/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2019 Ruslan Bukin
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory (Department of Computer Science and
* Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
* DARPA SSITH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "miibus_if.h"
#define READ4(_sc, _reg) \
bus_read_4((_sc)->res[0], _reg)
#define WRITE4(_sc, _reg, _val) \
bus_write_4((_sc)->res[0], _reg, _val)
#define READ8(_sc, _reg) \
bus_read_8((_sc)->res[0], _reg)
#define WRITE8(_sc, _reg, _val) \
bus_write_8((_sc)->res[0], _reg, _val)
#define XAE_LOCK(sc) mtx_lock(&(sc)->mtx)
#define XAE_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
#define XAE_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED)
#define XAE_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED)
#define XAE_DEBUG
#undef XAE_DEBUG
#ifdef XAE_DEBUG
#define dprintf(fmt, ...) printf(fmt, ##__VA_ARGS__)
#else
#define dprintf(fmt, ...)
#endif
#define RX_QUEUE_SIZE 64
#define TX_QUEUE_SIZE 64
#define NUM_RX_MBUF 16
#define BUFRING_SIZE 8192
#define MDIO_CLK_DIV_DEFAULT 29
#define PHY1_RD(sc, _r) \
xae_miibus_read_reg(sc->dev, 1, _r)
#define PHY1_WR(sc, _r, _v) \
xae_miibus_write_reg(sc->dev, 1, _r, _v)
#define PHY_RD(sc, _r) \
xae_miibus_read_reg(sc->dev, sc->phy_addr, _r)
#define PHY_WR(sc, _r, _v) \
xae_miibus_write_reg(sc->dev, sc->phy_addr, _r, _v)
/* Use this macro to access regs > 0x1f */
#define WRITE_TI_EREG(sc, reg, data) { \
PHY_WR(sc, MII_MMDACR, MMDACR_DADDRMASK); \
PHY_WR(sc, MII_MMDAADR, reg); \
PHY_WR(sc, MII_MMDACR, MMDACR_DADDRMASK | MMDACR_FN_DATANPI); \
PHY_WR(sc, MII_MMDAADR, data); \
}
/* Not documented, Xilinx VCU118 workaround */
#define CFG4_SGMII_TMR 0x160 /* bits 8:7 MUST be '10' */
#define DP83867_SGMIICTL1 0xD3 /* not documented register */
#define SGMIICTL1_SGMII_6W (1 << 14) /* no idea what it is */
static struct resource_spec xae_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static void xae_stop_locked(struct xae_softc *sc);
static void xae_setup_rxfilter(struct xae_softc *sc);
static int
xae_rx_enqueue(struct xae_softc *sc, uint32_t n)
{
struct mbuf *m;
int i;
for (i = 0; i < n; i++) {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
device_printf(sc->dev,
"%s: Can't alloc rx mbuf\n", __func__);
return (-1);
}
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
xdma_enqueue_mbuf(sc->xchan_rx, &m, 0, 4, 4, XDMA_DEV_TO_MEM);
}
return (0);
}
static int
xae_get_phyaddr(phandle_t node, int *phy_addr)
{
phandle_t phy_node;
pcell_t phy_handle, phy_reg;
if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
sizeof(phy_handle)) <= 0)
return (ENXIO);
phy_node = OF_node_from_xref(phy_handle);
if (OF_getencprop(phy_node, "reg", (void *)&phy_reg,
sizeof(phy_reg)) <= 0)
return (ENXIO);
*phy_addr = phy_reg;
return (0);
}
static int
xae_xdma_tx_intr(void *arg, xdma_transfer_status_t *status)
{
xdma_transfer_status_t st;
struct xae_softc *sc;
if_t ifp;
struct mbuf *m;
int err;
sc = arg;
XAE_LOCK(sc);
ifp = sc->ifp;
for (;;) {
err = xdma_dequeue_mbuf(sc->xchan_tx, &m, &st);
if (err != 0) {
break;
}
if (st.error != 0) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
}
m_freem(m);
}
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
XAE_UNLOCK(sc);
return (0);
}
static int
xae_xdma_rx_intr(void *arg, xdma_transfer_status_t *status)
{
xdma_transfer_status_t st;
struct xae_softc *sc;
if_t ifp;
struct mbuf *m;
int err;
uint32_t cnt_processed;
sc = arg;
dprintf("%s\n", __func__);
XAE_LOCK(sc);
ifp = sc->ifp;
cnt_processed = 0;
for (;;) {
err = xdma_dequeue_mbuf(sc->xchan_rx, &m, &st);
if (err != 0) {
break;
}
cnt_processed++;
if (st.error != 0) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
m_freem(m);
continue;
}
m->m_pkthdr.len = m->m_len = st.transferred;
m->m_pkthdr.rcvif = ifp;
XAE_UNLOCK(sc);
if_input(ifp, m);
XAE_LOCK(sc);
}
xae_rx_enqueue(sc, cnt_processed);
XAE_UNLOCK(sc);
return (0);
}
static void
xae_qflush(if_t ifp)
{
}
static int
xae_transmit_locked(if_t ifp)
{
struct xae_softc *sc;
struct mbuf *m;
struct buf_ring *br;
int error;
int enq;
dprintf("%s\n", __func__);
sc = if_getsoftc(ifp);
br = sc->br;
enq = 0;
while ((m = drbr_peek(ifp, br)) != NULL) {
error = xdma_enqueue_mbuf(sc->xchan_tx,
&m, 0, 4, 4, XDMA_MEM_TO_DEV);
if (error != 0) {
/* No space in request queue available yet. */
drbr_putback(ifp, br, m);
break;
}
drbr_advance(ifp, br);
enq++;
/* If anyone is interested give them a copy. */
ETHER_BPF_MTAP(ifp, m);
}
if (enq > 0)
xdma_queue_submit(sc->xchan_tx);
return (0);
}
static int
xae_transmit(if_t ifp, struct mbuf *m)
{
struct xae_softc *sc;
int error;
dprintf("%s\n", __func__);
sc = if_getsoftc(ifp);
XAE_LOCK(sc);
error = drbr_enqueue(ifp, sc->br, m);
if (error) {
XAE_UNLOCK(sc);
return (error);
}
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) {
XAE_UNLOCK(sc);
return (0);
}
if (!sc->link_is_up) {
XAE_UNLOCK(sc);
return (0);
}
error = xae_transmit_locked(ifp);
XAE_UNLOCK(sc);
return (error);
}
static void
xae_stop_locked(struct xae_softc *sc)
{
if_t ifp;
uint32_t reg;
XAE_ASSERT_LOCKED(sc);
ifp = sc->ifp;
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
callout_stop(&sc->xae_callout);
/* Stop the transmitter */
reg = READ4(sc, XAE_TC);
reg &= ~TC_TX;
WRITE4(sc, XAE_TC, reg);
/* Stop the receiver. */
reg = READ4(sc, XAE_RCW1);
reg &= ~RCW1_RX;
WRITE4(sc, XAE_RCW1, reg);
}
static uint64_t
xae_stat(struct xae_softc *sc, int counter_id)
{
uint64_t new, old;
uint64_t delta;
KASSERT(counter_id < XAE_MAX_COUNTERS,
("counter %d is out of range", counter_id));
new = READ8(sc, XAE_STATCNT(counter_id));
old = sc->counters[counter_id];
if (new >= old)
delta = new - old;
else
delta = UINT64_MAX - old + new;
sc->counters[counter_id] = new;
return (delta);
}
static void
xae_harvest_stats(struct xae_softc *sc)
{
if_t ifp;
ifp = sc->ifp;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, xae_stat(sc, RX_GOOD_FRAMES));
if_inc_counter(ifp, IFCOUNTER_IMCASTS, xae_stat(sc, RX_GOOD_MCASTS));
if_inc_counter(ifp, IFCOUNTER_IERRORS,
xae_stat(sc, RX_FRAME_CHECK_SEQ_ERROR) +
xae_stat(sc, RX_LEN_OUT_OF_RANGE) +
xae_stat(sc, RX_ALIGNMENT_ERRORS));
if_inc_counter(ifp, IFCOUNTER_OBYTES, xae_stat(sc, TX_BYTES));
if_inc_counter(ifp, IFCOUNTER_OPACKETS, xae_stat(sc, TX_GOOD_FRAMES));
if_inc_counter(ifp, IFCOUNTER_OMCASTS, xae_stat(sc, TX_GOOD_MCASTS));
if_inc_counter(ifp, IFCOUNTER_OERRORS,
xae_stat(sc, TX_GOOD_UNDERRUN_ERRORS));
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
xae_stat(sc, TX_SINGLE_COLLISION_FRAMES) +
xae_stat(sc, TX_MULTI_COLLISION_FRAMES) +
xae_stat(sc, TX_LATE_COLLISIONS) +
xae_stat(sc, TX_EXCESS_COLLISIONS));
}
static void
xae_tick(void *arg)
{
struct xae_softc *sc;
if_t ifp;
int link_was_up;
sc = arg;
XAE_ASSERT_LOCKED(sc);
ifp = sc->ifp;
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
return;
/* Gather stats from hardware counters. */
xae_harvest_stats(sc);
/* Check the media status. */
link_was_up = sc->link_is_up;
mii_tick(sc->mii_softc);
if (sc->link_is_up && !link_was_up)
xae_transmit_locked(sc->ifp);
/* Schedule another check one second from now. */
callout_reset(&sc->xae_callout, hz, xae_tick, sc);
}
static void
xae_init_locked(struct xae_softc *sc)
{
if_t ifp;
XAE_ASSERT_LOCKED(sc);
ifp = sc->ifp;
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
return;
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
xae_setup_rxfilter(sc);
/* Enable the transmitter */
WRITE4(sc, XAE_TC, TC_TX);
/* Enable the receiver. */
WRITE4(sc, XAE_RCW1, RCW1_RX);
/*
* Call mii_mediachg() which will call back into xae_miibus_statchg()
* to set up the remaining config registers based on current media.
*/
mii_mediachg(sc->mii_softc);
callout_reset(&sc->xae_callout, hz, xae_tick, sc);
}
static void
xae_init(void *arg)
{
struct xae_softc *sc;
sc = arg;
XAE_LOCK(sc);
xae_init_locked(sc);
XAE_UNLOCK(sc);
}
static void
xae_media_status(if_t ifp, struct ifmediareq *ifmr)
{
struct xae_softc *sc;
struct mii_data *mii;
sc = if_getsoftc(ifp);
mii = sc->mii_softc;
XAE_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
XAE_UNLOCK(sc);
}
static int
xae_media_change_locked(struct xae_softc *sc)
{
return (mii_mediachg(sc->mii_softc));
}
static int
xae_media_change(if_t ifp)
{
struct xae_softc *sc;
int error;
sc = if_getsoftc(ifp);
XAE_LOCK(sc);
error = xae_media_change_locked(sc);
XAE_UNLOCK(sc);
return (error);
}
static u_int
xae_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
struct xae_softc *sc = arg;
uint32_t reg;
uint8_t *ma;
if (cnt >= XAE_MULTICAST_TABLE_SIZE)
return (1);
ma = LLADDR(sdl);
reg = READ4(sc, XAE_FFC) & 0xffffff00;
reg |= cnt;
WRITE4(sc, XAE_FFC, reg);
reg = (ma[0]);
reg |= (ma[1] << 8);
reg |= (ma[2] << 16);
reg |= (ma[3] << 24);
WRITE4(sc, XAE_FFV(0), reg);
reg = ma[4];
reg |= ma[5] << 8;
WRITE4(sc, XAE_FFV(1), reg);
return (1);
}
static void
xae_setup_rxfilter(struct xae_softc *sc)
{
if_t ifp;
uint32_t reg;
XAE_ASSERT_LOCKED(sc);
ifp = sc->ifp;
/*
* Set the multicast (group) filter hash.
*/
if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
reg = READ4(sc, XAE_FFC);
reg |= FFC_PM;
WRITE4(sc, XAE_FFC, reg);
} else {
reg = READ4(sc, XAE_FFC);
reg &= ~FFC_PM;
WRITE4(sc, XAE_FFC, reg);
if_foreach_llmaddr(ifp, xae_write_maddr, sc);
}
/*
* Set the primary address.
*/
reg = sc->macaddr[0];
reg |= (sc->macaddr[1] << 8);
reg |= (sc->macaddr[2] << 16);
reg |= (sc->macaddr[3] << 24);
WRITE4(sc, XAE_UAW0, reg);
reg = sc->macaddr[4];
reg |= (sc->macaddr[5] << 8);
WRITE4(sc, XAE_UAW1, reg);
}
static int
xae_ioctl(if_t ifp, u_long cmd, caddr_t data)
{
struct xae_softc *sc;
struct mii_data *mii;
struct ifreq *ifr;
int mask, error;
sc = if_getsoftc(ifp);
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
XAE_LOCK(sc);
if (if_getflags(ifp) & IFF_UP) {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
if ((if_getflags(ifp) ^ sc->if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
xae_setup_rxfilter(sc);
} else {
if (!sc->is_detaching)
xae_init_locked(sc);
}
} else {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
xae_stop_locked(sc);
}
sc->if_flags = if_getflags(ifp);
XAE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
XAE_LOCK(sc);
xae_setup_rxfilter(sc);
XAE_UNLOCK(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = sc->mii_softc;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
if (mask & IFCAP_VLAN_MTU) {
/* No work to do except acknowledge the change took */
if_togglecapenable(ifp, IFCAP_VLAN_MTU);
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
xae_intr(void *arg)
{
}
static int
xae_get_hwaddr(struct xae_softc *sc, uint8_t *hwaddr)
{
phandle_t node;
int len;
node = ofw_bus_get_node(sc->dev);
/* Check if there is property */
if ((len = OF_getproplen(node, "local-mac-address")) <= 0)
return (EINVAL);
if (len != ETHER_ADDR_LEN)
return (EINVAL);
OF_getprop(node, "local-mac-address", hwaddr,
ETHER_ADDR_LEN);
return (0);
}
static int
mdio_wait(struct xae_softc *sc)
{
uint32_t reg;
int timeout;
timeout = 200;
do {
reg = READ4(sc, XAE_MDIO_CTRL);
if (reg & MDIO_CTRL_READY)
break;
DELAY(1);
} while (timeout--);
if (timeout <= 0) {
printf("Failed to get MDIO ready\n");
return (1);
}
return (0);
}
static int
xae_miibus_read_reg(device_t dev, int phy, int reg)
{
struct xae_softc *sc;
uint32_t mii;
int rv;
sc = device_get_softc(dev);
if (mdio_wait(sc))
return (0);
mii = MDIO_CTRL_TX_OP_READ | MDIO_CTRL_INITIATE;
mii |= (reg << MDIO_TX_REGAD_S);
mii |= (phy << MDIO_TX_PHYAD_S);
WRITE4(sc, XAE_MDIO_CTRL, mii);
if (mdio_wait(sc))
return (0);
rv = READ4(sc, XAE_MDIO_READ);
return (rv);
}
static int
xae_miibus_write_reg(device_t dev, int phy, int reg, int val)
{
struct xae_softc *sc;
uint32_t mii;
sc = device_get_softc(dev);
if (mdio_wait(sc))
return (1);
mii = MDIO_CTRL_TX_OP_WRITE | MDIO_CTRL_INITIATE;
mii |= (reg << MDIO_TX_REGAD_S);
mii |= (phy << MDIO_TX_PHYAD_S);
WRITE4(sc, XAE_MDIO_WRITE, val);
WRITE4(sc, XAE_MDIO_CTRL, mii);
if (mdio_wait(sc))
return (1);
return (0);
}
static void
xae_phy_fixup(struct xae_softc *sc)
{
uint32_t reg;
do {
WRITE_TI_EREG(sc, DP83867_SGMIICTL1, SGMIICTL1_SGMII_6W);
PHY_WR(sc, DP83867_PHYCR, PHYCR_SGMII_EN);
reg = PHY_RD(sc, DP83867_CFG2);
reg &= ~CFG2_SPEED_OPT_ATTEMPT_CNT_M;
reg |= (CFG2_SPEED_OPT_ATTEMPT_CNT_4);
reg |= CFG2_INTERRUPT_POLARITY;
reg |= CFG2_SPEED_OPT_ENHANCED_EN;
reg |= CFG2_SPEED_OPT_10M_EN;
PHY_WR(sc, DP83867_CFG2, reg);
WRITE_TI_EREG(sc, DP83867_CFG4, CFG4_SGMII_TMR);
PHY_WR(sc, MII_BMCR,
BMCR_AUTOEN | BMCR_FDX | BMCR_SPEED1 | BMCR_RESET);
} while (PHY1_RD(sc, MII_BMCR) == 0x0ffff);
do {
PHY1_WR(sc, MII_BMCR,
BMCR_AUTOEN | BMCR_FDX | BMCR_SPEED1 | BMCR_STARTNEG);
DELAY(40000);
} while ((PHY1_RD(sc, MII_BMSR) & BMSR_ACOMP) == 0);
}
static int
get_xdma_std(struct xae_softc *sc)
{
sc->xdma_tx = xdma_ofw_get(sc->dev, "tx");
if (sc->xdma_tx == NULL)
return (ENXIO);
sc->xdma_rx = xdma_ofw_get(sc->dev, "rx");
if (sc->xdma_rx == NULL) {
xdma_put(sc->xdma_tx);
return (ENXIO);
}
return (0);
}
static int
get_xdma_axistream(struct xae_softc *sc)
{
struct axidma_fdt_data *data;
device_t dma_dev;
phandle_t node;
pcell_t prop;
size_t len;
node = ofw_bus_get_node(sc->dev);
len = OF_getencprop(node, "axistream-connected", &prop, sizeof(prop));
if (len != sizeof(prop)) {
device_printf(sc->dev,
"%s: Couldn't get axistream-connected prop.\n", __func__);
return (ENXIO);
}
dma_dev = OF_device_from_xref(prop);
if (dma_dev == NULL) {
device_printf(sc->dev, "Could not get DMA device by xref.\n");
return (ENXIO);
}
sc->xdma_tx = xdma_get(sc->dev, dma_dev);
if (sc->xdma_tx == NULL) {
device_printf(sc->dev, "Could not find DMA controller.\n");
return (ENXIO);
}
data = malloc(sizeof(struct axidma_fdt_data),
M_DEVBUF, (M_WAITOK | M_ZERO));
data->id = AXIDMA_TX_CHAN;
sc->xdma_tx->data = data;
sc->xdma_rx = xdma_get(sc->dev, dma_dev);
if (sc->xdma_rx == NULL) {
device_printf(sc->dev, "Could not find DMA controller.\n");
return (ENXIO);
}
data = malloc(sizeof(struct axidma_fdt_data),
M_DEVBUF, (M_WAITOK | M_ZERO));
data->id = AXIDMA_RX_CHAN;
sc->xdma_rx->data = data;
return (0);
}
static int
setup_xdma(struct xae_softc *sc)
{
device_t dev;
vmem_t *vmem;
int error;
dev = sc->dev;
/* Get xDMA controller */
error = get_xdma_std(sc);
if (error) {
device_printf(sc->dev,
"Fallback to axistream-connected property\n");
error = get_xdma_axistream(sc);
}
if (error) {
device_printf(dev, "Could not find xDMA controllers.\n");
return (ENXIO);
}
/* Alloc xDMA TX virtual channel. */
sc->xchan_tx = xdma_channel_alloc(sc->xdma_tx, 0);
if (sc->xchan_tx == NULL) {
device_printf(dev, "Can't alloc virtual DMA TX channel.\n");
return (ENXIO);
}
/* Setup interrupt handler. */
error = xdma_setup_intr(sc->xchan_tx, 0,
xae_xdma_tx_intr, sc, &sc->ih_tx);
if (error) {
device_printf(sc->dev,
"Can't setup xDMA TX interrupt handler.\n");
return (ENXIO);
}
/* Alloc xDMA RX virtual channel. */
sc->xchan_rx = xdma_channel_alloc(sc->xdma_rx, 0);
if (sc->xchan_rx == NULL) {
device_printf(dev, "Can't alloc virtual DMA RX channel.\n");
return (ENXIO);
}
/* Setup interrupt handler. */
error = xdma_setup_intr(sc->xchan_rx, XDMA_INTR_NET,
xae_xdma_rx_intr, sc, &sc->ih_rx);
if (error) {
device_printf(sc->dev,
"Can't setup xDMA RX interrupt handler.\n");
return (ENXIO);
}
/* Setup bounce buffer */
vmem = xdma_get_memory(dev);
if (vmem) {
xchan_set_memory(sc->xchan_tx, vmem);
xchan_set_memory(sc->xchan_rx, vmem);
}
xdma_prep_sg(sc->xchan_tx,
TX_QUEUE_SIZE, /* xchan requests queue size */
MCLBYTES, /* maxsegsize */
8, /* maxnsegs */
16, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR);
xdma_prep_sg(sc->xchan_rx,
RX_QUEUE_SIZE, /* xchan requests queue size */
MCLBYTES, /* maxsegsize */
1, /* maxnsegs */
16, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR);
return (0);
}
static int
xae_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "xlnx,axi-ethernet-1.00.a"))
return (ENXIO);
device_set_desc(dev, "Xilinx AXI Ethernet");
return (BUS_PROBE_DEFAULT);
}
static int
xae_attach(device_t dev)
{
struct xae_softc *sc;
if_t ifp;
phandle_t node;
uint32_t reg;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
node = ofw_bus_get_node(dev);
if (setup_xdma(sc) != 0) {
device_printf(dev, "Could not setup xDMA.\n");
return (ENXIO);
}
mtx_init(&sc->mtx, device_get_nameunit(sc->dev),
MTX_NETWORK_LOCK, MTX_DEF);
sc->br = buf_ring_alloc(BUFRING_SIZE, M_DEVBUF,
M_NOWAIT, &sc->mtx);
if (sc->br == NULL)
return (ENOMEM);
if (bus_alloc_resources(dev, xae_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
device_printf(sc->dev, "Identification: %x\n",
READ4(sc, XAE_IDENT));
/* Get MAC addr */
if (xae_get_hwaddr(sc, sc->macaddr)) {
device_printf(sc->dev, "can't get mac\n");
return (ENXIO);
}
/* Enable MII clock */
reg = (MDIO_CLK_DIV_DEFAULT << MDIO_SETUP_CLK_DIV_S);
reg |= MDIO_SETUP_ENABLE;
WRITE4(sc, XAE_MDIO_SETUP, reg);
if (mdio_wait(sc))
return (ENXIO);
callout_init_mtx(&sc->xae_callout, &sc->mtx, 0);
/* Setup interrupt handler. */
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, xae_intr, sc, &sc->intr_cookie);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler.\n");
return (ENXIO);
}
/* Set up the ethernet interface. */
sc->ifp = ifp = if_alloc(IFT_ETHER);
if_setsoftc(ifp, sc);
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
if_setcapabilities(ifp, IFCAP_VLAN_MTU);
if_setcapenable(ifp, if_getcapabilities(ifp));
if_settransmitfn(ifp, xae_transmit);
if_setqflushfn(ifp, xae_qflush);
if_setioctlfn(ifp, xae_ioctl);
if_setinitfn(ifp, xae_init);
if_setsendqlen(ifp, TX_DESC_COUNT - 1);
if_setsendqready(ifp);
if (xae_get_phyaddr(node, &sc->phy_addr) != 0)
return (ENXIO);
/* Attach the mii driver. */
error = mii_attach(dev, &sc->miibus, ifp, xae_media_change,
xae_media_status, BMSR_DEFCAPMASK, sc->phy_addr,
MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "PHY attach failed\n");
return (ENXIO);
}
sc->mii_softc = device_get_softc(sc->miibus);
/* Apply vcu118 workaround. */
if (OF_getproplen(node, "xlnx,vcu118") >= 0)
xae_phy_fixup(sc);
/* All ready to run, attach the ethernet interface. */
ether_ifattach(ifp, sc->macaddr);
sc->is_attached = true;
xae_rx_enqueue(sc, NUM_RX_MBUF);
xdma_queue_submit(sc->xchan_rx);
return (0);
}
static int
xae_detach(device_t dev)
{
struct xae_softc *sc;
if_t ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->mtx), ("%s: mutex not initialized",
device_get_nameunit(dev)));
ifp = sc->ifp;
/* Only cleanup if attach succeeded. */
if (device_is_attached(dev)) {
XAE_LOCK(sc);
xae_stop_locked(sc);
XAE_UNLOCK(sc);
callout_drain(&sc->xae_callout);
ether_ifdetach(ifp);
}
if (sc->miibus != NULL)
device_delete_child(dev, sc->miibus);
if (ifp != NULL)
if_free(ifp);
mtx_destroy(&sc->mtx);
bus_teardown_intr(dev, sc->res[1], sc->intr_cookie);
bus_release_resources(dev, xae_spec, sc->res);
xdma_channel_free(sc->xchan_tx);
xdma_channel_free(sc->xchan_rx);
xdma_put(sc->xdma_tx);
xdma_put(sc->xdma_rx);
return (0);
}
static void
xae_miibus_statchg(device_t dev)
{
struct xae_softc *sc;
struct mii_data *mii;
uint32_t reg;
/*
* Called by the MII bus driver when the PHY establishes
* link to set the MAC interface registers.
*/
sc = device_get_softc(dev);
XAE_ASSERT_LOCKED(sc);
mii = sc->mii_softc;
if (mii->mii_media_status & IFM_ACTIVE)
sc->link_is_up = true;
else
sc->link_is_up = false;
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
case IFM_1000_SX:
reg = SPEED_1000;
break;
case IFM_100_TX:
reg = SPEED_100;
break;
case IFM_10_T:
reg = SPEED_10;
break;
case IFM_NONE:
sc->link_is_up = false;
return;
default:
sc->link_is_up = false;
device_printf(dev, "Unsupported media %u\n",
IFM_SUBTYPE(mii->mii_media_active));
return;
}
WRITE4(sc, XAE_SPEED, reg);
}
static device_method_t xae_methods[] = {
DEVMETHOD(device_probe, xae_probe),
DEVMETHOD(device_attach, xae_attach),
DEVMETHOD(device_detach, xae_detach),
/* MII Interface */
DEVMETHOD(miibus_readreg, xae_miibus_read_reg),
DEVMETHOD(miibus_writereg, xae_miibus_write_reg),
DEVMETHOD(miibus_statchg, xae_miibus_statchg),
{ 0, 0 }
};
driver_t xae_driver = {
"xae",
xae_methods,
sizeof(struct xae_softc),
};
DRIVER_MODULE(xae, simplebus, xae_driver, 0, 0);
DRIVER_MODULE(miibus, xae, miibus_driver, 0, 0);
MODULE_DEPEND(xae, ether, 1, 1, 1);
MODULE_DEPEND(xae, miibus, 1, 1, 1);