/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for acct_process() function prototype */ #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_execexit_func_t dtrace_fasttrap_exit; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE1(proc, , , exit, "int"); static int kern_kill_on_dbg_exit = 1; SYSCTL_INT(_kern, OID_AUTO, kill_on_debugger_exit, CTLFLAG_RWTUN, &kern_kill_on_dbg_exit, 0, "Kill ptraced processes when debugger exits"); static bool kern_wait_dequeue_sigchld = 1; SYSCTL_BOOL(_kern, OID_AUTO, wait_dequeue_sigchld, CTLFLAG_RWTUN, &kern_wait_dequeue_sigchld, 0, "Dequeue SIGCHLD on wait(2) for live process"); struct proc * proc_realparent(struct proc *child) { struct proc *p, *parent; sx_assert(&proctree_lock, SX_LOCKED); if ((child->p_treeflag & P_TREE_ORPHANED) == 0) return (child->p_pptr->p_pid == child->p_oppid ? child->p_pptr : child->p_reaper); for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { /* Cannot use LIST_PREV(), since the list head is not known. */ p = __containerof(p->p_orphan.le_prev, struct proc, p_orphan.le_next); KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, ("missing P_ORPHAN %p", p)); } parent = __containerof(p->p_orphan.le_prev, struct proc, p_orphans.lh_first); return (parent); } void reaper_abandon_children(struct proc *p, bool exiting) { struct proc *p1, *p2, *ptmp; sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(p != initproc, ("reaper_abandon_children for initproc")); if ((p->p_treeflag & P_TREE_REAPER) == 0) return; p1 = p->p_reaper; LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { LIST_REMOVE(p2, p_reapsibling); p2->p_reaper = p1; p2->p_reapsubtree = p->p_reapsubtree; LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); if (exiting && p2->p_pptr == p) { PROC_LOCK(p2); proc_reparent(p2, p1, true); PROC_UNLOCK(p2); } } KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); p->p_treeflag &= ~P_TREE_REAPER; } static void reaper_clear(struct proc *p) { struct proc *p1; bool clear; sx_assert(&proctree_lock, SX_LOCKED); LIST_REMOVE(p, p_reapsibling); if (p->p_reapsubtree == 1) return; clear = true; LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) { if (p1->p_reapsubtree == p->p_reapsubtree) { clear = false; break; } } if (clear) proc_id_clear(PROC_ID_REAP, p->p_reapsubtree); } void proc_clear_orphan(struct proc *p) { struct proc *p1; sx_assert(&proctree_lock, SA_XLOCKED); if ((p->p_treeflag & P_TREE_ORPHANED) == 0) return; if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { p1 = LIST_NEXT(p, p_orphan); if (p1 != NULL) p1->p_treeflag |= P_TREE_FIRST_ORPHAN; p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; } LIST_REMOVE(p, p_orphan); p->p_treeflag &= ~P_TREE_ORPHANED; } void exit_onexit(struct proc *p) { MPASS(p->p_numthreads == 1); umtx_thread_exit(FIRST_THREAD_IN_PROC(p)); } /* * exit -- death of process. */ int sys_exit(struct thread *td, struct exit_args *uap) { exit1(td, uap->rval, 0); __unreachable(); } void proc_set_p2_wexit(struct proc *p) { PROC_LOCK_ASSERT(p, MA_OWNED); p->p_flag2 |= P2_WEXIT; while (p->p_singlethr > 0) msleep(&p->p_singlethr, &p->p_mtx, PWAIT | PCATCH, "exit1t", 0); } /* * Exit: deallocate address space and other resources, change proc state to * zombie, and unlink proc from allproc and parent's lists. Save exit status * and rusage for wait(). Check for child processes and orphan them. */ void exit1(struct thread *td, int rval, int signo) { struct proc *p, *nq, *q, *t; struct thread *tdt; ksiginfo_t *ksi, *ksi1; int signal_parent; mtx_assert(&Giant, MA_NOTOWNED); KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo)); TSPROCEXIT(td->td_proc->p_pid); p = td->td_proc; /* * XXX in case we're rebooting we just let init die in order to * work around an unsolved stack overflow seen very late during * shutdown on sparc64 when the gmirror worker process exists. * XXX what to do now that sparc64 is gone... remove if? */ if (p == initproc && rebooting == 0) { printf("init died (signal %d, exit %d)\n", signo, rval); panic("Going nowhere without my init!"); } /* * Process deferred operations, designated with ASTF_KCLEAR. * For instance, we need to deref SU mp, since the thread does * not return to userspace, and wait for geom to stabilize. */ ast_kclear(td); /* * MUST abort all other threads before proceeding past here. */ PROC_LOCK(p); proc_set_p2_wexit(p); /* * First check if some other thread or external request got * here before us. If so, act appropriately: exit or suspend. * We must ensure that stop requests are handled before we set * P_WEXIT. */ thread_suspend_check(0); while (p->p_flag & P_HADTHREADS) { /* * Kill off the other threads. This requires * some co-operation from other parts of the kernel * so it may not be instantaneous. With this state set * any thread entering the kernel from userspace will * thread_exit() in trap(). Any thread attempting to * sleep will return immediately with EINTR or EWOULDBLOCK * which will hopefully force them to back out to userland * freeing resources as they go. Any thread attempting * to return to userland will thread_exit() from userret(). * thread_exit() will unsuspend us when the last of the * other threads exits. * If there is already a thread singler after resumption, * calling thread_single will fail; in that case, we just * re-check all suspension request, the thread should * either be suspended there or exit. */ if (!thread_single(p, SINGLE_EXIT)) /* * All other activity in this process is now * stopped. Threading support has been turned * off. */ break; /* * Recheck for new stop or suspend requests which * might appear while process lock was dropped in * thread_single(). */ thread_suspend_check(0); } KASSERT(p->p_numthreads == 1, ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); racct_sub(p, RACCT_NTHR, 1); /* Let event handler change exit status */ p->p_xexit = rval; p->p_xsig = signo; /* * Ignore any pending request to stop due to a stop signal. * Once P_WEXIT is set, future requests will be ignored as * well. */ p->p_flag &= ~P_STOPPED_SIG; KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); /* Note that we are exiting. */ p->p_flag |= P_WEXIT; /* * Wait for any processes that have a hold on our vmspace to * release their reference. */ while (p->p_lock > 0) msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); PROC_UNLOCK(p); /* Drain the limit callout while we don't have the proc locked */ callout_drain(&p->p_limco); #ifdef AUDIT /* * The Sun BSM exit token contains two components: an exit status as * passed to exit(), and a return value to indicate what sort of exit * it was. The exit status is WEXITSTATUS(rv), but it's not clear * what the return value is. */ AUDIT_ARG_EXIT(rval, 0); AUDIT_SYSCALL_EXIT(0, td); #endif /* Are we a task leader with peers? */ if (p->p_peers != NULL && p == p->p_leader) { mtx_lock(&ppeers_lock); q = p->p_peers; while (q != NULL) { PROC_LOCK(q); kern_psignal(q, SIGKILL); PROC_UNLOCK(q); q = q->p_peers; } while (p->p_peers != NULL) msleep(p, &ppeers_lock, PWAIT, "exit1", 0); mtx_unlock(&ppeers_lock); } itimers_exit(p); /* * Check if any loadable modules need anything done at process exit. * E.g. SYSV IPC stuff. * Event handler could change exit status. * XXX what if one of these generates an error? */ EVENTHANDLER_DIRECT_INVOKE(process_exit, p); /* * If parent is waiting for us to exit or exec, * P_PPWAIT is set; we will wakeup the parent below. */ PROC_LOCK(p); stopprofclock(p); p->p_ptevents = 0; /* * Stop the real interval timer. If the handler is currently * executing, prevent it from rearming itself and let it finish. */ if (timevalisset(&p->p_realtimer.it_value) && callout_stop(&p->p_itcallout) == 0) { timevalclear(&p->p_realtimer.it_interval); PROC_UNLOCK(p); callout_drain(&p->p_itcallout); } else { PROC_UNLOCK(p); } if (p->p_sysent->sv_onexit != NULL) p->p_sysent->sv_onexit(p); seltdfini(td); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pid. The P_WEXIT flag interlocks with fsetown(). */ funsetownlst(&p->p_sigiolst); /* * Close open files and release open-file table. * This may block! */ pdescfree(td); fdescfree(td); /* * Remove ourself from our leader's peer list and wake our leader. */ if (p->p_leader->p_peers != NULL) { mtx_lock(&ppeers_lock); if (p->p_leader->p_peers != NULL) { q = p->p_leader; while (q->p_peers != p) q = q->p_peers; q->p_peers = p->p_peers; wakeup(p->p_leader); } mtx_unlock(&ppeers_lock); } exec_free_abi_mappings(p); vmspace_exit(td); (void)acct_process(td); #ifdef KTRACE ktrprocexit(td); #endif /* * Release reference to text vnode etc */ if (p->p_textvp != NULL) { vrele(p->p_textvp); p->p_textvp = NULL; } if (p->p_textdvp != NULL) { vrele(p->p_textdvp); p->p_textdvp = NULL; } if (p->p_binname != NULL) { free(p->p_binname, M_PARGS); p->p_binname = NULL; } /* * Release our limits structure. */ lim_free(p->p_limit); p->p_limit = NULL; tidhash_remove(td); /* * Call machine-dependent code to release any * machine-dependent resources other than the address space. * The address space is released by "vmspace_exitfree(p)" in * vm_waitproc(). */ cpu_exit(td); WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); /* * Remove from allproc. It still sits in the hash. */ sx_xlock(&allproc_lock); LIST_REMOVE(p, p_list); #ifdef DDB /* * Used by ddb's 'ps' command to find this process via the * pidhash. */ p->p_list.le_prev = NULL; #endif sx_xunlock(&allproc_lock); sx_xlock(&proctree_lock); PROC_LOCK(p); p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); PROC_UNLOCK(p); /* * killjobc() might drop and re-acquire proctree_lock to * revoke control tty if exiting process was a session leader. */ killjobc(); /* * Reparent all children processes: * - traced ones to the original parent (or init if we are that parent) * - the rest to init */ q = LIST_FIRST(&p->p_children); if (q != NULL) /* only need this if any child is S_ZOMB */ wakeup(q->p_reaper); for (; q != NULL; q = nq) { nq = LIST_NEXT(q, p_sibling); ksi = ksiginfo_alloc(TRUE); PROC_LOCK(q); q->p_sigparent = SIGCHLD; if ((q->p_flag & P_TRACED) == 0) { proc_reparent(q, q->p_reaper, true); if (q->p_state == PRS_ZOMBIE) { /* * Inform reaper about the reparented * zombie, since wait(2) has something * new to report. Guarantee queueing * of the SIGCHLD signal, similar to * the _exit() behaviour, by providing * our ksiginfo. Ksi is freed by the * signal delivery. */ if (q->p_ksi == NULL) { ksi1 = NULL; } else { ksiginfo_copy(q->p_ksi, ksi); ksi->ksi_flags |= KSI_INS; ksi1 = ksi; ksi = NULL; } PROC_LOCK(q->p_reaper); pksignal(q->p_reaper, SIGCHLD, ksi1); PROC_UNLOCK(q->p_reaper); } else if (q->p_pdeathsig > 0) { /* * The child asked to received a signal * when we exit. */ kern_psignal(q, q->p_pdeathsig); } } else { /* * Traced processes are killed by default * since their existence means someone is * screwing up. */ t = proc_realparent(q); if (t == p) { proc_reparent(q, q->p_reaper, true); } else { PROC_LOCK(t); proc_reparent(q, t, true); PROC_UNLOCK(t); } /* * Since q was found on our children list, the * proc_reparent() call moved q to the orphan * list due to present P_TRACED flag. Clear * orphan link for q now while q is locked. */ proc_clear_orphan(q); q->p_flag &= ~P_TRACED; q->p_flag2 &= ~P2_PTRACE_FSTP; q->p_ptevents = 0; p->p_xthread = NULL; FOREACH_THREAD_IN_PROC(q, tdt) { tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG | TDB_FSTP); tdt->td_xsig = 0; } if (kern_kill_on_dbg_exit) { q->p_flag &= ~P_STOPPED_TRACE; kern_psignal(q, SIGKILL); } else if ((q->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0) { sigqueue_delete_proc(q, SIGTRAP); ptrace_unsuspend(q); } } PROC_UNLOCK(q); if (ksi != NULL) ksiginfo_free(ksi); } /* * Also get rid of our orphans. */ while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { PROC_LOCK(q); KASSERT(q->p_oppid == p->p_pid, ("orphan %p of %p has unexpected oppid %d", q, p, q->p_oppid)); q->p_oppid = q->p_reaper->p_pid; /* * If we are the real parent of this process * but it has been reparented to a debugger, then * check if it asked for a signal when we exit. */ if (q->p_pdeathsig > 0) kern_psignal(q, q->p_pdeathsig); CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid, q->p_pid); proc_clear_orphan(q); PROC_UNLOCK(q); } #ifdef KDTRACE_HOOKS if (SDT_PROBES_ENABLED()) { int reason = CLD_EXITED; if (WCOREDUMP(signo)) reason = CLD_DUMPED; else if (WIFSIGNALED(signo)) reason = CLD_KILLED; SDT_PROBE1(proc, , , exit, reason); } #endif /* Save exit status. */ PROC_LOCK(p); p->p_xthread = td; if (p->p_sysent->sv_ontdexit != NULL) p->p_sysent->sv_ontdexit(td); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exit if it * has declared an interest. */ if (dtrace_fasttrap_exit) dtrace_fasttrap_exit(p); #endif /* * Notify interested parties of our demise. */ KNOTE_LOCKED(p->p_klist, NOTE_EXIT); /* * If this is a process with a descriptor, we may not need to deliver * a signal to the parent. proctree_lock is held over * procdesc_exit() to serialize concurrent calls to close() and * exit(). */ signal_parent = 0; if (p->p_procdesc == NULL || procdesc_exit(p)) { /* * Notify parent that we're gone. If parent has the * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, * notify process 1 instead (and hope it will handle this * situation). */ PROC_LOCK(p->p_pptr); mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) { struct proc *pp; mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); pp = p->p_pptr; PROC_UNLOCK(pp); proc_reparent(p, p->p_reaper, true); p->p_sigparent = SIGCHLD; PROC_LOCK(p->p_pptr); /* * Notify parent, so in case he was wait(2)ing or * executing waitpid(2) with our pid, he will * continue. */ wakeup(pp); } else mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) { signal_parent = 1; } else if (p->p_sigparent != 0) { if (p->p_sigparent == SIGCHLD) { signal_parent = 1; } else { /* LINUX thread */ signal_parent = 2; } } } else PROC_LOCK(p->p_pptr); sx_xunlock(&proctree_lock); if (signal_parent == 1) { childproc_exited(p); } else if (signal_parent == 2) { kern_psignal(p->p_pptr, p->p_sigparent); } /* Tell the prison that we are gone. */ prison_proc_free(p->p_ucred->cr_prison); /* * The state PRS_ZOMBIE prevents other proesses from sending * signal to the process, to avoid memory leak, we free memory * for signal queue at the time when the state is set. */ sigqueue_flush(&p->p_sigqueue); sigqueue_flush(&td->td_sigqueue); /* * We have to wait until after acquiring all locks before * changing p_state. We need to avoid all possible context * switches (including ones from blocking on a mutex) while * marked as a zombie. We also have to set the zombie state * before we release the parent process' proc lock to avoid * a lost wakeup. So, we first call wakeup, then we grab the * sched lock, update the state, and release the parent process' * proc lock. */ wakeup(p->p_pptr); cv_broadcast(&p->p_pwait); sched_exit(p->p_pptr, td); PROC_SLOCK(p); p->p_state = PRS_ZOMBIE; PROC_UNLOCK(p->p_pptr); /* * Save our children's rusage information in our exit rusage. */ PROC_STATLOCK(p); ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); PROC_STATUNLOCK(p); /* * Make sure the scheduler takes this thread out of its tables etc. * This will also release this thread's reference to the ucred. * Other thread parts to release include pcb bits and such. */ thread_exit(); } #ifndef _SYS_SYSPROTO_H_ struct abort2_args { char *why; int nargs; void **args; }; #endif int sys_abort2(struct thread *td, struct abort2_args *uap) { void *uargs[16]; void **uargsp; int error, nargs; nargs = uap->nargs; if (nargs < 0 || nargs > nitems(uargs)) nargs = -1; uargsp = NULL; if (nargs > 0) { if (uap->args != NULL) { error = copyin(uap->args, uargs, nargs * sizeof(void *)); if (error != 0) nargs = -1; else uargsp = uargs; } else nargs = -1; } return (kern_abort2(td, uap->why, nargs, uargsp)); } /* * kern_abort2() * Arguments: * why - user pointer to why * nargs - number of arguments copied or -1 if an error occured in copying * args - pointer to an array of pointers in kernel format */ int kern_abort2(struct thread *td, const char *why, int nargs, void **uargs) { struct proc *p = td->td_proc; struct sbuf *sb; int error, i, sig; /* * Do it right now so we can log either proper call of abort2(), or * note, that invalid argument was passed. 512 is big enough to * handle 16 arguments' descriptions with additional comments. */ sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); sbuf_clear(sb); sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", p->p_comm, p->p_pid, td->td_ucred->cr_uid); /* * Since we can't return from abort2(), send SIGKILL in cases, where * abort2() was called improperly */ sig = SIGKILL; /* Prevent from DoSes from user-space. */ if (nargs == -1) goto out; KASSERT(nargs >= 0 && nargs <= 16, ("called with too many args (%d)", nargs)); /* * Limit size of 'reason' string to 128. Will fit even when * maximal number of arguments was chosen to be logged. */ if (why != NULL) { error = sbuf_copyin(sb, why, 128); if (error < 0) goto out; } else { sbuf_printf(sb, "(null)"); } if (nargs > 0) { sbuf_printf(sb, "("); for (i = 0;i < nargs; i++) sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); sbuf_printf(sb, ")"); } /* * Final stage: arguments were proper, string has been * successfully copied from userspace, and copying pointers * from user-space succeed. */ sig = SIGABRT; out: if (sig == SIGKILL) { sbuf_trim(sb); sbuf_printf(sb, " (Reason text inaccessible)"); } sbuf_cat(sb, "\n"); sbuf_finish(sb); log(LOG_INFO, "%s", sbuf_data(sb)); sbuf_delete(sb); exit1(td, 0, sig); return (0); } #ifdef COMPAT_43 /* * The dirty work is handled by kern_wait(). */ int owait(struct thread *td, struct owait_args *uap __unused) { int error, status; error = kern_wait(td, WAIT_ANY, &status, 0, NULL); if (error == 0) td->td_retval[1] = status; return (error); } #endif /* COMPAT_43 */ /* * The dirty work is handled by kern_wait(). */ int sys_wait4(struct thread *td, struct wait4_args *uap) { struct rusage ru, *rup; int error, status; if (uap->rusage != NULL) rup = &ru; else rup = NULL; error = kern_wait(td, uap->pid, &status, uap->options, rup); if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&status, uap->status, sizeof(status)); if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&ru, uap->rusage, sizeof(struct rusage)); return (error); } int sys_wait6(struct thread *td, struct wait6_args *uap) { struct __wrusage wru, *wrup; siginfo_t si, *sip; idtype_t idtype; id_t id; int error, status; idtype = uap->idtype; id = uap->id; if (uap->wrusage != NULL) wrup = &wru; else wrup = NULL; if (uap->info != NULL) { sip = &si; bzero(sip, sizeof(*sip)); } else sip = NULL; /* * We expect all callers of wait6() to know about WEXITED and * WTRAPPED. */ error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&status, uap->status, sizeof(status)); if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&wru, uap->wrusage, sizeof(wru)); if (uap->info != NULL && error == 0) error = copyout(&si, uap->info, sizeof(si)); return (error); } /* * Reap the remains of a zombie process and optionally return status and * rusage. Asserts and will release both the proctree_lock and the process * lock as part of its work. */ void proc_reap(struct thread *td, struct proc *p, int *status, int options) { struct proc *q, *t; sx_assert(&proctree_lock, SA_XLOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); mtx_spin_wait_unlocked(&p->p_slock); q = td->td_proc; if (status) *status = KW_EXITCODE(p->p_xexit, p->p_xsig); if (options & WNOWAIT) { /* * Only poll, returning the status. Caller does not wish to * release the proc struct just yet. */ PROC_UNLOCK(p); sx_xunlock(&proctree_lock); return; } PROC_LOCK(q); sigqueue_take(p->p_ksi); PROC_UNLOCK(q); /* * If we got the child via a ptrace 'attach', we need to give it back * to the old parent. */ if (p->p_oppid != p->p_pptr->p_pid) { PROC_UNLOCK(p); t = proc_realparent(p); PROC_LOCK(t); PROC_LOCK(p); CTR2(KTR_PTRACE, "wait: traced child %d moved back to parent %d", p->p_pid, t->p_pid); proc_reparent(p, t, false); PROC_UNLOCK(p); pksignal(t, SIGCHLD, p->p_ksi); wakeup(t); cv_broadcast(&p->p_pwait); PROC_UNLOCK(t); sx_xunlock(&proctree_lock); return; } PROC_UNLOCK(p); /* * Remove other references to this process to ensure we have an * exclusive reference. */ sx_xlock(PIDHASHLOCK(p->p_pid)); LIST_REMOVE(p, p_hash); sx_xunlock(PIDHASHLOCK(p->p_pid)); LIST_REMOVE(p, p_sibling); reaper_abandon_children(p, true); reaper_clear(p); PROC_LOCK(p); proc_clear_orphan(p); PROC_UNLOCK(p); leavepgrp(p); if (p->p_procdesc != NULL) procdesc_reap(p); sx_xunlock(&proctree_lock); proc_id_clear(PROC_ID_PID, p->p_pid); PROC_LOCK(p); knlist_detach(p->p_klist); p->p_klist = NULL; PROC_UNLOCK(p); /* * Removal from allproc list and process group list paired with * PROC_LOCK which was executed during that time should guarantee * nothing can reach this process anymore. As such further locking * is unnecessary. */ p->p_xexit = p->p_xsig = 0; /* XXX: why? */ PROC_LOCK(q); ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); PROC_UNLOCK(q); /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); /* * Destroy resource accounting information associated with the process. */ #ifdef RACCT if (racct_enable) { PROC_LOCK(p); racct_sub(p, RACCT_NPROC, 1); PROC_UNLOCK(p); } #endif racct_proc_exit(p); /* * Free credentials, arguments, and sigacts. */ proc_unset_cred(p); pargs_drop(p->p_args); p->p_args = NULL; sigacts_free(p->p_sigacts); p->p_sigacts = NULL; /* * Do any thread-system specific cleanups. */ thread_wait(p); /* * Give vm and machine-dependent layer a chance to free anything that * cpu_exit couldn't release while still running in process context. */ vm_waitproc(p); #ifdef MAC mac_proc_destroy(p); #endif KASSERT(FIRST_THREAD_IN_PROC(p), ("proc_reap: no residual thread!")); uma_zfree(proc_zone, p); atomic_add_int(&nprocs, -1); } static int proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, int check_only) { struct rusage *rup; sx_assert(&proctree_lock, SA_XLOCKED); PROC_LOCK(p); switch (idtype) { case P_ALL: if (p->p_procdesc == NULL || (p->p_pptr == td->td_proc && (p->p_flag & P_TRACED) != 0)) { break; } PROC_UNLOCK(p); return (0); case P_PID: if (p->p_pid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_PGID: if (p->p_pgid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_SID: if (p->p_session->s_sid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_UID: if (p->p_ucred->cr_uid != (uid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_GID: if (p->p_ucred->cr_gid != (gid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_JAILID: if (p->p_ucred->cr_prison->pr_id != (int)id) { PROC_UNLOCK(p); return (0); } break; /* * It seems that the thread structures get zeroed out * at process exit. This makes it impossible to * support P_SETID, P_CID or P_CPUID. */ default: PROC_UNLOCK(p); return (0); } if (p_canwait(td, p)) { PROC_UNLOCK(p); return (0); } if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { PROC_UNLOCK(p); return (0); } /* * This special case handles a kthread spawned by linux_clone * (see linux_misc.c). The linux_wait4 and linux_waitpid * functions need to be able to distinguish between waiting * on a process and waiting on a thread. It is a thread if * p_sigparent is not SIGCHLD, and the WLINUXCLONE option * signifies we want to wait for threads and not processes. */ if ((p->p_sigparent != SIGCHLD) ^ ((options & WLINUXCLONE) != 0)) { PROC_UNLOCK(p); return (0); } if (siginfo != NULL) { bzero(siginfo, sizeof(*siginfo)); siginfo->si_errno = 0; /* * SUSv4 requires that the si_signo value is always * SIGCHLD. Obey it despite the rfork(2) interface * allows to request other signal for child exit * notification. */ siginfo->si_signo = SIGCHLD; /* * This is still a rough estimate. We will fix the * cases TRAPPED, STOPPED, and CONTINUED later. */ if (WCOREDUMP(p->p_xsig)) { siginfo->si_code = CLD_DUMPED; siginfo->si_status = WTERMSIG(p->p_xsig); } else if (WIFSIGNALED(p->p_xsig)) { siginfo->si_code = CLD_KILLED; siginfo->si_status = WTERMSIG(p->p_xsig); } else { siginfo->si_code = CLD_EXITED; siginfo->si_status = p->p_xexit; } siginfo->si_pid = p->p_pid; siginfo->si_uid = p->p_ucred->cr_uid; /* * The si_addr field would be useful additional * detail, but apparently the PC value may be lost * when we reach this point. bzero() above sets * siginfo->si_addr to NULL. */ } /* * There should be no reason to limit resources usage info to * exited processes only. A snapshot about any resources used * by a stopped process may be exactly what is needed. */ if (wrusage != NULL) { rup = &wrusage->wru_self; *rup = p->p_ru; PROC_STATLOCK(p); calcru(p, &rup->ru_utime, &rup->ru_stime); PROC_STATUNLOCK(p); rup = &wrusage->wru_children; *rup = p->p_stats->p_cru; calccru(p, &rup->ru_utime, &rup->ru_stime); } if (p->p_state == PRS_ZOMBIE && !check_only) { proc_reap(td, p, status, options); return (-1); } return (1); } int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rusage) { struct __wrusage wru, *wrup; idtype_t idtype; id_t id; int ret; /* * Translate the special pid values into the (idtype, pid) * pair for kern_wait6. The WAIT_MYPGRP case is handled by * kern_wait6() on its own. */ if (pid == WAIT_ANY) { idtype = P_ALL; id = 0; } else if (pid < 0) { idtype = P_PGID; id = (id_t)-pid; } else { idtype = P_PID; id = (id_t)pid; } if (rusage != NULL) wrup = &wru; else wrup = NULL; /* * For backward compatibility we implicitly add flags WEXITED * and WTRAPPED here. */ options |= WEXITED | WTRAPPED; ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); if (rusage != NULL) *rusage = wru.wru_self; return (ret); } static void report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, int *status, int options, int si_code) { bool cont; PROC_LOCK_ASSERT(p, MA_OWNED); sx_assert(&proctree_lock, SA_XLOCKED); MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED || si_code == CLD_CONTINUED); cont = si_code == CLD_CONTINUED; if ((options & WNOWAIT) == 0) { if (cont) p->p_flag &= ~P_CONTINUED; else p->p_flag |= P_WAITED; if (kern_wait_dequeue_sigchld && (td->td_proc->p_sysent->sv_flags & SV_SIG_WAITNDQ) == 0) { PROC_LOCK(td->td_proc); sigqueue_take(p->p_ksi); PROC_UNLOCK(td->td_proc); } } sx_xunlock(&proctree_lock); if (siginfo != NULL) { siginfo->si_code = si_code; siginfo->si_status = cont ? SIGCONT : p->p_xsig; } if (status != NULL) *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig); PROC_UNLOCK(p); td->td_retval[0] = p->p_pid; } int kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo) { struct proc *p, *q; pid_t pid; int error, nfound, ret; bool report; AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ AUDIT_ARG_VALUE(options); q = td->td_proc; if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { PROC_LOCK(q); id = (id_t)q->p_pgid; PROC_UNLOCK(q); idtype = P_PGID; } /* If we don't know the option, just return. */ if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | WEXITED | WTRAPPED | WLINUXCLONE)) != 0) return (EINVAL); if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { /* * We will be unable to find any matching processes, * because there are no known events to look for. * Prefer to return error instead of blocking * indefinitely. */ return (EINVAL); } loop: if (q->p_flag & P_STATCHILD) { PROC_LOCK(q); q->p_flag &= ~P_STATCHILD; PROC_UNLOCK(q); } sx_xlock(&proctree_lock); loop_locked: nfound = 0; LIST_FOREACH(p, &q->p_children, p_sibling) { pid = p->p_pid; ret = proc_to_reap(td, p, idtype, id, status, options, wrusage, siginfo, 0); if (ret == 0) continue; else if (ret != 1) { td->td_retval[0] = pid; return (0); } nfound++; PROC_LOCK_ASSERT(p, MA_OWNED); if ((options & WTRAPPED) != 0 && (p->p_flag & P_TRACED) != 0) { PROC_SLOCK(p); report = ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) && p->p_suspcount == p->p_numthreads && (p->p_flag & P_WAITED) == 0); PROC_SUNLOCK(p); if (report) { CTR4(KTR_PTRACE, "wait: returning trapped pid %d status %#x " "(xstat %d) xthread %d", p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig, p->p_xthread != NULL ? p->p_xthread->td_tid : -1); report_alive_proc(td, p, siginfo, status, options, CLD_TRAPPED); return (0); } } if ((options & WUNTRACED) != 0 && (p->p_flag & P_STOPPED_SIG) != 0) { PROC_SLOCK(p); report = (p->p_suspcount == p->p_numthreads && ((p->p_flag & P_WAITED) == 0)); PROC_SUNLOCK(p); if (report) { report_alive_proc(td, p, siginfo, status, options, CLD_STOPPED); return (0); } } if ((options & WCONTINUED) != 0 && (p->p_flag & P_CONTINUED) != 0) { report_alive_proc(td, p, siginfo, status, options, CLD_CONTINUED); return (0); } PROC_UNLOCK(p); } /* * Look in the orphans list too, to allow the parent to * collect it's child exit status even if child is being * debugged. * * Debugger detaches from the parent upon successful * switch-over from parent to child. At this point due to * re-parenting the parent loses the child to debugger and a * wait4(2) call would report that it has no children to wait * for. By maintaining a list of orphans we allow the parent * to successfully wait until the child becomes a zombie. */ if (nfound == 0) { LIST_FOREACH(p, &q->p_orphans, p_orphan) { ret = proc_to_reap(td, p, idtype, id, NULL, options, NULL, NULL, 1); if (ret != 0) { KASSERT(ret != -1, ("reaped an orphan (pid %d)", (int)td->td_retval[0])); PROC_UNLOCK(p); nfound++; break; } } } if (nfound == 0) { sx_xunlock(&proctree_lock); return (ECHILD); } if (options & WNOHANG) { sx_xunlock(&proctree_lock); td->td_retval[0] = 0; return (0); } PROC_LOCK(q); if (q->p_flag & P_STATCHILD) { q->p_flag &= ~P_STATCHILD; PROC_UNLOCK(q); goto loop_locked; } sx_xunlock(&proctree_lock); error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0); if (error) return (error); goto loop; } void proc_add_orphan(struct proc *child, struct proc *parent) { sx_assert(&proctree_lock, SX_XLOCKED); KASSERT((child->p_flag & P_TRACED) != 0, ("proc_add_orphan: not traced")); if (LIST_EMPTY(&parent->p_orphans)) { child->p_treeflag |= P_TREE_FIRST_ORPHAN; LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan); } else { LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans), child, p_orphan); } child->p_treeflag |= P_TREE_ORPHANED; } /* * Make process 'parent' the new parent of process 'child'. * Must be called with an exclusive hold of proctree lock. */ void proc_reparent(struct proc *child, struct proc *parent, bool set_oppid) { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(child, MA_OWNED); if (child->p_pptr == parent) return; PROC_LOCK(child->p_pptr); sigqueue_take(child->p_ksi); PROC_UNLOCK(child->p_pptr); LIST_REMOVE(child, p_sibling); LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); proc_clear_orphan(child); if ((child->p_flag & P_TRACED) != 0) { proc_add_orphan(child, child->p_pptr); } child->p_pptr = parent; if (set_oppid) child->p_oppid = parent->p_pid; }