/* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c) 2005 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Julio M. Merino Vidal, developed as part of Google's Summer of Code * 2005 program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Efficient memory file system supporting functions. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW, 0, "tmpfs file system"); static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED; static int sysctl_mem_reserved(SYSCTL_HANDLER_ARGS) { int error; long pages, bytes; pages = *(long *)arg1; bytes = pages * PAGE_SIZE; error = sysctl_handle_long(oidp, &bytes, 0, req); if (error || !req->newptr) return (error); pages = bytes / PAGE_SIZE; if (pages < TMPFS_PAGES_MINRESERVED) return (EINVAL); *(long *)arg1 = pages; return (0); } SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved, CTLTYPE_LONG|CTLFLAG_RW, &tmpfs_pages_reserved, 0, sysctl_mem_reserved, "L", "Amount of available memory and swap below which tmpfs growth stops"); static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b); RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); size_t tmpfs_mem_avail(void) { vm_ooffset_t avail; avail = swap_pager_avail + vm_cnt.v_free_count - tmpfs_pages_reserved; if (__predict_false(avail < 0)) avail = 0; return (avail); } size_t tmpfs_pages_used(struct tmpfs_mount *tmp) { const size_t node_size = sizeof(struct tmpfs_node) + sizeof(struct tmpfs_dirent); size_t meta_pages; meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size, PAGE_SIZE); return (meta_pages + tmp->tm_pages_used); } static size_t tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages) { if (tmpfs_mem_avail() < req_pages) return (0); if (tmp->tm_pages_max != ULONG_MAX && tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp)) return (0); return (1); } void tmpfs_ref_node(struct tmpfs_node *node) { TMPFS_NODE_LOCK(node); tmpfs_ref_node_locked(node); TMPFS_NODE_UNLOCK(node); } void tmpfs_ref_node_locked(struct tmpfs_node *node) { TMPFS_NODE_ASSERT_LOCKED(node); KASSERT(node->tn_refcount > 0, ("node %p zero refcount", node)); KASSERT(node->tn_refcount < UINT_MAX, ("node %p refcount %u", node, node->tn_refcount)); node->tn_refcount++; } /* * Allocates a new node of type 'type' inside the 'tmp' mount point, with * its owner set to 'uid', its group to 'gid' and its mode set to 'mode', * using the credentials of the process 'p'. * * If the node type is set to 'VDIR', then the parent parameter must point * to the parent directory of the node being created. It may only be NULL * while allocating the root node. * * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter * specifies the device the node represents. * * If the node type is set to 'VLNK', then the parameter target specifies * the file name of the target file for the symbolic link that is being * created. * * Note that new nodes are retrieved from the available list if it has * items or, if it is empty, from the node pool as long as there is enough * space to create them. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type, uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent, char *target, dev_t rdev, struct tmpfs_node **node) { struct tmpfs_node *nnode; vm_object_t obj; /* If the root directory of the 'tmp' file system is not yet * allocated, this must be the request to do it. */ MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR)); KASSERT(tmp->tm_root == NULL || mp->mnt_writeopcount > 0, ("creating node not under vn_start_write")); MPASS(IFF(type == VLNK, target != NULL)); MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL)); if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max) return (ENOSPC); if (tmpfs_pages_check_avail(tmp, 1) == 0) return (ENOSPC); if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { /* * When a new tmpfs node is created for fully * constructed mount point, there must be a parent * node, which vnode is locked exclusively. As * consequence, if the unmount is executing in * parallel, vflush() cannot reclaim the parent vnode. * Due to this, the check for MNTK_UNMOUNT flag is not * racy: if we did not see MNTK_UNMOUNT flag, then tmp * cannot be destroyed until node construction is * finished and the parent vnode unlocked. * * Tmpfs does not need to instantiate new nodes during * unmount. */ return (EBUSY); } nnode = (struct tmpfs_node *)uma_zalloc_arg(tmp->tm_node_pool, tmp, M_WAITOK); /* Generic initialization. */ nnode->tn_type = type; vfs_timestamp(&nnode->tn_atime); nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime = nnode->tn_atime; nnode->tn_uid = uid; nnode->tn_gid = gid; nnode->tn_mode = mode; nnode->tn_id = alloc_unr(tmp->tm_ino_unr); nnode->tn_refcount = 1; /* Type-specific initialization. */ switch (nnode->tn_type) { case VBLK: case VCHR: nnode->tn_rdev = rdev; break; case VDIR: RB_INIT(&nnode->tn_dir.tn_dirhead); LIST_INIT(&nnode->tn_dir.tn_dupindex); MPASS(parent != nnode); MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL)); nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent; nnode->tn_dir.tn_readdir_lastn = 0; nnode->tn_dir.tn_readdir_lastp = NULL; nnode->tn_links++; TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent); nnode->tn_dir.tn_parent->tn_links++; TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent); break; case VFIFO: /* FALLTHROUGH */ case VSOCK: break; case VLNK: MPASS(strlen(target) < MAXPATHLEN); nnode->tn_size = strlen(target); nnode->tn_link = malloc(nnode->tn_size, M_TMPFSNAME, M_WAITOK); memcpy(nnode->tn_link, target, nnode->tn_size); break; case VREG: obj = nnode->tn_reg.tn_aobj = vm_pager_allocate(OBJT_SWAP, NULL, 0, VM_PROT_DEFAULT, 0, NULL /* XXXKIB - tmpfs needs swap reservation */); VM_OBJECT_WLOCK(obj); /* OBJ_TMPFS is set together with the setting of vp->v_object */ vm_object_set_flag(obj, OBJ_NOSPLIT | OBJ_TMPFS_NODE); vm_object_clear_flag(obj, OBJ_ONEMAPPING); VM_OBJECT_WUNLOCK(obj); break; default: panic("tmpfs_alloc_node: type %p %d", nnode, (int)nnode->tn_type); } TMPFS_LOCK(tmp); LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries); nnode->tn_attached = true; tmp->tm_nodes_inuse++; tmp->tm_refcount++; TMPFS_UNLOCK(tmp); *node = nnode; return (0); } /* * Destroys the node pointed to by node from the file system 'tmp'. * If the node references a directory, no entries are allowed. */ void tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node) { TMPFS_LOCK(tmp); TMPFS_NODE_LOCK(node); if (!tmpfs_free_node_locked(tmp, node, false)) { TMPFS_NODE_UNLOCK(node); TMPFS_UNLOCK(tmp); } } bool tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node, bool detach) { vm_object_t uobj; TMPFS_MP_ASSERT_LOCKED(tmp); TMPFS_NODE_ASSERT_LOCKED(node); KASSERT(node->tn_refcount > 0, ("node %p refcount zero", node)); node->tn_refcount--; if (node->tn_attached && (detach || node->tn_refcount == 0)) { MPASS(tmp->tm_nodes_inuse > 0); tmp->tm_nodes_inuse--; LIST_REMOVE(node, tn_entries); node->tn_attached = false; } if (node->tn_refcount > 0) return (false); #ifdef INVARIANTS MPASS(node->tn_vnode == NULL); MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0); #endif TMPFS_NODE_UNLOCK(node); TMPFS_UNLOCK(tmp); switch (node->tn_type) { case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VDIR: /* FALLTHROUGH */ case VFIFO: /* FALLTHROUGH */ case VSOCK: break; case VLNK: free(node->tn_link, M_TMPFSNAME); break; case VREG: uobj = node->tn_reg.tn_aobj; if (uobj != NULL) { if (uobj->size != 0) atomic_subtract_long(&tmp->tm_pages_used, uobj->size); KASSERT((uobj->flags & OBJ_TMPFS) == 0, ("leaked OBJ_TMPFS node %p vm_obj %p", node, uobj)); vm_object_deallocate(uobj); } break; default: panic("tmpfs_free_node: type %p %d", node, (int)node->tn_type); } /* * If we are unmounting there is no need for going through the overhead * of freeing the inodes from the unr individually, so free them all in * one go later. */ if (!detach) free_unr(tmp->tm_ino_unr, node->tn_id); uma_zfree(tmp->tm_node_pool, node); TMPFS_LOCK(tmp); tmpfs_free_tmp(tmp); return (true); } static __inline uint32_t tmpfs_dirent_hash(const char *name, u_int len) { uint32_t hash; hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK; #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP hash &= 0xf; #endif if (hash < TMPFS_DIRCOOKIE_MIN) hash += TMPFS_DIRCOOKIE_MIN; return (hash); } static __inline off_t tmpfs_dirent_cookie(struct tmpfs_dirent *de) { if (de == NULL) return (TMPFS_DIRCOOKIE_EOF); MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN); return (de->td_cookie); } static __inline boolean_t tmpfs_dirent_dup(struct tmpfs_dirent *de) { return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0); } static __inline boolean_t tmpfs_dirent_duphead(struct tmpfs_dirent *de) { return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0); } void tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen) { de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen); memcpy(de->ud.td_name, name, namelen); de->td_namelen = namelen; } /* * Allocates a new directory entry for the node node with a name of name. * The new directory entry is returned in *de. * * The link count of node is increased by one to reflect the new object * referencing it. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node, const char *name, u_int len, struct tmpfs_dirent **de) { struct tmpfs_dirent *nde; nde = uma_zalloc(tmp->tm_dirent_pool, M_WAITOK); nde->td_node = node; if (name != NULL) { nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK); tmpfs_dirent_init(nde, name, len); } else nde->td_namelen = 0; if (node != NULL) node->tn_links++; *de = nde; return 0; } /* * Frees a directory entry. It is the caller's responsibility to destroy * the node referenced by it if needed. * * The link count of node is decreased by one to reflect the removal of an * object that referenced it. This only happens if 'node_exists' is true; * otherwise the function will not access the node referred to by the * directory entry, as it may already have been released from the outside. */ void tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de) { struct tmpfs_node *node; node = de->td_node; if (node != NULL) { MPASS(node->tn_links > 0); node->tn_links--; } if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL) free(de->ud.td_name, M_TMPFSNAME); uma_zfree(tmp->tm_dirent_pool, de); } void tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj) { ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject"); if (vp->v_type != VREG || obj == NULL) return; VM_OBJECT_WLOCK(obj); VI_LOCK(vp); vm_object_clear_flag(obj, OBJ_TMPFS); obj->un_pager.swp.swp_tmpfs = NULL; VI_UNLOCK(vp); VM_OBJECT_WUNLOCK(obj); } /* * Need to clear v_object for insmntque failure. */ static void tmpfs_insmntque_dtr(struct vnode *vp, void *dtr_arg) { tmpfs_destroy_vobject(vp, vp->v_object); vp->v_object = NULL; vp->v_data = NULL; vp->v_op = &dead_vnodeops; vgone(vp); vput(vp); } /* * Allocates a new vnode for the node node or returns a new reference to * an existing one if the node had already a vnode referencing it. The * resulting locked vnode is returned in *vpp. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag, struct vnode **vpp) { struct vnode *vp; struct tmpfs_mount *tm; vm_object_t object; int error; error = 0; tm = VFS_TO_TMPFS(mp); TMPFS_NODE_LOCK(node); tmpfs_ref_node_locked(node); loop: TMPFS_NODE_ASSERT_LOCKED(node); if ((vp = node->tn_vnode) != NULL) { MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0); VI_LOCK(vp); if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) || ((vp->v_iflag & VI_DOOMED) != 0 && (lkflag & LK_NOWAIT) != 0)) { VI_UNLOCK(vp); TMPFS_NODE_UNLOCK(node); error = ENOENT; vp = NULL; goto out; } if ((vp->v_iflag & VI_DOOMED) != 0) { VI_UNLOCK(vp); node->tn_vpstate |= TMPFS_VNODE_WRECLAIM; while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) { msleep(&node->tn_vnode, TMPFS_NODE_MTX(node), 0, "tmpfsE", 0); } goto loop; } TMPFS_NODE_UNLOCK(node); error = vget(vp, lkflag | LK_INTERLOCK, curthread); if (error == ENOENT) { TMPFS_NODE_LOCK(node); goto loop; } if (error != 0) { vp = NULL; goto out; } /* * Make sure the vnode is still there after * getting the interlock to avoid racing a free. */ if (node->tn_vnode == NULL || node->tn_vnode != vp) { vput(vp); TMPFS_NODE_LOCK(node); goto loop; } goto out; } if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) || (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) { TMPFS_NODE_UNLOCK(node); error = ENOENT; vp = NULL; goto out; } /* * otherwise lock the vp list while we call getnewvnode * since that can block. */ if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) { node->tn_vpstate |= TMPFS_VNODE_WANT; error = msleep((caddr_t) &node->tn_vpstate, TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0); if (error != 0) goto out; goto loop; } else node->tn_vpstate |= TMPFS_VNODE_ALLOCATING; TMPFS_NODE_UNLOCK(node); /* Get a new vnode and associate it with our node. */ error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ? &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp); if (error != 0) goto unlock; MPASS(vp != NULL); /* lkflag is ignored, the lock is exclusive */ (void) vn_lock(vp, lkflag | LK_RETRY); vp->v_data = node; vp->v_type = node->tn_type; /* Type-specific initialization. */ switch (node->tn_type) { case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VLNK: /* FALLTHROUGH */ case VSOCK: break; case VFIFO: vp->v_op = &tmpfs_fifoop_entries; break; case VREG: object = node->tn_reg.tn_aobj; VM_OBJECT_WLOCK(object); VI_LOCK(vp); KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs")); vp->v_object = object; object->un_pager.swp.swp_tmpfs = vp; vm_object_set_flag(object, OBJ_TMPFS); VI_UNLOCK(vp); VM_OBJECT_WUNLOCK(object); break; case VDIR: MPASS(node->tn_dir.tn_parent != NULL); if (node->tn_dir.tn_parent == node) vp->v_vflag |= VV_ROOT; break; default: panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type); } if (vp->v_type != VFIFO) VN_LOCK_ASHARE(vp); error = insmntque1(vp, mp, tmpfs_insmntque_dtr, NULL); if (error != 0) vp = NULL; unlock: TMPFS_NODE_LOCK(node); MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING); node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING; node->tn_vnode = vp; if (node->tn_vpstate & TMPFS_VNODE_WANT) { node->tn_vpstate &= ~TMPFS_VNODE_WANT; TMPFS_NODE_UNLOCK(node); wakeup((caddr_t) &node->tn_vpstate); } else TMPFS_NODE_UNLOCK(node); out: if (error == 0) { *vpp = vp; #ifdef INVARIANTS MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp)); TMPFS_NODE_LOCK(node); MPASS(*vpp == node->tn_vnode); TMPFS_NODE_UNLOCK(node); #endif } tmpfs_free_node(tm, node); return (error); } /* * Destroys the association between the vnode vp and the node it * references. */ void tmpfs_free_vp(struct vnode *vp) { struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); TMPFS_NODE_ASSERT_LOCKED(node); node->tn_vnode = NULL; if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) wakeup(&node->tn_vnode); node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM; vp->v_data = NULL; } /* * Allocates a new file of type 'type' and adds it to the parent directory * 'dvp'; this addition is done using the component name given in 'cnp'. * The ownership of the new file is automatically assigned based on the * credentials of the caller (through 'cnp'), the group is set based on * the parent directory and the mode is determined from the 'vap' argument. * If successful, *vpp holds a vnode to the newly created file and zero * is returned. Otherwise *vpp is NULL and the function returns an * appropriate error code. */ int tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, struct componentname *cnp, char *target) { int error; struct tmpfs_dirent *de; struct tmpfs_mount *tmp; struct tmpfs_node *dnode; struct tmpfs_node *node; struct tmpfs_node *parent; ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file"); MPASS(cnp->cn_flags & HASBUF); tmp = VFS_TO_TMPFS(dvp->v_mount); dnode = VP_TO_TMPFS_DIR(dvp); *vpp = NULL; /* If the entry we are creating is a directory, we cannot overflow * the number of links of its parent, because it will get a new * link. */ if (vap->va_type == VDIR) { /* Ensure that we do not overflow the maximum number of links * imposed by the system. */ MPASS(dnode->tn_links <= LINK_MAX); if (dnode->tn_links == LINK_MAX) { return (EMLINK); } parent = dnode; MPASS(parent != NULL); } else parent = NULL; /* Allocate a node that represents the new file. */ error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type, cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent, target, vap->va_rdev, &node); if (error != 0) return (error); /* Allocate a directory entry that points to the new file. */ error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen, &de); if (error != 0) { tmpfs_free_node(tmp, node); return (error); } /* Allocate a vnode for the new file. */ error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp); if (error != 0) { tmpfs_free_dirent(tmp, de); tmpfs_free_node(tmp, node); return (error); } /* Now that all required items are allocated, we can proceed to * insert the new node into the directory, an operation that * cannot fail. */ if (cnp->cn_flags & ISWHITEOUT) tmpfs_dir_whiteout_remove(dvp, cnp); tmpfs_dir_attach(dvp, de); return (0); } struct tmpfs_dirent * tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) { struct tmpfs_dirent *de; de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead); dc->tdc_tree = de; if (de != NULL && tmpfs_dirent_duphead(de)) de = LIST_FIRST(&de->ud.td_duphead); dc->tdc_current = de; return (dc->tdc_current); } struct tmpfs_dirent * tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) { struct tmpfs_dirent *de; MPASS(dc->tdc_tree != NULL); if (tmpfs_dirent_dup(dc->tdc_current)) { dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries); if (dc->tdc_current != NULL) return (dc->tdc_current); } dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, dc->tdc_tree); if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) { dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); MPASS(dc->tdc_current != NULL); } return (dc->tdc_current); } /* Lookup directory entry in RB-Tree. Function may return duphead entry. */ static struct tmpfs_dirent * tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash) { struct tmpfs_dirent *de, dekey; dekey.td_hash = hash; de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey); return (de); } /* Lookup directory entry by cookie, initialize directory cursor accordingly. */ static struct tmpfs_dirent * tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie, struct tmpfs_dir_cursor *dc) { struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead; struct tmpfs_dirent *de, dekey; MPASS(cookie >= TMPFS_DIRCOOKIE_MIN); if (cookie == node->tn_dir.tn_readdir_lastn && (de = node->tn_dir.tn_readdir_lastp) != NULL) { /* Protect against possible race, tn_readdir_last[pn] * may be updated with only shared vnode lock held. */ if (cookie == tmpfs_dirent_cookie(de)) goto out; } if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) { LIST_FOREACH(de, &node->tn_dir.tn_dupindex, uh.td_dup.index_entries) { MPASS(tmpfs_dirent_dup(de)); if (de->td_cookie == cookie) goto out; /* dupindex list is sorted. */ if (de->td_cookie < cookie) { de = NULL; goto out; } } MPASS(de == NULL); goto out; } if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) { de = NULL; } else { dekey.td_hash = cookie; /* Recover if direntry for cookie was removed */ de = RB_NFIND(tmpfs_dir, dirhead, &dekey); } dc->tdc_tree = de; dc->tdc_current = de; if (de != NULL && tmpfs_dirent_duphead(de)) { dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); MPASS(dc->tdc_current != NULL); } return (dc->tdc_current); out: dc->tdc_tree = de; dc->tdc_current = de; if (de != NULL && tmpfs_dirent_dup(de)) dc->tdc_tree = tmpfs_dir_xlookup_hash(node, de->td_hash); return (dc->tdc_current); } /* * Looks for a directory entry in the directory represented by node. * 'cnp' describes the name of the entry to look for. Note that the . * and .. components are not allowed as they do not physically exist * within directories. * * Returns a pointer to the entry when found, otherwise NULL. */ struct tmpfs_dirent * tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f, struct componentname *cnp) { struct tmpfs_dir_duphead *duphead; struct tmpfs_dirent *de; uint32_t hash; MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.')); MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.'))); TMPFS_VALIDATE_DIR(node); hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen); de = tmpfs_dir_xlookup_hash(node, hash); if (de != NULL && tmpfs_dirent_duphead(de)) { duphead = &de->ud.td_duphead; LIST_FOREACH(de, duphead, uh.td_dup.entries) { if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, cnp->cn_namelen)) break; } } else if (de != NULL) { if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, cnp->cn_namelen)) de = NULL; } if (de != NULL && f != NULL && de->td_node != f) de = NULL; return (de); } /* * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex * list, allocate new cookie value. */ static void tmpfs_dir_attach_dup(struct tmpfs_node *dnode, struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde) { struct tmpfs_dir_duphead *dupindex; struct tmpfs_dirent *de, *pde; dupindex = &dnode->tn_dir.tn_dupindex; de = LIST_FIRST(dupindex); if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) { if (de == NULL) nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; else nde->td_cookie = de->td_cookie + 1; MPASS(tmpfs_dirent_dup(nde)); LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } /* * Cookie numbers are near exhaustion. Scan dupindex list for unused * numbers. dupindex list is sorted in descending order. Keep it so * after inserting nde. */ while (1) { pde = de; de = LIST_NEXT(de, uh.td_dup.index_entries); if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) { /* * Last element of the index doesn't have minimal cookie * value, use it. */ nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } else if (de == NULL) { /* * We are so lucky have 2^30 hash duplicates in single * directory :) Return largest possible cookie value. * It should be fine except possible issues with * VOP_READDIR restart. */ nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX; LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } if (de->td_cookie + 1 == pde->td_cookie || de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX) continue; /* No hole or invalid cookie. */ nde->td_cookie = de->td_cookie + 1; MPASS(tmpfs_dirent_dup(nde)); MPASS(pde->td_cookie > nde->td_cookie); MPASS(nde->td_cookie > de->td_cookie); LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } } /* * Attaches the directory entry de to the directory represented by vp. * Note that this does not change the link count of the node pointed by * the directory entry, as this is done by tmpfs_alloc_dirent. */ void tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de) { struct tmpfs_node *dnode; struct tmpfs_dirent *xde, *nde; ASSERT_VOP_ELOCKED(vp, __func__); MPASS(de->td_namelen > 0); MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN); MPASS(de->td_cookie == de->td_hash); dnode = VP_TO_TMPFS_DIR(vp); dnode->tn_dir.tn_readdir_lastn = 0; dnode->tn_dir.tn_readdir_lastp = NULL; MPASS(!tmpfs_dirent_dup(de)); xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); if (xde != NULL && tmpfs_dirent_duphead(xde)) tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); else if (xde != NULL) { /* * Allocate new duphead. Swap xde with duphead to avoid * adding/removing elements with the same hash. */ MPASS(!tmpfs_dirent_dup(xde)); tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0, &nde); /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */ memcpy(nde, xde, sizeof(*xde)); xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD; LIST_INIT(&xde->ud.td_duphead); xde->td_namelen = 0; xde->td_node = NULL; tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde); tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); } dnode->tn_size += sizeof(struct tmpfs_dirent); dnode->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | \ TMPFS_NODE_MODIFIED; tmpfs_update(vp); } /* * Detaches the directory entry de from the directory represented by vp. * Note that this does not change the link count of the node pointed by * the directory entry, as this is done by tmpfs_free_dirent. */ void tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de) { struct tmpfs_mount *tmp; struct tmpfs_dir *head; struct tmpfs_node *dnode; struct tmpfs_dirent *xde; ASSERT_VOP_ELOCKED(vp, __func__); dnode = VP_TO_TMPFS_DIR(vp); head = &dnode->tn_dir.tn_dirhead; dnode->tn_dir.tn_readdir_lastn = 0; dnode->tn_dir.tn_readdir_lastp = NULL; if (tmpfs_dirent_dup(de)) { /* Remove duphead if de was last entry. */ if (LIST_NEXT(de, uh.td_dup.entries) == NULL) { xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash); MPASS(tmpfs_dirent_duphead(xde)); } else xde = NULL; LIST_REMOVE(de, uh.td_dup.entries); LIST_REMOVE(de, uh.td_dup.index_entries); if (xde != NULL) { if (LIST_EMPTY(&xde->ud.td_duphead)) { RB_REMOVE(tmpfs_dir, head, xde); tmp = VFS_TO_TMPFS(vp->v_mount); MPASS(xde->td_node == NULL); tmpfs_free_dirent(tmp, xde); } } de->td_cookie = de->td_hash; } else RB_REMOVE(tmpfs_dir, head, de); dnode->tn_size -= sizeof(struct tmpfs_dirent); dnode->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | \ TMPFS_NODE_MODIFIED; tmpfs_update(vp); } void tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode) { struct tmpfs_dirent *de, *dde, *nde; RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) { RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); /* Node may already be destroyed. */ de->td_node = NULL; if (tmpfs_dirent_duphead(de)) { while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) { LIST_REMOVE(dde, uh.td_dup.entries); dde->td_node = NULL; tmpfs_free_dirent(tmp, dde); } } tmpfs_free_dirent(tmp, de); } } /* * Helper function for tmpfs_readdir. Creates a '.' entry for the given * directory and returns it in the uio space. The function returns 0 * on success, -1 if there was not enough space in the uio structure to * hold the directory entry or an appropriate error code if another * error happens. */ static int tmpfs_dir_getdotdent(struct tmpfs_node *node, struct uio *uio) { int error; struct dirent dent; TMPFS_VALIDATE_DIR(node); MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT); dent.d_fileno = node->tn_id; dent.d_type = DT_DIR; dent.d_namlen = 1; dent.d_name[0] = '.'; dent.d_name[1] = '\0'; dent.d_reclen = GENERIC_DIRSIZ(&dent); if (dent.d_reclen > uio->uio_resid) error = EJUSTRETURN; else error = uiomove(&dent, dent.d_reclen, uio); tmpfs_set_status(node, TMPFS_NODE_ACCESSED); return (error); } /* * Helper function for tmpfs_readdir. Creates a '..' entry for the given * directory and returns it in the uio space. The function returns 0 * on success, -1 if there was not enough space in the uio structure to * hold the directory entry or an appropriate error code if another * error happens. */ static int tmpfs_dir_getdotdotdent(struct tmpfs_node *node, struct uio *uio) { int error; struct dirent dent; TMPFS_VALIDATE_DIR(node); MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT); /* * Return ENOENT if the current node is already removed. */ TMPFS_ASSERT_LOCKED(node); if (node->tn_dir.tn_parent == NULL) return (ENOENT); TMPFS_NODE_LOCK(node->tn_dir.tn_parent); dent.d_fileno = node->tn_dir.tn_parent->tn_id; TMPFS_NODE_UNLOCK(node->tn_dir.tn_parent); dent.d_type = DT_DIR; dent.d_namlen = 2; dent.d_name[0] = '.'; dent.d_name[1] = '.'; dent.d_name[2] = '\0'; dent.d_reclen = GENERIC_DIRSIZ(&dent); if (dent.d_reclen > uio->uio_resid) error = EJUSTRETURN; else error = uiomove(&dent, dent.d_reclen, uio); tmpfs_set_status(node, TMPFS_NODE_ACCESSED); return (error); } /* * Helper function for tmpfs_readdir. Returns as much directory entries * as can fit in the uio space. The read starts at uio->uio_offset. * The function returns 0 on success, -1 if there was not enough space * in the uio structure to hold the directory entry or an appropriate * error code if another error happens. */ int tmpfs_dir_getdents(struct tmpfs_node *node, struct uio *uio, int maxcookies, u_long *cookies, int *ncookies) { struct tmpfs_dir_cursor dc; struct tmpfs_dirent *de; off_t off; int error; TMPFS_VALIDATE_DIR(node); off = 0; /* * Lookup the node from the current offset. The starting offset of * 0 will lookup both '.' and '..', and then the first real entry, * or EOF if there are none. Then find all entries for the dir that * fit into the buffer. Once no more entries are found (de == NULL), * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next * call to return 0. */ switch (uio->uio_offset) { case TMPFS_DIRCOOKIE_DOT: error = tmpfs_dir_getdotdent(node, uio); if (error != 0) return (error); uio->uio_offset = TMPFS_DIRCOOKIE_DOTDOT; if (cookies != NULL) cookies[(*ncookies)++] = off = uio->uio_offset; /* FALLTHROUGH */ case TMPFS_DIRCOOKIE_DOTDOT: error = tmpfs_dir_getdotdotdent(node, uio); if (error != 0) return (error); de = tmpfs_dir_first(node, &dc); uio->uio_offset = tmpfs_dirent_cookie(de); if (cookies != NULL) cookies[(*ncookies)++] = off = uio->uio_offset; /* EOF. */ if (de == NULL) return (0); break; case TMPFS_DIRCOOKIE_EOF: return (0); default: de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc); if (de == NULL) return (EINVAL); if (cookies != NULL) off = tmpfs_dirent_cookie(de); } /* Read as much entries as possible; i.e., until we reach the end of * the directory or we exhaust uio space. */ do { struct dirent d; /* Create a dirent structure representing the current * tmpfs_node and fill it. */ if (de->td_node == NULL) { d.d_fileno = 1; d.d_type = DT_WHT; } else { d.d_fileno = de->td_node->tn_id; switch (de->td_node->tn_type) { case VBLK: d.d_type = DT_BLK; break; case VCHR: d.d_type = DT_CHR; break; case VDIR: d.d_type = DT_DIR; break; case VFIFO: d.d_type = DT_FIFO; break; case VLNK: d.d_type = DT_LNK; break; case VREG: d.d_type = DT_REG; break; case VSOCK: d.d_type = DT_SOCK; break; default: panic("tmpfs_dir_getdents: type %p %d", de->td_node, (int)de->td_node->tn_type); } } d.d_namlen = de->td_namelen; MPASS(de->td_namelen < sizeof(d.d_name)); (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen); d.d_name[de->td_namelen] = '\0'; d.d_reclen = GENERIC_DIRSIZ(&d); /* Stop reading if the directory entry we are treating is * bigger than the amount of data that can be returned. */ if (d.d_reclen > uio->uio_resid) { error = EJUSTRETURN; break; } /* Copy the new dirent structure into the output buffer and * advance pointers. */ error = uiomove(&d, d.d_reclen, uio); if (error == 0) { de = tmpfs_dir_next(node, &dc); if (cookies != NULL) { off = tmpfs_dirent_cookie(de); MPASS(*ncookies < maxcookies); cookies[(*ncookies)++] = off; } } } while (error == 0 && uio->uio_resid > 0 && de != NULL); /* Skip setting off when using cookies as it is already done above. */ if (cookies == NULL) off = tmpfs_dirent_cookie(de); /* Update the offset and cache. */ uio->uio_offset = off; node->tn_dir.tn_readdir_lastn = off; node->tn_dir.tn_readdir_lastp = de; tmpfs_set_status(node, TMPFS_NODE_ACCESSED); return error; } int tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp) { struct tmpfs_dirent *de; int error; error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL, cnp->cn_nameptr, cnp->cn_namelen, &de); if (error != 0) return (error); tmpfs_dir_attach(dvp, de); return (0); } void tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp) { struct tmpfs_dirent *de; de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp); MPASS(de != NULL && de->td_node == NULL); tmpfs_dir_detach(dvp, de); tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de); } /* * Resizes the aobj associated with the regular file pointed to by 'vp' to the * size 'newsize'. 'vp' must point to a vnode that represents a regular file. * 'newsize' must be positive. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr) { struct tmpfs_mount *tmp; struct tmpfs_node *node; vm_object_t uobj; vm_page_t m; vm_pindex_t idx, newpages, oldpages; off_t oldsize; int base, rv; MPASS(vp->v_type == VREG); MPASS(newsize >= 0); node = VP_TO_TMPFS_NODE(vp); uobj = node->tn_reg.tn_aobj; tmp = VFS_TO_TMPFS(vp->v_mount); /* * Convert the old and new sizes to the number of pages needed to * store them. It may happen that we do not need to do anything * because the last allocated page can accommodate the change on * its own. */ oldsize = node->tn_size; oldpages = OFF_TO_IDX(oldsize + PAGE_MASK); MPASS(oldpages == uobj->size); newpages = OFF_TO_IDX(newsize + PAGE_MASK); if (__predict_true(newpages == oldpages && newsize >= oldsize)) { node->tn_size = newsize; return (0); } if (newpages > oldpages && tmpfs_pages_check_avail(tmp, newpages - oldpages) == 0) return (ENOSPC); VM_OBJECT_WLOCK(uobj); if (newsize < oldsize) { /* * Zero the truncated part of the last page. */ base = newsize & PAGE_MASK; if (base != 0) { idx = OFF_TO_IDX(newsize); retry: m = vm_page_lookup(uobj, idx); if (m != NULL) { if (vm_page_sleep_if_busy(m, "tmfssz")) goto retry; MPASS(m->valid == VM_PAGE_BITS_ALL); } else if (vm_pager_has_page(uobj, idx, NULL, NULL)) { m = vm_page_alloc(uobj, idx, VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL); if (m == NULL) goto retry; rv = vm_pager_get_pages(uobj, &m, 1, NULL, NULL); vm_page_lock(m); if (rv == VM_PAGER_OK) { /* * Since the page was not resident, * and therefore not recently * accessed, immediately enqueue it * for asynchronous laundering. The * current operation is not regarded * as an access. */ vm_page_launder(m); vm_page_unlock(m); vm_page_xunbusy(m); } else { vm_page_free(m); vm_page_unlock(m); if (ignerr) m = NULL; else { VM_OBJECT_WUNLOCK(uobj); return (EIO); } } } if (m != NULL) { pmap_zero_page_area(m, base, PAGE_SIZE - base); vm_page_dirty(m); vm_pager_page_unswapped(m); } } /* * Release any swap space and free any whole pages. */ if (newpages < oldpages) { swap_pager_freespace(uobj, newpages, oldpages - newpages); vm_object_page_remove(uobj, newpages, 0, 0); } } uobj->size = newpages; VM_OBJECT_WUNLOCK(uobj); atomic_add_long(&tmp->tm_pages_used, newpages - oldpages); node->tn_size = newsize; return (0); } void tmpfs_check_mtime(struct vnode *vp) { struct tmpfs_node *node; struct vm_object *obj; ASSERT_VOP_ELOCKED(vp, "check_mtime"); if (vp->v_type != VREG) return; obj = vp->v_object; KASSERT((obj->flags & (OBJ_TMPFS_NODE | OBJ_TMPFS)) == (OBJ_TMPFS_NODE | OBJ_TMPFS), ("non-tmpfs obj")); /* unlocked read */ if ((obj->flags & OBJ_TMPFS_DIRTY) != 0) { VM_OBJECT_WLOCK(obj); if ((obj->flags & OBJ_TMPFS_DIRTY) != 0) { obj->flags &= ~OBJ_TMPFS_DIRTY; node = VP_TO_TMPFS_NODE(vp); node->tn_status |= TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED; } VM_OBJECT_WUNLOCK(obj); } } /* * Change flags of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; ASSERT_VOP_ELOCKED(vp, "chflags"); node = VP_TO_TMPFS_NODE(vp); if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK | UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP | UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE | UF_SPARSE | UF_SYSTEM)) != 0) return (EOPNOTSUPP); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* * Callers may only modify the file flags on objects they * have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * Unprivileged processes are not permitted to unset system * flags, or modify flags if any system flags are set. */ if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0)) { if (node->tn_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { error = securelevel_gt(cred, 0); if (error) return (error); } } else { if (node->tn_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || ((flags ^ node->tn_flags) & SF_SETTABLE)) return (EPERM); } node->tn_flags = flags; node->tn_status |= TMPFS_NODE_CHANGED; ASSERT_VOP_ELOCKED(vp, "chflags2"); return (0); } /* * Change access mode on the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; ASSERT_VOP_ELOCKED(vp, "chmod"); node = VP_TO_TMPFS_NODE(vp); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; /* * To modify the permissions on a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * Privileged processes may set the sticky bit on non-directories, * as well as set the setgid bit on a file with a group that the * process is not a member of. */ if (vp->v_type != VDIR && (mode & S_ISTXT)) { if (priv_check_cred(cred, PRIV_VFS_STICKYFILE, 0)) return (EFTYPE); } if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) { error = priv_check_cred(cred, PRIV_VFS_SETGID, 0); if (error) return (error); } node->tn_mode &= ~ALLPERMS; node->tn_mode |= mode & ALLPERMS; node->tn_status |= TMPFS_NODE_CHANGED; ASSERT_VOP_ELOCKED(vp, "chmod2"); return (0); } /* * Change ownership of the given vnode. At least one of uid or gid must * be different than VNOVAL. If one is set to that value, the attribute * is unchanged. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; uid_t ouid; gid_t ogid; ASSERT_VOP_ELOCKED(vp, "chown"); node = VP_TO_TMPFS_NODE(vp); /* Assign default values if they are unknown. */ MPASS(uid != VNOVAL || gid != VNOVAL); if (uid == VNOVAL) uid = node->tn_uid; if (gid == VNOVAL) gid = node->tn_gid; MPASS(uid != VNOVAL && gid != VNOVAL); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; /* * To modify the ownership of a file, must possess VADMIN for that * file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * To change the owner of a file, or change the group of a file to a * group of which we are not a member, the caller must have * privilege. */ if ((uid != node->tn_uid || (gid != node->tn_gid && !groupmember(gid, cred))) && (error = priv_check_cred(cred, PRIV_VFS_CHOWN, 0))) return (error); ogid = node->tn_gid; ouid = node->tn_uid; node->tn_uid = uid; node->tn_gid = gid; node->tn_status |= TMPFS_NODE_CHANGED; if ((node->tn_mode & (S_ISUID | S_ISGID)) && (ouid != uid || ogid != gid)) { if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID, 0)) node->tn_mode &= ~(S_ISUID | S_ISGID); } ASSERT_VOP_ELOCKED(vp, "chown2"); return (0); } /* * Change size of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; ASSERT_VOP_ELOCKED(vp, "chsize"); node = VP_TO_TMPFS_NODE(vp); /* Decide whether this is a valid operation based on the file type. */ error = 0; switch (vp->v_type) { case VDIR: return EISDIR; case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; break; case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VFIFO: /* Allow modifications of special files even if in the file * system is mounted read-only (we are not modifying the * files themselves, but the objects they represent). */ return 0; default: /* Anything else is unsupported. */ return EOPNOTSUPP; } /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; error = tmpfs_truncate(vp, size); /* tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents * for us, as will update tn_status; no need to do that here. */ ASSERT_VOP_ELOCKED(vp, "chsize2"); return (error); } /* * Change access and modification times of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chtimes(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *l) { int error; struct tmpfs_node *node; ASSERT_VOP_ELOCKED(vp, "chtimes"); node = VP_TO_TMPFS_NODE(vp); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; error = vn_utimes_perm(vp, vap, cred, l); if (error != 0) return (error); if (vap->va_atime.tv_sec != VNOVAL) node->tn_status |= TMPFS_NODE_ACCESSED; if (vap->va_mtime.tv_sec != VNOVAL) node->tn_status |= TMPFS_NODE_MODIFIED; if (vap->va_birthtime.tv_sec != VNOVAL) node->tn_status |= TMPFS_NODE_MODIFIED; tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime); if (vap->va_birthtime.tv_sec != VNOVAL) node->tn_birthtime = vap->va_birthtime; ASSERT_VOP_ELOCKED(vp, "chtimes2"); return (0); } void tmpfs_set_status(struct tmpfs_node *node, int status) { if ((node->tn_status & status) == status) return; TMPFS_NODE_LOCK(node); node->tn_status |= status; TMPFS_NODE_UNLOCK(node); } /* Sync timestamps */ void tmpfs_itimes(struct vnode *vp, const struct timespec *acc, const struct timespec *mod) { struct tmpfs_node *node; struct timespec now; ASSERT_VOP_LOCKED(vp, "tmpfs_itimes"); node = VP_TO_TMPFS_NODE(vp); if ((node->tn_status & (TMPFS_NODE_ACCESSED | TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0) return; vfs_timestamp(&now); TMPFS_NODE_LOCK(node); if (node->tn_status & TMPFS_NODE_ACCESSED) { if (acc == NULL) acc = &now; node->tn_atime = *acc; } if (node->tn_status & TMPFS_NODE_MODIFIED) { if (mod == NULL) mod = &now; node->tn_mtime = *mod; } if (node->tn_status & TMPFS_NODE_CHANGED) node->tn_ctime = now; node->tn_status &= ~(TMPFS_NODE_ACCESSED | TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED); TMPFS_NODE_UNLOCK(node); /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */ random_harvest_queue(node, sizeof(*node), 1, RANDOM_FS_ATIME); } void tmpfs_update(struct vnode *vp) { tmpfs_itimes(vp, NULL, NULL); } int tmpfs_truncate(struct vnode *vp, off_t length) { int error; struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); if (length < 0) { error = EINVAL; goto out; } if (node->tn_size == length) { error = 0; goto out; } if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize) return (EFBIG); error = tmpfs_reg_resize(vp, length, FALSE); if (error == 0) node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; out: tmpfs_update(vp); return (error); } static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b) { if (a->td_hash > b->td_hash) return (1); else if (a->td_hash < b->td_hash) return (-1); return (0); } RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);