/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2018-2019 Ruslan Bukin
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef FDT
#include
#include
#include
#endif
#include
#include
struct seg_load_request {
struct bus_dma_segment *seg;
uint32_t nsegs;
uint32_t error;
};
static void
xchan_bufs_free_reserved(xdma_channel_t *xchan)
{
struct xdma_request *xr;
vm_size_t size;
int i;
for (i = 0; i < xchan->xr_num; i++) {
xr = &xchan->xr_mem[i];
size = xr->buf.size;
if (xr->buf.vaddr) {
pmap_kremove_device(xr->buf.vaddr, size);
kva_free(xr->buf.vaddr, size);
xr->buf.vaddr = 0;
}
if (xr->buf.paddr) {
vmem_free(xchan->vmem, xr->buf.paddr, size);
xr->buf.paddr = 0;
}
xr->buf.size = 0;
}
}
static int
xchan_bufs_alloc_reserved(xdma_channel_t *xchan)
{
xdma_controller_t *xdma;
struct xdma_request *xr;
vmem_addr_t addr;
vm_size_t size;
int i;
xdma = xchan->xdma;
if (xchan->vmem == NULL)
return (ENOBUFS);
for (i = 0; i < xchan->xr_num; i++) {
xr = &xchan->xr_mem[i];
size = round_page(xchan->maxsegsize);
if (vmem_alloc(xchan->vmem, size,
M_BESTFIT | M_NOWAIT, &addr)) {
device_printf(xdma->dev,
"%s: Can't allocate memory\n", __func__);
xchan_bufs_free_reserved(xchan);
return (ENOMEM);
}
xr->buf.size = size;
xr->buf.paddr = addr;
xr->buf.vaddr = kva_alloc(size);
if (xr->buf.vaddr == 0) {
device_printf(xdma->dev,
"%s: Can't allocate KVA\n", __func__);
xchan_bufs_free_reserved(xchan);
return (ENOMEM);
}
pmap_kenter_device(xr->buf.vaddr, size, addr);
}
return (0);
}
static int
xchan_bufs_alloc_busdma(xdma_channel_t *xchan)
{
xdma_controller_t *xdma;
struct xdma_request *xr;
int err;
int i;
xdma = xchan->xdma;
/* Create bus_dma tag */
err = bus_dma_tag_create(
bus_get_dma_tag(xdma->dev), /* Parent tag. */
xchan->alignment, /* alignment */
xchan->boundary, /* boundary */
xchan->lowaddr, /* lowaddr */
xchan->highaddr, /* highaddr */
NULL, NULL, /* filter, filterarg */
xchan->maxsegsize * xchan->maxnsegs, /* maxsize */
xchan->maxnsegs, /* nsegments */
xchan->maxsegsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&xchan->dma_tag_bufs);
if (err != 0) {
device_printf(xdma->dev,
"%s: Can't create bus_dma tag.\n", __func__);
return (-1);
}
for (i = 0; i < xchan->xr_num; i++) {
xr = &xchan->xr_mem[i];
err = bus_dmamap_create(xchan->dma_tag_bufs, 0,
&xr->buf.map);
if (err != 0) {
device_printf(xdma->dev,
"%s: Can't create buf DMA map.\n", __func__);
/* Cleanup. */
bus_dma_tag_destroy(xchan->dma_tag_bufs);
return (-1);
}
}
return (0);
}
static int
xchan_bufs_alloc(xdma_channel_t *xchan)
{
xdma_controller_t *xdma;
int ret;
xdma = xchan->xdma;
if (xdma == NULL) {
printf("%s: Channel was not allocated properly.\n", __func__);
return (-1);
}
if (xchan->caps & XCHAN_CAP_BUSDMA)
ret = xchan_bufs_alloc_busdma(xchan);
else {
ret = xchan_bufs_alloc_reserved(xchan);
}
if (ret != 0) {
device_printf(xdma->dev,
"%s: Can't allocate bufs.\n", __func__);
return (-1);
}
xchan->flags |= XCHAN_BUFS_ALLOCATED;
return (0);
}
static int
xchan_bufs_free(xdma_channel_t *xchan)
{
struct xdma_request *xr;
struct xchan_buf *b;
int i;
if ((xchan->flags & XCHAN_BUFS_ALLOCATED) == 0)
return (-1);
if (xchan->caps & XCHAN_CAP_BUSDMA) {
for (i = 0; i < xchan->xr_num; i++) {
xr = &xchan->xr_mem[i];
b = &xr->buf;
bus_dmamap_destroy(xchan->dma_tag_bufs, b->map);
}
bus_dma_tag_destroy(xchan->dma_tag_bufs);
} else
xchan_bufs_free_reserved(xchan);
xchan->flags &= ~XCHAN_BUFS_ALLOCATED;
return (0);
}
void
xdma_channel_free_sg(xdma_channel_t *xchan)
{
xchan_bufs_free(xchan);
xchan_sglist_free(xchan);
xchan_bank_free(xchan);
}
/*
* Prepare xchan for a scatter-gather transfer.
* xr_num - xdma requests queue size,
* maxsegsize - maximum allowed scatter-gather list element size in bytes
*/
int
xdma_prep_sg(xdma_channel_t *xchan, uint32_t xr_num,
bus_size_t maxsegsize, bus_size_t maxnsegs,
bus_size_t alignment, bus_addr_t boundary,
bus_addr_t lowaddr, bus_addr_t highaddr)
{
xdma_controller_t *xdma;
int ret;
xdma = xchan->xdma;
KASSERT(xdma != NULL, ("xdma is NULL"));
if (xchan->flags & XCHAN_CONFIGURED) {
device_printf(xdma->dev,
"%s: Channel is already configured.\n", __func__);
return (-1);
}
xchan->xr_num = xr_num;
xchan->maxsegsize = maxsegsize;
xchan->maxnsegs = maxnsegs;
xchan->alignment = alignment;
xchan->boundary = boundary;
xchan->lowaddr = lowaddr;
xchan->highaddr = highaddr;
if (xchan->maxnsegs > XDMA_MAX_SEG) {
device_printf(xdma->dev, "%s: maxnsegs is too big\n",
__func__);
return (-1);
}
xchan_bank_init(xchan);
/* Allocate sglist. */
ret = xchan_sglist_alloc(xchan);
if (ret != 0) {
device_printf(xdma->dev,
"%s: Can't allocate sglist.\n", __func__);
return (-1);
}
/* Allocate buffers if required. */
if (xchan->caps & (XCHAN_CAP_BUSDMA | XCHAN_CAP_BOUNCE)) {
ret = xchan_bufs_alloc(xchan);
if (ret != 0) {
device_printf(xdma->dev,
"%s: Can't allocate bufs.\n", __func__);
/* Cleanup */
xchan_sglist_free(xchan);
xchan_bank_free(xchan);
return (-1);
}
}
xchan->flags |= (XCHAN_CONFIGURED | XCHAN_TYPE_SG);
XCHAN_LOCK(xchan);
ret = XDMA_CHANNEL_PREP_SG(xdma->dma_dev, xchan);
if (ret != 0) {
device_printf(xdma->dev,
"%s: Can't prepare SG transfer.\n", __func__);
XCHAN_UNLOCK(xchan);
return (-1);
}
XCHAN_UNLOCK(xchan);
return (0);
}
void
xchan_seg_done(xdma_channel_t *xchan,
struct xdma_transfer_status *st)
{
struct xdma_request *xr;
struct xchan_buf *b;
bus_addr_t addr;
xr = TAILQ_FIRST(&xchan->processing);
if (xr == NULL)
panic("request not found\n");
b = &xr->buf;
atomic_subtract_int(&b->nsegs_left, 1);
if (b->nsegs_left == 0) {
if (xchan->caps & XCHAN_CAP_BUSDMA) {
if (xr->direction == XDMA_MEM_TO_DEV)
bus_dmamap_sync(xchan->dma_tag_bufs, b->map,
BUS_DMASYNC_POSTWRITE);
else
bus_dmamap_sync(xchan->dma_tag_bufs, b->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(xchan->dma_tag_bufs, b->map);
} else if (xchan->caps & XCHAN_CAP_BOUNCE) {
if (xr->req_type == XR_TYPE_MBUF &&
xr->direction == XDMA_DEV_TO_MEM)
m_copyback(xr->m, 0, st->transferred,
(void *)xr->buf.vaddr);
} else if (xchan->caps & XCHAN_CAP_IOMMU) {
if (xr->direction == XDMA_MEM_TO_DEV)
addr = xr->src_addr;
else
addr = xr->dst_addr;
xdma_iommu_remove_entry(xchan, addr);
}
xr->status.error = st->error;
xr->status.transferred = st->transferred;
QUEUE_PROC_LOCK(xchan);
TAILQ_REMOVE(&xchan->processing, xr, xr_next);
QUEUE_PROC_UNLOCK(xchan);
QUEUE_OUT_LOCK(xchan);
TAILQ_INSERT_TAIL(&xchan->queue_out, xr, xr_next);
QUEUE_OUT_UNLOCK(xchan);
}
}
static void
xdma_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct seg_load_request *slr;
struct bus_dma_segment *seg;
int i;
slr = arg;
seg = slr->seg;
if (error != 0) {
slr->error = error;
return;
}
slr->nsegs = nsegs;
for (i = 0; i < nsegs; i++) {
seg[i].ds_addr = segs[i].ds_addr;
seg[i].ds_len = segs[i].ds_len;
}
}
static int
_xdma_load_data_busdma(xdma_channel_t *xchan, struct xdma_request *xr,
struct bus_dma_segment *seg)
{
xdma_controller_t *xdma;
struct seg_load_request slr;
uint32_t nsegs;
void *addr;
int error;
xdma = xchan->xdma;
error = 0;
nsegs = 0;
switch (xr->req_type) {
case XR_TYPE_MBUF:
error = bus_dmamap_load_mbuf_sg(xchan->dma_tag_bufs,
xr->buf.map, xr->m, seg, &nsegs, BUS_DMA_NOWAIT);
break;
case XR_TYPE_BIO:
slr.nsegs = 0;
slr.error = 0;
slr.seg = seg;
error = bus_dmamap_load_bio(xchan->dma_tag_bufs,
xr->buf.map, xr->bp, xdma_dmamap_cb, &slr, BUS_DMA_NOWAIT);
if (slr.error != 0) {
device_printf(xdma->dma_dev,
"%s: bus_dmamap_load failed, err %d\n",
__func__, slr.error);
return (0);
}
nsegs = slr.nsegs;
break;
case XR_TYPE_VIRT:
switch (xr->direction) {
case XDMA_MEM_TO_DEV:
addr = (void *)xr->src_addr;
break;
case XDMA_DEV_TO_MEM:
addr = (void *)xr->dst_addr;
break;
default:
device_printf(xdma->dma_dev,
"%s: Direction is not supported\n", __func__);
return (0);
}
slr.nsegs = 0;
slr.error = 0;
slr.seg = seg;
error = bus_dmamap_load(xchan->dma_tag_bufs, xr->buf.map,
addr, (xr->block_len * xr->block_num),
xdma_dmamap_cb, &slr, BUS_DMA_NOWAIT);
if (slr.error != 0) {
device_printf(xdma->dma_dev,
"%s: bus_dmamap_load failed, err %d\n",
__func__, slr.error);
return (0);
}
nsegs = slr.nsegs;
break;
default:
break;
}
if (error != 0) {
if (error == ENOMEM) {
/*
* Out of memory. Try again later.
* TODO: count errors.
*/
} else
device_printf(xdma->dma_dev,
"%s: bus_dmamap_load failed with err %d\n",
__func__, error);
return (0);
}
if (xr->direction == XDMA_MEM_TO_DEV)
bus_dmamap_sync(xchan->dma_tag_bufs, xr->buf.map,
BUS_DMASYNC_PREWRITE);
else
bus_dmamap_sync(xchan->dma_tag_bufs, xr->buf.map,
BUS_DMASYNC_PREREAD);
return (nsegs);
}
static int
_xdma_load_data(xdma_channel_t *xchan, struct xdma_request *xr,
struct bus_dma_segment *seg)
{
struct mbuf *m;
uint32_t nsegs;
vm_offset_t va, addr;
bus_addr_t pa;
vm_prot_t prot;
m = xr->m;
KASSERT(xchan->caps & (XCHAN_CAP_NOSEG | XCHAN_CAP_BOUNCE),
("Handling segmented data is not implemented here."));
nsegs = 1;
switch (xr->req_type) {
case XR_TYPE_MBUF:
if (xchan->caps & XCHAN_CAP_BOUNCE) {
if (xr->direction == XDMA_MEM_TO_DEV)
m_copydata(m, 0, m->m_pkthdr.len,
(void *)xr->buf.vaddr);
seg[0].ds_addr = (bus_addr_t)xr->buf.paddr;
} else if (xchan->caps & XCHAN_CAP_IOMMU) {
addr = mtod(m, bus_addr_t);
pa = vtophys(addr);
if (xr->direction == XDMA_MEM_TO_DEV)
prot = VM_PROT_READ;
else
prot = VM_PROT_WRITE;
xdma_iommu_add_entry(xchan, &va,
pa, m->m_pkthdr.len, prot);
/*
* Save VA so we can unload data later
* after completion of this transfer.
*/
if (xr->direction == XDMA_MEM_TO_DEV)
xr->src_addr = va;
else
xr->dst_addr = va;
seg[0].ds_addr = va;
} else
seg[0].ds_addr = mtod(m, bus_addr_t);
seg[0].ds_len = m->m_pkthdr.len;
break;
case XR_TYPE_BIO:
case XR_TYPE_VIRT:
default:
panic("implement me\n");
}
return (nsegs);
}
static int
xdma_load_data(xdma_channel_t *xchan,
struct xdma_request *xr, struct bus_dma_segment *seg)
{
int nsegs;
nsegs = 0;
if (xchan->caps & XCHAN_CAP_BUSDMA)
nsegs = _xdma_load_data_busdma(xchan, xr, seg);
else
nsegs = _xdma_load_data(xchan, xr, seg);
if (nsegs == 0)
return (0); /* Try again later. */
xr->buf.nsegs = nsegs;
xr->buf.nsegs_left = nsegs;
return (nsegs);
}
static int
xdma_process(xdma_channel_t *xchan,
struct xdma_sglist *sg)
{
struct bus_dma_segment seg[XDMA_MAX_SEG];
struct xdma_request *xr;
struct xdma_request *xr_tmp;
xdma_controller_t *xdma;
uint32_t capacity;
uint32_t n;
uint32_t c;
int nsegs;
int ret;
XCHAN_ASSERT_LOCKED(xchan);
xdma = xchan->xdma;
n = 0;
c = 0;
ret = XDMA_CHANNEL_CAPACITY(xdma->dma_dev, xchan, &capacity);
if (ret != 0) {
device_printf(xdma->dev,
"%s: Can't get DMA controller capacity.\n", __func__);
return (-1);
}
TAILQ_FOREACH_SAFE(xr, &xchan->queue_in, xr_next, xr_tmp) {
switch (xr->req_type) {
case XR_TYPE_MBUF:
if ((xchan->caps & XCHAN_CAP_NOSEG) ||
(c > xchan->maxnsegs))
c = xdma_mbuf_defrag(xchan, xr);
break;
case XR_TYPE_BIO:
case XR_TYPE_VIRT:
default:
c = 1;
}
if (capacity <= (c + n)) {
/*
* No space yet available for the entire
* request in the DMA engine.
*/
break;
}
if ((c + n + xchan->maxnsegs) >= XDMA_SGLIST_MAXLEN) {
/* Sglist is full. */
break;
}
nsegs = xdma_load_data(xchan, xr, seg);
if (nsegs == 0)
break;
xdma_sglist_add(&sg[n], seg, nsegs, xr);
n += nsegs;
QUEUE_IN_LOCK(xchan);
TAILQ_REMOVE(&xchan->queue_in, xr, xr_next);
QUEUE_IN_UNLOCK(xchan);
QUEUE_PROC_LOCK(xchan);
TAILQ_INSERT_TAIL(&xchan->processing, xr, xr_next);
QUEUE_PROC_UNLOCK(xchan);
}
return (n);
}
int
xdma_queue_submit_sg(xdma_channel_t *xchan)
{
struct xdma_sglist *sg;
xdma_controller_t *xdma;
uint32_t sg_n;
int ret;
xdma = xchan->xdma;
KASSERT(xdma != NULL, ("xdma is NULL"));
XCHAN_ASSERT_LOCKED(xchan);
sg = xchan->sg;
if ((xchan->caps & (XCHAN_CAP_BOUNCE | XCHAN_CAP_BUSDMA)) &&
(xchan->flags & XCHAN_BUFS_ALLOCATED) == 0) {
device_printf(xdma->dev,
"%s: Can't submit a transfer: no bufs\n",
__func__);
return (-1);
}
sg_n = xdma_process(xchan, sg);
if (sg_n == 0)
return (0); /* Nothing to submit */
/* Now submit sglist to DMA engine driver. */
ret = XDMA_CHANNEL_SUBMIT_SG(xdma->dma_dev, xchan, sg, sg_n);
if (ret != 0) {
device_printf(xdma->dev,
"%s: Can't submit an sglist.\n", __func__);
return (-1);
}
return (0);
}