/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Bmap converts the logical block number of a file to its physical block * number on the disk. The conversion is done by using the logical block * number to index into the array of block pointers described by the dinode. */ int ext2_bmap(struct vop_bmap_args *ap) { daddr_t blkno; int error; /* * Check for underlying vnode requests and ensure that logical * to physical mapping is requested. */ if (ap->a_bop != NULL) *ap->a_bop = &VTOI(ap->a_vp)->i_devvp->v_bufobj; if (ap->a_bnp == NULL) return (0); if (VTOI(ap->a_vp)->i_flag & IN_E4EXTENTS) error = ext4_bmapext(ap->a_vp, ap->a_bn, &blkno, ap->a_runp, ap->a_runb); else error = ext2_bmaparray(ap->a_vp, ap->a_bn, &blkno, ap->a_runp, ap->a_runb); *ap->a_bnp = blkno; return (error); } /* * Convert the logical block number of a file to its physical block number * on the disk within ext4 extents. */ int ext4_bmapext(struct vnode *vp, int32_t bn, int64_t *bnp, int *runp, int *runb) { struct inode *ip; struct m_ext2fs *fs; struct mount *mp; struct ext2mount *ump; struct ext4_extent_header *ehp; struct ext4_extent *ep; struct ext4_extent_path *path = NULL; daddr_t lbn; int error, depth, maxrun = 0, bsize; ip = VTOI(vp); fs = ip->i_e2fs; mp = vp->v_mount; ump = VFSTOEXT2(mp); lbn = bn; ehp = (struct ext4_extent_header *)ip->i_data; depth = le16toh(ehp->eh_depth); bsize = EXT2_BLOCK_SIZE(ump->um_e2fs); *bnp = -1; if (runp != NULL) { maxrun = mp->mnt_iosize_max / bsize - 1; *runp = 0; } if (runb != NULL) *runb = 0; error = ext4_ext_find_extent(ip, lbn, &path); if (error) return (error); ep = path[depth].ep_ext; if(ep) { if (lbn < le32toh(ep->e_blk)) { if (runp != NULL) { *runp = min(maxrun, le32toh(ep->e_blk) - lbn - 1); } } else if (le32toh(ep->e_blk) <= lbn && lbn < le32toh(ep->e_blk) + le16toh(ep->e_len)) { *bnp = fsbtodb(fs, lbn - le32toh(ep->e_blk) + (le32toh(ep->e_start_lo) | (daddr_t)le16toh(ep->e_start_hi) << 32)); if (runp != NULL) { *runp = min(maxrun, le16toh(ep->e_len) - (lbn - le32toh(ep->e_blk)) - 1); } if (runb != NULL) *runb = min(maxrun, lbn - le32toh(ep->e_blk)); } else { if (runb != NULL) *runb = min(maxrun, le32toh(ep->e_blk) + lbn - le16toh(ep->e_len)); } } ext4_ext_path_free(path); return (error); } static int readindir(struct vnode *vp, e2fs_lbn_t lbn, e2fs_daddr_t daddr, struct buf **bpp) { struct buf *bp; struct mount *mp; struct ext2mount *ump; int error; mp = vp->v_mount; ump = VFSTOEXT2(mp); bp = getblk(vp, lbn, mp->mnt_stat.f_iosize, 0, 0, 0); if ((bp->b_flags & B_CACHE) == 0) { KASSERT(daddr != 0, ("readindir: indirect block not in cache")); bp->b_blkno = blkptrtodb(ump, daddr); bp->b_iocmd = BIO_READ; bp->b_flags &= ~B_INVAL; bp->b_ioflags &= ~BIO_ERROR; vfs_busy_pages(bp, 0); bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); #ifdef RACCT if (racct_enable) { PROC_LOCK(curproc); racct_add_buf(curproc, bp, 0); PROC_UNLOCK(curproc); } #endif curthread->td_ru.ru_inblock++; error = bufwait(bp); if (error != 0) { brelse(bp); return (error); } } *bpp = bp; return (0); } /* * Indirect blocks are now on the vnode for the file. They are given negative * logical block numbers. Indirect blocks are addressed by the negative * address of the first data block to which they point. Double indirect blocks * are addressed by one less than the address of the first indirect block to * which they point. Triple indirect blocks are addressed by one less than * the address of the first double indirect block to which they point. * * ext2_bmaparray does the bmap conversion, and if requested returns the * array of logical blocks which must be traversed to get to a block. * Each entry contains the offset into that block that gets you to the * next block and the disk address of the block (if it is assigned). */ int ext2_bmaparray(struct vnode *vp, daddr_t bn, daddr_t *bnp, int *runp, int *runb) { struct inode *ip; struct buf *bp; struct ext2mount *ump; struct mount *mp; struct indir a[EXT2_NIADDR + 1], *ap; daddr_t daddr; e2fs_lbn_t metalbn; int error, num, maxrun = 0, bsize; int *nump; ap = NULL; ip = VTOI(vp); mp = vp->v_mount; ump = VFSTOEXT2(mp); bsize = EXT2_BLOCK_SIZE(ump->um_e2fs); if (runp) { maxrun = mp->mnt_iosize_max / bsize - 1; *runp = 0; } if (runb) *runb = 0; ap = a; nump = # error = ext2_getlbns(vp, bn, ap, nump); if (error) return (error); num = *nump; if (num == 0) { *bnp = blkptrtodb(ump, ip->i_db[bn]); if (*bnp == 0) { *bnp = -1; } else if (runp) { daddr_t bnb = bn; for (++bn; bn < EXT2_NDADDR && *runp < maxrun && is_sequential(ump, ip->i_db[bn - 1], ip->i_db[bn]); ++bn, ++*runp); bn = bnb; if (runb && (bn > 0)) { for (--bn; (bn >= 0) && (*runb < maxrun) && is_sequential(ump, ip->i_db[bn], ip->i_db[bn + 1]); --bn, ++*runb); } } return (0); } /* Get disk address out of indirect block array */ daddr = ip->i_ib[ap->in_off]; for (bp = NULL, ++ap; --num; ++ap) { /* * Exit the loop if there is no disk address assigned yet and * the indirect block isn't in the cache, or if we were * looking for an indirect block and we've found it. */ metalbn = ap->in_lbn; if ((daddr == 0 && !incore(&vp->v_bufobj, metalbn)) || metalbn == bn) break; /* * If we get here, we've either got the block in the cache * or we have a disk address for it, go fetch it. */ if (bp) bqrelse(bp); error = readindir(vp, metalbn, daddr, &bp); if (error != 0) return (error); daddr = le32toh(((e2fs_daddr_t *)bp->b_data)[ap->in_off]); if (num == 1 && daddr && runp) { for (bn = ap->in_off + 1; bn < MNINDIR(ump) && *runp < maxrun && is_sequential(ump, ((e2fs_daddr_t *)bp->b_data)[bn - 1], ((e2fs_daddr_t *)bp->b_data)[bn]); ++bn, ++*runp); bn = ap->in_off; if (runb && bn) { for (--bn; bn >= 0 && *runb < maxrun && is_sequential(ump, ((e2fs_daddr_t *)bp->b_data)[bn], ((e2fs_daddr_t *)bp->b_data)[bn + 1]); --bn, ++*runb); } } } if (bp) bqrelse(bp); *bnp = blkptrtodb(ump, daddr); if (*bnp == 0) { *bnp = -1; } return (0); } static e2fs_lbn_t lbn_count(struct ext2mount *ump, int level) { e2fs_lbn_t blockcnt; for (blockcnt = 1; level > 0; level--) blockcnt *= MNINDIR(ump); return (blockcnt); } int ext2_bmap_seekdata(struct vnode *vp, off_t *offp) { struct buf *bp; struct indir a[EXT2_NIADDR + 1], *ap; struct inode *ip; struct mount *mp; struct ext2mount *ump; e2fs_daddr_t bn, daddr, nextbn; uint64_t bsize; off_t numblks; int error, num, num1, off; bp = NULL; error = 0; ip = VTOI(vp); mp = vp->v_mount; ump = VFSTOEXT2(mp); if (vp->v_type != VREG) return (EINVAL); if (*offp < 0 || *offp >= ip->i_size) return (ENXIO); bsize = mp->mnt_stat.f_iosize; for (bn = *offp / bsize, numblks = howmany(ip->i_size, bsize); bn < numblks; bn = nextbn) { if (bn < EXT2_NDADDR) { daddr = ip->i_db[bn]; if (daddr != 0) break; nextbn = bn + 1; continue; } ap = a; error = ext2_getlbns(vp, bn, ap, &num); if (error != 0) break; MPASS(num >= 2); daddr = ip->i_ib[ap->in_off]; ap++, num--; for (nextbn = EXT2_NDADDR, num1 = num - 1; num1 > 0; num1--) nextbn += lbn_count(ump, num1); if (daddr == 0) { nextbn += lbn_count(ump, num); continue; } for (; daddr != 0 && num > 0; ap++, num--) { if (bp != NULL) bqrelse(bp); error = readindir(vp, ap->in_lbn, daddr, &bp); if (error != 0) return (error); /* * Scan the indirect block until we find a non-zero * pointer. */ off = ap->in_off; do { daddr = le32toh(((e2fs_daddr_t *)bp->b_data)[off]); } while (daddr == 0 && ++off < MNINDIR(ump)); nextbn += off * lbn_count(ump, num - 1); /* * We need to recompute the LBNs of indirect * blocks, so restart with the updated block offset. */ if (off != ap->in_off) break; } if (num == 0) { /* * We found a data block. */ bn = nextbn; break; } } if (bp != NULL) bqrelse(bp); if (bn >= numblks) error = ENXIO; if (error == 0 && *offp < bn * bsize) *offp = bn * bsize; return (error); } /* * Create an array of logical block number/offset pairs which represent the * path of indirect blocks required to access a data block. The first "pair" * contains the logical block number of the appropriate single, double or * triple indirect block and the offset into the inode indirect block array. * Note, the logical block number of the inode single/double/triple indirect * block appears twice in the array, once with the offset into the i_ib and * once with the offset into the page itself. */ int ext2_getlbns(struct vnode *vp, daddr_t bn, struct indir *ap, int *nump) { long blockcnt; e2fs_lbn_t metalbn, realbn; struct ext2mount *ump; int i, numlevels, off; int64_t qblockcnt; ump = VFSTOEXT2(vp->v_mount); if (nump) *nump = 0; numlevels = 0; realbn = bn; if ((long)bn < 0) bn = -(long)bn; /* The first EXT2_NDADDR blocks are direct blocks. */ if (bn < EXT2_NDADDR) return (0); /* * Determine the number of levels of indirection. After this loop * is done, blockcnt indicates the number of data blocks possible * at the previous level of indirection, and EXT2_NIADDR - i is the * number of levels of indirection needed to locate the requested block. */ for (blockcnt = 1, i = EXT2_NIADDR, bn -= EXT2_NDADDR; ; i--, bn -= blockcnt) { if (i == 0) return (EFBIG); /* * Use int64_t's here to avoid overflow for triple indirect * blocks when longs have 32 bits and the block size is more * than 4K. */ qblockcnt = (int64_t)blockcnt * MNINDIR(ump); if (bn < qblockcnt) break; blockcnt = qblockcnt; } /* Calculate the address of the first meta-block. */ if (realbn >= 0) metalbn = -(realbn - bn + EXT2_NIADDR - i); else metalbn = -(-realbn - bn + EXT2_NIADDR - i); /* * At each iteration, off is the offset into the bap array which is * an array of disk addresses at the current level of indirection. * The logical block number and the offset in that block are stored * into the argument array. */ ap->in_lbn = metalbn; ap->in_off = off = EXT2_NIADDR - i; ap++; for (++numlevels; i <= EXT2_NIADDR; i++) { /* If searching for a meta-data block, quit when found. */ if (metalbn == realbn) break; off = (bn / blockcnt) % MNINDIR(ump); ++numlevels; ap->in_lbn = metalbn; ap->in_off = off; ++ap; metalbn -= -1 + off * blockcnt; blockcnt /= MNINDIR(ump); } if (nump) *nump = numlevels; return (0); }