/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "opt_inet6.h" #include "opt_kgssapi.h" #include "opt_kern_tls.h" #include #include #include #include #include #include NFSDLOCKMUTEX; NFSV4ROOTLOCKMUTEX; char *nfsrv_zeropnfsdat = NULL; /* * Mapping of old NFS Version 2 RPC numbers to generic numbers. */ int newnfs_nfsv3_procid[NFS_V3NPROCS] = { NFSPROC_NULL, NFSPROC_GETATTR, NFSPROC_SETATTR, NFSPROC_NOOP, NFSPROC_LOOKUP, NFSPROC_READLINK, NFSPROC_READ, NFSPROC_NOOP, NFSPROC_WRITE, NFSPROC_CREATE, NFSPROC_REMOVE, NFSPROC_RENAME, NFSPROC_LINK, NFSPROC_SYMLINK, NFSPROC_MKDIR, NFSPROC_RMDIR, NFSPROC_READDIR, NFSPROC_FSSTAT, NFSPROC_NOOP, NFSPROC_NOOP, NFSPROC_NOOP, NFSPROC_NOOP, }; SYSCTL_DECL(_vfs_nfsd); NFSD_VNET_DEFINE_STATIC(int, nfs_privport) = 0; SYSCTL_INT(_vfs_nfsd, OID_AUTO, nfs_privport, CTLFLAG_NFSD_VNET | CTLFLAG_RWTUN, &NFSD_VNET_NAME(nfs_privport), 0, "Only allow clients using a privileged port for NFSv2, 3 and 4"); NFSD_VNET_DEFINE_STATIC(int, nfs_minvers) = NFS_VER2; SYSCTL_INT(_vfs_nfsd, OID_AUTO, server_min_nfsvers, CTLFLAG_NFSD_VNET | CTLFLAG_RWTUN, &NFSD_VNET_NAME(nfs_minvers), 0, "The lowest version of NFS handled by the server"); NFSD_VNET_DEFINE_STATIC(int, nfs_maxvers) = NFS_VER4; SYSCTL_INT(_vfs_nfsd, OID_AUTO, server_max_nfsvers, CTLFLAG_NFSD_VNET | CTLFLAG_RWTUN, &NFSD_VNET_NAME(nfs_maxvers), 0, "The highest version of NFS handled by the server"); static int nfs_proc(struct nfsrv_descript *, u_int32_t, SVCXPRT *xprt, struct nfsrvcache **); extern u_long sb_max_adj; extern int newnfs_numnfsd; extern time_t nfsdev_time; extern int nfsrv_writerpc[NFS_NPROCS]; extern volatile int nfsrv_devidcnt; extern struct nfsv4_opflag nfsv4_opflag[NFSV42_NOPS]; NFSD_VNET_DECLARE(struct proc *, nfsd_master_proc); NFSD_VNET_DEFINE(SVCPOOL *, nfsrvd_pool); NFSD_VNET_DEFINE(int, nfsrv_numnfsd) = 0; NFSD_VNET_DEFINE(struct nfsv4lock, nfsd_suspend_lock); NFSD_VNET_DEFINE_STATIC(bool, nfsrvd_inited) = false; /* * NFS server system calls */ static void nfssvc_program(struct svc_req *rqst, SVCXPRT *xprt) { struct nfsrv_descript nd; struct nfsrvcache *rp = NULL; int cacherep, credflavor; #ifdef KERN_TLS u_int maxlen; #endif NFSD_CURVNET_SET_QUIET(NFSD_TD_TO_VNET(curthread)); memset(&nd, 0, sizeof(nd)); if (rqst->rq_vers == NFS_VER2) { if (rqst->rq_proc > NFSV2PROC_STATFS || newnfs_nfsv3_procid[rqst->rq_proc] == NFSPROC_NOOP) { svcerr_noproc(rqst); svc_freereq(rqst); goto out; } nd.nd_procnum = newnfs_nfsv3_procid[rqst->rq_proc]; nd.nd_flag = ND_NFSV2; } else if (rqst->rq_vers == NFS_VER3) { if (rqst->rq_proc >= NFS_V3NPROCS) { svcerr_noproc(rqst); svc_freereq(rqst); goto out; } nd.nd_procnum = rqst->rq_proc; nd.nd_flag = ND_NFSV3; } else { if (rqst->rq_proc != NFSPROC_NULL && rqst->rq_proc != NFSV4PROC_COMPOUND) { svcerr_noproc(rqst); svc_freereq(rqst); goto out; } nd.nd_procnum = rqst->rq_proc; nd.nd_flag = ND_NFSV4; } /* * Note: we want rq_addr, not svc_getrpccaller for nd_nam2 - * NFS_SRVMAXDATA uses a NULL value for nd_nam2 to detect TCP * mounts. */ nd.nd_mrep = rqst->rq_args; rqst->rq_args = NULL; newnfs_realign(&nd.nd_mrep, M_WAITOK); nd.nd_md = nd.nd_mrep; nd.nd_dpos = mtod(nd.nd_md, caddr_t); nd.nd_nam = svc_getrpccaller(rqst); nd.nd_nam2 = rqst->rq_addr; nd.nd_mreq = NULL; nd.nd_cred = NULL; if (NFSD_VNET(nfs_privport) != 0) { /* Check if source port is privileged */ u_short port; struct sockaddr *nam = nd.nd_nam; struct sockaddr_in *sin; sin = (struct sockaddr_in *)nam; /* * INET/INET6 - same code: * sin_port and sin6_port are at same offset */ port = ntohs(sin->sin_port); if (port >= IPPORT_RESERVED && nd.nd_procnum != NFSPROC_NULL) { #ifdef INET6 char buf[INET6_ADDRSTRLEN]; #else char buf[INET_ADDRSTRLEN]; #endif #ifdef INET6 #if defined(KLD_MODULE) /* Do not use ip6_sprintf: the nfs module should work without INET6. */ #define ip6_sprintf(buf, a) \ (sprintf((buf), "%x:%x:%x:%x:%x:%x:%x:%x", \ (a)->s6_addr16[0], (a)->s6_addr16[1], \ (a)->s6_addr16[2], (a)->s6_addr16[3], \ (a)->s6_addr16[4], (a)->s6_addr16[5], \ (a)->s6_addr16[6], (a)->s6_addr16[7]), \ (buf)) #endif #endif printf("NFS request from unprivileged port (%s:%d)\n", #ifdef INET6 sin->sin_family == AF_INET6 ? ip6_sprintf(buf, &satosin6(sin)->sin6_addr) : #if defined(KLD_MODULE) #undef ip6_sprintf #endif #endif inet_ntoa_r(sin->sin_addr, buf), port); svcerr_weakauth(rqst); svc_freereq(rqst); m_freem(nd.nd_mrep); goto out; } } if (nd.nd_procnum != NFSPROC_NULL) { if (!svc_getcred(rqst, &nd.nd_cred, &credflavor)) { svcerr_weakauth(rqst); svc_freereq(rqst); m_freem(nd.nd_mrep); goto out; } /* Set the flag based on credflavor */ if (credflavor == RPCSEC_GSS_KRB5) { nd.nd_flag |= ND_GSS; } else if (credflavor == RPCSEC_GSS_KRB5I) { nd.nd_flag |= (ND_GSS | ND_GSSINTEGRITY); } else if (credflavor == RPCSEC_GSS_KRB5P) { nd.nd_flag |= (ND_GSS | ND_GSSPRIVACY); } else if (credflavor != AUTH_SYS) { svcerr_weakauth(rqst); svc_freereq(rqst); m_freem(nd.nd_mrep); goto out; } if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) { nd.nd_flag |= ND_TLS; if ((xprt->xp_tls & RPCTLS_FLAGS_VERIFIED) != 0) nd.nd_flag |= ND_TLSCERT; if ((xprt->xp_tls & RPCTLS_FLAGS_CERTUSER) != 0) nd.nd_flag |= ND_TLSCERTUSER; } nd.nd_maxextsiz = 16384; #ifdef MAC mac_cred_associate_nfsd(nd.nd_cred); #endif /* * Get a refcnt (shared lock) on nfsd_suspend_lock. * NFSSVC_SUSPENDNFSD will take an exclusive lock on * nfsd_suspend_lock to suspend these threads. * The call to nfsv4_lock() that precedes nfsv4_getref() * ensures that the acquisition of the exclusive lock * takes priority over acquisition of the shared lock by * waiting for any exclusive lock request to complete. * This must be done here, before the check of * nfsv4root exports by nfsvno_v4rootexport(). */ NFSLOCKV4ROOTMUTEX(); nfsv4_lock(&NFSD_VNET(nfsd_suspend_lock), 0, NULL, NFSV4ROOTLOCKMUTEXPTR, NULL); nfsv4_getref(&NFSD_VNET(nfsd_suspend_lock), NULL, NFSV4ROOTLOCKMUTEXPTR, NULL); NFSUNLOCKV4ROOTMUTEX(); if ((nd.nd_flag & ND_NFSV4) != 0) { nd.nd_repstat = nfsvno_v4rootexport(&nd); if (nd.nd_repstat != 0) { NFSLOCKV4ROOTMUTEX(); nfsv4_relref(&NFSD_VNET(nfsd_suspend_lock)); NFSUNLOCKV4ROOTMUTEX(); svcerr_weakauth(rqst); svc_freereq(rqst); m_freem(nd.nd_mrep); goto out; } } #ifdef KERN_TLS if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0 && rpctls_getinfo(&maxlen, false, false)) nd.nd_maxextsiz = maxlen; #endif cacherep = nfs_proc(&nd, rqst->rq_xid, xprt, &rp); NFSLOCKV4ROOTMUTEX(); nfsv4_relref(&NFSD_VNET(nfsd_suspend_lock)); NFSUNLOCKV4ROOTMUTEX(); } else { NFSMGET(nd.nd_mreq); nd.nd_mreq->m_len = 0; cacherep = RC_REPLY; } if (nd.nd_mrep != NULL) m_freem(nd.nd_mrep); if (nd.nd_cred != NULL) crfree(nd.nd_cred); if (cacherep == RC_DROPIT) { if (nd.nd_mreq != NULL) m_freem(nd.nd_mreq); svc_freereq(rqst); goto out; } if (nd.nd_mreq == NULL) { svcerr_decode(rqst); svc_freereq(rqst); goto out; } if (nd.nd_repstat & NFSERR_AUTHERR) { svcerr_auth(rqst, nd.nd_repstat & ~NFSERR_AUTHERR); if (nd.nd_mreq != NULL) m_freem(nd.nd_mreq); } else if (!svc_sendreply_mbuf(rqst, nd.nd_mreq)) { svcerr_systemerr(rqst); } if (rp != NULL) { nfsrvd_sentcache(rp, (rqst->rq_reply_seq != 0 || SVC_ACK(xprt, NULL)), rqst->rq_reply_seq); } svc_freereq(rqst); out: NFSD_CURVNET_RESTORE(); ast_kclear(curthread); NFSEXITCODE(0); } /* * Check the cache and, optionally, do the RPC. * Return the appropriate cache response. */ static int nfs_proc(struct nfsrv_descript *nd, u_int32_t xid, SVCXPRT *xprt, struct nfsrvcache **rpp) { int cacherep = RC_DOIT, isdgram, taglen = -1; struct mbuf *m; u_char tag[NFSV4_SMALLSTR + 1], *tagstr = NULL; u_int32_t minorvers = 0; uint32_t ack; *rpp = NULL; if (nd->nd_nam2 == NULL) { nd->nd_flag |= ND_STREAMSOCK; isdgram = 0; } else { isdgram = 1; } /* * Two cases: * 1 - For NFSv2 over UDP, if we are near our malloc/mget * limit, just drop the request. There is no * NFSERR_RESOURCE or NFSERR_DELAY for NFSv2 and the * client will timeout/retry over UDP in a little while. * 2 - nd_repstat == 0 && nd_mreq == NULL, which * means a normal nfs rpc, so check the cache */ if ((nd->nd_flag & ND_NFSV2) && nd->nd_nam2 != NULL && nfsrv_mallocmget_limit()) { cacherep = RC_DROPIT; } else { /* * For NFSv3, play it safe and assume that the client is * doing retries on the same TCP connection. */ if ((nd->nd_flag & (ND_NFSV4 | ND_STREAMSOCK)) == ND_STREAMSOCK) nd->nd_flag |= ND_SAMETCPCONN; nd->nd_retxid = xid; nd->nd_tcpconntime = NFSD_MONOSEC; nd->nd_sockref = xprt->xp_sockref; if ((nd->nd_flag & ND_NFSV4) != 0) nfsd_getminorvers(nd, tag, &tagstr, &taglen, &minorvers); if ((nd->nd_flag & ND_NFSV41) != 0) /* NFSv4.1 caches replies in the session slots. */ cacherep = RC_DOIT; else { cacherep = nfsrvd_getcache(nd); ack = 0; SVC_ACK(xprt, &ack); nfsrc_trimcache(xprt->xp_sockref, ack, 0); } } /* * Handle the request. There are three cases. * RC_DOIT - do the RPC * RC_REPLY - return the reply already created * RC_DROPIT - just throw the request away */ if (cacherep == RC_DOIT) { if ((nd->nd_flag & ND_NFSV41) != 0) nd->nd_xprt = xprt; nfsrvd_dorpc(nd, isdgram, tagstr, taglen, minorvers); if ((nd->nd_flag & ND_NFSV41) != 0) { if (nd->nd_repstat != NFSERR_REPLYFROMCACHE && (nd->nd_flag & ND_SAVEREPLY) != 0) { /* Cache a copy of the reply. */ m = m_copym(nd->nd_mreq, 0, M_COPYALL, M_WAITOK); } else m = NULL; if ((nd->nd_flag & ND_HASSEQUENCE) != 0) nfsrv_cache_session(nd, &m); if (nd->nd_repstat == NFSERR_REPLYFROMCACHE) { nd->nd_repstat = 0; if (m != NULL) { m_freem(nd->nd_mreq); nd->nd_mreq = m; } } cacherep = RC_REPLY; } else { if (nd->nd_repstat == NFSERR_DONTREPLY) cacherep = RC_DROPIT; else cacherep = RC_REPLY; *rpp = nfsrvd_updatecache(nd); } } if (tagstr != NULL && taglen > NFSV4_SMALLSTR) free(tagstr, M_TEMP); NFSEXITCODE2(0, nd); return (cacherep); } static void nfssvc_loss(SVCXPRT *xprt) { uint32_t ack; ack = 0; SVC_ACK(xprt, &ack); NFSD_CURVNET_SET(NFSD_TD_TO_VNET(curthread)); nfsrc_trimcache(xprt->xp_sockref, ack, 1); NFSD_CURVNET_RESTORE(); } /* * Adds a socket to the list for servicing by nfsds. */ int nfsrvd_addsock(struct file *fp) { int siz; struct socket *so; int error = 0; SVCXPRT *xprt; static u_int64_t sockref = 0; so = fp->f_data; siz = sb_max_adj; error = soreserve(so, siz, siz); if (error) goto out; /* * Steal the socket from userland so that it doesn't close * unexpectedly. */ if (so->so_type == SOCK_DGRAM) xprt = svc_dg_create(NFSD_VNET(nfsrvd_pool), so, 0, 0); else xprt = svc_vc_create(NFSD_VNET(nfsrvd_pool), so, 0, 0); if (xprt) { fp->f_ops = &badfileops; fp->f_data = NULL; xprt->xp_sockref = ++sockref; if (NFSD_VNET(nfs_minvers) == NFS_VER2) svc_reg(xprt, NFS_PROG, NFS_VER2, nfssvc_program, NULL); if (NFSD_VNET(nfs_minvers) <= NFS_VER3 && NFSD_VNET(nfs_maxvers) >= NFS_VER3) svc_reg(xprt, NFS_PROG, NFS_VER3, nfssvc_program, NULL); if (NFSD_VNET(nfs_maxvers) >= NFS_VER4) svc_reg(xprt, NFS_PROG, NFS_VER4, nfssvc_program, NULL); if (so->so_type == SOCK_STREAM) svc_loss_reg(xprt, nfssvc_loss); SVC_RELEASE(xprt); } else error = EPERM; out: NFSEXITCODE(error); return (error); } /* * Called by nfssvc() for nfsds. Just loops around servicing rpc requests * until it is killed by a signal. */ int nfsrvd_nfsd(struct thread *td, struct nfsd_nfsd_args *args) { char principal[MAXHOSTNAMELEN + 5]; struct proc *p; int error = 0; bool_t ret2, ret3, ret4; error = copyinstr(args->principal, principal, sizeof (principal), NULL); if (error) goto out; /* * Only the first nfsd actually does any work. The RPC code * adds threads to it as needed. Any extra processes offered * by nfsd just exit. If nfsd is new enough, it will call us * once with a structure that specifies how many threads to * use. */ NFSD_LOCK(); if (NFSD_VNET(nfsrv_numnfsd) == 0) { nfsdev_time = time_second; p = td->td_proc; PROC_LOCK(p); p->p_flag2 |= P2_AST_SU; PROC_UNLOCK(p); newnfs_numnfsd++; /* Total num for all vnets. */ NFSD_VNET(nfsrv_numnfsd)++; /* Num for this vnet. */ NFSD_UNLOCK(); error = nfsrv_createdevids(args, td); if (error == 0) { /* An empty string implies AUTH_SYS only. */ if (principal[0] != '\0') { ret2 = rpc_gss_set_svc_name_call(principal, "kerberosv5", GSS_C_INDEFINITE, NFS_PROG, NFS_VER2); ret3 = rpc_gss_set_svc_name_call(principal, "kerberosv5", GSS_C_INDEFINITE, NFS_PROG, NFS_VER3); ret4 = rpc_gss_set_svc_name_call(principal, "kerberosv5", GSS_C_INDEFINITE, NFS_PROG, NFS_VER4); if (!ret2 || !ret3 || !ret4) printf("nfsd: can't register svc " "name %s jid:%d\n", principal, td->td_ucred->cr_prison->pr_id); } NFSD_VNET(nfsrvd_pool)->sp_minthreads = args->minthreads; NFSD_VNET(nfsrvd_pool)->sp_maxthreads = args->maxthreads; /* * If this is a pNFS service, make Getattr do a * vn_start_write(), so it can do a vn_set_extattr(). */ if (nfsrv_devidcnt > 0) { nfsrv_writerpc[NFSPROC_GETATTR] = 1; nfsv4_opflag[NFSV4OP_GETATTR].modifyfs = 1; } svc_run(NFSD_VNET(nfsrvd_pool)); /* Reset Getattr to not do a vn_start_write(). */ nfsrv_writerpc[NFSPROC_GETATTR] = 0; nfsv4_opflag[NFSV4OP_GETATTR].modifyfs = 0; if (principal[0] != '\0') { rpc_gss_clear_svc_name_call(NFS_PROG, NFS_VER2); rpc_gss_clear_svc_name_call(NFS_PROG, NFS_VER3); rpc_gss_clear_svc_name_call(NFS_PROG, NFS_VER4); } } NFSD_LOCK(); newnfs_numnfsd--; NFSD_VNET(nfsrv_numnfsd)--; nfsrvd_init(1); PROC_LOCK(p); p->p_flag2 &= ~P2_AST_SU; PROC_UNLOCK(p); } NFSD_UNLOCK(); out: NFSEXITCODE(error); return (error); } /* * Initialize the data structures for the server. * Handshake with any new nfsds starting up to avoid any chance of * corruption. */ void nfsrvd_init(int terminating) { NFSD_LOCK_ASSERT(); if (terminating) { NFSD_VNET(nfsd_master_proc) = NULL; NFSD_UNLOCK(); nfsrv_freealllayoutsanddevids(); nfsrv_freeallbackchannel_xprts(); svcpool_close(NFSD_VNET(nfsrvd_pool)); free(nfsrv_zeropnfsdat, M_TEMP); nfsrv_zeropnfsdat = NULL; NFSD_LOCK(); } else { /* Initialize per-vnet globals once per vnet. */ if (NFSD_VNET(nfsrvd_inited)) return; NFSD_VNET(nfsrvd_inited) = true; NFSD_UNLOCK(); NFSD_VNET(nfsrvd_pool) = svcpool_create("nfsd", SYSCTL_STATIC_CHILDREN(_vfs_nfsd)); NFSD_VNET(nfsrvd_pool)->sp_rcache = NULL; NFSD_VNET(nfsrvd_pool)->sp_assign = fhanew_assign; NFSD_VNET(nfsrvd_pool)->sp_done = fhanew_nd_complete; NFSD_LOCK(); } }