/*-
* Copyright (c) 2017-2018 Ruslan Bukin
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* ARM PrimeCell DMA Controller (PL330) driver. */
#include
#include "opt_platform.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef FDT
#include
#include
#include
#endif
#include
#include
#include "xdma_if.h"
#define PL330_DEBUG
#undef PL330_DEBUG
#ifdef PL330_DEBUG
#define dprintf(fmt, ...) printf(fmt, ##__VA_ARGS__)
#else
#define dprintf(fmt, ...)
#endif
#define READ4(_sc, _reg) \
bus_read_4(_sc->res[0], _reg)
#define WRITE4(_sc, _reg, _val) \
bus_write_4(_sc->res[0], _reg, _val)
#define PL330_NCHANNELS 32
#define PL330_MAXLOAD 2048
struct pl330_channel {
struct pl330_softc *sc;
xdma_channel_t *xchan;
int used;
int index;
uint8_t *ibuf;
bus_addr_t ibuf_phys;
uint32_t enqueued;
uint32_t capacity;
};
struct pl330_fdt_data {
uint32_t periph_id;
};
struct pl330_softc {
device_t dev;
struct resource *res[PL330_NCHANNELS + 1];
void *ih[PL330_NCHANNELS];
struct pl330_channel channels[PL330_NCHANNELS];
};
static struct resource_spec pl330_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 4, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 5, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 6, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 7, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 8, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 9, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 10, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 11, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 12, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 13, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 14, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 15, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 16, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 17, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 18, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 19, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 20, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 21, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 22, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 23, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 24, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 25, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 26, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 27, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 28, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 29, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 30, RF_ACTIVE | RF_OPTIONAL },
{ SYS_RES_IRQ, 31, RF_ACTIVE | RF_OPTIONAL },
{ -1, 0 }
};
#define HWTYPE_NONE 0
#define HWTYPE_STD 1
static struct ofw_compat_data compat_data[] = {
{ "arm,pl330", HWTYPE_STD },
{ NULL, HWTYPE_NONE },
};
static void
pl330_intr(void *arg)
{
xdma_transfer_status_t status;
struct xdma_transfer_status st;
struct pl330_channel *chan;
struct xdma_channel *xchan;
struct pl330_softc *sc;
uint32_t pending;
int i;
int c;
sc = arg;
pending = READ4(sc, INTMIS);
dprintf("%s: 0x%x, LC0 %x, SAR %x DAR %x\n",
__func__, pending, READ4(sc, LC0(0)),
READ4(sc, SAR(0)), READ4(sc, DAR(0)));
WRITE4(sc, INTCLR, pending);
for (c = 0; c < PL330_NCHANNELS; c++) {
if ((pending & (1 << c)) == 0) {
continue;
}
chan = &sc->channels[c];
xchan = chan->xchan;
st.error = 0;
st.transferred = 0;
for (i = 0; i < chan->enqueued; i++) {
xchan_seg_done(xchan, &st);
}
/* Accept new requests. */
chan->capacity = PL330_MAXLOAD;
/* Finish operation */
status.error = 0;
status.transferred = 0;
xdma_callback(chan->xchan, &status);
}
}
static uint32_t
emit_mov(uint8_t *buf, uint32_t reg, uint32_t val)
{
buf[0] = DMAMOV;
buf[1] = reg;
buf[2] = val;
buf[3] = val >> 8;
buf[4] = val >> 16;
buf[5] = val >> 24;
return (6);
}
static uint32_t
emit_lp(uint8_t *buf, uint8_t idx, uint32_t iter)
{
if (idx > 1)
return (0); /* We have two loops only. */
buf[0] = DMALP;
buf[0] |= (idx << 1);
buf[1] = (iter - 1) & 0xff;
return (2);
}
static uint32_t
emit_lpend(uint8_t *buf, uint8_t idx,
uint8_t burst, uint8_t jump_addr_relative)
{
buf[0] = DMALPEND;
buf[0] |= DMALPEND_NF;
buf[0] |= (idx << 2);
if (burst)
buf[0] |= (1 << 1) | (1 << 0);
else
buf[0] |= (0 << 1) | (1 << 0);
buf[1] = jump_addr_relative;
return (2);
}
static uint32_t
emit_ld(uint8_t *buf, uint8_t burst)
{
buf[0] = DMALD;
if (burst)
buf[0] |= (1 << 1) | (1 << 0);
else
buf[0] |= (0 << 1) | (1 << 0);
return (1);
}
static uint32_t
emit_st(uint8_t *buf, uint8_t burst)
{
buf[0] = DMAST;
if (burst)
buf[0] |= (1 << 1) | (1 << 0);
else
buf[0] |= (0 << 1) | (1 << 0);
return (1);
}
static uint32_t
emit_end(uint8_t *buf)
{
buf[0] = DMAEND;
return (1);
}
static uint32_t
emit_sev(uint8_t *buf, uint32_t ev)
{
buf[0] = DMASEV;
buf[1] = (ev << 3);
return (2);
}
static uint32_t
emit_wfp(uint8_t *buf, uint32_t p_id)
{
buf[0] = DMAWFP;
buf[0] |= (1 << 0);
buf[1] = (p_id << 3);
return (2);
}
static uint32_t
emit_go(uint8_t *buf, uint32_t chan_id,
uint32_t addr, uint8_t non_secure)
{
buf[0] = DMAGO;
buf[0] |= (non_secure << 1);
buf[1] = chan_id;
buf[2] = addr;
buf[3] = addr >> 8;
buf[4] = addr >> 16;
buf[5] = addr >> 24;
return (6);
}
static int
pl330_probe(device_t dev)
{
int hwtype;
if (!ofw_bus_status_okay(dev))
return (ENXIO);
hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
if (hwtype == HWTYPE_NONE)
return (ENXIO);
device_set_desc(dev, "ARM PrimeCell DMA Controller (PL330)");
return (BUS_PROBE_DEFAULT);
}
static int
pl330_attach(device_t dev)
{
struct pl330_softc *sc;
phandle_t xref, node;
int err;
int i;
sc = device_get_softc(dev);
sc->dev = dev;
if (bus_alloc_resources(dev, pl330_spec, sc->res)) {
device_printf(dev, "could not allocate resources for device\n");
return (ENXIO);
}
/* Setup interrupt handler */
for (i = 0; i < PL330_NCHANNELS; i++) {
if (sc->res[i + 1] == NULL)
break;
err = bus_setup_intr(dev, sc->res[i + 1], INTR_TYPE_MISC | INTR_MPSAFE,
NULL, pl330_intr, sc, sc->ih[i]);
if (err) {
device_printf(dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
}
node = ofw_bus_get_node(dev);
xref = OF_xref_from_node(node);
OF_device_register_xref(xref, dev);
return (0);
}
static int
pl330_detach(device_t dev)
{
return (0);
}
static int
pl330_channel_alloc(device_t dev, struct xdma_channel *xchan)
{
struct pl330_channel *chan;
struct pl330_softc *sc;
int i;
sc = device_get_softc(dev);
for (i = 0; i < PL330_NCHANNELS; i++) {
chan = &sc->channels[i];
if (chan->used == 0) {
chan->xchan = xchan;
xchan->chan = (void *)chan;
xchan->caps |= XCHAN_CAP_BUSDMA;
chan->index = i;
chan->sc = sc;
chan->used = 1;
chan->ibuf = (void *)kmem_alloc_contig(PAGE_SIZE * 8,
M_ZERO, 0, ~0, PAGE_SIZE, 0,
VM_MEMATTR_UNCACHEABLE);
chan->ibuf_phys = vtophys(chan->ibuf);
return (0);
}
}
return (-1);
}
static int
pl330_channel_free(device_t dev, struct xdma_channel *xchan)
{
struct pl330_channel *chan;
chan = (struct pl330_channel *)xchan->chan;
chan->used = 0;
return (0);
}
static int
pl330_channel_capacity(device_t dev, xdma_channel_t *xchan,
uint32_t *capacity)
{
struct pl330_channel *chan;
chan = (struct pl330_channel *)xchan->chan;
*capacity = chan->capacity;
return (0);
}
static int
pl330_ccr_port_width(struct xdma_sglist *sg, uint32_t *addr)
{
uint32_t reg;
reg = 0;
switch (sg->src_width) {
case 1:
reg |= CCR_SRC_BURST_SIZE_1;
break;
case 2:
reg |= CCR_SRC_BURST_SIZE_2;
break;
case 4:
reg |= CCR_SRC_BURST_SIZE_4;
break;
default:
return (-1);
}
switch (sg->dst_width) {
case 1:
reg |= CCR_DST_BURST_SIZE_1;
break;
case 2:
reg |= CCR_DST_BURST_SIZE_2;
break;
case 4:
reg |= CCR_DST_BURST_SIZE_4;
break;
default:
return (-1);
}
*addr |= reg;
return (0);
}
static int
pl330_channel_submit_sg(device_t dev, struct xdma_channel *xchan,
struct xdma_sglist *sg, uint32_t sg_n)
{
struct pl330_fdt_data *data;
xdma_controller_t *xdma;
struct pl330_channel *chan;
struct pl330_softc *sc;
uint32_t src_addr_lo;
uint32_t dst_addr_lo;
uint32_t len;
uint32_t reg;
uint32_t offs;
uint32_t cnt;
uint8_t *ibuf;
uint8_t dbuf[6];
uint8_t offs0, offs1;
int err;
int i;
sc = device_get_softc(dev);
xdma = xchan->xdma;
data = (struct pl330_fdt_data *)xdma->data;
chan = (struct pl330_channel *)xchan->chan;
ibuf = chan->ibuf;
dprintf("%s: chan->index %d\n", __func__, chan->index);
offs = 0;
for (i = 0; i < sg_n; i++) {
if (sg[i].direction == XDMA_DEV_TO_MEM)
reg = CCR_DST_INC;
else {
reg = CCR_SRC_INC;
reg |= (CCR_DST_PROT_PRIV);
}
err = pl330_ccr_port_width(&sg[i], ®);
if (err != 0)
return (err);
offs += emit_mov(&chan->ibuf[offs], R_CCR, reg);
src_addr_lo = (uint32_t)sg[i].src_addr;
dst_addr_lo = (uint32_t)sg[i].dst_addr;
len = (uint32_t)sg[i].len;
dprintf("%s: src %x dst %x len %d periph_id %d\n", __func__,
src_addr_lo, dst_addr_lo, len, data->periph_id);
offs += emit_mov(&ibuf[offs], R_SAR, src_addr_lo);
offs += emit_mov(&ibuf[offs], R_DAR, dst_addr_lo);
if (sg[i].src_width != sg[i].dst_width)
return (-1); /* Not supported. */
cnt = (len / sg[i].src_width);
if (cnt > 128) {
offs += emit_lp(&ibuf[offs], 0, cnt / 128);
offs0 = offs;
offs += emit_lp(&ibuf[offs], 1, 128);
offs1 = offs;
} else {
offs += emit_lp(&ibuf[offs], 0, cnt);
offs0 = offs;
}
offs += emit_wfp(&ibuf[offs], data->periph_id);
offs += emit_ld(&ibuf[offs], 1);
offs += emit_st(&ibuf[offs], 1);
if (cnt > 128)
offs += emit_lpend(&ibuf[offs], 1, 1, (offs - offs1));
offs += emit_lpend(&ibuf[offs], 0, 1, (offs - offs0));
}
offs += emit_sev(&ibuf[offs], chan->index);
offs += emit_end(&ibuf[offs]);
emit_go(dbuf, chan->index, chan->ibuf_phys, 0);
reg = (dbuf[1] << 24) | (dbuf[0] << 16);
WRITE4(sc, DBGINST0, reg);
reg = (dbuf[5] << 24) | (dbuf[4] << 16) | (dbuf[3] << 8) | dbuf[2];
WRITE4(sc, DBGINST1, reg);
WRITE4(sc, INTCLR, 0xffffffff);
WRITE4(sc, INTEN, (1 << chan->index));
chan->enqueued = sg_n;
chan->capacity = 0;
/* Start operation */
WRITE4(sc, DBGCMD, 0);
return (0);
}
static int
pl330_channel_prep_sg(device_t dev, struct xdma_channel *xchan)
{
struct pl330_channel *chan;
dprintf("%s(%d)\n", __func__, device_get_unit(dev));
chan = (struct pl330_channel *)xchan->chan;
chan->capacity = PL330_MAXLOAD;
return (0);
}
static int
pl330_channel_control(device_t dev, xdma_channel_t *xchan, int cmd)
{
switch (cmd) {
case XDMA_CMD_BEGIN:
case XDMA_CMD_TERMINATE:
case XDMA_CMD_PAUSE:
/* TODO: implement me */
return (-1);
}
return (0);
}
#ifdef FDT
static int
pl330_ofw_md_data(device_t dev, pcell_t *cells, int ncells, void **ptr)
{
struct pl330_fdt_data *data;
if (ncells != 1)
return (-1);
data = malloc(sizeof(struct pl330_fdt_data),
M_DEVBUF, (M_WAITOK | M_ZERO));
data->periph_id = cells[0];
*ptr = data;
return (0);
}
#endif
static device_method_t pl330_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, pl330_probe),
DEVMETHOD(device_attach, pl330_attach),
DEVMETHOD(device_detach, pl330_detach),
/* xDMA Interface */
DEVMETHOD(xdma_channel_alloc, pl330_channel_alloc),
DEVMETHOD(xdma_channel_free, pl330_channel_free),
DEVMETHOD(xdma_channel_control, pl330_channel_control),
/* xDMA SG Interface */
DEVMETHOD(xdma_channel_capacity, pl330_channel_capacity),
DEVMETHOD(xdma_channel_prep_sg, pl330_channel_prep_sg),
DEVMETHOD(xdma_channel_submit_sg, pl330_channel_submit_sg),
#ifdef FDT
DEVMETHOD(xdma_ofw_md_data, pl330_ofw_md_data),
#endif
DEVMETHOD_END
};
static driver_t pl330_driver = {
"pl330",
pl330_methods,
sizeof(struct pl330_softc),
};
EARLY_DRIVER_MODULE(pl330, simplebus, pl330_driver, 0, 0,
BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LATE);