ktr_psig), [KTR_CSW] = sizeof(struct ktr_csw), [KTR_USER] = 0, [KTR_STRUCT] = 0, [KTR_SYSCTL] = 0, [KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor), [KTR_PROCDTOR] = 0, [KTR_CAPFAIL] = sizeof(struct ktr_cap_fail), [KTR_FAULT] = sizeof(struct ktr_fault), [KTR_FAULTEND] = sizeof(struct ktr_faultend), [KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array), }; static STAILQ_HEAD(, ktr_request) ktr_free; static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "KTRACE options"); static u_int ktr_requestpool = KTRACE_REQUEST_POOL; TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool); u_int ktr_geniosize = PAGE_SIZE; SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize, 0, "Maximum size of genio event payload"); /* * Allow to not to send signal to traced process, in which context the * ktr record is written. The limit is applied from the process that * set up ktrace, so killing the traced process is not completely fair. */ int ktr_filesize_limit_signal = 0; SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN, &ktr_filesize_limit_signal, 0, "Send SIGXFSZ to the traced process when the log size limit is exceeded"); static int print_message = 1; static struct mtx ktrace_mtx; static struct sx ktrace_sx; struct ktr_io_params { struct vnode *vp; struct ucred *cr; off_t lim; u_int refs; }; static void ktrace_init(void *dummy); static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS); static u_int ktrace_resize_pool(u_int oldsize, u_int newsize); static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type); static struct ktr_request *ktr_getrequest(int type); static void ktr_submitrequest(struct thread *td, struct ktr_request *req); static struct ktr_io_params *ktr_freeproc(struct proc *p); static void ktr_freerequest(struct ktr_request *req); static void ktr_freerequest_locked(struct ktr_request *req); static void ktr_writerequest(struct thread *td, struct ktr_request *req); static int ktrcanset(struct thread *,struct proc *); static int ktrsetchildren(struct thread *, struct proc *, int, int, struct ktr_io_params *); static int ktrops(struct thread *, struct proc *, int, int, struct ktr_io_params *); static void ktrprocctor_entered(struct thread *, struct proc *); /* * ktrace itself generates events, such as context switches, which we do not * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine * whether or not it is in a region where tracing of events should be * suppressed. */ static void ktrace_enter(struct thread *td) { KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set")); td->td_pflags |= TDP_INKTRACE; } static void ktrace_exit(struct thread *td) { KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set")); td->td_pflags &= ~TDP_INKTRACE; } static void ktrace_assert(struct thread *td) { KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set")); } static void ast_ktrace(struct thread *td, int tda __unused) { KTRUSERRET(td); } static void ktrace_init(void *dummy) { struct ktr_request *req; int i; mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET); sx_init(&ktrace_sx, "ktrace_sx"); STAILQ_INIT(&ktr_free); for (i = 0; i < ktr_requestpool; i++) { req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK | M_ZERO); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); } ast_register(TDA_KTRACE, ASTR_ASTF_REQUIRED, 0, ast_ktrace); } SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL); static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS) { struct thread *td; u_int newsize, oldsize, wantsize; int error; /* Handle easy read-only case first to avoid warnings from GCC. */ if (!req->newptr) { oldsize = ktr_requestpool; return (SYSCTL_OUT(req, &oldsize, sizeof(u_int))); } error = SYSCTL_IN(req, &wantsize, sizeof(u_int)); if (error) return (error); td = curthread; ktrace_enter(td); oldsize = ktr_requestpool; newsize = ktrace_resize_pool(oldsize, wantsize); ktrace_exit(td); error = SYSCTL_OUT(req, &oldsize, sizeof(u_int)); if (error) return (error); if (wantsize > oldsize && newsize < wantsize) return (ENOSPC); return (0); } SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "Pool buffer size for ktrace(1)"); static u_int ktrace_resize_pool(u_int oldsize, u_int newsize) { STAILQ_HEAD(, ktr_request) ktr_new; struct ktr_request *req; int bound; print_message = 1; bound = newsize - oldsize; if (bound == 0) return (ktr_requestpool); if (bound < 0) { mtx_lock(&ktrace_mtx); /* Shrink pool down to newsize if possible. */ while (bound++ < 0) { req = STAILQ_FIRST(&ktr_free); if (req == NULL) break; STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); ktr_requestpool--; free(req, M_KTRACE); } } else { /* Grow pool up to newsize. */ STAILQ_INIT(&ktr_new); while (bound-- > 0) { req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK | M_ZERO); STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list); } mtx_lock(&ktrace_mtx); STAILQ_CONCAT(&ktr_free, &ktr_new); ktr_requestpool += (newsize - oldsize); } mtx_unlock(&ktrace_mtx); return (ktr_requestpool); } /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */ CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) == (sizeof((struct thread *)NULL)->td_name)); static struct ktr_request * ktr_getrequest_entered(struct thread *td, int type) { struct ktr_request *req; struct proc *p = td->td_proc; int pm; mtx_lock(&ktrace_mtx); if (!KTRCHECK(td, type)) { mtx_unlock(&ktrace_mtx); return (NULL); } req = STAILQ_FIRST(&ktr_free); if (req != NULL) { STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); req->ktr_header.ktr_type = type; if (p->p_traceflag & KTRFAC_DROP) { req->ktr_header.ktr_type |= KTR_DROP; p->p_traceflag &= ~KTRFAC_DROP; } mtx_unlock(&ktrace_mtx); nanotime(&req->ktr_header.ktr_time); req->ktr_header.ktr_type |= KTR_VERSIONED; req->ktr_header.ktr_pid = p->p_pid; req->ktr_header.ktr_tid = td->td_tid; req->ktr_header.ktr_cpu = PCPU_GET(cpuid); req->ktr_header.ktr_version = KTR_VERSION1; bcopy(td->td_name, req->ktr_header.ktr_comm, sizeof(req->ktr_header.ktr_comm)); req->ktr_buffer = NULL; req->ktr_header.ktr_len = 0; } else { p->p_traceflag |= KTRFAC_DROP; pm = print_message; print_message = 0; mtx_unlock(&ktrace_mtx); if (pm) printf("Out of ktrace request objects.\n"); } return (req); } static struct ktr_request * ktr_getrequest(int type) { struct thread *td = curthread; struct ktr_request *req; ktrace_enter(td); req = ktr_getrequest_entered(td, type); if (req == NULL) ktrace_exit(td); return (req); } /* * Some trace generation environments don't permit direct access to VFS, * such as during a context switch where sleeping is not allowed. Under these * circumstances, queue a request to the thread to be written asynchronously * later. */ static void ktr_enqueuerequest(struct thread *td, struct ktr_request *req) { mtx_lock(&ktrace_mtx); STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list); mtx_unlock(&ktrace_mtx); ast_sched(td, TDA_KTRACE); } /* * Drain any pending ktrace records from the per-thread queue to disk. This * is used both internally before committing other records, and also on * system call return. We drain all the ones we can find at the time when * drain is requested, but don't keep draining after that as those events * may be approximately "after" the current event. */ static void ktr_drain(struct thread *td) { struct ktr_request *queued_req; STAILQ_HEAD(, ktr_request) local_queue; ktrace_assert(td); sx_assert(&ktrace_sx, SX_XLOCKED); STAILQ_INIT(&local_queue); if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) { mtx_lock(&ktrace_mtx); STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr); mtx_unlock(&ktrace_mtx); while ((queued_req = STAILQ_FIRST(&local_queue))) { STAILQ_REMOVE_HEAD(&local_queue, ktr_list); ktr_writerequest(td, queued_req); ktr_freerequest(queued_req); } } } /* * Submit a trace record for immediate commit to disk -- to be used only * where entering VFS is OK. First drain any pending records that may have * been cached in the thread. */ static void ktr_submitrequest(struct thread *td, struct ktr_request *req) { ktrace_assert(td); sx_xlock(&ktrace_sx); ktr_drain(td); ktr_writerequest(td, req); ktr_freerequest(req); sx_xunlock(&ktrace_sx); ktrace_exit(td); } static void ktr_freerequest(struct ktr_request *req) { mtx_lock(&ktrace_mtx); ktr_freerequest_locked(req); mtx_unlock(&ktrace_mtx); } static void ktr_freerequest_locked(struct ktr_request *req) { mtx_assert(&ktrace_mtx, MA_OWNED); if (req->ktr_buffer != NULL) free(req->ktr_buffer, M_KTRACE); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); } static void ktr_io_params_ref(struct ktr_io_params *kiop) { mtx_assert(&ktrace_mtx, MA_OWNED); kiop->refs++; } static struct ktr_io_params * ktr_io_params_rele(struct ktr_io_params *kiop) { mtx_assert(&ktrace_mtx, MA_OWNED); if (kiop == NULL) return (NULL); KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop)); return (--(kiop->refs) == 0 ? kiop : NULL); } void ktr_io_params_free(struct ktr_io_params *kiop) { if (kiop == NULL) return; MPASS(kiop->refs == 0); vn_close(kiop->vp, FWRITE, kiop->cr, curthread); crfree(kiop->cr); free(kiop, M_KTRACE); } static struct ktr_io_params * ktr_io_params_alloc(struct thread *td, struct vnode *vp) { struct ktr_io_params *res; res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK); res->vp = vp; res->cr = crhold(td->td_ucred); res->lim = lim_cur(td, RLIMIT_FSIZE); res->refs = 1; return (res); } /* * Disable tracing for a process and release all associated resources. * The caller is responsible for releasing a reference on the returned * vnode and credentials. */ static struct ktr_io_params * ktr_freeproc(struct proc *p) { struct ktr_io_params *kiop; struct ktr_request *req; PROC_LOCK_ASSERT(p, MA_OWNED); mtx_assert(&ktrace_mtx, MA_OWNED); kiop = ktr_io_params_rele(p->p_ktrioparms); p->p_ktrioparms = NULL; p->p_traceflag = 0; while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) { STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list); ktr_freerequest_locked(req); } return (kiop); } struct vnode * ktr_get_tracevp(struct proc *p, bool ref) { struct vnode *vp; PROC_LOCK_ASSERT(p, MA_OWNED); if (p->p_ktrioparms != NULL) { vp = p->p_ktrioparms->vp; if (ref) vrefact(vp); } else { vp = NULL; } return (vp); } void ktrsyscall(int code, int narg, syscallarg_t args[]) { struct ktr_request *req; struct ktr_syscall *ktp; size_t buflen; char *buf = NULL; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; buflen = sizeof(register_t) * narg; if (buflen > 0) { buf = malloc(buflen, M_KTRACE, M_WAITOK); bcopy(args, buf, buflen); } req = ktr_getrequest(KTR_SYSCALL); if (req == NULL) { if (buf != NULL) free(buf, M_KTRACE); return; } ktp = &req->ktr_data.ktr_syscall; ktp->ktr_code = code; ktp->ktr_narg = narg; if (buflen > 0) { req->ktr_header.ktr_len = buflen; req->ktr_buffer = buf; } ktr_submitrequest(curthread, req); } void ktrsysret(int code, int error, register_t retval) { struct ktr_request *req; struct ktr_sysret *ktp; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_SYSRET); if (req == NULL) return; ktp = &req->ktr_data.ktr_sysret; ktp->ktr_code = code; ktp->ktr_error = error; ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */ ktr_submitrequest(curthread, req); } /* * When a setuid process execs, disable tracing. * * XXX: We toss any pending asynchronous records. */ struct ktr_io_params * ktrprocexec(struct proc *p) { struct ktr_io_params *kiop; PROC_LOCK_ASSERT(p, MA_OWNED); kiop = p->p_ktrioparms; if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED) == 0) return (NULL); mtx_lock(&ktrace_mtx); kiop = ktr_freeproc(p); mtx_unlock(&ktrace_mtx); return (kiop); } /* * When a process exits, drain per-process asynchronous trace records * and disable tracing. */ void ktrprocexit(struct thread *td) { struct ktr_request *req; struct proc *p; struct ktr_io_params *kiop; p = td->td_proc; if (p->p_traceflag == 0) return; ktrace_enter(td); req = ktr_getrequest_entered(td, KTR_PROCDTOR); if (req != NULL) ktr_enqueuerequest(td, req); sx_xlock(&ktrace_sx); ktr_drain(td); sx_xunlock(&ktrace_sx); PROC_LOCK(p); mtx_lock(&ktrace_mtx); kiop = ktr_freeproc(p); mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p); ktr_io_params_free(kiop); ktrace_exit(td); } static void ktrprocctor_entered(struct thread *td, struct proc *p) { struct ktr_proc_ctor *ktp; struct ktr_request *req; struct thread *td2; ktrace_assert(td); td2 = FIRST_THREAD_IN_PROC(p); req = ktr_getrequest_entered(td2, KTR_PROCCTOR); if (req == NULL) return; ktp = &req->ktr_data.ktr_proc_ctor; ktp->sv_flags = p->p_sysent->sv_flags; ktr_enqueuerequest(td2, req); } void ktrprocctor(struct proc *p) { struct thread *td = curthread; if ((p->p_traceflag & KTRFAC_MASK) == 0) return; ktrace_enter(td); ktrprocctor_entered(td, p); ktrace_exit(td); } /* * When a process forks, enable tracing in the new process if needed. */ void ktrprocfork(struct proc *p1, struct proc *p2) { MPASS(p2->p_ktrioparms == NULL); MPASS(p2->p_traceflag == 0); if (p1->p_traceflag == 0) return; PROC_LOCK(p1); mtx_lock(&ktrace_mtx); if (p1->p_traceflag & KTRFAC_INHERIT) { p2->p_traceflag = p1->p_traceflag; if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL) p1->p_ktrioparms->refs++; } mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p1); ktrprocctor(p2); } /* * When a thread returns, drain any asynchronous records generated by the * system call. */ void ktruserret(struct thread *td) { ktrace_enter(td); sx_xlock(&ktrace_sx); ktr_drain(td); sx_xunlock(&ktrace_sx); ktrace_exit(td); } void ktrnamei(const char *path) { struct ktr_request *req; int namelen; char *buf = NULL; namelen = strlen(path); if (namelen > 0) { buf = malloc(namelen, M_KTRACE, M_WAITOK); bcopy(path, buf, namelen); } req = ktr_getrequest(KTR_NAMEI); if (req == NULL) { if (buf != NULL) free(buf, M_KTRACE); return; } if (namelen > 0) { req->ktr_header.ktr_len = namelen; req->ktr_buffer = buf; } ktr_submitrequest(curthread, req); } void ktrsysctl(int *name, u_int namelen) { struct ktr_request *req; u_int mib[CTL_MAXNAME + 2]; char *mibname; size_t mibnamelen; int error; /* Lookup name of mib. */ KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long")); mib[0] = 0; mib[1] = 1; bcopy(name, mib + 2, namelen * sizeof(*name)); mibnamelen = 128; mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK); error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen, NULL, 0, &mibnamelen, 0); if (error) { free(mibname, M_KTRACE); return; } req = ktr_getrequest(KTR_SYSCTL); if (req == NULL) { free(mibname, M_KTRACE); return; } req->ktr_header.ktr_len = mibnamelen; req->ktr_buffer = mibname; ktr_submitrequest(curthread, req); } void ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error) { struct ktr_request *req; struct ktr_genio *ktg; int datalen; char *buf; if (error != 0 && (rw == UIO_READ || error == EFAULT)) { freeuio(uio); return; } uio->uio_offset = 0; uio->uio_rw = UIO_WRITE; datalen = MIN(uio->uio_resid, ktr_geniosize); buf = malloc(datalen, M_KTRACE, M_WAITOK); error = uiomove(buf, datalen, uio); freeuio(uio); if (error) { free(buf, M_KTRACE); return; } req = ktr_getrequest(KTR_GENIO); if (req == NULL) { free(buf, M_KTRACE); return; } ktg = &req->ktr_data.ktr_genio; ktg->ktr_fd = fd; ktg->ktr_rw = rw; req->ktr_header.ktr_len = datalen; req->ktr_buffer = buf; ktr_submitrequest(curthread, req); } void ktrpsig(int sig, sig_t action, sigset_t *mask, int code) { struct thread *td = curthread; struct ktr_request *req; struct ktr_psig *kp; req = ktr_getrequest(KTR_PSIG); if (req == NULL) return; kp = &req->ktr_data.ktr_psig; kp->signo = (char)sig; kp->action = action; kp->mask = *mask; kp->code = code; ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrcsw(int out, int user, const char *wmesg) { struct thread *td = curthread; struct ktr_request *req; struct ktr_csw *kc; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_CSW); if (req == NULL) return; kc = &req->ktr_data.ktr_csw; kc->out = out; kc->user = user; if (wmesg != NULL) strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg)); else bzero(kc->wmesg, sizeof(kc->wmesg)); ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrstruct(const char *name, const void *data, size_t datalen) { struct ktr_request *req; char *buf; size_t buflen, namelen; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; if (data == NULL) datalen = 0; namelen = strlen(name) + 1; buflen = namelen + datalen; buf = malloc(buflen, M_KTRACE, M_WAITOK); strcpy(buf, name); bcopy(data, buf + namelen, datalen); if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) { free(buf, M_KTRACE); return; } req->ktr_buffer = buf; req->ktr_header.ktr_len = buflen; ktr_submitrequest(curthread, req); } void ktrstruct_error(const char *name, const void *data, size_t datalen, int error) { if (error == 0) ktrstruct(name, data, datalen); } void ktrstructarray(const char *name, enum uio_seg seg, const void *data, int num_items, size_t struct_size) { struct ktr_request *req; struct ktr_struct_array *ksa; char *buf; size_t buflen, datalen, namelen; int max_items; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; if (num_items < 0) return; /* Trim array length to genio size. */ max_items = ktr_geniosize / struct_size; if (num_items > max_items) { if (max_items == 0) num_items = 1; else num_items = max_items; } datalen = num_items * struct_size; if (data == NULL) datalen = 0; namelen = strlen(name) + 1; buflen = namelen + datalen; buf = malloc(buflen, M_KTRACE, M_WAITOK); strcpy(buf, name); if (seg == UIO_SYSSPACE) bcopy(data, buf + namelen, datalen); else { if (copyin(data, buf + namelen, datalen) != 0) { free(buf, M_KTRACE); return; } } if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) { free(buf, M_KTRACE); return; } ksa = &req->ktr_data.ktr_struct_array; ksa->struct_size = struct_size; req->ktr_buffer = buf; req->ktr_header.ktr_len = buflen; ktr_submitrequest(curthread, req); } void ktrcapfail(enum ktr_cap_violation type, const void *data) { struct thread *td = curthread; struct ktr_request *req; struct ktr_cap_fail *kcf; union ktr_cap_data *kcd; if (__predict_false(td->td_pflags & TDP_INKTRACE)) return; if (type != CAPFAIL_SYSCALL && (td->td_sa.callp->sy_flags & SYF_CAPENABLED) == 0) return; req = ktr_getrequest(KTR_CAPFAIL); if (req == NULL) return; kcf = &req->ktr_data.ktr_cap_fail; kcf->cap_type = type; kcf->cap_code = td->td_sa.code; kcf->cap_svflags = td->td_proc->p_sysent->sv_flags; if (data != NULL) { kcd = &kcf->cap_data; switch (type) { case CAPFAIL_NOTCAPABLE: case CAPFAIL_INCREASE: kcd->cap_needed = *(const cap_rights_t *)data; kcd->cap_held = *((const cap_rights_t *)data + 1); break; case CAPFAIL_SYSCALL: case CAPFAIL_SIGNAL: case CAPFAIL_PROTO: kcd->cap_int = *(const int *)data; break; case CAPFAIL_SOCKADDR: kcd->cap_sockaddr = *(const struct sockaddr *)data; break; case CAPFAIL_NAMEI: strlcpy(kcd->cap_path, data, MAXPATHLEN); break; case CAPFAIL_CPUSET: default: break; } } ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrfault(vm_offset_t vaddr, int type) { struct thread *td = curthread; struct ktr_request *req; struct ktr_fault *kf; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_FAULT); if (req == NULL) return; kf = &req->ktr_data.ktr_fault; kf->vaddr = vaddr; kf->type = type; ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrfaultend(int result) { struct thread *td = curthread; struct ktr_request *req; struct ktr_faultend *kf; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_FAULTEND); if (req == NULL) return; kf = &req->ktr_data.ktr_faultend; kf->result = result; ktr_enqueuerequest(td, req); ktrace_exit(td); } #endif /* KTRACE */ /* Interface and common routines */ #ifndef _SYS_SYSPROTO_H_ struct ktrace_args { char *fname; int ops; int facs; int pid; }; #endif /* ARGSUSED */ int sys_ktrace(struct thread *td, struct ktrace_args *uap) { #ifdef KTRACE struct vnode *vp = NULL; struct proc *p; struct pgrp *pg; int facs = uap->facs & ~KTRFAC_ROOT; int ops = KTROP(uap->ops); int descend = uap->ops & KTRFLAG_DESCEND; int ret = 0; int flags, error = 0; struct nameidata nd; struct ktr_io_params *kiop, *old_kiop; /* * Need something to (un)trace. */ if (ops != KTROP_CLEARFILE && facs == 0) return (EINVAL); kiop = NULL; if (ops != KTROP_CLEAR) { /* * an operation which requires a file argument. */ NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname); flags = FREAD | FWRITE | O_NOFOLLOW; error = vn_open(&nd, &flags, 0, NULL); if (error) return (error); NDFREE_PNBUF(&nd); vp = nd.ni_vp; VOP_UNLOCK(vp); if (vp->v_type != VREG) { (void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td); return (EACCES); } kiop = ktr_io_params_alloc(td, vp); } /* * Clear all uses of the tracefile. */ ktrace_enter(td); if (ops == KTROP_CLEARFILE) { restart: sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { old_kiop = NULL; PROC_LOCK(p); if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp) { if (ktrcanset(td, p)) { mtx_lock(&ktrace_mtx); old_kiop = ktr_freeproc(p); mtx_unlock(&ktrace_mtx); } else error = EPERM; } PROC_UNLOCK(p); if (old_kiop != NULL) { sx_sunlock(&allproc_lock); ktr_io_params_free(old_kiop); goto restart; } } sx_sunlock(&allproc_lock); goto done; } /* * do it */ sx_slock(&proctree_lock); if (uap->pid < 0) { /* * by process group */ pg = pgfind(-uap->pid); if (pg == NULL) { sx_sunlock(&proctree_lock); error = ESRCH; goto done; } /* * ktrops() may call vrele(). Lock pg_members * by the proctree_lock rather than pg_mtx. */ PGRP_UNLOCK(pg); if (LIST_EMPTY(&pg->pg_members)) { sx_sunlock(&proctree_lock); error = ESRCH; goto done; } LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (descend) ret |= ktrsetchildren(td, p, ops, facs, kiop); else ret |= ktrops(td, p, ops, facs, kiop); } } else { /* * by pid */ p = pfind(uap->pid); if (p == NULL) { error = ESRCH; sx_sunlock(&proctree_lock); goto done; } if (descend) ret |= ktrsetchildren(td, p, ops, facs, kiop); else ret |= ktrops(td, p, ops, facs, kiop); } sx_sunlock(&proctree_lock); if (!ret) error = EPERM; done: if (kiop != NULL) { mtx_lock(&ktrace_mtx); kiop = ktr_io_params_rele(kiop); mtx_unlock(&ktrace_mtx); ktr_io_params_free(kiop); } ktrace_exit(td); return (error); #else /* !KTRACE */ return (ENOSYS); #endif /* KTRACE */ } /* ARGSUSED */ int sys_utrace(struct thread *td, struct utrace_args *uap) { #ifdef KTRACE struct ktr_request *req; void *cp; int error; if (!KTRPOINT(td, KTR_USER)) return (0); if (uap->len > KTR_USER_MAXLEN) return (EINVAL); cp = malloc(uap->len, M_KTRACE, M_WAITOK); error = copyin(uap->addr, cp, uap->len); if (error) { free(cp, M_KTRACE); return (error); } req = ktr_getrequest(KTR_USER); if (req == NULL) { free(cp, M_KTRACE); return (ENOMEM); } req->ktr_buffer = cp; req->ktr_header.ktr_len = uap->len; ktr_submitrequest(td, req); return (0); #else /* !KTRACE */ return (ENOSYS); #endif /* KTRACE */ } #ifdef KTRACE static int ktrops(struct thread *td, struct proc *p, int ops, int facs, struct ktr_io_params *new_kiop) { struct ktr_io_params *old_kiop; PROC_LOCK_ASSERT(p, MA_OWNED); if (!ktrcanset(td, p)) { PROC_UNLOCK(p); return (0); } if ((ops == KTROP_SET && p->p_state == PRS_NEW) || p_cansee(td, p) != 0) { /* * Disallow setting trace points if the process is being born. * This avoids races with trace point inheritance in * ktrprocfork(). */ PROC_UNLOCK(p); return (0); } if ((p->p_flag & P_WEXIT) != 0) { /* * There's nothing to do if the process is exiting, but avoid * signaling an error. */ PROC_UNLOCK(p); return (1); } old_kiop = NULL; mtx_lock(&ktrace_mtx); if (ops == KTROP_SET) { if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp != new_kiop->vp) { /* if trace file already in use, relinquish below */ old_kiop = ktr_io_params_rele(p->p_ktrioparms); p->p_ktrioparms = NULL; } if (p->p_ktrioparms == NULL) { p->p_ktrioparms = new_kiop; ktr_io_params_ref(new_kiop); } p->p_traceflag |= facs; if (priv_check(td, PRIV_KTRACE) == 0) p->p_traceflag |= KTRFAC_ROOT; } else { /* KTROP_CLEAR */ if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) /* no more tracing */ old_kiop = ktr_freeproc(p); } mtx_unlock(&ktrace_mtx); if ((p->p_traceflag & KTRFAC_MASK) != 0) ktrprocctor_entered(td, p); PROC_UNLOCK(p); ktr_io_params_free(old_kiop); return (1); } static int ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs, struct ktr_io_params *new_kiop) { struct proc *p; int ret = 0; p = top; PROC_LOCK_ASSERT(p, MA_OWNED); sx_assert(&proctree_lock, SX_LOCKED); for (;;) { ret |= ktrops(td, p, ops, facs, new_kiop); /* * If this process has children, descend to them next, * otherwise do any siblings, and if done with this level, * follow back up the tree (but not past top). */ if (!LIST_EMPTY(&p->p_children)) p = LIST_FIRST(&p->p_children); else for (;;) { if (p == top) return (ret); if (LIST_NEXT(p, p_sibling)) { p = LIST_NEXT(p, p_sibling); break; } p = p->p_pptr; } PROC_LOCK(p); } /*NOTREACHED*/ } static void ktr_writerequest(struct thread *td, struct ktr_request *req) { struct ktr_io_params *kiop, *kiop1; struct ktr_header *kth; struct vnode *vp; struct proc *p; struct ucred *cred; struct uio auio; struct iovec aiov[3]; struct mount *mp; off_t lim; int datalen, buflen; int error; p = td->td_proc; /* * We reference the kiop for use in I/O in case ktrace is * disabled on the process as we write out the request. */ mtx_lock(&ktrace_mtx); kiop = p->p_ktrioparms; /* * If kiop is NULL, it has been cleared out from under this * request, so just drop it. */ if (kiop == NULL) { mtx_unlock(&ktrace_mtx); return; } ktr_io_params_ref(kiop); vp = kiop->vp; cred = kiop->cr; lim = kiop->lim; KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL")); mtx_unlock(&ktrace_mtx); kth = &req->ktr_header; KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths), ("data_lengths array overflow")); datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE]; buflen = kth->ktr_len; auio.uio_iov = &aiov[0]; auio.uio_offset = 0; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_WRITE; aiov[0].iov_base = (caddr_t)kth; aiov[0].iov_len = sizeof(struct ktr_header); auio.uio_resid = sizeof(struct ktr_header); auio.uio_iovcnt = 1; auio.uio_td = td; if (datalen != 0) { aiov[1].iov_base = (caddr_t)&req->ktr_data; aiov[1].iov_len = datalen; auio.uio_resid += datalen; auio.uio_iovcnt++; kth->ktr_len += datalen; } if (buflen != 0) { KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write")); aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer; aiov[auio.uio_iovcnt].iov_len = buflen; auio.uio_resid += buflen; auio.uio_iovcnt++; } vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); td->td_ktr_io_lim = lim; #ifdef MAC error = mac_vnode_check_write(cred, NOCRED, vp); if (error == 0) #endif error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred); VOP_UNLOCK(vp); vn_finished_write(mp); if (error == 0) { mtx_lock(&ktrace_mtx); kiop = ktr_io_params_rele(kiop); mtx_unlock(&ktrace_mtx); ktr_io_params_free(kiop); return; } /* * If error encountered, give up tracing on this vnode on this * process. Other processes might still be suitable for * writes to this vnode. */ log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped for pid %d\n", error, p->p_pid); kiop1 = NULL; PROC_LOCK(p); mtx_lock(&ktrace_mtx); if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp) kiop1 = ktr_freeproc(p); kiop = ktr_io_params_rele(kiop); mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p); ktr_io_params_free(kiop1); ktr_io_params_free(kiop); } /* * Return true if caller has permission to set the ktracing state * of target. Essentially, the target can't possess any * more permissions than the caller. KTRFAC_ROOT signifies that * root previously set the tracing status on the target process, and * so, only root may further change it. */ static int ktrcanset(struct thread *td, struct proc *targetp) { PROC_LOCK_ASSERT(targetp, MA_OWNED); if (targetp->p_traceflag & KTRFAC_ROOT && priv_check(td, PRIV_KTRACE)) return (0); if (p_candebug(td, targetp) != 0) return (0); return (1); } #endif /* KTRACE */