/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1993, David Greenman * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_hwpmc_hooks.h" #include "opt_ktrace.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_execexit_func_t dtrace_fasttrap_exec; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE1(proc, , , exec, "char *"); SDT_PROBE_DEFINE1(proc, , , exec__failure, "int"); SDT_PROBE_DEFINE1(proc, , , exec__success, "char *"); MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments"); int coredump_pack_fileinfo = 1; SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN, &coredump_pack_fileinfo, 0, "Enable file path packing in 'procstat -f' coredump notes"); int coredump_pack_vmmapinfo = 1; SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN, &coredump_pack_vmmapinfo, 0, "Enable file path packing in 'procstat -v' coredump notes"); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS); static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS); static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS); static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU", ""); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU", ""); SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_stackprot, "I", ""); u_long ps_arg_cache_limit = PAGE_SIZE / 16; SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, &ps_arg_cache_limit, 0, ""); static int disallow_high_osrel; SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW, &disallow_high_osrel, 0, "Disallow execution of binaries built for higher version of the world"); static int map_at_zero = 0; SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0, "Permit processes to map an object at virtual address 0."); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS) { struct proc *p; int error; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)p->p_sysent->sv_psstrings; error = SYSCTL_OUT(req, &val, sizeof(val)); } else #endif error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings, sizeof(p->p_sysent->sv_psstrings)); return error; } static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS) { struct proc *p; int error; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)p->p_sysent->sv_usrstack; error = SYSCTL_OUT(req, &val, sizeof(val)); } else #endif error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack, sizeof(p->p_sysent->sv_usrstack)); return error; } static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS) { struct proc *p; p = curproc; return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot, sizeof(p->p_sysent->sv_stackprot))); } /* * Each of the items is a pointer to a `const struct execsw', hence the * double pointer here. */ static const struct execsw **execsw; #ifndef _SYS_SYSPROTO_H_ struct execve_args { char *fname; char **argv; char **envv; }; #endif int sys_execve(struct thread *td, struct execve_args *uap) { struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, NULL); post_execve(td, error, oldvmspace); return (error); } #ifndef _SYS_SYSPROTO_H_ struct fexecve_args { int fd; char **argv; char **envv; } #endif int sys_fexecve(struct thread *td, struct fexecve_args *uap) { struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, NULL, UIO_SYSSPACE, uap->argv, uap->envv); if (error == 0) { args.fd = uap->fd; error = kern_execve(td, &args, NULL); } post_execve(td, error, oldvmspace); return (error); } #ifndef _SYS_SYSPROTO_H_ struct __mac_execve_args { char *fname; char **argv; char **envv; struct mac *mac_p; }; #endif int sys___mac_execve(struct thread *td, struct __mac_execve_args *uap) { #ifdef MAC struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, uap->mac_p); post_execve(td, error, oldvmspace); return (error); #else return (ENOSYS); #endif } int pre_execve(struct thread *td, struct vmspace **oldvmspace) { struct proc *p; int error; KASSERT(td == curthread, ("non-current thread %p", td)); error = 0; p = td->td_proc; if ((p->p_flag & P_HADTHREADS) != 0) { PROC_LOCK(p); if (thread_single(p, SINGLE_BOUNDARY) != 0) error = ERESTART; PROC_UNLOCK(p); } KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0, ("nested execve")); *oldvmspace = p->p_vmspace; return (error); } void post_execve(struct thread *td, int error, struct vmspace *oldvmspace) { struct proc *p; KASSERT(td == curthread, ("non-current thread %p", td)); p = td->td_proc; if ((p->p_flag & P_HADTHREADS) != 0) { PROC_LOCK(p); /* * If success, we upgrade to SINGLE_EXIT state to * force other threads to suicide. */ if (error == EJUSTRETURN) thread_single(p, SINGLE_EXIT); else thread_single_end(p, SINGLE_BOUNDARY); PROC_UNLOCK(p); } if ((td->td_pflags & TDP_EXECVMSPC) != 0) { KASSERT(p->p_vmspace != oldvmspace, ("oldvmspace still used")); vmspace_free(oldvmspace); td->td_pflags &= ~TDP_EXECVMSPC; } } /* * XXX: kern_execve has the astonishing property of not always returning to * the caller. If sufficiently bad things happen during the call to * do_execve(), it can end up calling exit1(); as a result, callers must * avoid doing anything which they might need to undo (e.g., allocating * memory). */ int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p) { AUDIT_ARG_ARGV(args->begin_argv, args->argc, exec_args_get_begin_envv(args) - args->begin_argv); AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc, args->endp - exec_args_get_begin_envv(args)); return (do_execve(td, args, mac_p)); } /* * In-kernel implementation of execve(). All arguments are assumed to be * userspace pointers from the passed thread. */ static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p) { struct proc *p = td->td_proc; struct nameidata nd; struct ucred *oldcred; struct uidinfo *euip = NULL; uintptr_t stack_base; struct image_params image_params, *imgp; struct vattr attr; int (*img_first)(struct image_params *); struct pargs *oldargs = NULL, *newargs = NULL; struct sigacts *oldsigacts = NULL, *newsigacts = NULL; #ifdef KTRACE struct vnode *tracevp = NULL; struct ucred *tracecred = NULL; #endif struct vnode *oldtextvp = NULL, *newtextvp; int credential_changing; #ifdef MAC struct label *interpvplabel = NULL; int will_transition; #endif #ifdef HWPMC_HOOKS struct pmckern_procexec pe; #endif int error, i, orig_osrel; uint32_t orig_fctl0; static const char fexecv_proc_title[] = "(fexecv)"; imgp = &image_params; /* * Lock the process and set the P_INEXEC flag to indicate that * it should be left alone until we're done here. This is * necessary to avoid race conditions - e.g. in ptrace() - * that might allow a local user to illicitly obtain elevated * privileges. */ PROC_LOCK(p); KASSERT((p->p_flag & P_INEXEC) == 0, ("%s(): process already has P_INEXEC flag", __func__)); p->p_flag |= P_INEXEC; PROC_UNLOCK(p); /* * Initialize part of the common data */ bzero(imgp, sizeof(*imgp)); imgp->proc = p; imgp->attr = &attr; imgp->args = args; oldcred = p->p_ucred; orig_osrel = p->p_osrel; orig_fctl0 = p->p_fctl0; #ifdef MAC error = mac_execve_enter(imgp, mac_p); if (error) goto exec_fail; #endif /* * Translate the file name. namei() returns a vnode pointer * in ni_vp among other things. * * XXXAUDIT: It would be desirable to also audit the name of the * interpreter if this is an interpreted binary. */ if (args->fname != NULL) { NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td); } SDT_PROBE1(proc, , , exec, args->fname); interpret: if (args->fname != NULL) { #ifdef CAPABILITY_MODE /* * While capability mode can't reach this point via direct * path arguments to execve(), we also don't allow * interpreters to be used in capability mode (for now). * Catch indirect lookups and return a permissions error. */ if (IN_CAPABILITY_MODE(td)) { error = ECAPMODE; goto exec_fail; } #endif error = namei(&nd); if (error) goto exec_fail; newtextvp = nd.ni_vp; imgp->vp = newtextvp; } else { AUDIT_ARG_FD(args->fd); /* * Descriptors opened only with O_EXEC or O_RDONLY are allowed. */ error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp); if (error) goto exec_fail; vn_lock(newtextvp, LK_SHARED | LK_RETRY); AUDIT_ARG_VNODE1(newtextvp); imgp->vp = newtextvp; } /* * Check file permissions. Also 'opens' file and sets its vnode to * text mode. */ error = exec_check_permissions(imgp); if (error) goto exec_fail_dealloc; imgp->object = imgp->vp->v_object; if (imgp->object != NULL) vm_object_reference(imgp->object); error = exec_map_first_page(imgp); if (error) goto exec_fail_dealloc; imgp->proc->p_osrel = 0; imgp->proc->p_fctl0 = 0; /* * Implement image setuid/setgid. * * Determine new credentials before attempting image activators * so that it can be used by process_exec handlers to determine * credential/setid changes. * * Don't honor setuid/setgid if the filesystem prohibits it or if * the process is being traced. * * We disable setuid/setgid/etc in capability mode on the basis * that most setugid applications are not written with that * environment in mind, and will therefore almost certainly operate * incorrectly. In principle there's no reason that setugid * applications might not be useful in capability mode, so we may want * to reconsider this conservative design choice in the future. * * XXXMAC: For the time being, use NOSUID to also prohibit * transitions on the file system. */ credential_changing = 0; credential_changing |= (attr.va_mode & S_ISUID) && oldcred->cr_uid != attr.va_uid; credential_changing |= (attr.va_mode & S_ISGID) && oldcred->cr_gid != attr.va_gid; #ifdef MAC will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp, interpvplabel, imgp); credential_changing |= will_transition; #endif /* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */ if (credential_changing) imgp->proc->p_pdeathsig = 0; if (credential_changing && #ifdef CAPABILITY_MODE ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) && #endif (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 && (p->p_flag & P_TRACED) == 0) { imgp->credential_setid = true; VOP_UNLOCK(imgp->vp, 0); imgp->newcred = crdup(oldcred); if (attr.va_mode & S_ISUID) { euip = uifind(attr.va_uid); change_euid(imgp->newcred, euip); } vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (attr.va_mode & S_ISGID) change_egid(imgp->newcred, attr.va_gid); /* * Implement correct POSIX saved-id behavior. * * XXXMAC: Note that the current logic will save the * uid and gid if a MAC domain transition occurs, even * though maybe it shouldn't. */ change_svuid(imgp->newcred, imgp->newcred->cr_uid); change_svgid(imgp->newcred, imgp->newcred->cr_gid); } else { /* * Implement correct POSIX saved-id behavior. * * XXX: It's not clear that the existing behavior is * POSIX-compliant. A number of sources indicate that the * saved uid/gid should only be updated if the new ruid is * not equal to the old ruid, or the new euid is not equal * to the old euid and the new euid is not equal to the old * ruid. The FreeBSD code always updates the saved uid/gid. * Also, this code uses the new (replaced) euid and egid as * the source, which may or may not be the right ones to use. */ if (oldcred->cr_svuid != oldcred->cr_uid || oldcred->cr_svgid != oldcred->cr_gid) { VOP_UNLOCK(imgp->vp, 0); imgp->newcred = crdup(oldcred); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); change_svuid(imgp->newcred, imgp->newcred->cr_uid); change_svgid(imgp->newcred, imgp->newcred->cr_gid); } } /* The new credentials are installed into the process later. */ /* * Do the best to calculate the full path to the image file. */ if (args->fname != NULL && args->fname[0] == '/') imgp->execpath = args->fname; else { VOP_UNLOCK(imgp->vp, 0); if (vn_fullpath(td, imgp->vp, &imgp->execpath, &imgp->freepath) != 0) imgp->execpath = args->fname; vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } /* * If the current process has a special image activator it * wants to try first, call it. For example, emulating shell * scripts differently. */ error = -1; if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL) error = img_first(imgp); /* * Loop through the list of image activators, calling each one. * An activator returns -1 if there is no match, 0 on success, * and an error otherwise. */ for (i = 0; error == -1 && execsw[i]; ++i) { if (execsw[i]->ex_imgact == NULL || execsw[i]->ex_imgact == img_first) { continue; } error = (*execsw[i]->ex_imgact)(imgp); } if (error) { if (error == -1) error = ENOEXEC; goto exec_fail_dealloc; } /* * Special interpreter operation, cleanup and loop up to try to * activate the interpreter. */ if (imgp->interpreted) { exec_unmap_first_page(imgp); /* * The text reference needs to be removed for scripts. * There is a short period before we determine that * something is a script where text reference is active. * The vnode lock is held over this entire period * so nothing should illegitimately be blocked. */ MPASS(imgp->textset); VOP_UNSET_TEXT_CHECKED(newtextvp); imgp->textset = false; /* free name buffer and old vnode */ if (args->fname != NULL) NDFREE(&nd, NDF_ONLY_PNBUF); #ifdef MAC mac_execve_interpreter_enter(newtextvp, &interpvplabel); #endif if (imgp->opened) { VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td); imgp->opened = 0; } vput(newtextvp); vm_object_deallocate(imgp->object); imgp->object = NULL; imgp->credential_setid = false; if (imgp->newcred != NULL) { crfree(imgp->newcred); imgp->newcred = NULL; } imgp->execpath = NULL; free(imgp->freepath, M_TEMP); imgp->freepath = NULL; /* set new name to that of the interpreter */ NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | FOLLOW | SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td); args->fname = imgp->interpreter_name; goto interpret; } /* * NB: We unlock the vnode here because it is believed that none * of the sv_copyout_strings/sv_fixup operations require the vnode. */ VOP_UNLOCK(imgp->vp, 0); if (disallow_high_osrel && P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) { error = ENOEXEC; uprintf("Osrel %d for image %s too high\n", p->p_osrel, imgp->execpath != NULL ? imgp->execpath : ""); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } /* ABI enforces the use of Capsicum. Switch into capabilities mode. */ if (SV_PROC_FLAG(p, SV_CAPSICUM)) sys_cap_enter(td, NULL); /* * Copy out strings (args and env) and initialize stack base. */ error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base); if (error != 0) { vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } /* * Stack setup. */ error = (*p->p_sysent->sv_fixup)(&stack_base, imgp); if (error != 0) { vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } if (args->fdp != NULL) { /* Install a brand new file descriptor table. */ fdinstall_remapped(td, args->fdp); args->fdp = NULL; } else { /* * Keep on using the existing file descriptor table. For * security and other reasons, the file descriptor table * cannot be shared after an exec. */ fdunshare(td); /* close files on exec */ fdcloseexec(td); } /* * Malloc things before we need locks. */ i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv; /* Cache arguments if they fit inside our allowance */ if (ps_arg_cache_limit >= i + sizeof(struct pargs)) { newargs = pargs_alloc(i); bcopy(imgp->args->begin_argv, newargs->ar_args, i); } /* * For security and other reasons, signal handlers cannot * be shared after an exec. The new process gets a copy of the old * handlers. In execsigs(), the new process will have its signals * reset. */ if (sigacts_shared(p->p_sigacts)) { oldsigacts = p->p_sigacts; newsigacts = sigacts_alloc(); sigacts_copy(newsigacts, oldsigacts); } vn_lock(imgp->vp, LK_SHARED | LK_RETRY); PROC_LOCK(p); if (oldsigacts) p->p_sigacts = newsigacts; /* Stop profiling */ stopprofclock(p); /* reset caught signals */ execsigs(p); /* name this process - nameiexec(p, ndp) */ bzero(p->p_comm, sizeof(p->p_comm)); if (args->fname) bcopy(nd.ni_cnd.cn_nameptr, p->p_comm, min(nd.ni_cnd.cn_namelen, MAXCOMLEN)); else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0) bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title)); bcopy(p->p_comm, td->td_name, sizeof(td->td_name)); #ifdef KTR sched_clear_tdname(td); #endif /* * mark as execed, wakeup the process that vforked (if any) and tell * it that it now has its own resources back */ p->p_flag |= P_EXEC; if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0) p->p_flag2 &= ~P2_NOTRACE; if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0) p->p_flag2 &= ~P2_STKGAP_DISABLE; if (p->p_flag & P_PPWAIT) { p->p_flag &= ~(P_PPWAIT | P_PPTRACE); cv_broadcast(&p->p_pwait); /* STOPs are no longer ignored, arrange for AST */ signotify(td); } /* * Implement image setuid/setgid installation. */ if (imgp->credential_setid) { /* * Turn off syscall tracing for set-id programs, except for * root. Record any set-id flags first to make sure that * we do not regain any tracing during a possible block. */ setsugid(p); #ifdef KTRACE if (p->p_tracecred != NULL && priv_check_cred(p->p_tracecred, PRIV_DEBUG_DIFFCRED)) ktrprocexec(p, &tracecred, &tracevp); #endif /* * Close any file descriptors 0..2 that reference procfs, * then make sure file descriptors 0..2 are in use. * * Both fdsetugidsafety() and fdcheckstd() may call functions * taking sleepable locks, so temporarily drop our locks. */ PROC_UNLOCK(p); VOP_UNLOCK(imgp->vp, 0); fdsetugidsafety(td); error = fdcheckstd(td); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (error != 0) goto exec_fail_dealloc; PROC_LOCK(p); #ifdef MAC if (will_transition) { mac_vnode_execve_transition(oldcred, imgp->newcred, imgp->vp, interpvplabel, imgp); } #endif } else { if (oldcred->cr_uid == oldcred->cr_ruid && oldcred->cr_gid == oldcred->cr_rgid) p->p_flag &= ~P_SUGID; } /* * Set the new credentials. */ if (imgp->newcred != NULL) { proc_set_cred(p, imgp->newcred); crfree(oldcred); oldcred = NULL; } /* * Store the vp for use in procfs. This vnode was referenced by namei * or fgetvp_exec. */ oldtextvp = p->p_textvp; p->p_textvp = newtextvp; #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exec if it * has declared an interest. */ if (dtrace_fasttrap_exec) dtrace_fasttrap_exec(p); #endif /* * Notify others that we exec'd, and clear the P_INEXEC flag * as we're now a bona fide freshly-execed process. */ KNOTE_LOCKED(p->p_klist, NOTE_EXEC); p->p_flag &= ~P_INEXEC; /* clear "fork but no exec" flag, as we _are_ execing */ p->p_acflag &= ~AFORK; /* * Free any previous argument cache and replace it with * the new argument cache, if any. */ oldargs = p->p_args; p->p_args = newargs; newargs = NULL; PROC_UNLOCK(p); #ifdef HWPMC_HOOKS /* * Check if system-wide sampling is in effect or if the * current process is using PMCs. If so, do exec() time * processing. This processing needs to happen AFTER the * P_INEXEC flag is cleared. */ if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) { VOP_UNLOCK(imgp->vp, 0); pe.pm_credentialschanged = credential_changing; pe.pm_entryaddr = imgp->entry_addr; PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } #endif /* Set values passed into the program in registers. */ (*p->p_sysent->sv_setregs)(td, imgp, stack_base); vfs_mark_atime(imgp->vp, td->td_ucred); SDT_PROBE1(proc, , , exec__success, args->fname); exec_fail_dealloc: if (error != 0) { p->p_osrel = orig_osrel; p->p_fctl0 = orig_fctl0; } if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); if (imgp->vp != NULL) { if (args->fname) NDFREE(&nd, NDF_ONLY_PNBUF); if (imgp->opened) VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td); if (imgp->textset) VOP_UNSET_TEXT_CHECKED(imgp->vp); if (error != 0) vput(imgp->vp); else VOP_UNLOCK(imgp->vp, 0); } if (imgp->object != NULL) vm_object_deallocate(imgp->object); free(imgp->freepath, M_TEMP); if (error == 0) { if (p->p_ptevents & PTRACE_EXEC) { PROC_LOCK(p); if (p->p_ptevents & PTRACE_EXEC) td->td_dbgflags |= TDB_EXEC; PROC_UNLOCK(p); } /* * Stop the process here if its stop event mask has * the S_EXEC bit set. */ STOPEVENT(p, S_EXEC, 0); } else { exec_fail: /* we're done here, clear P_INEXEC */ PROC_LOCK(p); p->p_flag &= ~P_INEXEC; PROC_UNLOCK(p); SDT_PROBE1(proc, , , exec__failure, error); } if (imgp->newcred != NULL && oldcred != NULL) crfree(imgp->newcred); #ifdef MAC mac_execve_exit(imgp); mac_execve_interpreter_exit(interpvplabel); #endif exec_free_args(args); /* * Handle deferred decrement of ref counts. */ if (oldtextvp != NULL) vrele(oldtextvp); #ifdef KTRACE if (tracevp != NULL) vrele(tracevp); if (tracecred != NULL) crfree(tracecred); #endif pargs_drop(oldargs); pargs_drop(newargs); if (oldsigacts != NULL) sigacts_free(oldsigacts); if (euip != NULL) uifree(euip); if (error && imgp->vmspace_destroyed) { /* sorry, no more process anymore. exit gracefully */ exit1(td, 0, SIGABRT); /* NOT REACHED */ } #ifdef KTRACE if (error == 0) ktrprocctor(p); #endif /* * We don't want cpu_set_syscall_retval() to overwrite any of * the register values put in place by exec_setregs(). * Implementations of cpu_set_syscall_retval() will leave * registers unmodified when returning EJUSTRETURN. */ return (error == 0 ? EJUSTRETURN : error); } int exec_map_first_page(struct image_params *imgp) { int rv, i, after, initial_pagein; vm_page_t ma[VM_INITIAL_PAGEIN]; vm_object_t object; if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); object = imgp->vp->v_object; if (object == NULL) return (EACCES); VM_OBJECT_WLOCK(object); #if VM_NRESERVLEVEL > 0 vm_object_color(object, 0); #endif retry: ma[0] = vm_page_grab(object, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); if (!vm_page_all_valid(ma[0])) { if (vm_page_busy_acquire(ma[0], VM_ALLOC_WAITFAIL) == 0) { vm_page_unwire_noq(ma[0]); goto retry; } if (vm_page_all_valid(ma[0])) { vm_page_xunbusy(ma[0]); goto out; } if (!vm_pager_has_page(object, 0, NULL, &after)) { if (vm_page_unwire_noq(ma[0])) vm_page_free(ma[0]); else vm_page_xunbusy(ma[0]); VM_OBJECT_WUNLOCK(object); return (EIO); } initial_pagein = min(after, VM_INITIAL_PAGEIN); KASSERT(initial_pagein <= object->size, ("%s: initial_pagein %d object->size %ju", __func__, initial_pagein, (uintmax_t )object->size)); for (i = 1; i < initial_pagein; i++) { if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { if (ma[i]->valid) break; if (!vm_page_tryxbusy(ma[i])) break; } else { ma[i] = vm_page_alloc(object, i, VM_ALLOC_NORMAL); if (ma[i] == NULL) break; } } initial_pagein = i; rv = vm_pager_get_pages(object, ma, initial_pagein, NULL, NULL); if (rv != VM_PAGER_OK) { if (vm_page_unwire_noq(ma[0])) vm_page_free(ma[0]); else vm_page_xunbusy(ma[0]); for (i = 1; i < initial_pagein; i++) { if (!vm_page_wired(ma[i])) vm_page_free(ma[i]); else vm_page_xunbusy(ma[i]); } VM_OBJECT_WUNLOCK(object); return (EIO); } vm_page_xunbusy(ma[0]); for (i = 1; i < initial_pagein; i++) vm_page_readahead_finish(ma[i]); } out: VM_OBJECT_WUNLOCK(object); imgp->firstpage = sf_buf_alloc(ma[0], 0); imgp->image_header = (char *)sf_buf_kva(imgp->firstpage); return (0); } void exec_unmap_first_page(struct image_params *imgp) { vm_page_t m; if (imgp->firstpage != NULL) { m = sf_buf_page(imgp->firstpage); sf_buf_free(imgp->firstpage); imgp->firstpage = NULL; vm_page_unwire(m, PQ_ACTIVE); } } /* * Destroy old address space, and allocate a new stack. * The new stack is only sgrowsiz large because it is grown * automatically on a page fault. */ int exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv) { int error; struct proc *p = imgp->proc; struct vmspace *vmspace = p->p_vmspace; vm_object_t obj; struct rlimit rlim_stack; vm_offset_t sv_minuser, stack_addr; vm_map_t map; u_long ssiz; imgp->vmspace_destroyed = 1; imgp->sysent = sv; /* May be called with Giant held */ EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp); /* * Blow away entire process VM, if address space not shared, * otherwise, create a new VM space so that other threads are * not disrupted */ map = &vmspace->vm_map; if (map_at_zero) sv_minuser = sv->sv_minuser; else sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE); if (vmspace->vm_refcnt == 1 && vm_map_min(map) == sv_minuser && vm_map_max(map) == sv->sv_maxuser && cpu_exec_vmspace_reuse(p, map)) { shmexit(vmspace); pmap_remove_pages(vmspace_pmap(vmspace)); vm_map_remove(map, vm_map_min(map), vm_map_max(map)); /* * An exec terminates mlockall(MCL_FUTURE), ASLR state * must be re-evaluated. */ vm_map_lock(map); vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR | MAP_ASLR_IGNSTART); vm_map_unlock(map); } else { error = vmspace_exec(p, sv_minuser, sv->sv_maxuser); if (error) return (error); vmspace = p->p_vmspace; map = &vmspace->vm_map; } map->flags |= imgp->map_flags; /* Map a shared page */ obj = sv->sv_shared_page_obj; if (obj != NULL) { vm_object_reference(obj); error = vm_map_fixed(map, obj, 0, sv->sv_shared_page_base, sv->sv_shared_page_len, VM_PROT_READ | VM_PROT_EXECUTE, VM_PROT_READ | VM_PROT_EXECUTE, MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE); if (error != KERN_SUCCESS) { vm_object_deallocate(obj); return (vm_mmap_to_errno(error)); } } /* Allocate a new stack */ if (imgp->stack_sz != 0) { ssiz = trunc_page(imgp->stack_sz); PROC_LOCK(p); lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack); PROC_UNLOCK(p); if (ssiz > rlim_stack.rlim_max) ssiz = rlim_stack.rlim_max; if (ssiz > rlim_stack.rlim_cur) { rlim_stack.rlim_cur = ssiz; kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack); } } else if (sv->sv_maxssiz != NULL) { ssiz = *sv->sv_maxssiz; } else { ssiz = maxssiz; } imgp->eff_stack_sz = lim_cur(curthread, RLIMIT_STACK); if (ssiz < imgp->eff_stack_sz) imgp->eff_stack_sz = ssiz; stack_addr = sv->sv_usrstack - ssiz; error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, obj != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : sv->sv_stackprot, VM_PROT_ALL, MAP_STACK_GROWS_DOWN); if (error != KERN_SUCCESS) return (vm_mmap_to_errno(error)); /* * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they * are still used to enforce the stack rlimit on the process stack. */ vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT; vmspace->vm_maxsaddr = (char *)stack_addr; return (0); } /* * Copy out argument and environment strings from the old process address * space into the temporary string buffer. */ int exec_copyin_args(struct image_args *args, const char *fname, enum uio_seg segflg, char **argv, char **envv) { u_long arg, env; int error; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate demand-paged memory for the file name, argument, and * environment strings. */ error = exec_alloc_args(args); if (error != 0) return (error); /* * Copy the file name. */ error = exec_args_add_fname(args, fname, segflg); if (error != 0) goto err_exit; /* * extract arguments first */ for (;;) { error = fueword(argv++, &arg); if (error == -1) { error = EFAULT; goto err_exit; } if (arg == 0) break; error = exec_args_add_arg(args, (char *)(uintptr_t)arg, UIO_USERSPACE); if (error != 0) goto err_exit; } /* * extract environment strings */ if (envv) { for (;;) { error = fueword(envv++, &env); if (error == -1) { error = EFAULT; goto err_exit; } if (env == 0) break; error = exec_args_add_env(args, (char *)(uintptr_t)env, UIO_USERSPACE); if (error != 0) goto err_exit; } } return (0); err_exit: exec_free_args(args); return (error); } int exec_copyin_data_fds(struct thread *td, struct image_args *args, const void *data, size_t datalen, const int *fds, size_t fdslen) { struct filedesc *ofdp; const char *p; int *kfds; int error; memset(args, '\0', sizeof(*args)); ofdp = td->td_proc->p_fd; if (datalen >= ARG_MAX || fdslen > ofdp->fd_lastfile + 1) return (E2BIG); error = exec_alloc_args(args); if (error != 0) return (error); args->begin_argv = args->buf; args->stringspace = ARG_MAX; if (datalen > 0) { /* * Argument buffer has been provided. Copy it into the * kernel as a single string and add a terminating null * byte. */ error = copyin(data, args->begin_argv, datalen); if (error != 0) goto err_exit; args->begin_argv[datalen] = '\0'; args->endp = args->begin_argv + datalen + 1; args->stringspace -= datalen + 1; /* * Traditional argument counting. Count the number of * null bytes. */ for (p = args->begin_argv; p < args->endp; ++p) if (*p == '\0') ++args->argc; } else { /* No argument buffer provided. */ args->endp = args->begin_argv; } /* Create new file descriptor table. */ kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK); error = copyin(fds, kfds, fdslen * sizeof(int)); if (error != 0) { free(kfds, M_TEMP); goto err_exit; } error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp); free(kfds, M_TEMP); if (error != 0) goto err_exit; return (0); err_exit: exec_free_args(args); return (error); } struct exec_args_kva { vm_offset_t addr; u_int gen; SLIST_ENTRY(exec_args_kva) next; }; DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva); static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist; static struct mtx exec_args_kva_mtx; static u_int exec_args_gen; static void exec_prealloc_args_kva(void *arg __unused) { struct exec_args_kva *argkva; u_int i; SLIST_INIT(&exec_args_kva_freelist); mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF); for (i = 0; i < exec_map_entries; i++) { argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK); argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size); argkva->gen = exec_args_gen; SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); } } SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL); static vm_offset_t exec_alloc_args_kva(void **cookie) { struct exec_args_kva *argkva; argkva = (void *)atomic_readandclear_ptr( (uintptr_t *)DPCPU_PTR(exec_args_kva)); if (argkva == NULL) { mtx_lock(&exec_args_kva_mtx); while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL) (void)mtx_sleep(&exec_args_kva_freelist, &exec_args_kva_mtx, 0, "execkva", 0); SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next); mtx_unlock(&exec_args_kva_mtx); } *(struct exec_args_kva **)cookie = argkva; return (argkva->addr); } static void exec_release_args_kva(struct exec_args_kva *argkva, u_int gen) { vm_offset_t base; base = argkva->addr; if (argkva->gen != gen) { (void)vm_map_madvise(exec_map, base, base + exec_map_entry_size, MADV_FREE); argkva->gen = gen; } if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva), (uintptr_t)NULL, (uintptr_t)argkva)) { mtx_lock(&exec_args_kva_mtx); SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); wakeup_one(&exec_args_kva_freelist); mtx_unlock(&exec_args_kva_mtx); } } static void exec_free_args_kva(void *cookie) { exec_release_args_kva(cookie, exec_args_gen); } static void exec_args_kva_lowmem(void *arg __unused) { SLIST_HEAD(, exec_args_kva) head; struct exec_args_kva *argkva; u_int gen; int i; gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1; /* * Force an madvise of each KVA range. Any currently allocated ranges * will have MADV_FREE applied once they are freed. */ SLIST_INIT(&head); mtx_lock(&exec_args_kva_mtx); SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva); mtx_unlock(&exec_args_kva_mtx); while ((argkva = SLIST_FIRST(&head)) != NULL) { SLIST_REMOVE_HEAD(&head, next); exec_release_args_kva(argkva, gen); } CPU_FOREACH(i) { argkva = (void *)atomic_readandclear_ptr( (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva)); if (argkva != NULL) exec_release_args_kva(argkva, gen); } } EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL, EVENTHANDLER_PRI_ANY); /* * Allocate temporary demand-paged, zero-filled memory for the file name, * argument, and environment strings. */ int exec_alloc_args(struct image_args *args) { args->buf = (char *)exec_alloc_args_kva(&args->bufkva); return (0); } void exec_free_args(struct image_args *args) { if (args->buf != NULL) { exec_free_args_kva(args->bufkva); args->buf = NULL; } if (args->fname_buf != NULL) { free(args->fname_buf, M_TEMP); args->fname_buf = NULL; } if (args->fdp != NULL) fdescfree_remapped(args->fdp); } /* * A set to functions to fill struct image args. * * NOTE: exec_args_add_fname() must be called (possibly with a NULL * fname) before the other functions. All exec_args_add_arg() calls must * be made before any exec_args_add_env() calls. exec_args_adjust_args() * may be called any time after exec_args_add_fname(). * * exec_args_add_fname() - install path to be executed * exec_args_add_arg() - append an argument string * exec_args_add_env() - append an env string * exec_args_adjust_args() - adjust location of the argument list to * allow new arguments to be prepended */ int exec_args_add_fname(struct image_args *args, const char *fname, enum uio_seg segflg) { int error; size_t length; KASSERT(args->fname == NULL, ("fname already appended")); KASSERT(args->endp == NULL, ("already appending to args")); if (fname != NULL) { args->fname = args->buf; error = segflg == UIO_SYSSPACE ? copystr(fname, args->fname, PATH_MAX, &length) : copyinstr(fname, args->fname, PATH_MAX, &length); if (error != 0) return (error == ENAMETOOLONG ? E2BIG : error); } else length = 0; /* Set up for _arg_*()/_env_*() */ args->endp = args->buf + length; /* begin_argv must be set and kept updated */ args->begin_argv = args->endp; KASSERT(exec_map_entry_size - length >= ARG_MAX, ("too little space remaining for arguments %zu < %zu", exec_map_entry_size - length, (size_t)ARG_MAX)); args->stringspace = ARG_MAX; return (0); } static int exec_args_add_str(struct image_args *args, const char *str, enum uio_seg segflg, int *countp) { int error; size_t length; KASSERT(args->endp != NULL, ("endp not initialized")); KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); error = (segflg == UIO_SYSSPACE) ? copystr(str, args->endp, args->stringspace, &length) : copyinstr(str, args->endp, args->stringspace, &length); if (error != 0) return (error == ENAMETOOLONG ? E2BIG : error); args->stringspace -= length; args->endp += length; (*countp)++; return (0); } int exec_args_add_arg(struct image_args *args, const char *argp, enum uio_seg segflg) { KASSERT(args->envc == 0, ("appending args after env")); return (exec_args_add_str(args, argp, segflg, &args->argc)); } int exec_args_add_env(struct image_args *args, const char *envp, enum uio_seg segflg) { if (args->envc == 0) args->begin_envv = args->endp; return (exec_args_add_str(args, envp, segflg, &args->envc)); } int exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend) { ssize_t offset; KASSERT(args->endp != NULL, ("endp not initialized")); KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); offset = extend - consume; if (args->stringspace < offset) return (E2BIG); memmove(args->begin_argv + extend, args->begin_argv + consume, args->endp - args->begin_argv + consume); if (args->envc > 0) args->begin_envv += offset; args->endp += offset; args->stringspace -= offset; return (0); } char * exec_args_get_begin_envv(struct image_args *args) { KASSERT(args->endp != NULL, ("endp not initialized")); if (args->envc > 0) return (args->begin_envv); return (args->endp); } /* * Copy strings out to the new process address space, constructing new arg * and env vector tables. Return a pointer to the base so that it can be used * as the initial stack pointer. */ int exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) { int argc, envc; char **vectp; char *stringp; uintptr_t destp, ustringp; struct ps_strings *arginfo; struct proc *p; size_t execpath_len; int error, szsigcode, szps; char canary[sizeof(long) * 8]; szps = sizeof(pagesizes[0]) * MAXPAGESIZES; /* * Calculate string base and vector table pointers. * Also deal with signal trampoline code for this exec type. */ if (imgp->execpath != NULL && imgp->auxargs != NULL) execpath_len = strlen(imgp->execpath) + 1; else execpath_len = 0; p = imgp->proc; szsigcode = 0; arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; if (p->p_sysent->sv_sigcode_base == 0) { if (p->p_sysent->sv_szsigcode != NULL) szsigcode = *(p->p_sysent->sv_szsigcode); } destp = (uintptr_t)arginfo; /* * install sigcode */ if (szsigcode != 0) { destp -= szsigcode; destp = rounddown2(destp, sizeof(void *)); error = copyout(p->p_sysent->sv_sigcode, (void *)destp, szsigcode); if (error != 0) return (error); } /* * Copy the image path for the rtld. */ if (execpath_len != 0) { destp -= execpath_len; destp = rounddown2(destp, sizeof(void *)); imgp->execpathp = destp; error = copyout(imgp->execpath, (void *)destp, execpath_len); if (error != 0) return (error); } /* * Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= sizeof(canary); imgp->canary = destp; error = copyout(canary, (void *)destp, sizeof(canary)); if (error != 0) return (error); imgp->canarylen = sizeof(canary); /* * Prepare the pagesizes array. */ destp -= szps; destp = rounddown2(destp, sizeof(void *)); imgp->pagesizes = destp; error = copyout(pagesizes, (void *)destp, szps); if (error != 0) return (error); imgp->pagesizeslen = szps; /* * Allocate room for the argument and environment strings. */ destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(void *)); ustringp = destp; if (imgp->sysent->sv_stackgap != NULL) imgp->sysent->sv_stackgap(imgp, &destp); if (imgp->auxargs) { /* * Allocate room on the stack for the ELF auxargs * array. It has up to AT_COUNT entries. */ destp -= AT_COUNT * sizeof(Elf_Auxinfo); destp = rounddown2(destp, sizeof(void *)); } vectp = (char **)destp; /* * Allocate room for the argv[] and env vectors including the * terminating NULL pointers. */ vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; /* * vectp also becomes our initial stack base */ *stack_base = (uintptr_t)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* * Copy out strings - arguments and environment. */ error = copyout(stringp, (void *)ustringp, ARG_MAX - imgp->args->stringspace); if (error != 0) return (error); /* * Fill in "ps_strings" struct for ps, w, etc. */ if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nargvstr, argc) != 0) return (EFAULT); /* * Fill in argument portion of vector table. */ for (; argc > 0; --argc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* a null vector table pointer separates the argp's from the envp's */ if (suword(vectp++, 0) != 0) return (EFAULT); if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nenvstr, envc) != 0) return (EFAULT); /* * Fill in environment portion of vector table. */ for (; envc > 0; --envc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* end of vector table is a null pointer */ if (suword(vectp, 0) != 0) return (EFAULT); if (imgp->auxargs) { vectp++; error = imgp->sysent->sv_copyout_auxargs(imgp, (uintptr_t)vectp); if (error != 0) return (error); } return (0); } /* * Check permissions of file to execute. * Called with imgp->vp locked. * Return 0 for success or error code on failure. */ int exec_check_permissions(struct image_params *imgp) { struct vnode *vp = imgp->vp; struct vattr *attr = imgp->attr; struct thread *td; int error; td = curthread; /* Get file attributes */ error = VOP_GETATTR(vp, attr, td->td_ucred); if (error) return (error); #ifdef MAC error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp); if (error) return (error); #endif /* * 1) Check if file execution is disabled for the filesystem that * this file resides on. * 2) Ensure that at least one execute bit is on. Otherwise, a * privileged user will always succeed, and we don't want this * to happen unless the file really is executable. * 3) Ensure that the file is a regular file. */ if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 || (attr->va_type != VREG)) return (EACCES); /* * Zero length files can't be exec'd */ if (attr->va_size == 0) return (ENOEXEC); /* * Check for execute permission to file based on current credentials. */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) return (error); /* * Check number of open-for-writes on the file and deny execution * if there are any. * * Add a text reference now so no one can write to the * executable while we're activating it. * * Remember if this was set before and unset it in case this is not * actually an executable image. */ error = VOP_SET_TEXT(vp); if (error != 0) return (error); imgp->textset = true; /* * Call filesystem specific open routine (which does nothing in the * general case). */ error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error == 0) imgp->opened = 1; return (error); } /* * Exec handler registration */ int exec_register(const struct execsw *execsw_arg) { const struct execsw **es, **xs, **newexecsw; u_int count = 2; /* New slot and trailing NULL */ if (execsw) for (es = execsw; *es; es++) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); xs = newexecsw; if (execsw) for (es = execsw; *es; es++) *xs++ = *es; *xs++ = execsw_arg; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } int exec_unregister(const struct execsw *execsw_arg) { const struct execsw **es, **xs, **newexecsw; int count = 1; if (execsw == NULL) panic("unregister with no handlers left?\n"); for (es = execsw; *es; es++) { if (*es == execsw_arg) break; } if (*es == NULL) return (ENOENT); for (es = execsw; *es; es++) if (*es != execsw_arg) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); xs = newexecsw; for (es = execsw; *es; es++) if (*es != execsw_arg) *xs++ = *es; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); }