/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2020 Ruslan Bukin
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory (Department of Computer Science and
* Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
* DARPA SSITH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_platform.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "xlnx_pcib.h"
#include "ofw_bus_if.h"
#include "msi_if.h"
#include "pcib_if.h"
#include "pic_if.h"
#define XLNX_PCIB_MAX_MSI 64
static int xlnx_pcib_fdt_attach(device_t);
static int xlnx_pcib_fdt_probe(device_t);
static int xlnx_pcib_fdt_get_id(device_t, device_t, enum pci_id_type,
uintptr_t *);
static void xlnx_pcib_msi_mask(device_t dev, struct intr_irqsrc *isrc,
bool mask);
struct xlnx_pcib_softc {
struct generic_pcie_fdt_softc fdt_sc;
struct resource *res[4];
struct mtx mtx;
vm_offset_t msi_page;
struct xlnx_pcib_irqsrc *isrcs;
device_t dev;
void *intr_cookie[3];
};
static struct resource_spec xlnx_pcib_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ SYS_RES_IRQ, 2, RF_ACTIVE },
{ -1, 0 }
};
struct xlnx_pcib_irqsrc {
struct intr_irqsrc isrc;
u_int irq;
#define XLNX_IRQ_FLAG_USED (1 << 0)
u_int flags;
};
static void
xlnx_pcib_clear_err_interrupts(struct generic_pcie_core_softc *sc)
{
uint32_t reg;
reg = bus_read_4(sc->res, XLNX_PCIE_RPERRFRR);
if (reg & RPERRFRR_VALID) {
device_printf(sc->dev, "Requested ID: %x\n",
reg & RPERRFRR_REQ_ID_M);
bus_write_4(sc->res, XLNX_PCIE_RPERRFRR, ~0U);
}
}
static int
xlnx_pcib_intr(void *arg)
{
struct generic_pcie_fdt_softc *fdt_sc;
struct generic_pcie_core_softc *sc;
struct xlnx_pcib_softc *xlnx_sc;
uint32_t val, mask, status;
xlnx_sc = arg;
fdt_sc = &xlnx_sc->fdt_sc;
sc = &fdt_sc->base;
val = bus_read_4(sc->res, XLNX_PCIE_IDR);
mask = bus_read_4(sc->res, XLNX_PCIE_IMR);
status = val & mask;
if (!status)
return (FILTER_HANDLED);
if (status & IMR_LINK_DOWN)
device_printf(sc->dev, "Link down");
if (status & IMR_HOT_RESET)
device_printf(sc->dev, "Hot reset");
if (status & IMR_CORRECTABLE)
xlnx_pcib_clear_err_interrupts(sc);
if (status & IMR_FATAL)
xlnx_pcib_clear_err_interrupts(sc);
if (status & IMR_NON_FATAL)
xlnx_pcib_clear_err_interrupts(sc);
if (status & IMR_MSI) {
device_printf(sc->dev, "MSI interrupt");
/* FIFO mode MSI not implemented. */
}
if (status & IMR_INTX) {
device_printf(sc->dev, "INTx received");
/* Not implemented. */
}
if (status & IMR_SLAVE_UNSUPP_REQ)
device_printf(sc->dev, "Slave unsupported request");
if (status & IMR_SLAVE_UNEXP_COMPL)
device_printf(sc->dev, "Slave unexpected completion");
if (status & IMR_SLAVE_COMPL_TIMOUT)
device_printf(sc->dev, "Slave completion timeout");
if (status & IMR_SLAVE_ERROR_POISON)
device_printf(sc->dev, "Slave error poison");
if (status & IMR_SLAVE_COMPL_ABORT)
device_printf(sc->dev, "Slave completion abort");
if (status & IMR_SLAVE_ILLEG_BURST)
device_printf(sc->dev, "Slave illegal burst");
if (status & IMR_MASTER_DECERR)
device_printf(sc->dev, "Master decode error");
if (status & IMR_MASTER_SLVERR)
device_printf(sc->dev, "Master slave error");
bus_write_4(sc->res, XLNX_PCIE_IDR, val);
return (FILTER_HANDLED);
}
static void
xlnx_pcib_handle_msi_intr(void *arg, int msireg)
{
struct generic_pcie_fdt_softc *fdt_sc;
struct generic_pcie_core_softc *sc;
struct xlnx_pcib_softc *xlnx_sc;
struct xlnx_pcib_irqsrc *xi;
struct trapframe *tf;
int irq;
int reg;
int i;
xlnx_sc = arg;
fdt_sc = &xlnx_sc->fdt_sc;
sc = &fdt_sc->base;
tf = curthread->td_intr_frame;
do {
reg = bus_read_4(sc->res, msireg);
for (i = 0; i < sizeof(uint32_t) * 8; i++) {
if (reg & (1 << i)) {
bus_write_4(sc->res, msireg, (1 << i));
irq = i;
if (msireg == XLNX_PCIE_RPMSIID2)
irq += 32;
xi = &xlnx_sc->isrcs[irq];
if (intr_isrc_dispatch(&xi->isrc, tf) != 0) {
/* Disable stray. */
xlnx_pcib_msi_mask(sc->dev,
&xi->isrc, 1);
device_printf(sc->dev,
"Stray irq %u disabled\n", irq);
}
}
}
} while (reg != 0);
}
static int
xlnx_pcib_msi0_intr(void *arg)
{
xlnx_pcib_handle_msi_intr(arg, XLNX_PCIE_RPMSIID1);
return (FILTER_HANDLED);
}
static int
xlnx_pcib_msi1_intr(void *arg)
{
xlnx_pcib_handle_msi_intr(arg, XLNX_PCIE_RPMSIID2);
return (FILTER_HANDLED);
}
static int
xlnx_pcib_register_msi(struct xlnx_pcib_softc *sc)
{
const char *name;
int error;
int irq;
sc->isrcs = malloc(sizeof(*sc->isrcs) * XLNX_PCIB_MAX_MSI, M_DEVBUF,
M_WAITOK | M_ZERO);
name = device_get_nameunit(sc->dev);
for (irq = 0; irq < XLNX_PCIB_MAX_MSI; irq++) {
sc->isrcs[irq].irq = irq;
error = intr_isrc_register(&sc->isrcs[irq].isrc,
sc->dev, 0, "%s,%u", name, irq);
if (error != 0)
return (error); /* XXX deregister ISRCs */
}
if (intr_msi_register(sc->dev,
OF_xref_from_node(ofw_bus_get_node(sc->dev))) != 0)
return (ENXIO);
return (0);
}
static void
xlnx_pcib_init(struct xlnx_pcib_softc *sc)
{
bus_addr_t addr;
int reg;
/* Disable interrupts. */
bus_write_4(sc->res[0], XLNX_PCIE_IMR, 0);
/* Clear pending interrupts.*/
reg = bus_read_4(sc->res[0], XLNX_PCIE_IDR);
bus_write_4(sc->res[0], XLNX_PCIE_IDR, reg);
/* Setup an MSI page. */
sc->msi_page = kmem_alloc_contig(PAGE_SIZE, M_WAITOK, 0,
BUS_SPACE_MAXADDR, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
addr = vtophys(sc->msi_page);
bus_write_4(sc->res[0], XLNX_PCIE_RPMSIBR1, (addr >> 32));
bus_write_4(sc->res[0], XLNX_PCIE_RPMSIBR2, (addr >> 0));
/* Enable the bridge. */
reg = bus_read_4(sc->res[0], XLNX_PCIE_RPSCR);
reg |= RPSCR_BE;
bus_write_4(sc->res[0], XLNX_PCIE_RPSCR, reg);
/* Enable interrupts. */
reg = IMR_LINK_DOWN
| IMR_HOT_RESET
| IMR_CFG_COMPL_STATUS_M
| IMR_CFG_TIMEOUT
| IMR_CORRECTABLE
| IMR_NON_FATAL
| IMR_FATAL
| IMR_INTX
| IMR_MSI
| IMR_SLAVE_UNSUPP_REQ
| IMR_SLAVE_UNEXP_COMPL
| IMR_SLAVE_COMPL_TIMOUT
| IMR_SLAVE_ERROR_POISON
| IMR_SLAVE_COMPL_ABORT
| IMR_SLAVE_ILLEG_BURST
| IMR_MASTER_DECERR
| IMR_MASTER_SLVERR;
bus_write_4(sc->res[0], XLNX_PCIE_IMR, reg);
}
static int
xlnx_pcib_fdt_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "xlnx,xdma-host-3.00")) {
device_set_desc(dev, "Xilinx XDMA PCIe Controller");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
xlnx_pcib_fdt_attach(device_t dev)
{
struct xlnx_pcib_softc *sc;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
mtx_init(&sc->mtx, "msi_mtx", NULL, MTX_DEF);
if (bus_alloc_resources(dev, xlnx_pcib_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Setup MISC interrupt handler. */
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE,
xlnx_pcib_intr, NULL, sc, &sc->intr_cookie[0]);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler.\n");
return (ENXIO);
}
/* Setup MSI0 interrupt handler. */
error = bus_setup_intr(dev, sc->res[2], INTR_TYPE_MISC | INTR_MPSAFE,
xlnx_pcib_msi0_intr, NULL, sc, &sc->intr_cookie[1]);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler.\n");
return (ENXIO);
}
/* Setup MSI1 interrupt handler. */
error = bus_setup_intr(dev, sc->res[3], INTR_TYPE_MISC | INTR_MPSAFE,
xlnx_pcib_msi1_intr, NULL, sc, &sc->intr_cookie[2]);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler.\n");
return (ENXIO);
}
xlnx_pcib_init(sc);
/*
* Allow the core driver to map registers.
* We will be accessing the device memory using core_softc.
*/
bus_release_resources(dev, xlnx_pcib_spec, sc->res);
error = xlnx_pcib_register_msi(sc);
if (error)
return (error);
return (pci_host_generic_fdt_attach(dev));
}
static int
xlnx_pcib_fdt_get_id(device_t pci, device_t child, enum pci_id_type type,
uintptr_t *id)
{
phandle_t node;
int bsf;
if (type != PCI_ID_MSI)
return (pcib_get_id(pci, child, type, id));
node = ofw_bus_get_node(pci);
if (OF_hasprop(node, "msi-map"))
return (generic_pcie_get_id(pci, child, type, id));
bsf = pci_get_rid(child);
*id = (pci_get_domain(child) << PCI_RID_DOMAIN_SHIFT) | bsf;
return (0);
}
static int
xlnx_pcib_req_valid(struct generic_pcie_core_softc *sc,
u_int bus, u_int slot, u_int func, u_int reg)
{
bus_space_handle_t h;
bus_space_tag_t t;
uint32_t val;
t = sc->bst;
h = sc->bsh;
if ((bus < sc->bus_start) || (bus > sc->bus_end))
return (0);
if ((slot > PCI_SLOTMAX) || (func > PCI_FUNCMAX) ||
(reg > PCIE_REGMAX))
return (0);
if (bus == 0 && slot > 0)
return (0);
val = bus_space_read_4(t, h, XLNX_PCIE_PHYSCR);
if ((val & PHYSCR_LINK_UP) == 0) {
/* Link is down */
return (0);
}
/* Valid */
return (1);
}
static uint32_t
xlnx_pcib_read_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, int bytes)
{
struct generic_pcie_fdt_softc *fdt_sc;
struct xlnx_pcib_softc *xlnx_sc;
struct generic_pcie_core_softc *sc;
bus_space_handle_t h;
bus_space_tag_t t;
uint64_t offset;
uint32_t data;
xlnx_sc = device_get_softc(dev);
fdt_sc = &xlnx_sc->fdt_sc;
sc = &fdt_sc->base;
if (!xlnx_pcib_req_valid(sc, bus, slot, func, reg))
return (~0U);
offset = PCIE_ADDR_OFFSET(bus - sc->bus_start, slot, func, reg);
t = sc->bst;
h = sc->bsh;
data = bus_space_read_4(t, h, offset & ~3);
switch (bytes) {
case 1:
data >>= (offset & 3) * 8;
data &= 0xff;
break;
case 2:
data >>= (offset & 3) * 8;
data = le16toh(data);
break;
case 4:
data = le32toh(data);
break;
default:
return (~0U);
}
return (data);
}
static void
xlnx_pcib_write_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, uint32_t val, int bytes)
{
struct generic_pcie_fdt_softc *fdt_sc;
struct xlnx_pcib_softc *xlnx_sc;
struct generic_pcie_core_softc *sc;
bus_space_handle_t h;
bus_space_tag_t t;
uint64_t offset;
uint32_t data;
xlnx_sc = device_get_softc(dev);
fdt_sc = &xlnx_sc->fdt_sc;
sc = &fdt_sc->base;
if (!xlnx_pcib_req_valid(sc, bus, slot, func, reg))
return;
offset = PCIE_ADDR_OFFSET(bus - sc->bus_start, slot, func, reg);
t = sc->bst;
h = sc->bsh;
/*
* 32-bit access used due to a bug in the Xilinx bridge that
* requires to write primary and secondary buses in one blast.
*
* TODO: This is probably wrong on big-endian.
*/
switch (bytes) {
case 1:
data = bus_space_read_4(t, h, offset & ~3);
data &= ~(0xff << ((offset & 3) * 8));
data |= (val & 0xff) << ((offset & 3) * 8);
bus_space_write_4(t, h, offset & ~3, htole32(data));
break;
case 2:
data = bus_space_read_4(t, h, offset & ~3);
data &= ~(0xffff << ((offset & 3) * 8));
data |= (val & 0xffff) << ((offset & 3) * 8);
bus_space_write_4(t, h, offset & ~3, htole32(data));
break;
case 4:
bus_space_write_4(t, h, offset, htole32(val));
break;
default:
return;
}
}
static int
xlnx_pcib_alloc_msi(device_t pci, device_t child, int count, int maxcount,
int *irqs)
{
phandle_t msi_parent;
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
msi_parent = OF_xref_from_node(ofw_bus_get_node(pci));
return (intr_alloc_msi(pci, child, msi_parent, count, maxcount,
irqs));
}
static int
xlnx_pcib_release_msi(device_t pci, device_t child, int count, int *irqs)
{
phandle_t msi_parent;
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
msi_parent = OF_xref_from_node(ofw_bus_get_node(pci));
return (intr_release_msi(pci, child, msi_parent, count, irqs));
}
static int
xlnx_pcib_map_msi(device_t pci, device_t child, int irq, uint64_t *addr,
uint32_t *data)
{
phandle_t msi_parent;
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
msi_parent = OF_xref_from_node(ofw_bus_get_node(pci));
return (intr_map_msi(pci, child, msi_parent, irq, addr, data));
}
static int
xlnx_pcib_msi_alloc_msi(device_t dev, device_t child, int count, int maxcount,
device_t *pic, struct intr_irqsrc **srcs)
{
struct xlnx_pcib_softc *sc;
int irq, end_irq, i;
bool found;
sc = device_get_softc(dev);
mtx_lock(&sc->mtx);
found = false;
for (irq = 0; (irq + count - 1) < XLNX_PCIB_MAX_MSI; irq++) {
/* Assume the range is valid. */
found = true;
/* Check this range is valid. */
for (end_irq = irq; end_irq < irq + count; end_irq++) {
if (sc->isrcs[end_irq].flags & XLNX_IRQ_FLAG_USED) {
/* This is already used. */
found = false;
break;
}
}
if (found)
break;
}
if (!found || irq == (XLNX_PCIB_MAX_MSI - 1)) {
/* Not enough interrupts were found. */
mtx_unlock(&sc->mtx);
return (ENXIO);
}
/* Mark the interrupt as used. */
for (i = 0; i < count; i++)
sc->isrcs[irq + i].flags |= XLNX_IRQ_FLAG_USED;
mtx_unlock(&sc->mtx);
for (i = 0; i < count; i++)
srcs[i] = (struct intr_irqsrc *)&sc->isrcs[irq + i];
*pic = device_get_parent(dev);
return (0);
}
static int
xlnx_pcib_msi_release_msi(device_t dev, device_t child, int count,
struct intr_irqsrc **isrc)
{
struct xlnx_pcib_softc *sc;
struct xlnx_pcib_irqsrc *xi;
int i;
sc = device_get_softc(dev);
mtx_lock(&sc->mtx);
for (i = 0; i < count; i++) {
xi = (struct xlnx_pcib_irqsrc *)isrc[i];
KASSERT(xi->flags & XLNX_IRQ_FLAG_USED,
("%s: Releasing an unused MSI interrupt", __func__));
xi->flags &= ~XLNX_IRQ_FLAG_USED;
}
mtx_unlock(&sc->mtx);
return (0);
}
static int
xlnx_pcib_msi_map_msi(device_t dev, device_t child, struct intr_irqsrc *isrc,
uint64_t *addr, uint32_t *data)
{
struct xlnx_pcib_softc *sc;
struct xlnx_pcib_irqsrc *xi;
sc = device_get_softc(dev);
xi = (struct xlnx_pcib_irqsrc *)isrc;
*addr = vtophys(sc->msi_page);
*data = xi->irq;
return (0);
}
static void
xlnx_pcib_msi_mask(device_t dev, struct intr_irqsrc *isrc, bool mask)
{
struct generic_pcie_fdt_softc *fdt_sc;
struct generic_pcie_core_softc *sc;
struct xlnx_pcib_softc *xlnx_sc;
struct xlnx_pcib_irqsrc *xi;
uint32_t msireg, irq;
uint32_t reg;
xlnx_sc = device_get_softc(dev);
fdt_sc = &xlnx_sc->fdt_sc;
sc = &fdt_sc->base;
xi = (struct xlnx_pcib_irqsrc *)isrc;
irq = xi->irq;
if (irq < 32)
msireg = XLNX_PCIE_RPMSIID1_MASK;
else
msireg = XLNX_PCIE_RPMSIID2_MASK;
reg = bus_read_4(sc->res, msireg);
if (mask)
reg &= ~(1 << irq);
else
reg |= (1 << irq);
bus_write_4(sc->res, msireg, reg);
}
static void
xlnx_pcib_msi_disable_intr(device_t dev, struct intr_irqsrc *isrc)
{
xlnx_pcib_msi_mask(dev, isrc, true);
}
static void
xlnx_pcib_msi_enable_intr(device_t dev, struct intr_irqsrc *isrc)
{
xlnx_pcib_msi_mask(dev, isrc, false);
}
static void
xlnx_pcib_msi_post_filter(device_t dev, struct intr_irqsrc *isrc)
{
}
static void
xlnx_pcib_msi_post_ithread(device_t dev, struct intr_irqsrc *isrc)
{
xlnx_pcib_msi_mask(dev, isrc, false);
}
static void
xlnx_pcib_msi_pre_ithread(device_t dev, struct intr_irqsrc *isrc)
{
xlnx_pcib_msi_mask(dev, isrc, true);
}
static int
xlnx_pcib_msi_setup_intr(device_t dev, struct intr_irqsrc *isrc,
struct resource *res, struct intr_map_data *data)
{
return (0);
}
static int
xlnx_pcib_msi_teardown_intr(device_t dev, struct intr_irqsrc *isrc,
struct resource *res, struct intr_map_data *data)
{
return (0);
}
static device_method_t xlnx_pcib_fdt_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, xlnx_pcib_fdt_probe),
DEVMETHOD(device_attach, xlnx_pcib_fdt_attach),
/* pcib interface */
DEVMETHOD(pcib_get_id, xlnx_pcib_fdt_get_id),
DEVMETHOD(pcib_read_config, xlnx_pcib_read_config),
DEVMETHOD(pcib_write_config, xlnx_pcib_write_config),
DEVMETHOD(pcib_alloc_msi, xlnx_pcib_alloc_msi),
DEVMETHOD(pcib_release_msi, xlnx_pcib_release_msi),
DEVMETHOD(pcib_map_msi, xlnx_pcib_map_msi),
/* MSI interface */
DEVMETHOD(msi_alloc_msi, xlnx_pcib_msi_alloc_msi),
DEVMETHOD(msi_release_msi, xlnx_pcib_msi_release_msi),
DEVMETHOD(msi_map_msi, xlnx_pcib_msi_map_msi),
/* Interrupt controller interface */
DEVMETHOD(pic_disable_intr, xlnx_pcib_msi_disable_intr),
DEVMETHOD(pic_enable_intr, xlnx_pcib_msi_enable_intr),
DEVMETHOD(pic_setup_intr, xlnx_pcib_msi_setup_intr),
DEVMETHOD(pic_teardown_intr, xlnx_pcib_msi_teardown_intr),
DEVMETHOD(pic_post_filter, xlnx_pcib_msi_post_filter),
DEVMETHOD(pic_post_ithread, xlnx_pcib_msi_post_ithread),
DEVMETHOD(pic_pre_ithread, xlnx_pcib_msi_pre_ithread),
/* End */
DEVMETHOD_END
};
DEFINE_CLASS_1(pcib, xlnx_pcib_fdt_driver, xlnx_pcib_fdt_methods,
sizeof(struct xlnx_pcib_softc), generic_pcie_fdt_driver);
DRIVER_MODULE(xlnx_pcib, simplebus, xlnx_pcib_fdt_driver, 0, 0);
DRIVER_MODULE(xlnx_pcib, ofwbus, xlnx_pcib_fdt_driver, 0, 0);