/*- * Copyright (c) 2010-2013 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Common routines to manage event timers hardware. */ #include "opt_device_polling.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int cpu_deepest_sleep = 0; /* Deepest Cx state available. */ int cpu_disable_c2_sleep = 0; /* Timer dies in C2. */ int cpu_disable_c3_sleep = 0; /* Timer dies in C3. */ static void setuptimer(void); static void loadtimer(sbintime_t now, int first); static int doconfigtimer(void); static void configtimer(int start); static int round_freq(struct eventtimer *et, int freq); static sbintime_t getnextcpuevent(int idle); static sbintime_t getnextevent(void); static int handleevents(sbintime_t now, int fake); static struct mtx et_hw_mtx; #define ET_HW_LOCK(state) \ { \ if (timer->et_flags & ET_FLAGS_PERCPU) \ mtx_lock_spin(&(state)->et_hw_mtx); \ else \ mtx_lock_spin(&et_hw_mtx); \ } #define ET_HW_UNLOCK(state) \ { \ if (timer->et_flags & ET_FLAGS_PERCPU) \ mtx_unlock_spin(&(state)->et_hw_mtx); \ else \ mtx_unlock_spin(&et_hw_mtx); \ } static struct eventtimer *timer = NULL; static sbintime_t timerperiod; /* Timer period for periodic mode. */ static sbintime_t statperiod; /* statclock() events period. */ static sbintime_t profperiod; /* profclock() events period. */ static sbintime_t nexttick; /* Next global timer tick time. */ static u_int busy = 1; /* Reconfiguration is in progress. */ static int profiling; /* Profiling events enabled. */ static char timername[32]; /* Wanted timer. */ TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername)); static int singlemul; /* Multiplier for periodic mode. */ SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul, 0, "Multiplier for periodic mode"); static u_int idletick; /* Run periodic events when idle. */ SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick, 0, "Run periodic events when idle"); static int periodic; /* Periodic or one-shot mode. */ static int want_periodic; /* What mode to prefer. */ TUNABLE_INT("kern.eventtimer.periodic", &want_periodic); struct pcpu_state { struct mtx et_hw_mtx; /* Per-CPU timer mutex. */ u_int action; /* Reconfiguration requests. */ u_int handle; /* Immediate handle resuests. */ sbintime_t now; /* Last tick time. */ sbintime_t nextevent; /* Next scheduled event on this CPU. */ sbintime_t nexttick; /* Next timer tick time. */ sbintime_t nexthard; /* Next hardlock() event. */ sbintime_t nextstat; /* Next statclock() event. */ sbintime_t nextprof; /* Next profclock() event. */ sbintime_t nextcall; /* Next callout event. */ sbintime_t nextcallopt; /* Next optional callout event. */ int ipi; /* This CPU needs IPI. */ int idle; /* This CPU is in idle mode. */ }; static DPCPU_DEFINE(struct pcpu_state, timerstate); DPCPU_DEFINE(sbintime_t, hardclocktime); /* * Timer broadcast IPI handler. */ int hardclockintr(void) { sbintime_t now; struct pcpu_state *state; int done; if (doconfigtimer() || busy) return (FILTER_HANDLED); state = DPCPU_PTR(timerstate); now = state->now; CTR3(KTR_SPARE2, "ipi at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); done = handleevents(now, 0); return (done ? FILTER_HANDLED : FILTER_STRAY); } /* * Handle all events for specified time on this CPU */ static int handleevents(sbintime_t now, int fake) { sbintime_t t, *hct; struct trapframe *frame; struct pcpu_state *state; int usermode; int done, runs; CTR3(KTR_SPARE2, "handle at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); done = 0; if (fake) { frame = NULL; usermode = 0; } else { frame = curthread->td_intr_frame; usermode = TRAPF_USERMODE(frame); } state = DPCPU_PTR(timerstate); runs = 0; while (now >= state->nexthard) { state->nexthard += tick_sbt; runs++; } if (runs) { hct = DPCPU_PTR(hardclocktime); *hct = state->nexthard - tick_sbt; if (fake < 2) { hardclock_cnt(runs, usermode); done = 1; } } runs = 0; while (now >= state->nextstat) { state->nextstat += statperiod; runs++; } if (runs && fake < 2) { statclock_cnt(runs, usermode); done = 1; } if (profiling) { runs = 0; while (now >= state->nextprof) { state->nextprof += profperiod; runs++; } if (runs && !fake) { profclock_cnt(runs, usermode, TRAPF_PC(frame)); done = 1; } } else state->nextprof = state->nextstat; if (now >= state->nextcallopt) { state->nextcall = state->nextcallopt = SBT_MAX; callout_process(now); } t = getnextcpuevent(0); ET_HW_LOCK(state); if (!busy) { state->idle = 0; state->nextevent = t; loadtimer(now, (fake == 2) && (timer->et_flags & ET_FLAGS_PERCPU)); } ET_HW_UNLOCK(state); return (done); } /* * Schedule binuptime of the next event on current CPU. */ static sbintime_t getnextcpuevent(int idle) { sbintime_t event; struct pcpu_state *state; u_int hardfreq; state = DPCPU_PTR(timerstate); /* Handle hardclock() events, skipping some if CPU is idle. */ event = state->nexthard; if (idle) { hardfreq = (u_int)hz / 2; if (tc_min_ticktock_freq > 2 #ifdef SMP && curcpu == CPU_FIRST() #endif ) hardfreq = hz / tc_min_ticktock_freq; if (hardfreq > 1) event += tick_sbt * (hardfreq - 1); } /* Handle callout events. */ if (event > state->nextcall) event = state->nextcall; if (!idle) { /* If CPU is active - handle other types of events. */ if (event > state->nextstat) event = state->nextstat; if (profiling && event > state->nextprof) event = state->nextprof; } return (event); } /* * Schedule binuptime of the next event on all CPUs. */ static sbintime_t getnextevent(void) { struct pcpu_state *state; sbintime_t event; #ifdef SMP int cpu; #endif int c; state = DPCPU_PTR(timerstate); event = state->nextevent; c = -1; #ifdef SMP if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) { CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); if (event > state->nextevent) { event = state->nextevent; c = cpu; } } } #endif CTR4(KTR_SPARE2, "next at %d: next %d.%08x by %d", curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c); return (event); } /* Hardware timer callback function. */ static void timercb(struct eventtimer *et, void *arg) { sbintime_t now; sbintime_t *next; struct pcpu_state *state; #ifdef SMP int cpu, bcast; #endif /* Do not touch anything if somebody reconfiguring timers. */ if (busy) return; /* Update present and next tick times. */ state = DPCPU_PTR(timerstate); if (et->et_flags & ET_FLAGS_PERCPU) { next = &state->nexttick; } else next = &nexttick; now = sbinuptime(); if (periodic) *next = now + timerperiod; else *next = -1; /* Next tick is not scheduled yet. */ state->now = now; CTR3(KTR_SPARE2, "intr at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); #ifdef SMP /* Prepare broadcasting to other CPUs for non-per-CPU timers. */ bcast = 0; if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) { CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); ET_HW_LOCK(state); state->now = now; if (now >= state->nextevent) { state->nextevent += SBT_1S; if (curcpu != cpu) { state->ipi = 1; bcast = 1; } } ET_HW_UNLOCK(state); } } #endif /* Handle events for this time on this CPU. */ handleevents(now, 0); #ifdef SMP /* Broadcast interrupt to other CPUs for non-per-CPU timers. */ if (bcast) { CPU_FOREACH(cpu) { if (curcpu == cpu) continue; state = DPCPU_ID_PTR(cpu, timerstate); if (state->ipi) { state->ipi = 0; ipi_cpu(cpu, IPI_HARDCLOCK); } } } #endif } /* * Load new value into hardware timer. */ static void loadtimer(sbintime_t now, int start) { struct pcpu_state *state; sbintime_t new; sbintime_t *next; uint64_t tmp; int eq; if (timer->et_flags & ET_FLAGS_PERCPU) { state = DPCPU_PTR(timerstate); next = &state->nexttick; } else next = &nexttick; if (periodic) { if (start) { /* * Try to start all periodic timers aligned * to period to make events synchronous. */ tmp = now % timerperiod; new = timerperiod - tmp; if (new < tmp) /* Left less then passed. */ new += timerperiod; CTR5(KTR_SPARE2, "load p at %d: now %d.%08x first in %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff), (int)(new >> 32), (u_int)(new & 0xffffffff)); *next = new + now; et_start(timer, new, timerperiod); } } else { new = getnextevent(); eq = (new == *next); CTR4(KTR_SPARE2, "load at %d: next %d.%08x eq %d", curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq); if (!eq) { *next = new; et_start(timer, new - now, 0); } } } /* * Prepare event timer parameters after configuration changes. */ static void setuptimer(void) { int freq; if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0) periodic = 0; else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0) periodic = 1; singlemul = MIN(MAX(singlemul, 1), 20); freq = hz * singlemul; while (freq < (profiling ? profhz : stathz)) freq += hz; freq = round_freq(timer, freq); timerperiod = SBT_1S / freq; } /* * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler. */ static int doconfigtimer(void) { sbintime_t now; struct pcpu_state *state; state = DPCPU_PTR(timerstate); switch (atomic_load_acq_int(&state->action)) { case 1: now = sbinuptime(); ET_HW_LOCK(state); loadtimer(now, 1); ET_HW_UNLOCK(state); state->handle = 0; atomic_store_rel_int(&state->action, 0); return (1); case 2: ET_HW_LOCK(state); et_stop(timer); ET_HW_UNLOCK(state); state->handle = 0; atomic_store_rel_int(&state->action, 0); return (1); } if (atomic_readandclear_int(&state->handle) && !busy) { now = sbinuptime(); handleevents(now, 0); return (1); } return (0); } /* * Reconfigure specified timer. * For per-CPU timers use IPI to make other CPUs to reconfigure. */ static void configtimer(int start) { sbintime_t now, next; struct pcpu_state *state; int cpu; if (start) { setuptimer(); now = sbinuptime(); } else now = 0; critical_enter(); ET_HW_LOCK(DPCPU_PTR(timerstate)); if (start) { /* Initialize time machine parameters. */ next = now + timerperiod; if (periodic) nexttick = next; else nexttick = -1; CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); state->now = now; if (!smp_started && cpu != CPU_FIRST()) state->nextevent = SBT_MAX; else state->nextevent = next; if (periodic) state->nexttick = next; else state->nexttick = -1; state->nexthard = next; state->nextstat = next; state->nextprof = next; state->nextcall = next; state->nextcallopt = next; hardclock_sync(cpu); } busy = 0; /* Start global timer or per-CPU timer of this CPU. */ loadtimer(now, 1); } else { busy = 1; /* Stop global timer or per-CPU timer of this CPU. */ et_stop(timer); } ET_HW_UNLOCK(DPCPU_PTR(timerstate)); #ifdef SMP /* If timer is global or there is no other CPUs yet - we are done. */ if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) { critical_exit(); return; } /* Set reconfigure flags for other CPUs. */ CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); atomic_store_rel_int(&state->action, (cpu == curcpu) ? 0 : ( start ? 1 : 2)); } /* Broadcast reconfigure IPI. */ ipi_all_but_self(IPI_HARDCLOCK); /* Wait for reconfiguration completed. */ restart: cpu_spinwait(); CPU_FOREACH(cpu) { if (cpu == curcpu) continue; state = DPCPU_ID_PTR(cpu, timerstate); if (atomic_load_acq_int(&state->action)) goto restart; } #endif critical_exit(); } /* * Calculate nearest frequency supported by hardware timer. */ static int round_freq(struct eventtimer *et, int freq) { uint64_t div; if (et->et_frequency != 0) { div = lmax((et->et_frequency + freq / 2) / freq, 1); if (et->et_flags & ET_FLAGS_POW2DIV) div = 1 << (flsl(div + div / 2) - 1); freq = (et->et_frequency + div / 2) / div; } if (et->et_min_period > SBT_1S) panic("Event timer \"%s\" doesn't support sub-second periods!", et->et_name); else if (et->et_min_period != 0) freq = min(freq, SBT2FREQ(et->et_min_period)); if (et->et_max_period < SBT_1S && et->et_max_period != 0) freq = max(freq, SBT2FREQ(et->et_max_period)); return (freq); } /* * Configure and start event timers (BSP part). */ void cpu_initclocks_bsp(void) { struct pcpu_state *state; int base, div, cpu; mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN); CPU_FOREACH(cpu) { state = DPCPU_ID_PTR(cpu, timerstate); mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN); state->nextcall = SBT_MAX; state->nextcallopt = SBT_MAX; } periodic = want_periodic; /* Grab requested timer or the best of present. */ if (timername[0]) timer = et_find(timername, 0, 0); if (timer == NULL && periodic) { timer = et_find(NULL, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC); } if (timer == NULL) { timer = et_find(NULL, ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT); } if (timer == NULL && !periodic) { timer = et_find(NULL, ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC); } if (timer == NULL) panic("No usable event timer found!"); et_init(timer, timercb, NULL, NULL); /* Adapt to timer capabilities. */ if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0) periodic = 0; else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0) periodic = 1; if (timer->et_flags & ET_FLAGS_C3STOP) cpu_disable_c3_sleep++; /* * We honor the requested 'hz' value. * We want to run stathz in the neighborhood of 128hz. * We would like profhz to run as often as possible. */ if (singlemul <= 0 || singlemul > 20) { if (hz >= 1500 || (hz % 128) == 0) singlemul = 1; else if (hz >= 750) singlemul = 2; else singlemul = 4; } if (periodic) { base = round_freq(timer, hz * singlemul); singlemul = max((base + hz / 2) / hz, 1); hz = (base + singlemul / 2) / singlemul; if (base <= 128) stathz = base; else { div = base / 128; if (div >= singlemul && (div % singlemul) == 0) div++; stathz = base / div; } profhz = stathz; while ((profhz + stathz) <= 128 * 64) profhz += stathz; profhz = round_freq(timer, profhz); } else { hz = round_freq(timer, hz); stathz = round_freq(timer, 127); profhz = round_freq(timer, stathz * 64); } tick = 1000000 / hz; tick_sbt = SBT_1S / hz; tick_bt = sbttobt(tick_sbt); statperiod = SBT_1S / stathz; profperiod = SBT_1S / profhz; ET_LOCK(); configtimer(1); ET_UNLOCK(); } /* * Start per-CPU event timers on APs. */ void cpu_initclocks_ap(void) { sbintime_t now; struct pcpu_state *state; struct thread *td; state = DPCPU_PTR(timerstate); now = sbinuptime(); ET_HW_LOCK(state); state->now = now; hardclock_sync(curcpu); spinlock_enter(); ET_HW_UNLOCK(state); td = curthread; td->td_intr_nesting_level++; handleevents(state->now, 2); td->td_intr_nesting_level--; spinlock_exit(); } /* * Switch to profiling clock rates. */ void cpu_startprofclock(void) { ET_LOCK(); if (profiling == 0) { if (periodic) { configtimer(0); profiling = 1; configtimer(1); } else profiling = 1; } else profiling++; ET_UNLOCK(); } /* * Switch to regular clock rates. */ void cpu_stopprofclock(void) { ET_LOCK(); if (profiling == 1) { if (periodic) { configtimer(0); profiling = 0; configtimer(1); } else profiling = 0; } else profiling--; ET_UNLOCK(); } /* * Switch to idle mode (all ticks handled). */ sbintime_t cpu_idleclock(void) { sbintime_t now, t; struct pcpu_state *state; if (idletick || busy || (periodic && (timer->et_flags & ET_FLAGS_PERCPU)) #ifdef DEVICE_POLLING || curcpu == CPU_FIRST() #endif ) return (-1); state = DPCPU_PTR(timerstate); if (periodic) now = state->now; else now = sbinuptime(); CTR3(KTR_SPARE2, "idle at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); t = getnextcpuevent(1); ET_HW_LOCK(state); state->idle = 1; state->nextevent = t; if (!periodic) loadtimer(now, 0); ET_HW_UNLOCK(state); return (MAX(t - now, 0)); } /* * Switch to active mode (skip empty ticks). */ void cpu_activeclock(void) { sbintime_t now; struct pcpu_state *state; struct thread *td; state = DPCPU_PTR(timerstate); if (state->idle == 0 || busy) return; if (periodic) now = state->now; else now = sbinuptime(); CTR3(KTR_SPARE2, "active at %d: now %d.%08x", curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff)); spinlock_enter(); td = curthread; td->td_intr_nesting_level++; handleevents(now, 1); td->td_intr_nesting_level--; spinlock_exit(); } /* * Change the frequency of the given timer. This changes et->et_frequency and * if et is the active timer it reconfigures the timer on all CPUs. This is * intended to be a private interface for the use of et_change_frequency() only. */ void cpu_et_frequency(struct eventtimer *et, uint64_t newfreq) { ET_LOCK(); if (et == timer) { configtimer(0); et->et_frequency = newfreq; configtimer(1); } else et->et_frequency = newfreq; ET_UNLOCK(); } void cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt) { struct pcpu_state *state; /* Do not touch anything if somebody reconfiguring timers. */ if (busy) return; CTR6(KTR_SPARE2, "new co at %d: on %d at %d.%08x - %d.%08x", curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff), (int)(bt >> 32), (u_int)(bt & 0xffffffff)); state = DPCPU_ID_PTR(cpu, timerstate); ET_HW_LOCK(state); /* * If there is callout time already set earlier -- do nothing. * This check may appear redundant because we check already in * callout_process() but this double check guarantees we're safe * with respect to race conditions between interrupts execution * and scheduling. */ state->nextcallopt = bt_opt; if (bt >= state->nextcall) goto done; state->nextcall = bt; /* If there is some other event set earlier -- do nothing. */ if (bt >= state->nextevent) goto done; state->nextevent = bt; /* If timer is periodic -- there is nothing to reprogram. */ if (periodic) goto done; /* If timer is global or of the current CPU -- reprogram it. */ if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) { loadtimer(sbinuptime(), 0); done: ET_HW_UNLOCK(state); return; } /* Otherwise make other CPU to reprogram it. */ state->handle = 1; ET_HW_UNLOCK(state); #ifdef SMP ipi_cpu(cpu, IPI_HARDCLOCK); #endif } /* * Report or change the active event timers hardware. */ static int sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS) { char buf[32]; struct eventtimer *et; int error; ET_LOCK(); et = timer; snprintf(buf, sizeof(buf), "%s", et->et_name); ET_UNLOCK(); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); ET_LOCK(); et = timer; if (error != 0 || req->newptr == NULL || strcasecmp(buf, et->et_name) == 0) { ET_UNLOCK(); return (error); } et = et_find(buf, 0, 0); if (et == NULL) { ET_UNLOCK(); return (ENOENT); } configtimer(0); et_free(timer); if (et->et_flags & ET_FLAGS_C3STOP) cpu_disable_c3_sleep++; if (timer->et_flags & ET_FLAGS_C3STOP) cpu_disable_c3_sleep--; periodic = want_periodic; timer = et; et_init(timer, timercb, NULL, NULL); configtimer(1); ET_UNLOCK(); return (error); } SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer"); /* * Report or change the active event timer periodicity. */ static int sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS) { int error, val; val = periodic; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); ET_LOCK(); configtimer(0); periodic = want_periodic = val; configtimer(1); ET_UNLOCK(); return (error); } SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");