/*-
 * SPDX-License-Identifier: BSD-2-Clause
 *
 * Copyright (c) 1993, David Greenman
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
#include "opt_capsicum.h"
#include "opt_hwpmc_hooks.h"
#include "opt_ktrace.h"
#include "opt_vm.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/acct.h>
#include <sys/asan.h>
#include <sys/capsicum.h>
#include <sys/compressor.h>
#include <sys/eventhandler.h>
#include <sys/exec.h>
#include <sys/fcntl.h>
#include <sys/filedesc.h>
#include <sys/imgact.h>
#include <sys/imgact_elf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/reg.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/sf_buf.h>
#include <sys/shm.h>
#include <sys/signalvar.h>
#include <sys/smp.h>
#include <sys/stat.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/timers.h>
#include <sys/umtxvar.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>

#ifdef	HWPMC_HOOKS
#include <sys/pmckern.h>
#endif

#include <security/audit/audit.h>
#include <security/mac/mac_framework.h>

#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
dtrace_execexit_func_t	dtrace_fasttrap_exec;
#endif

SDT_PROVIDER_DECLARE(proc);
SDT_PROBE_DEFINE1(proc, , , exec, "char *");
SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");

MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");

int coredump_pack_fileinfo = 1;
SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
    &coredump_pack_fileinfo, 0,
    "Enable file path packing in 'procstat -f' coredump notes");

int coredump_pack_vmmapinfo = 1;
SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
    &coredump_pack_vmmapinfo, 0,
    "Enable file path packing in 'procstat -v' coredump notes");

static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
static int do_execve(struct thread *td, struct image_args *args,
    struct mac *mac_p, struct vmspace *oldvmspace);

/* XXX This should be vm_size_t. */
SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
    CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
    "Location of process' ps_strings structure");

/* XXX This should be vm_size_t. */
SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
    CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
    "Top of process stack");

SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
    NULL, 0, sysctl_kern_stackprot, "I",
    "Stack memory permissions");

u_long ps_arg_cache_limit = PAGE_SIZE / 16;
SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, 
    &ps_arg_cache_limit, 0,
    "Process' command line characters cache limit");

static int disallow_high_osrel;
SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
    &disallow_high_osrel, 0,
    "Disallow execution of binaries built for higher version of the world");

static int map_at_zero = 0;
SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
    "Permit processes to map an object at virtual address 0.");

static int core_dump_can_intr = 1;
SYSCTL_INT(_kern, OID_AUTO, core_dump_can_intr, CTLFLAG_RWTUN,
    &core_dump_can_intr, 0,
    "Core dumping interruptible with SIGKILL");

static int
sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
{
	struct proc *p;
	vm_offset_t ps_strings;

	p = curproc;
#ifdef SCTL_MASK32
	if (req->flags & SCTL_MASK32) {
		unsigned int val;
		val = (unsigned int)PROC_PS_STRINGS(p);
		return (SYSCTL_OUT(req, &val, sizeof(val)));
	}
#endif
	ps_strings = PROC_PS_STRINGS(p);
	return (SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)));
}

static int
sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
{
	struct proc *p;
	vm_offset_t val;

	p = curproc;
#ifdef SCTL_MASK32
	if (req->flags & SCTL_MASK32) {
		unsigned int val32;

		val32 = round_page((unsigned int)p->p_vmspace->vm_stacktop);
		return (SYSCTL_OUT(req, &val32, sizeof(val32)));
	}
#endif
	val = round_page(p->p_vmspace->vm_stacktop);
	return (SYSCTL_OUT(req, &val, sizeof(val)));
}

static int
sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
{
	struct proc *p;

	p = curproc;
	return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
	    sizeof(p->p_sysent->sv_stackprot)));
}

/*
 * Each of the items is a pointer to a `const struct execsw', hence the
 * double pointer here.
 */
static const struct execsw **execsw;

#ifndef _SYS_SYSPROTO_H_
struct execve_args {
	char    *fname;
	char    **argv;
	char    **envv;
};
#endif

int
sys_execve(struct thread *td, struct execve_args *uap)
{
	struct image_args args;
	struct vmspace *oldvmspace;
	int error;

	error = pre_execve(td, &oldvmspace);
	if (error != 0)
		return (error);
	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
	    uap->argv, uap->envv);
	if (error == 0)
		error = kern_execve(td, &args, NULL, oldvmspace);
	post_execve(td, error, oldvmspace);
	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct fexecve_args {
	int	fd;
	char	**argv;
	char	**envv;
};
#endif
int
sys_fexecve(struct thread *td, struct fexecve_args *uap)
{
	struct image_args args;
	struct vmspace *oldvmspace;
	int error;

	error = pre_execve(td, &oldvmspace);
	if (error != 0)
		return (error);
	error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
	    uap->argv, uap->envv);
	if (error == 0) {
		args.fd = uap->fd;
		error = kern_execve(td, &args, NULL, oldvmspace);
	}
	post_execve(td, error, oldvmspace);
	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct __mac_execve_args {
	char	*fname;
	char	**argv;
	char	**envv;
	struct mac	*mac_p;
};
#endif

int
sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
{
#ifdef MAC
	struct image_args args;
	struct vmspace *oldvmspace;
	int error;

	error = pre_execve(td, &oldvmspace);
	if (error != 0)
		return (error);
	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
	    uap->argv, uap->envv);
	if (error == 0)
		error = kern_execve(td, &args, uap->mac_p, oldvmspace);
	post_execve(td, error, oldvmspace);
	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
	return (error);
#else
	return (ENOSYS);
#endif
}

int
pre_execve(struct thread *td, struct vmspace **oldvmspace)
{
	struct proc *p;
	int error;

	KASSERT(td == curthread, ("non-current thread %p", td));
	error = 0;
	p = td->td_proc;
	if ((p->p_flag & P_HADTHREADS) != 0) {
		PROC_LOCK(p);
		if (thread_single(p, SINGLE_BOUNDARY) != 0)
			error = ERESTART;
		PROC_UNLOCK(p);
	}
	KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
	    ("nested execve"));
	*oldvmspace = p->p_vmspace;
	return (error);
}

void
post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
{
	struct proc *p;

	KASSERT(td == curthread, ("non-current thread %p", td));
	p = td->td_proc;
	if ((p->p_flag & P_HADTHREADS) != 0) {
		PROC_LOCK(p);
		/*
		 * If success, we upgrade to SINGLE_EXIT state to
		 * force other threads to suicide.
		 */
		if (error == EJUSTRETURN)
			thread_single(p, SINGLE_EXIT);
		else
			thread_single_end(p, SINGLE_BOUNDARY);
		PROC_UNLOCK(p);
	}
	exec_cleanup(td, oldvmspace);
}

/*
 * kern_execve() has the astonishing property of not always returning to
 * the caller.  If sufficiently bad things happen during the call to
 * do_execve(), it can end up calling exit1(); as a result, callers must
 * avoid doing anything which they might need to undo (e.g., allocating
 * memory).
 */
int
kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
    struct vmspace *oldvmspace)
{

	TSEXEC(td->td_proc->p_pid, args->begin_argv);
	AUDIT_ARG_ARGV(args->begin_argv, args->argc,
	    exec_args_get_begin_envv(args) - args->begin_argv);
	AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
	    args->endp - exec_args_get_begin_envv(args));

	/* Must have at least one argument. */
	if (args->argc == 0) {
		exec_free_args(args);
		return (EINVAL);
	}
	return (do_execve(td, args, mac_p, oldvmspace));
}

static void
execve_nosetid(struct image_params *imgp)
{
	imgp->credential_setid = false;
	if (imgp->newcred != NULL) {
		crfree(imgp->newcred);
		imgp->newcred = NULL;
	}
}

/*
 * In-kernel implementation of execve().  All arguments are assumed to be
 * userspace pointers from the passed thread.
 */
static int
do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
    struct vmspace *oldvmspace)
{
	struct proc *p = td->td_proc;
	struct nameidata nd;
	struct ucred *oldcred;
	struct uidinfo *euip = NULL;
	uintptr_t stack_base;
	struct image_params image_params, *imgp;
	struct vattr attr;
	struct pargs *oldargs = NULL, *newargs = NULL;
	struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
#ifdef KTRACE
	struct ktr_io_params *kiop;
#endif
	struct vnode *oldtextvp, *newtextvp;
	struct vnode *oldtextdvp, *newtextdvp;
	char *oldbinname, *newbinname;
	bool credential_changing;
#ifdef MAC
	struct label *interpvplabel = NULL;
	bool will_transition;
#endif
#ifdef HWPMC_HOOKS
	struct pmckern_procexec pe;
#endif
	int error, i, orig_osrel;
	uint32_t orig_fctl0;
	Elf_Brandinfo *orig_brandinfo;
	size_t freepath_size;
	static const char fexecv_proc_title[] = "(fexecv)";

	imgp = &image_params;
	oldtextvp = oldtextdvp = NULL;
	newtextvp = newtextdvp = NULL;
	newbinname = oldbinname = NULL;
#ifdef KTRACE
	kiop = NULL;
#endif

	/*
	 * Lock the process and set the P_INEXEC flag to indicate that
	 * it should be left alone until we're done here.  This is
	 * necessary to avoid race conditions - e.g. in ptrace() -
	 * that might allow a local user to illicitly obtain elevated
	 * privileges.
	 */
	PROC_LOCK(p);
	KASSERT((p->p_flag & P_INEXEC) == 0,
	    ("%s(): process already has P_INEXEC flag", __func__));
	p->p_flag |= P_INEXEC;
	PROC_UNLOCK(p);

	/*
	 * Initialize part of the common data
	 */
	bzero(imgp, sizeof(*imgp));
	imgp->proc = p;
	imgp->attr = &attr;
	imgp->args = args;
	oldcred = p->p_ucred;
	orig_osrel = p->p_osrel;
	orig_fctl0 = p->p_fctl0;
	orig_brandinfo = p->p_elf_brandinfo;

#ifdef MAC
	error = mac_execve_enter(imgp, mac_p);
	if (error)
		goto exec_fail;
#endif

	SDT_PROBE1(proc, , , exec, args->fname);

interpret:
	if (args->fname != NULL) {
#ifdef CAPABILITY_MODE
		/*
		 * While capability mode can't reach this point via direct
		 * path arguments to execve(), we also don't allow
		 * interpreters to be used in capability mode (for now).
		 * Catch indirect lookups and return a permissions error.
		 */
		if (IN_CAPABILITY_MODE(td)) {
			error = ECAPMODE;
			goto exec_fail;
		}
#endif

		/*
		 * Translate the file name. namei() returns a vnode
		 * pointer in ni_vp among other things.
		 */
		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
		    AUDITVNODE1 | WANTPARENT, UIO_SYSSPACE,
		    args->fname);

		error = namei(&nd);
		if (error)
			goto exec_fail;

		newtextvp = nd.ni_vp;
		newtextdvp = nd.ni_dvp;
		nd.ni_dvp = NULL;
		newbinname = malloc(nd.ni_cnd.cn_namelen + 1, M_PARGS,
		    M_WAITOK);
		memcpy(newbinname, nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
		newbinname[nd.ni_cnd.cn_namelen] = '\0';
		imgp->vp = newtextvp;

		/*
		 * Do the best to calculate the full path to the image file.
		 */
		if (args->fname[0] == '/') {
			imgp->execpath = args->fname;
		} else {
			VOP_UNLOCK(imgp->vp);
			freepath_size = MAXPATHLEN;
			if (vn_fullpath_hardlink(newtextvp, newtextdvp,
			    newbinname, nd.ni_cnd.cn_namelen, &imgp->execpath,
			    &imgp->freepath, &freepath_size) != 0)
				imgp->execpath = args->fname;
			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
		}
	} else if (imgp->interpreter_vp) {
		/*
		 * An image activator has already provided an open vnode
		 */
		newtextvp = imgp->interpreter_vp;
		imgp->interpreter_vp = NULL;
		if (vn_fullpath(newtextvp, &imgp->execpath,
		    &imgp->freepath) != 0)
			imgp->execpath = args->fname;
		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
		AUDIT_ARG_VNODE1(newtextvp);
		imgp->vp = newtextvp;
	} else {
		AUDIT_ARG_FD(args->fd);

		/*
		 * If the descriptors was not opened with O_PATH, then
		 * we require that it was opened with O_EXEC or
		 * O_RDONLY.  In either case, exec_check_permissions()
		 * below checks _current_ file access mode regardless
		 * of the permissions additionally checked at the
		 * open(2).
		 */
		error = fgetvp_exec(td, args->fd, &cap_fexecve_rights,
		    &newtextvp);
		if (error != 0)
			goto exec_fail;

		if (vn_fullpath(newtextvp, &imgp->execpath,
		    &imgp->freepath) != 0)
			imgp->execpath = args->fname;
		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
		AUDIT_ARG_VNODE1(newtextvp);
		imgp->vp = newtextvp;
	}

	/*
	 * Check file permissions.  Also 'opens' file and sets its vnode to
	 * text mode.
	 */
	error = exec_check_permissions(imgp);
	if (error)
		goto exec_fail_dealloc;

	imgp->object = imgp->vp->v_object;
	if (imgp->object != NULL)
		vm_object_reference(imgp->object);

	error = exec_map_first_page(imgp);
	if (error)
		goto exec_fail_dealloc;

	imgp->proc->p_osrel = 0;
	imgp->proc->p_fctl0 = 0;
	imgp->proc->p_elf_brandinfo = NULL;

	/*
	 * Implement image setuid/setgid.
	 *
	 * Determine new credentials before attempting image activators
	 * so that it can be used by process_exec handlers to determine
	 * credential/setid changes.
	 *
	 * Don't honor setuid/setgid if the filesystem prohibits it or if
	 * the process is being traced.
	 *
	 * We disable setuid/setgid/etc in capability mode on the basis
	 * that most setugid applications are not written with that
	 * environment in mind, and will therefore almost certainly operate
	 * incorrectly. In principle there's no reason that setugid
	 * applications might not be useful in capability mode, so we may want
	 * to reconsider this conservative design choice in the future.
	 *
	 * XXXMAC: For the time being, use NOSUID to also prohibit
	 * transitions on the file system.
	 */
	credential_changing = false;
	credential_changing |= (attr.va_mode & S_ISUID) &&
	    oldcred->cr_uid != attr.va_uid;
	credential_changing |= (attr.va_mode & S_ISGID) &&
	    oldcred->cr_gid != attr.va_gid;
#ifdef MAC
	will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
	    interpvplabel, imgp) != 0;
	credential_changing |= will_transition;
#endif

	/* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
	if (credential_changing)
		imgp->proc->p_pdeathsig = 0;

	if (credential_changing &&
#ifdef CAPABILITY_MODE
	    ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
#endif
	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
	    (p->p_flag & P_TRACED) == 0) {
		imgp->credential_setid = true;
		VOP_UNLOCK(imgp->vp);
		imgp->newcred = crdup(oldcred);
		if (attr.va_mode & S_ISUID) {
			euip = uifind(attr.va_uid);
			change_euid(imgp->newcred, euip);
		}
		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
		if (attr.va_mode & S_ISGID)
			change_egid(imgp->newcred, attr.va_gid);
		/*
		 * Implement correct POSIX saved-id behavior.
		 *
		 * XXXMAC: Note that the current logic will save the
		 * uid and gid if a MAC domain transition occurs, even
		 * though maybe it shouldn't.
		 */
		change_svuid(imgp->newcred, imgp->newcred->cr_uid);
		change_svgid(imgp->newcred, imgp->newcred->cr_gid);
	} else {
		/*
		 * Implement correct POSIX saved-id behavior.
		 *
		 * XXX: It's not clear that the existing behavior is
		 * POSIX-compliant.  A number of sources indicate that the
		 * saved uid/gid should only be updated if the new ruid is
		 * not equal to the old ruid, or the new euid is not equal
		 * to the old euid and the new euid is not equal to the old
		 * ruid.  The FreeBSD code always updates the saved uid/gid.
		 * Also, this code uses the new (replaced) euid and egid as
		 * the source, which may or may not be the right ones to use.
		 */
		if (oldcred->cr_svuid != oldcred->cr_uid ||
		    oldcred->cr_svgid != oldcred->cr_gid) {
			VOP_UNLOCK(imgp->vp);
			imgp->newcred = crdup(oldcred);
			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
			change_svuid(imgp->newcred, imgp->newcred->cr_uid);
			change_svgid(imgp->newcred, imgp->newcred->cr_gid);
		}
	}
	/* The new credentials are installed into the process later. */

	/*
	 *	Loop through the list of image activators, calling each one.
	 *	An activator returns -1 if there is no match, 0 on success,
	 *	and an error otherwise.
	 */
	error = -1;
	for (i = 0; error == -1 && execsw[i]; ++i) {
		if (execsw[i]->ex_imgact == NULL)
			continue;
		error = (*execsw[i]->ex_imgact)(imgp);
	}

	if (error) {
		if (error == -1)
			error = ENOEXEC;
		goto exec_fail_dealloc;
	}

	/*
	 * Special interpreter operation, cleanup and loop up to try to
	 * activate the interpreter.
	 */
	if (imgp->interpreted) {
		exec_unmap_first_page(imgp);
		/*
		 * The text reference needs to be removed for scripts.
		 * There is a short period before we determine that
		 * something is a script where text reference is active.
		 * The vnode lock is held over this entire period
		 * so nothing should illegitimately be blocked.
		 */
		MPASS(imgp->textset);
		VOP_UNSET_TEXT_CHECKED(newtextvp);
		imgp->textset = false;
		/* free name buffer and old vnode */
#ifdef MAC
		mac_execve_interpreter_enter(newtextvp, &interpvplabel);
#endif
		if (imgp->opened) {
			VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
			imgp->opened = false;
		}
		vput(newtextvp);
		imgp->vp = newtextvp = NULL;
		if (args->fname != NULL) {
			if (newtextdvp != NULL) {
				vrele(newtextdvp);
				newtextdvp = NULL;
			}
			NDFREE_PNBUF(&nd);
			free(newbinname, M_PARGS);
			newbinname = NULL;
		}
		vm_object_deallocate(imgp->object);
		imgp->object = NULL;
		execve_nosetid(imgp);
		imgp->execpath = NULL;
		free(imgp->freepath, M_TEMP);
		imgp->freepath = NULL;
		/* set new name to that of the interpreter */
		if (imgp->interpreter_vp) {
			args->fname = NULL;
		} else {
			args->fname = imgp->interpreter_name;
		}
		goto interpret;
	}

	/*
	 * NB: We unlock the vnode here because it is believed that none
	 * of the sv_copyout_strings/sv_fixup operations require the vnode.
	 */
	VOP_UNLOCK(imgp->vp);

	if (disallow_high_osrel &&
	    P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
		error = ENOEXEC;
		uprintf("Osrel %d for image %s too high\n", p->p_osrel,
		    imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
		goto exec_fail_dealloc;
	}

	/*
	 * Copy out strings (args and env) and initialize stack base.
	 */
	error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
	if (error != 0) {
		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
		goto exec_fail_dealloc;
	}

	/*
	 * Stack setup.
	 */
	error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
	if (error != 0) {
		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
		goto exec_fail_dealloc;
	}

	/*
	 * For security and other reasons, the file descriptor table cannot be
	 * shared after an exec.
	 */
	fdunshare(td);
	pdunshare(td);
	/* close files on exec */
	fdcloseexec(td);

	/*
	 * Malloc things before we need locks.
	 */
	i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
	/* Cache arguments if they fit inside our allowance */
	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
		newargs = pargs_alloc(i);
		bcopy(imgp->args->begin_argv, newargs->ar_args, i);
	}

	/*
	 * For security and other reasons, signal handlers cannot
	 * be shared after an exec. The new process gets a copy of the old
	 * handlers. In execsigs(), the new process will have its signals
	 * reset.
	 */
	if (sigacts_shared(p->p_sigacts)) {
		oldsigacts = p->p_sigacts;
		newsigacts = sigacts_alloc();
		sigacts_copy(newsigacts, oldsigacts);
	}

	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);

	PROC_LOCK(p);
	if (oldsigacts)
		p->p_sigacts = newsigacts;
	/* Stop profiling */
	stopprofclock(p);

	/* reset caught signals */
	execsigs(p);

	/* name this process - nameiexec(p, ndp) */
	bzero(p->p_comm, sizeof(p->p_comm));
	if (args->fname)
		bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
		    min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
	else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
		bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
	bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
#ifdef KTR
	sched_clear_tdname(td);
#endif

	/*
	 * mark as execed, wakeup the process that vforked (if any) and tell
	 * it that it now has its own resources back
	 */
	p->p_flag |= P_EXEC;
	if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
		p->p_flag2 &= ~P2_NOTRACE;
	if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
		p->p_flag2 &= ~P2_STKGAP_DISABLE;
	p->p_flag2 &= ~(P2_MEMBAR_PRIVE | P2_MEMBAR_PRIVE_SYNCORE |
	    P2_MEMBAR_GLOBE);
	if (p->p_flag & P_PPWAIT) {
		p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
		cv_broadcast(&p->p_pwait);
		/* STOPs are no longer ignored, arrange for AST */
		signotify(td);
	}

	if ((imgp->sysent->sv_setid_allowed != NULL &&
	    !(*imgp->sysent->sv_setid_allowed)(td, imgp)) ||
	    (p->p_flag2 & P2_NO_NEW_PRIVS) != 0)
		execve_nosetid(imgp);

	/*
	 * Implement image setuid/setgid installation.
	 */
	if (imgp->credential_setid) {
		/*
		 * Turn off syscall tracing for set-id programs, except for
		 * root.  Record any set-id flags first to make sure that
		 * we do not regain any tracing during a possible block.
		 */
		setsugid(p);
#ifdef KTRACE
		kiop = ktrprocexec(p);
#endif
		/*
		 * Close any file descriptors 0..2 that reference procfs,
		 * then make sure file descriptors 0..2 are in use.
		 *
		 * Both fdsetugidsafety() and fdcheckstd() may call functions
		 * taking sleepable locks, so temporarily drop our locks.
		 */
		PROC_UNLOCK(p);
		VOP_UNLOCK(imgp->vp);
		fdsetugidsafety(td);
		error = fdcheckstd(td);
		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
		if (error != 0)
			goto exec_fail_dealloc;
		PROC_LOCK(p);
#ifdef MAC
		if (will_transition) {
			mac_vnode_execve_transition(oldcred, imgp->newcred,
			    imgp->vp, interpvplabel, imgp);
		}
#endif
	} else {
		if (oldcred->cr_uid == oldcred->cr_ruid &&
		    oldcred->cr_gid == oldcred->cr_rgid)
			p->p_flag &= ~P_SUGID;
	}
	/*
	 * Set the new credentials.
	 */
	if (imgp->newcred != NULL) {
		proc_set_cred(p, imgp->newcred);
		crfree(oldcred);
		oldcred = NULL;
	}

	/*
	 * Store the vp for use in kern.proc.pathname.  This vnode was
	 * referenced by namei() or by fexecve variant of fname handling.
	 */
	oldtextvp = p->p_textvp;
	p->p_textvp = newtextvp;
	oldtextdvp = p->p_textdvp;
	p->p_textdvp = newtextdvp;
	newtextdvp = NULL;
	oldbinname = p->p_binname;
	p->p_binname = newbinname;
	newbinname = NULL;

#ifdef KDTRACE_HOOKS
	/*
	 * Tell the DTrace fasttrap provider about the exec if it
	 * has declared an interest.
	 */
	if (dtrace_fasttrap_exec)
		dtrace_fasttrap_exec(p);
#endif

	/*
	 * Notify others that we exec'd, and clear the P_INEXEC flag
	 * as we're now a bona fide freshly-execed process.
	 */
	KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
	p->p_flag &= ~P_INEXEC;

	/* clear "fork but no exec" flag, as we _are_ execing */
	p->p_acflag &= ~AFORK;

	/*
	 * Free any previous argument cache and replace it with
	 * the new argument cache, if any.
	 */
	oldargs = p->p_args;
	p->p_args = newargs;
	newargs = NULL;

	PROC_UNLOCK(p);

#ifdef	HWPMC_HOOKS
	/*
	 * Check if system-wide sampling is in effect or if the
	 * current process is using PMCs.  If so, do exec() time
	 * processing.  This processing needs to happen AFTER the
	 * P_INEXEC flag is cleared.
	 */
	if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
		VOP_UNLOCK(imgp->vp);
		pe.pm_credentialschanged = credential_changing;
		pe.pm_baseaddr = imgp->reloc_base;
		pe.pm_dynaddr = imgp->et_dyn_addr;

		PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
	}
#endif

	/* Set values passed into the program in registers. */
	(*p->p_sysent->sv_setregs)(td, imgp, stack_base);

	VOP_MMAPPED(imgp->vp);

	SDT_PROBE1(proc, , , exec__success, args->fname);

exec_fail_dealloc:
	if (error != 0) {
		p->p_osrel = orig_osrel;
		p->p_fctl0 = orig_fctl0;
		p->p_elf_brandinfo = orig_brandinfo;
	}

	if (imgp->firstpage != NULL)
		exec_unmap_first_page(imgp);

	if (imgp->vp != NULL) {
		if (imgp->opened)
			VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
		if (imgp->textset)
			VOP_UNSET_TEXT_CHECKED(imgp->vp);
		if (error != 0)
			vput(imgp->vp);
		else
			VOP_UNLOCK(imgp->vp);
		if (args->fname != NULL)
			NDFREE_PNBUF(&nd);
		if (newtextdvp != NULL)
			vrele(newtextdvp);
		free(newbinname, M_PARGS);
	}

	if (imgp->object != NULL)
		vm_object_deallocate(imgp->object);

	free(imgp->freepath, M_TEMP);

	if (error == 0) {
		if (p->p_ptevents & PTRACE_EXEC) {
			PROC_LOCK(p);
			if (p->p_ptevents & PTRACE_EXEC)
				td->td_dbgflags |= TDB_EXEC;
			PROC_UNLOCK(p);
		}
	} else {
exec_fail:
		/* we're done here, clear P_INEXEC */
		PROC_LOCK(p);
		p->p_flag &= ~P_INEXEC;
		PROC_UNLOCK(p);

		SDT_PROBE1(proc, , , exec__failure, error);
	}

	if (imgp->newcred != NULL && oldcred != NULL)
		crfree(imgp->newcred);

#ifdef MAC
	mac_execve_exit(imgp);
	mac_execve_interpreter_exit(interpvplabel);
#endif
	exec_free_args(args);

	/*
	 * Handle deferred decrement of ref counts.
	 */
	if (oldtextvp != NULL)
		vrele(oldtextvp);
	if (oldtextdvp != NULL)
		vrele(oldtextdvp);
	free(oldbinname, M_PARGS);
#ifdef KTRACE
	ktr_io_params_free(kiop);
#endif
	pargs_drop(oldargs);
	pargs_drop(newargs);
	if (oldsigacts != NULL)
		sigacts_free(oldsigacts);
	if (euip != NULL)
		uifree(euip);

	if (error && imgp->vmspace_destroyed) {
		/* sorry, no more process anymore. exit gracefully */
		exec_cleanup(td, oldvmspace);
		exit1(td, 0, SIGABRT);
		/* NOT REACHED */
	}

#ifdef KTRACE
	if (error == 0)
		ktrprocctor(p);
#endif

	/*
	 * We don't want cpu_set_syscall_retval() to overwrite any of
	 * the register values put in place by exec_setregs().
	 * Implementations of cpu_set_syscall_retval() will leave
	 * registers unmodified when returning EJUSTRETURN.
	 */
	return (error == 0 ? EJUSTRETURN : error);
}

void
exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
{
	if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
		KASSERT(td->td_proc->p_vmspace != oldvmspace,
		    ("oldvmspace still used"));
		vmspace_free(oldvmspace);
		td->td_pflags &= ~TDP_EXECVMSPC;
	}
}

int
exec_map_first_page(struct image_params *imgp)
{
	vm_object_t object;
	vm_page_t m;
	int error;

	if (imgp->firstpage != NULL)
		exec_unmap_first_page(imgp);

	object = imgp->vp->v_object;
	if (object == NULL)
		return (EACCES);
#if VM_NRESERVLEVEL > 0
	if ((object->flags & OBJ_COLORED) == 0) {
		VM_OBJECT_WLOCK(object);
		vm_object_color(object, 0);
		VM_OBJECT_WUNLOCK(object);
	}
#endif
	error = vm_page_grab_valid_unlocked(&m, object, 0,
	    VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);

	if (error != VM_PAGER_OK)
		return (EIO);
	imgp->firstpage = sf_buf_alloc(m, 0);
	imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);

	return (0);
}

void
exec_unmap_first_page(struct image_params *imgp)
{
	vm_page_t m;

	if (imgp->firstpage != NULL) {
		m = sf_buf_page(imgp->firstpage);
		sf_buf_free(imgp->firstpage);
		imgp->firstpage = NULL;
		vm_page_unwire(m, PQ_ACTIVE);
	}
}

void
exec_onexec_old(struct thread *td)
{
	sigfastblock_clear(td);
	umtx_exec(td->td_proc);
}

/*
 * This is an optimization which removes the unmanaged shared page
 * mapping. In combination with pmap_remove_pages(), which cleans all
 * managed mappings in the process' vmspace pmap, no work will be left
 * for pmap_remove(min, max).
 */
void
exec_free_abi_mappings(struct proc *p)
{
	struct vmspace *vmspace;

	vmspace = p->p_vmspace;
	if (refcount_load(&vmspace->vm_refcnt) != 1)
		return;

	if (!PROC_HAS_SHP(p))
		return;

	pmap_remove(vmspace_pmap(vmspace), vmspace->vm_shp_base,
	    vmspace->vm_shp_base + p->p_sysent->sv_shared_page_len);
}

/*
 * Run down the current address space and install a new one.
 */
int
exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
{
	int error;
	struct proc *p = imgp->proc;
	struct vmspace *vmspace = p->p_vmspace;
	struct thread *td = curthread;
	vm_offset_t sv_minuser;
	vm_map_t map;

	imgp->vmspace_destroyed = true;
	imgp->sysent = sv;

	if (p->p_sysent->sv_onexec_old != NULL)
		p->p_sysent->sv_onexec_old(td);
	itimers_exec(p);

	EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);

	/*
	 * Blow away entire process VM, if address space not shared,
	 * otherwise, create a new VM space so that other threads are
	 * not disrupted
	 */
	map = &vmspace->vm_map;
	if (map_at_zero)
		sv_minuser = sv->sv_minuser;
	else
		sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
	if (refcount_load(&vmspace->vm_refcnt) == 1 &&
	    vm_map_min(map) == sv_minuser &&
	    vm_map_max(map) == sv->sv_maxuser &&
	    cpu_exec_vmspace_reuse(p, map)) {
		exec_free_abi_mappings(p);
		shmexit(vmspace);
		pmap_remove_pages(vmspace_pmap(vmspace));
		vm_map_remove(map, vm_map_min(map), vm_map_max(map));
		/*
		 * An exec terminates mlockall(MCL_FUTURE).
		 * ASLR and W^X states must be re-evaluated.
		 */
		vm_map_lock(map);
		vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
		    MAP_ASLR_IGNSTART | MAP_ASLR_STACK | MAP_WXORX);
		vm_map_unlock(map);
	} else {
		error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
		if (error)
			return (error);
		vmspace = p->p_vmspace;
		map = &vmspace->vm_map;
	}
	map->flags |= imgp->map_flags;

	return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0);
}

/*
 * Compute the stack size limit and map the main process stack.
 * Map the shared page.
 */
int
exec_map_stack(struct image_params *imgp)
{
	struct rlimit rlim_stack;
	struct sysentvec *sv;
	struct proc *p;
	vm_map_t map;
	struct vmspace *vmspace;
	vm_offset_t stack_addr, stack_top;
	vm_offset_t sharedpage_addr;
	u_long ssiz;
	int error, find_space, stack_off;
	vm_prot_t stack_prot;
	vm_object_t obj;

	p = imgp->proc;
	sv = p->p_sysent;

	if (imgp->stack_sz != 0) {
		ssiz = trunc_page(imgp->stack_sz);
		PROC_LOCK(p);
		lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
		PROC_UNLOCK(p);
		if (ssiz > rlim_stack.rlim_max)
			ssiz = rlim_stack.rlim_max;
		if (ssiz > rlim_stack.rlim_cur) {
			rlim_stack.rlim_cur = ssiz;
			kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
		}
	} else if (sv->sv_maxssiz != NULL) {
		ssiz = *sv->sv_maxssiz;
	} else {
		ssiz = maxssiz;
	}

	vmspace = p->p_vmspace;
	map = &vmspace->vm_map;

	stack_prot = sv->sv_shared_page_obj != NULL && imgp->stack_prot != 0 ?
	    imgp->stack_prot : sv->sv_stackprot;
	if ((map->flags & MAP_ASLR_STACK) != 0) {
		stack_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
		    lim_max(curthread, RLIMIT_DATA));
		find_space = VMFS_ANY_SPACE;
	} else {
		stack_addr = sv->sv_usrstack - ssiz;
		find_space = VMFS_NO_SPACE;
	}
	error = vm_map_find(map, NULL, 0, &stack_addr, (vm_size_t)ssiz,
	    sv->sv_usrstack, find_space, stack_prot, VM_PROT_ALL,
	    MAP_STACK_GROWS_DOWN);
	if (error != KERN_SUCCESS) {
		uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
		    "failed, mach error %d errno %d\n", (uintmax_t)ssiz,
		    stack_prot, error, vm_mmap_to_errno(error));
		return (vm_mmap_to_errno(error));
	}

	stack_top = stack_addr + ssiz;
	if ((map->flags & MAP_ASLR_STACK) != 0) {
		/* Randomize within the first page of the stack. */
		arc4rand(&stack_off, sizeof(stack_off), 0);
		stack_top -= rounddown2(stack_off & PAGE_MASK, sizeof(void *));
	}

	/* Map a shared page */
	obj = sv->sv_shared_page_obj;
	if (obj == NULL) {
		sharedpage_addr = 0;
		goto out;
	}

	/*
	 * If randomization is disabled then the shared page will
	 * be mapped at address specified in sysentvec.
	 * Otherwise any address above .data section can be selected.
	 * Same logic is used for stack address randomization.
	 * If the address randomization is applied map a guard page
	 * at the top of UVA.
	 */
	vm_object_reference(obj);
	if ((imgp->imgp_flags & IMGP_ASLR_SHARED_PAGE) != 0) {
		sharedpage_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
		    lim_max(curthread, RLIMIT_DATA));

		error = vm_map_fixed(map, NULL, 0,
		    sv->sv_maxuser - PAGE_SIZE, PAGE_SIZE,
		    VM_PROT_NONE, VM_PROT_NONE, MAP_CREATE_GUARD);
		if (error != KERN_SUCCESS) {
			/*
			 * This is not fatal, so let's just print a warning
			 * and continue.
			 */
			uprintf("%s: Mapping guard page at the top of UVA failed"
			    " mach error %d errno %d",
			    __func__, error, vm_mmap_to_errno(error));
		}

		error = vm_map_find(map, obj, 0,
		    &sharedpage_addr, sv->sv_shared_page_len,
		    sv->sv_maxuser, VMFS_ANY_SPACE,
		    VM_PROT_READ | VM_PROT_EXECUTE,
		    VM_PROT_READ | VM_PROT_EXECUTE,
		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
	} else {
		sharedpage_addr = sv->sv_shared_page_base;
		vm_map_fixed(map, obj, 0,
		    sharedpage_addr, sv->sv_shared_page_len,
		    VM_PROT_READ | VM_PROT_EXECUTE,
		    VM_PROT_READ | VM_PROT_EXECUTE,
		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
	}
	if (error != KERN_SUCCESS) {
		uprintf("%s: mapping shared page at addr: %p"
		    "failed, mach error %d errno %d\n", __func__,
		    (void *)sharedpage_addr, error, vm_mmap_to_errno(error));
		vm_object_deallocate(obj);
		return (vm_mmap_to_errno(error));
	}
out:
	/*
	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
	 * are still used to enforce the stack rlimit on the process stack.
	 */
	vmspace->vm_maxsaddr = (char *)stack_addr;
	vmspace->vm_stacktop = stack_top;
	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
	vmspace->vm_shp_base = sharedpage_addr;

	return (0);
}

/*
 * Copy out argument and environment strings from the old process address
 * space into the temporary string buffer.
 */
int
exec_copyin_args(struct image_args *args, const char *fname,
    enum uio_seg segflg, char **argv, char **envv)
{
	u_long arg, env;
	int error;

	bzero(args, sizeof(*args));
	if (argv == NULL)
		return (EFAULT);

	/*
	 * Allocate demand-paged memory for the file name, argument, and
	 * environment strings.
	 */
	error = exec_alloc_args(args);
	if (error != 0)
		return (error);

	/*
	 * Copy the file name.
	 */
	error = exec_args_add_fname(args, fname, segflg);
	if (error != 0)
		goto err_exit;

	/*
	 * extract arguments first
	 */
	for (;;) {
		error = fueword(argv++, &arg);
		if (error == -1) {
			error = EFAULT;
			goto err_exit;
		}
		if (arg == 0)
			break;
		error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
		    UIO_USERSPACE);
		if (error != 0)
			goto err_exit;
	}

	/*
	 * extract environment strings
	 */
	if (envv) {
		for (;;) {
			error = fueword(envv++, &env);
			if (error == -1) {
				error = EFAULT;
				goto err_exit;
			}
			if (env == 0)
				break;
			error = exec_args_add_env(args,
			    (char *)(uintptr_t)env, UIO_USERSPACE);
			if (error != 0)
				goto err_exit;
		}
	}

	return (0);

err_exit:
	exec_free_args(args);
	return (error);
}

struct exec_args_kva {
	vm_offset_t addr;
	u_int gen;
	SLIST_ENTRY(exec_args_kva) next;
};

DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva);

static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
static struct mtx exec_args_kva_mtx;
static u_int exec_args_gen;

static void
exec_prealloc_args_kva(void *arg __unused)
{
	struct exec_args_kva *argkva;
	u_int i;

	SLIST_INIT(&exec_args_kva_freelist);
	mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
	for (i = 0; i < exec_map_entries; i++) {
		argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
		argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
		argkva->gen = exec_args_gen;
		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
	}
}
SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);

static vm_offset_t
exec_alloc_args_kva(void **cookie)
{
	struct exec_args_kva *argkva;

	argkva = (void *)atomic_readandclear_ptr(
	    (uintptr_t *)DPCPU_PTR(exec_args_kva));
	if (argkva == NULL) {
		mtx_lock(&exec_args_kva_mtx);
		while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
			(void)mtx_sleep(&exec_args_kva_freelist,
			    &exec_args_kva_mtx, 0, "execkva", 0);
		SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
		mtx_unlock(&exec_args_kva_mtx);
	}
	kasan_mark((void *)argkva->addr, exec_map_entry_size,
	    exec_map_entry_size, 0);
	*(struct exec_args_kva **)cookie = argkva;
	return (argkva->addr);
}

static void
exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
{
	vm_offset_t base;

	base = argkva->addr;
	kasan_mark((void *)argkva->addr, 0, exec_map_entry_size,
	    KASAN_EXEC_ARGS_FREED);
	if (argkva->gen != gen) {
		(void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
		    MADV_FREE);
		argkva->gen = gen;
	}
	if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
	    (uintptr_t)NULL, (uintptr_t)argkva)) {
		mtx_lock(&exec_args_kva_mtx);
		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
		wakeup_one(&exec_args_kva_freelist);
		mtx_unlock(&exec_args_kva_mtx);
	}
}

static void
exec_free_args_kva(void *cookie)
{

	exec_release_args_kva(cookie, exec_args_gen);
}

static void
exec_args_kva_lowmem(void *arg __unused)
{
	SLIST_HEAD(, exec_args_kva) head;
	struct exec_args_kva *argkva;
	u_int gen;
	int i;

	gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;

	/*
	 * Force an madvise of each KVA range. Any currently allocated ranges
	 * will have MADV_FREE applied once they are freed.
	 */
	SLIST_INIT(&head);
	mtx_lock(&exec_args_kva_mtx);
	SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
	mtx_unlock(&exec_args_kva_mtx);
	while ((argkva = SLIST_FIRST(&head)) != NULL) {
		SLIST_REMOVE_HEAD(&head, next);
		exec_release_args_kva(argkva, gen);
	}

	CPU_FOREACH(i) {
		argkva = (void *)atomic_readandclear_ptr(
		    (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
		if (argkva != NULL)
			exec_release_args_kva(argkva, gen);
	}
}
EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL,
    EVENTHANDLER_PRI_ANY);

/*
 * Allocate temporary demand-paged, zero-filled memory for the file name,
 * argument, and environment strings.
 */
int
exec_alloc_args(struct image_args *args)
{

	args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
	return (0);
}

void
exec_free_args(struct image_args *args)
{

	if (args->buf != NULL) {
		exec_free_args_kva(args->bufkva);
		args->buf = NULL;
	}
	if (args->fname_buf != NULL) {
		free(args->fname_buf, M_TEMP);
		args->fname_buf = NULL;
	}
}

/*
 * A set to functions to fill struct image args.
 *
 * NOTE: exec_args_add_fname() must be called (possibly with a NULL
 * fname) before the other functions.  All exec_args_add_arg() calls must
 * be made before any exec_args_add_env() calls.  exec_args_adjust_args()
 * may be called any time after exec_args_add_fname().
 *
 * exec_args_add_fname() - install path to be executed
 * exec_args_add_arg() - append an argument string
 * exec_args_add_env() - append an env string
 * exec_args_adjust_args() - adjust location of the argument list to
 *                           allow new arguments to be prepended
 */
int
exec_args_add_fname(struct image_args *args, const char *fname,
    enum uio_seg segflg)
{
	int error;
	size_t length;

	KASSERT(args->fname == NULL, ("fname already appended"));
	KASSERT(args->endp == NULL, ("already appending to args"));

	if (fname != NULL) {
		args->fname = args->buf;
		error = segflg == UIO_SYSSPACE ?
		    copystr(fname, args->fname, PATH_MAX, &length) :
		    copyinstr(fname, args->fname, PATH_MAX, &length);
		if (error != 0)
			return (error == ENAMETOOLONG ? E2BIG : error);
	} else
		length = 0;

	/* Set up for _arg_*()/_env_*() */
	args->endp = args->buf + length;
	/* begin_argv must be set and kept updated */
	args->begin_argv = args->endp;
	KASSERT(exec_map_entry_size - length >= ARG_MAX,
	    ("too little space remaining for arguments %zu < %zu",
	    exec_map_entry_size - length, (size_t)ARG_MAX));
	args->stringspace = ARG_MAX;

	return (0);
}

static int
exec_args_add_str(struct image_args *args, const char *str,
    enum uio_seg segflg, int *countp)
{
	int error;
	size_t length;

	KASSERT(args->endp != NULL, ("endp not initialized"));
	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));

	error = (segflg == UIO_SYSSPACE) ?
	    copystr(str, args->endp, args->stringspace, &length) :
	    copyinstr(str, args->endp, args->stringspace, &length);
	if (error != 0)
		return (error == ENAMETOOLONG ? E2BIG : error);
	args->stringspace -= length;
	args->endp += length;
	(*countp)++;

	return (0);
}

int
exec_args_add_arg(struct image_args *args, const char *argp,
    enum uio_seg segflg)
{

	KASSERT(args->envc == 0, ("appending args after env"));

	return (exec_args_add_str(args, argp, segflg, &args->argc));
}

int
exec_args_add_env(struct image_args *args, const char *envp,
    enum uio_seg segflg)
{

	if (args->envc == 0)
		args->begin_envv = args->endp;

	return (exec_args_add_str(args, envp, segflg, &args->envc));
}

int
exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
{
	ssize_t offset;

	KASSERT(args->endp != NULL, ("endp not initialized"));
	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));

	offset = extend - consume;
	if (args->stringspace < offset)
		return (E2BIG);
	memmove(args->begin_argv + extend, args->begin_argv + consume,
	    args->endp - args->begin_argv + consume);
	if (args->envc > 0)
		args->begin_envv += offset;
	args->endp += offset;
	args->stringspace -= offset;
	return (0);
}

char *
exec_args_get_begin_envv(struct image_args *args)
{

	KASSERT(args->endp != NULL, ("endp not initialized"));

	if (args->envc > 0)
		return (args->begin_envv);
	return (args->endp);
}

/*
 * Copy strings out to the new process address space, constructing new arg
 * and env vector tables. Return a pointer to the base so that it can be used
 * as the initial stack pointer.
 */
int
exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
{
	int argc, envc;
	char **vectp;
	char *stringp;
	uintptr_t destp, ustringp;
	struct ps_strings *arginfo;
	struct proc *p;
	struct sysentvec *sysent;
	size_t execpath_len;
	int error, szsigcode;
	char canary[sizeof(long) * 8];

	p = imgp->proc;
	sysent = p->p_sysent;

	destp =	PROC_PS_STRINGS(p);
	arginfo = imgp->ps_strings = (void *)destp;

	/*
	 * Install sigcode.
	 */
	if (sysent->sv_shared_page_base == 0 && sysent->sv_szsigcode != NULL) {
		szsigcode = *(sysent->sv_szsigcode);
		destp -= szsigcode;
		destp = rounddown2(destp, sizeof(void *));
		error = copyout(sysent->sv_sigcode, (void *)destp, szsigcode);
		if (error != 0)
			return (error);
	}

	/*
	 * Copy the image path for the rtld.
	 */
	if (imgp->execpath != NULL && imgp->auxargs != NULL) {
		execpath_len = strlen(imgp->execpath) + 1;
		destp -= execpath_len;
		destp = rounddown2(destp, sizeof(void *));
		imgp->execpathp = (void *)destp;
		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
		if (error != 0)
			return (error);
	}

	/*
	 * Prepare the canary for SSP.
	 */
	arc4rand(canary, sizeof(canary), 0);
	destp -= sizeof(canary);
	imgp->canary = (void *)destp;
	error = copyout(canary, imgp->canary, sizeof(canary));
	if (error != 0)
		return (error);
	imgp->canarylen = sizeof(canary);

	/*
	 * Prepare the pagesizes array.
	 */
	imgp->pagesizeslen = sizeof(pagesizes[0]) * MAXPAGESIZES;
	destp -= imgp->pagesizeslen;
	destp = rounddown2(destp, sizeof(void *));
	imgp->pagesizes = (void *)destp;
	error = copyout(pagesizes, imgp->pagesizes, imgp->pagesizeslen);
	if (error != 0)
		return (error);

	/*
	 * Allocate room for the argument and environment strings.
	 */
	destp -= ARG_MAX - imgp->args->stringspace;
	destp = rounddown2(destp, sizeof(void *));
	ustringp = destp;

	if (imgp->auxargs) {
		/*
		 * Allocate room on the stack for the ELF auxargs
		 * array.  It has up to AT_COUNT entries.
		 */
		destp -= AT_COUNT * sizeof(Elf_Auxinfo);
		destp = rounddown2(destp, sizeof(void *));
	}

	vectp = (char **)destp;

	/*
	 * Allocate room for the argv[] and env vectors including the
	 * terminating NULL pointers.
	 */
	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;

	/*
	 * vectp also becomes our initial stack base
	 */
	*stack_base = (uintptr_t)vectp;

	stringp = imgp->args->begin_argv;
	argc = imgp->args->argc;
	envc = imgp->args->envc;

	/*
	 * Copy out strings - arguments and environment.
	 */
	error = copyout(stringp, (void *)ustringp,
	    ARG_MAX - imgp->args->stringspace);
	if (error != 0)
		return (error);

	/*
	 * Fill in "ps_strings" struct for ps, w, etc.
	 */
	imgp->argv = vectp;
	if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
	    suword32(&arginfo->ps_nargvstr, argc) != 0)
		return (EFAULT);

	/*
	 * Fill in argument portion of vector table.
	 */
	for (; argc > 0; --argc) {
		if (suword(vectp++, ustringp) != 0)
			return (EFAULT);
		while (*stringp++ != 0)
			ustringp++;
		ustringp++;
	}

	/* a null vector table pointer separates the argp's from the envp's */
	if (suword(vectp++, 0) != 0)
		return (EFAULT);

	imgp->envv = vectp;
	if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
	    suword32(&arginfo->ps_nenvstr, envc) != 0)
		return (EFAULT);

	/*
	 * Fill in environment portion of vector table.
	 */
	for (; envc > 0; --envc) {
		if (suword(vectp++, ustringp) != 0)
			return (EFAULT);
		while (*stringp++ != 0)
			ustringp++;
		ustringp++;
	}

	/* end of vector table is a null pointer */
	if (suword(vectp, 0) != 0)
		return (EFAULT);

	if (imgp->auxargs) {
		vectp++;
		error = imgp->sysent->sv_copyout_auxargs(imgp,
		    (uintptr_t)vectp);
		if (error != 0)
			return (error);
	}

	return (0);
}

/*
 * Check permissions of file to execute.
 *	Called with imgp->vp locked.
 *	Return 0 for success or error code on failure.
 */
int
exec_check_permissions(struct image_params *imgp)
{
	struct vnode *vp = imgp->vp;
	struct vattr *attr = imgp->attr;
	struct thread *td;
	int error;

	td = curthread;

	/* Get file attributes */
	error = VOP_GETATTR(vp, attr, td->td_ucred);
	if (error)
		return (error);

#ifdef MAC
	error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
	if (error)
		return (error);
#endif

	/*
	 * 1) Check if file execution is disabled for the filesystem that
	 *    this file resides on.
	 * 2) Ensure that at least one execute bit is on. Otherwise, a
	 *    privileged user will always succeed, and we don't want this
	 *    to happen unless the file really is executable.
	 * 3) Ensure that the file is a regular file.
	 */
	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
	    (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
	    (attr->va_type != VREG))
		return (EACCES);

	/*
	 * Zero length files can't be exec'd
	 */
	if (attr->va_size == 0)
		return (ENOEXEC);

	/*
	 *  Check for execute permission to file based on current credentials.
	 */
	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
	if (error)
		return (error);

	/*
	 * Check number of open-for-writes on the file and deny execution
	 * if there are any.
	 *
	 * Add a text reference now so no one can write to the
	 * executable while we're activating it.
	 *
	 * Remember if this was set before and unset it in case this is not
	 * actually an executable image.
	 */
	error = VOP_SET_TEXT(vp);
	if (error != 0)
		return (error);
	imgp->textset = true;

	/*
	 * Call filesystem specific open routine (which does nothing in the
	 * general case).
	 */
	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
	if (error == 0)
		imgp->opened = true;
	return (error);
}

/*
 * Exec handler registration
 */
int
exec_register(const struct execsw *execsw_arg)
{
	const struct execsw **es, **xs, **newexecsw;
	u_int count = 2;	/* New slot and trailing NULL */

	if (execsw)
		for (es = execsw; *es; es++)
			count++;
	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
	xs = newexecsw;
	if (execsw)
		for (es = execsw; *es; es++)
			*xs++ = *es;
	*xs++ = execsw_arg;
	*xs = NULL;
	if (execsw)
		free(execsw, M_TEMP);
	execsw = newexecsw;
	return (0);
}

int
exec_unregister(const struct execsw *execsw_arg)
{
	const struct execsw **es, **xs, **newexecsw;
	int count = 1;

	if (execsw == NULL)
		panic("unregister with no handlers left?\n");

	for (es = execsw; *es; es++) {
		if (*es == execsw_arg)
			break;
	}
	if (*es == NULL)
		return (ENOENT);
	for (es = execsw; *es; es++)
		if (*es != execsw_arg)
			count++;
	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
	xs = newexecsw;
	for (es = execsw; *es; es++)
		if (*es != execsw_arg)
			*xs++ = *es;
	*xs = NULL;
	if (execsw)
		free(execsw, M_TEMP);
	execsw = newexecsw;
	return (0);
}

/*
 * Write out a core segment to the compression stream.
 */
static int
compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len)
{
	size_t chunk_len;
	int error;

	while (len > 0) {
		chunk_len = MIN(len, CORE_BUF_SIZE);

		/*
		 * We can get EFAULT error here.
		 * In that case zero out the current chunk of the segment.
		 */
		error = copyin(base, buf, chunk_len);
		if (error != 0)
			bzero(buf, chunk_len);
		error = compressor_write(cp->comp, buf, chunk_len);
		if (error != 0)
			break;
		base += chunk_len;
		len -= chunk_len;
	}
	return (error);
}

int
core_write(struct coredump_params *cp, const void *base, size_t len,
    off_t offset, enum uio_seg seg, size_t *resid)
{

	return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base),
	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
	    cp->active_cred, cp->file_cred, resid, cp->td));
}

int
core_output(char *base, size_t len, off_t offset, struct coredump_params *cp,
    void *tmpbuf)
{
	vm_map_t map;
	struct mount *mp;
	size_t resid, runlen;
	int error;
	bool success;

	KASSERT((uintptr_t)base % PAGE_SIZE == 0,
	    ("%s: user address %p is not page-aligned", __func__, base));

	if (cp->comp != NULL)
		return (compress_chunk(cp, base, tmpbuf, len));

	map = &cp->td->td_proc->p_vmspace->vm_map;
	for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
		/*
		 * Attempt to page in all virtual pages in the range.  If a
		 * virtual page is not backed by the pager, it is represented as
		 * a hole in the file.  This can occur with zero-filled
		 * anonymous memory or truncated files, for example.
		 */
		for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
			if (core_dump_can_intr && curproc_sigkilled())
				return (EINTR);
			error = vm_fault(map, (uintptr_t)base + runlen,
			    VM_PROT_READ, VM_FAULT_NOFILL, NULL);
			if (runlen == 0)
				success = error == KERN_SUCCESS;
			else if ((error == KERN_SUCCESS) != success)
				break;
		}

		if (success) {
			error = core_write(cp, base, runlen, offset,
			    UIO_USERSPACE, &resid);
			if (error != 0) {
				if (error != EFAULT)
					break;

				/*
				 * EFAULT may be returned if the user mapping
				 * could not be accessed, e.g., because a mapped
				 * file has been truncated.  Skip the page if no
				 * progress was made, to protect against a
				 * hypothetical scenario where vm_fault() was
				 * successful but core_write() returns EFAULT
				 * anyway.
				 */
				runlen -= resid;
				if (runlen == 0) {
					success = false;
					runlen = PAGE_SIZE;
				}
			}
		}
		if (!success) {
			error = vn_start_write(cp->vp, &mp, V_WAIT);
			if (error != 0)
				break;
			vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY);
			error = vn_truncate_locked(cp->vp, offset + runlen,
			    false, cp->td->td_ucred);
			VOP_UNLOCK(cp->vp);
			vn_finished_write(mp);
			if (error != 0)
				break;
		}
	}
	return (error);
}

/*
 * Drain into a core file.
 */
int
sbuf_drain_core_output(void *arg, const char *data, int len)
{
	struct coredump_params *cp;
	struct proc *p;
	int error, locked;

	cp = arg;
	p = cp->td->td_proc;

	/*
	 * Some kern_proc out routines that print to this sbuf may
	 * call us with the process lock held. Draining with the
	 * non-sleepable lock held is unsafe. The lock is needed for
	 * those routines when dumping a live process. In our case we
	 * can safely release the lock before draining and acquire
	 * again after.
	 */
	locked = PROC_LOCKED(p);
	if (locked)
		PROC_UNLOCK(p);
	if (cp->comp != NULL)
		error = compressor_write(cp->comp, __DECONST(char *, data),
		    len);
	else
		error = core_write(cp, __DECONST(void *, data), len, cp->offset,
		    UIO_SYSSPACE, NULL);
	if (locked)
		PROC_LOCK(p);
	if (error != 0)
		return (-error);
	cp->offset += len;
	return (len);
}