/*- * Copyright (c) 2011, Bryan Venteicher * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Driver for the VirtIO PCI interface. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virtio_bus_if.h" #include "virtio_if.h" struct vtpci_softc { device_t vtpci_dev; struct resource *vtpci_res; struct resource *vtpci_msix_res; uint64_t vtpci_features; uint32_t vtpci_flags; #define VIRTIO_PCI_FLAG_NO_MSI 0x0001 #define VIRTIO_PCI_FLAG_MSI 0x0002 #define VIRTIO_PCI_FLAG_NO_MSIX 0x0010 #define VIRTIO_PCI_FLAG_MSIX 0x0020 #define VIRTIO_PCI_FLAG_SHARED_MSIX 0x0040 device_t vtpci_child_dev; struct virtio_feature_desc *vtpci_child_feat_desc; /* * Ideally, each virtqueue that the driver provides a callback for * will receive its own MSIX vector. If there are not sufficient * vectors available, we will then attempt to have all the VQs * share one vector. Note that when using MSIX, the configuration * changed notifications must be on their own vector. * * If MSIX is not available, we will attempt to have the whole * device share one MSI vector, and then, finally, one legacy * interrupt. */ int vtpci_nvqs; struct vtpci_virtqueue { struct virtqueue *vq; /* Index into vtpci_intr_res[] below. Unused, then -1. */ int ires_idx; } vtpci_vqx[VIRTIO_MAX_VIRTQUEUES]; /* * When using MSIX interrupts, the first element of vtpci_intr_res[] * is always the configuration changed notifications. The remaining * element(s) are used for the virtqueues. * * With MSI and legacy interrupts, only the first element of * vtpci_intr_res[] is used. */ int vtpci_nintr_res; struct vtpci_intr_resource { struct resource *irq; int rid; void *intrhand; } vtpci_intr_res[1 + VIRTIO_MAX_VIRTQUEUES]; }; static int vtpci_probe(device_t); static int vtpci_attach(device_t); static int vtpci_detach(device_t); static int vtpci_suspend(device_t); static int vtpci_resume(device_t); static int vtpci_shutdown(device_t); static void vtpci_driver_added(device_t, driver_t *); static void vtpci_child_detached(device_t, device_t); static int vtpci_read_ivar(device_t, device_t, int, uintptr_t *); static int vtpci_write_ivar(device_t, device_t, int, uintptr_t); static uint64_t vtpci_negotiate_features(device_t, uint64_t); static int vtpci_with_feature(device_t, uint64_t); static int vtpci_alloc_virtqueues(device_t, int, int, struct vq_alloc_info *); static int vtpci_setup_intr(device_t, enum intr_type); static void vtpci_stop(device_t); static int vtpci_reinit(device_t, uint64_t); static void vtpci_reinit_complete(device_t); static void vtpci_notify_virtqueue(device_t, uint16_t); static uint8_t vtpci_get_status(device_t); static void vtpci_set_status(device_t, uint8_t); static void vtpci_read_dev_config(device_t, bus_size_t, void *, int); static void vtpci_write_dev_config(device_t, bus_size_t, void *, int); static void vtpci_describe_features(struct vtpci_softc *, const char *, uint64_t); static void vtpci_probe_and_attach_child(struct vtpci_softc *); static int vtpci_alloc_interrupts(struct vtpci_softc *, int, int, struct vq_alloc_info *); static int vtpci_alloc_intr_resources(struct vtpci_softc *, int, struct vq_alloc_info *); static int vtpci_alloc_msi(struct vtpci_softc *); static int vtpci_alloc_msix(struct vtpci_softc *, int); static int vtpci_register_msix_vector(struct vtpci_softc *, int, int); static void vtpci_free_interrupts(struct vtpci_softc *); static void vtpci_free_virtqueues(struct vtpci_softc *); static void vtpci_release_child_resources(struct vtpci_softc *); static void vtpci_reset(struct vtpci_softc *); static int vtpci_legacy_intr(void *); static int vtpci_vq_shared_intr(void *); static int vtpci_vq_intr(void *); static int vtpci_config_intr(void *); /* * I/O port read/write wrappers. */ #define vtpci_read_config_1(sc, o) bus_read_1((sc)->vtpci_res, (o)) #define vtpci_read_config_2(sc, o) bus_read_2((sc)->vtpci_res, (o)) #define vtpci_read_config_4(sc, o) bus_read_4((sc)->vtpci_res, (o)) #define vtpci_write_config_1(sc, o, v) bus_write_1((sc)->vtpci_res, (o), (v)) #define vtpci_write_config_2(sc, o, v) bus_write_2((sc)->vtpci_res, (o), (v)) #define vtpci_write_config_4(sc, o, v) bus_write_4((sc)->vtpci_res, (o), (v)) /* Tunables. */ static int vtpci_disable_msix = 0; TUNABLE_INT("hw.virtio.pci.disable_msix", &vtpci_disable_msix); static device_method_t vtpci_methods[] = { /* Device interface. */ DEVMETHOD(device_probe, vtpci_probe), DEVMETHOD(device_attach, vtpci_attach), DEVMETHOD(device_detach, vtpci_detach), DEVMETHOD(device_suspend, vtpci_suspend), DEVMETHOD(device_resume, vtpci_resume), DEVMETHOD(device_shutdown, vtpci_shutdown), /* Bus interface. */ DEVMETHOD(bus_driver_added, vtpci_driver_added), DEVMETHOD(bus_child_detached, vtpci_child_detached), DEVMETHOD(bus_read_ivar, vtpci_read_ivar), DEVMETHOD(bus_write_ivar, vtpci_write_ivar), /* VirtIO bus interface. */ DEVMETHOD(virtio_bus_negotiate_features, vtpci_negotiate_features), DEVMETHOD(virtio_bus_with_feature, vtpci_with_feature), DEVMETHOD(virtio_bus_alloc_virtqueues, vtpci_alloc_virtqueues), DEVMETHOD(virtio_bus_setup_intr, vtpci_setup_intr), DEVMETHOD(virtio_bus_stop, vtpci_stop), DEVMETHOD(virtio_bus_reinit, vtpci_reinit), DEVMETHOD(virtio_bus_reinit_complete, vtpci_reinit_complete), DEVMETHOD(virtio_bus_notify_vq, vtpci_notify_virtqueue), DEVMETHOD(virtio_bus_read_device_config, vtpci_read_dev_config), DEVMETHOD(virtio_bus_write_device_config, vtpci_write_dev_config), { 0, 0 } }; static driver_t vtpci_driver = { "virtio_pci", vtpci_methods, sizeof(struct vtpci_softc) }; devclass_t vtpci_devclass; DRIVER_MODULE(virtio_pci, pci, vtpci_driver, vtpci_devclass, 0, 0); MODULE_VERSION(virtio_pci, 1); MODULE_DEPEND(virtio_pci, pci, 1, 1, 1); MODULE_DEPEND(virtio_pci, virtio, 1, 1, 1); static int vtpci_probe(device_t dev) { char desc[36]; const char *name; if (pci_get_vendor(dev) != VIRTIO_PCI_VENDORID) return (ENXIO); if (pci_get_device(dev) < VIRTIO_PCI_DEVICEID_MIN || pci_get_device(dev) > VIRTIO_PCI_DEVICEID_MAX) return (ENXIO); if (pci_get_revid(dev) != VIRTIO_PCI_ABI_VERSION) return (ENXIO); name = virtio_device_name(pci_get_subdevice(dev)); if (name == NULL) name = "Unknown"; snprintf(desc, sizeof(desc), "VirtIO PCI %s adapter", name); device_set_desc_copy(dev, desc); return (BUS_PROBE_DEFAULT); } static int vtpci_attach(device_t dev) { struct vtpci_softc *sc; device_t child; int rid; sc = device_get_softc(dev); sc->vtpci_dev = dev; pci_enable_busmaster(dev); rid = PCIR_BAR(0); sc->vtpci_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (sc->vtpci_res == NULL) { device_printf(dev, "cannot map I/O space\n"); return (ENXIO); } if (pci_find_extcap(dev, PCIY_MSI, NULL) != 0) sc->vtpci_flags |= VIRTIO_PCI_FLAG_NO_MSI; if (pci_find_extcap(dev, PCIY_MSIX, NULL) == 0) { rid = PCIR_BAR(1); sc->vtpci_msix_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); } if (sc->vtpci_msix_res == NULL) sc->vtpci_flags |= VIRTIO_PCI_FLAG_NO_MSIX; vtpci_reset(sc); /* Tell the host we've noticed this device. */ vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_ACK); if ((child = device_add_child(dev, NULL, -1)) == NULL) { device_printf(dev, "cannot create child device\n"); vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_FAILED); vtpci_detach(dev); return (ENOMEM); } sc->vtpci_child_dev = child; vtpci_probe_and_attach_child(sc); return (0); } static int vtpci_detach(device_t dev) { struct vtpci_softc *sc; device_t child; int error; sc = device_get_softc(dev); if ((child = sc->vtpci_child_dev) != NULL) { error = device_delete_child(dev, child); if (error) return (error); sc->vtpci_child_dev = NULL; } vtpci_reset(sc); if (sc->vtpci_msix_res != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(1), sc->vtpci_msix_res); sc->vtpci_msix_res = NULL; } if (sc->vtpci_res != NULL) { bus_release_resource(dev, SYS_RES_IOPORT, PCIR_BAR(0), sc->vtpci_res); sc->vtpci_res = NULL; } return (0); } static int vtpci_suspend(device_t dev) { return (bus_generic_suspend(dev)); } static int vtpci_resume(device_t dev) { return (bus_generic_resume(dev)); } static int vtpci_shutdown(device_t dev) { (void) bus_generic_shutdown(dev); /* Forcibly stop the host device. */ vtpci_stop(dev); return (0); } static void vtpci_driver_added(device_t dev, driver_t *driver) { struct vtpci_softc *sc; sc = device_get_softc(dev); vtpci_probe_and_attach_child(sc); } static void vtpci_child_detached(device_t dev, device_t child) { struct vtpci_softc *sc; sc = device_get_softc(dev); vtpci_reset(sc); vtpci_release_child_resources(sc); } static int vtpci_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { struct vtpci_softc *sc; sc = device_get_softc(dev); if (sc->vtpci_child_dev != child) return (ENOENT); switch (index) { case VIRTIO_IVAR_DEVTYPE: *result = pci_get_subdevice(dev); break; default: return (ENOENT); } return (0); } static int vtpci_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { struct vtpci_softc *sc; sc = device_get_softc(dev); if (sc->vtpci_child_dev != child) return (ENOENT); switch (index) { case VIRTIO_IVAR_FEATURE_DESC: sc->vtpci_child_feat_desc = (void *) value; break; default: return (ENOENT); } return (0); } static uint64_t vtpci_negotiate_features(device_t dev, uint64_t child_features) { struct vtpci_softc *sc; uint64_t host_features, features; sc = device_get_softc(dev); host_features = vtpci_read_config_4(sc, VIRTIO_PCI_HOST_FEATURES); vtpci_describe_features(sc, "host", host_features); /* * Limit negotiated features to what the driver, virtqueue, and * host all support. */ features = host_features & child_features; features = virtqueue_filter_features(features); sc->vtpci_features = features; vtpci_describe_features(sc, "negotiated", features); vtpci_write_config_4(sc, VIRTIO_PCI_GUEST_FEATURES, features); return (features); } static int vtpci_with_feature(device_t dev, uint64_t feature) { struct vtpci_softc *sc; sc = device_get_softc(dev); return ((sc->vtpci_features & feature) != 0); } static int vtpci_alloc_virtqueues(device_t dev, int flags, int nvqs, struct vq_alloc_info *vq_info) { struct vtpci_softc *sc; struct vtpci_virtqueue *vqx; struct vq_alloc_info *info; int queue, error; uint16_t vq_size; sc = device_get_softc(dev); if (sc->vtpci_nvqs != 0 || nvqs <= 0 || nvqs > VIRTIO_MAX_VIRTQUEUES) return (EINVAL); error = vtpci_alloc_interrupts(sc, flags, nvqs, vq_info); if (error) { device_printf(dev, "cannot allocate interrupts\n"); return (error); } if (sc->vtpci_flags & VIRTIO_PCI_FLAG_MSIX) { error = vtpci_register_msix_vector(sc, VIRTIO_MSI_CONFIG_VECTOR, 0); if (error) return (error); } for (queue = 0; queue < nvqs; queue++) { vqx = &sc->vtpci_vqx[queue]; info = &vq_info[queue]; vtpci_write_config_2(sc, VIRTIO_PCI_QUEUE_SEL, queue); vq_size = vtpci_read_config_2(sc, VIRTIO_PCI_QUEUE_NUM); error = virtqueue_alloc(dev, queue, vq_size, VIRTIO_PCI_VRING_ALIGN, 0xFFFFFFFFUL, info, &vqx->vq); if (error) return (error); if (sc->vtpci_flags & VIRTIO_PCI_FLAG_MSIX) { error = vtpci_register_msix_vector(sc, VIRTIO_MSI_QUEUE_VECTOR, vqx->ires_idx); if (error) return (error); } vtpci_write_config_4(sc, VIRTIO_PCI_QUEUE_PFN, virtqueue_paddr(vqx->vq) >> VIRTIO_PCI_QUEUE_ADDR_SHIFT); *info->vqai_vq = vqx->vq; sc->vtpci_nvqs++; } return (0); } static int vtpci_setup_intr(device_t dev, enum intr_type type) { struct vtpci_softc *sc; struct vtpci_intr_resource *ires; struct vtpci_virtqueue *vqx; int i, flags, error; sc = device_get_softc(dev); flags = type | INTR_MPSAFE; ires = &sc->vtpci_intr_res[0]; if ((sc->vtpci_flags & VIRTIO_PCI_FLAG_MSIX) == 0) { error = bus_setup_intr(dev, ires->irq, flags, vtpci_legacy_intr, NULL, sc, &ires->intrhand); return (error); } error = bus_setup_intr(dev, ires->irq, flags, vtpci_config_intr, NULL, sc, &ires->intrhand); if (error) return (error); if (sc->vtpci_flags & VIRTIO_PCI_FLAG_SHARED_MSIX) { ires = &sc->vtpci_intr_res[1]; error = bus_setup_intr(dev, ires->irq, flags, vtpci_vq_shared_intr, NULL, sc, &ires->intrhand); return (error); } /* Setup an interrupt handler for each virtqueue. */ for (i = 0; i < sc->vtpci_nvqs; i++) { vqx = &sc->vtpci_vqx[i]; if (vqx->ires_idx < 1) continue; ires = &sc->vtpci_intr_res[vqx->ires_idx]; error = bus_setup_intr(dev, ires->irq, flags, vtpci_vq_intr, NULL, vqx->vq, &ires->intrhand); if (error) return (error); } return (0); } static void vtpci_stop(device_t dev) { vtpci_reset(device_get_softc(dev)); } static int vtpci_reinit(device_t dev, uint64_t features) { struct vtpci_softc *sc; struct vtpci_virtqueue *vqx; struct virtqueue *vq; int queue, error; uint16_t vq_size; sc = device_get_softc(dev); /* * Redrive the device initialization. This is a bit of an abuse * of the specification, but both VirtualBox and QEMU/KVM seem * to play nice. We do not allow the host device to change from * what was originally negotiated beyond what the guest driver * changed (MSIX state should not change, number of virtqueues * and their size remain the same, etc). */ if (vtpci_get_status(dev) != VIRTIO_CONFIG_STATUS_RESET) vtpci_stop(dev); /* * Quickly drive the status through ACK and DRIVER. The device * does not become usable again until vtpci_reinit_complete(). */ vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_ACK); vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_DRIVER); vtpci_negotiate_features(dev, features); if (sc->vtpci_flags & VIRTIO_PCI_FLAG_MSIX) { error = vtpci_register_msix_vector(sc, VIRTIO_MSI_CONFIG_VECTOR, 0); if (error) return (error); } for (queue = 0; queue < sc->vtpci_nvqs; queue++) { vqx = &sc->vtpci_vqx[queue]; vq = vqx->vq; KASSERT(vq != NULL, ("vq %d not allocated", queue)); vtpci_write_config_2(sc, VIRTIO_PCI_QUEUE_SEL, queue); vq_size = vtpci_read_config_2(sc, VIRTIO_PCI_QUEUE_NUM); error = virtqueue_reinit(vq, vq_size); if (error) return (error); if (sc->vtpci_flags & VIRTIO_PCI_FLAG_MSIX) { error = vtpci_register_msix_vector(sc, VIRTIO_MSI_QUEUE_VECTOR, vqx->ires_idx); if (error) return (error); } vtpci_write_config_4(sc, VIRTIO_PCI_QUEUE_PFN, virtqueue_paddr(vqx->vq) >> VIRTIO_PCI_QUEUE_ADDR_SHIFT); } return (0); } static void vtpci_reinit_complete(device_t dev) { vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_DRIVER_OK); } static void vtpci_notify_virtqueue(device_t dev, uint16_t queue) { struct vtpci_softc *sc; sc = device_get_softc(dev); vtpci_write_config_2(sc, VIRTIO_PCI_QUEUE_NOTIFY, queue); } static uint8_t vtpci_get_status(device_t dev) { struct vtpci_softc *sc; sc = device_get_softc(dev); return (vtpci_read_config_1(sc, VIRTIO_PCI_STATUS)); } static void vtpci_set_status(device_t dev, uint8_t status) { struct vtpci_softc *sc; sc = device_get_softc(dev); if (status != VIRTIO_CONFIG_STATUS_RESET) status |= vtpci_get_status(dev); vtpci_write_config_1(sc, VIRTIO_PCI_STATUS, status); } static void vtpci_read_dev_config(device_t dev, bus_size_t offset, void *dst, int length) { struct vtpci_softc *sc; bus_size_t off; uint8_t *d; int size; sc = device_get_softc(dev); off = VIRTIO_PCI_CONFIG(sc) + offset; for (d = dst; length > 0; d += size, off += size, length -= size) { if (length >= 4) { size = 4; *(uint32_t *)d = vtpci_read_config_4(sc, off); } else if (length >= 2) { size = 2; *(uint16_t *)d = vtpci_read_config_2(sc, off); } else { size = 1; *d = vtpci_read_config_1(sc, off); } } } static void vtpci_write_dev_config(device_t dev, bus_size_t offset, void *src, int length) { struct vtpci_softc *sc; bus_size_t off; uint8_t *s; int size; sc = device_get_softc(dev); off = VIRTIO_PCI_CONFIG(sc) + offset; for (s = src; length > 0; s += size, off += size, length -= size) { if (length >= 4) { size = 4; vtpci_write_config_4(sc, off, *(uint32_t *)s); } else if (length >= 2) { size = 2; vtpci_write_config_2(sc, off, *(uint16_t *)s); } else { size = 1; vtpci_write_config_1(sc, off, *s); } } } static void vtpci_describe_features(struct vtpci_softc *sc, const char *msg, uint64_t features) { device_t dev, child; dev = sc->vtpci_dev; child = sc->vtpci_child_dev; if (device_is_attached(child) && bootverbose == 0) return; virtio_describe(dev, msg, features, sc->vtpci_child_feat_desc); } static void vtpci_probe_and_attach_child(struct vtpci_softc *sc) { device_t dev, child; dev = sc->vtpci_dev; child = sc->vtpci_child_dev; if (child == NULL) return; if (device_get_state(child) != DS_NOTPRESENT) return; if (device_probe(child) != 0) return; vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_DRIVER); if (device_attach(child) != 0) { vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_FAILED); vtpci_reset(sc); vtpci_release_child_resources(sc); /* Reset status for future attempt. */ vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_ACK); } else vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_DRIVER_OK); } static int vtpci_alloc_interrupts(struct vtpci_softc *sc, int flags, int nvqs, struct vq_alloc_info *vq_info) { int i, nvectors, error; /* * Only allocate a vector for virtqueues that are actually * expecting an interrupt. */ for (nvectors = 0, i = 0; i < nvqs; i++) if (vq_info[i].vqai_intr != NULL) nvectors++; if (vtpci_disable_msix != 0 || sc->vtpci_flags & VIRTIO_PCI_FLAG_NO_MSIX || flags & VIRTIO_ALLOC_VQS_DISABLE_MSIX || vtpci_alloc_msix(sc, nvectors) != 0) { /* * Use MSI interrupts if available. Otherwise, we fallback * to legacy interrupts. */ if ((sc->vtpci_flags & VIRTIO_PCI_FLAG_NO_MSI) == 0 && vtpci_alloc_msi(sc) == 0) sc->vtpci_flags |= VIRTIO_PCI_FLAG_MSI; sc->vtpci_nintr_res = 1; } error = vtpci_alloc_intr_resources(sc, nvqs, vq_info); return (error); } static int vtpci_alloc_intr_resources(struct vtpci_softc *sc, int nvqs, struct vq_alloc_info *vq_info) { device_t dev; struct resource *irq; struct vtpci_virtqueue *vqx; int i, rid, flags, res_idx; dev = sc->vtpci_dev; flags = RF_ACTIVE; if ((sc->vtpci_flags & (VIRTIO_PCI_FLAG_MSI | VIRTIO_PCI_FLAG_MSIX)) == 0) { rid = 0; flags |= RF_SHAREABLE; } else rid = 1; for (i = 0; i < sc->vtpci_nintr_res; i++) { irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, flags); if (irq == NULL) return (ENXIO); sc->vtpci_intr_res[i].irq = irq; sc->vtpci_intr_res[i].rid = rid++; } /* * Map the virtqueue into the correct index in vq_intr_res[]. Note the * first index is reserved for configuration changes notifications. */ for (i = 0, res_idx = 1; i < nvqs; i++) { vqx = &sc->vtpci_vqx[i]; if (sc->vtpci_flags & VIRTIO_PCI_FLAG_MSIX) { if (vq_info[i].vqai_intr == NULL) vqx->ires_idx = -1; else if (sc->vtpci_flags & VIRTIO_PCI_FLAG_SHARED_MSIX) vqx->ires_idx = res_idx; else vqx->ires_idx = res_idx++; } else vqx->ires_idx = -1; } return (0); } static int vtpci_alloc_msi(struct vtpci_softc *sc) { device_t dev; int nmsi, cnt; dev = sc->vtpci_dev; nmsi = pci_msi_count(dev); if (nmsi < 1) return (1); cnt = 1; if (pci_alloc_msi(dev, &cnt) == 0 && cnt == 1) return (0); return (1); } static int vtpci_alloc_msix(struct vtpci_softc *sc, int nvectors) { device_t dev; int nmsix, cnt, required; dev = sc->vtpci_dev; nmsix = pci_msix_count(dev); if (nmsix < 1) return (1); /* An additional vector is needed for the config changes. */ required = nvectors + 1; if (nmsix >= required) { cnt = required; if (pci_alloc_msix(dev, &cnt) == 0 && cnt >= required) goto out; pci_release_msi(dev); } /* Attempt shared MSIX configuration. */ required = 2; if (nmsix >= required) { cnt = required; if (pci_alloc_msix(dev, &cnt) == 0 && cnt >= required) { sc->vtpci_flags |= VIRTIO_PCI_FLAG_SHARED_MSIX; goto out; } pci_release_msi(dev); } return (1); out: sc->vtpci_nintr_res = required; sc->vtpci_flags |= VIRTIO_PCI_FLAG_MSIX; if (bootverbose) { if (sc->vtpci_flags & VIRTIO_PCI_FLAG_SHARED_MSIX) device_printf(dev, "using shared virtqueue MSIX\n"); else device_printf(dev, "using per virtqueue MSIX\n"); } return (0); } static int vtpci_register_msix_vector(struct vtpci_softc *sc, int offset, int res_idx) { device_t dev; uint16_t vector; dev = sc->vtpci_dev; if (offset != VIRTIO_MSI_CONFIG_VECTOR && offset != VIRTIO_MSI_QUEUE_VECTOR) return (EINVAL); if (res_idx != -1) { /* Map from rid to host vector. */ vector = sc->vtpci_intr_res[res_idx].rid - 1; } else vector = VIRTIO_MSI_NO_VECTOR; /* The first resource is special; make sure it is used correctly. */ if (res_idx == 0) { KASSERT(vector == 0, ("unexpected config vector")); KASSERT(offset == VIRTIO_MSI_CONFIG_VECTOR, ("unexpected config offset")); } vtpci_write_config_2(sc, offset, vector); if (vtpci_read_config_2(sc, offset) != vector) { device_printf(dev, "insufficient host resources for " "MSIX interrupts\n"); return (ENODEV); } return (0); } static void vtpci_free_interrupts(struct vtpci_softc *sc) { device_t dev; struct vtpci_intr_resource *ires; int i; dev = sc->vtpci_dev; sc->vtpci_nintr_res = 0; if (sc->vtpci_flags & (VIRTIO_PCI_FLAG_MSI | VIRTIO_PCI_FLAG_MSIX)) { pci_release_msi(dev); sc->vtpci_flags &= ~(VIRTIO_PCI_FLAG_MSI | VIRTIO_PCI_FLAG_MSIX | VIRTIO_PCI_FLAG_SHARED_MSIX); } for (i = 0; i < 1 + VIRTIO_MAX_VIRTQUEUES; i++) { ires = &sc->vtpci_intr_res[i]; if (ires->intrhand != NULL) { bus_teardown_intr(dev, ires->irq, ires->intrhand); ires->intrhand = NULL; } if (ires->irq != NULL) { bus_release_resource(dev, SYS_RES_IRQ, ires->rid, ires->irq); ires->irq = NULL; } ires->rid = -1; } } static void vtpci_free_virtqueues(struct vtpci_softc *sc) { struct vtpci_virtqueue *vqx; int i; sc->vtpci_nvqs = 0; for (i = 0; i < VIRTIO_MAX_VIRTQUEUES; i++) { vqx = &sc->vtpci_vqx[i]; if (vqx->vq != NULL) { virtqueue_free(vqx->vq); vqx->vq = NULL; } } } static void vtpci_release_child_resources(struct vtpci_softc *sc) { vtpci_free_interrupts(sc); vtpci_free_virtqueues(sc); } static void vtpci_reset(struct vtpci_softc *sc) { /* * Setting the status to RESET sets the host device to * the original, uninitialized state. */ vtpci_set_status(sc->vtpci_dev, VIRTIO_CONFIG_STATUS_RESET); } static int vtpci_legacy_intr(void *xsc) { struct vtpci_softc *sc; struct vtpci_virtqueue *vqx; int i; uint8_t isr; sc = xsc; vqx = &sc->vtpci_vqx[0]; /* Reading the ISR also clears it. */ isr = vtpci_read_config_1(sc, VIRTIO_PCI_ISR); if (isr & VIRTIO_PCI_ISR_CONFIG) vtpci_config_intr(sc); if (isr & VIRTIO_PCI_ISR_INTR) for (i = 0; i < sc->vtpci_nvqs; i++, vqx++) virtqueue_intr(vqx->vq); return (isr ? FILTER_HANDLED : FILTER_STRAY); } static int vtpci_vq_shared_intr(void *xsc) { struct vtpci_softc *sc; struct vtpci_virtqueue *vqx; int i, rc; rc = 0; sc = xsc; vqx = &sc->vtpci_vqx[0]; for (i = 0; i < sc->vtpci_nvqs; i++, vqx++) rc |= virtqueue_intr(vqx->vq); return (rc ? FILTER_HANDLED : FILTER_STRAY); } static int vtpci_vq_intr(void *xvq) { struct virtqueue *vq; int rc; vq = xvq; rc = virtqueue_intr(vq); return (rc ? FILTER_HANDLED : FILTER_STRAY); } static int vtpci_config_intr(void *xsc) { struct vtpci_softc *sc; device_t child; int rc; rc = 0; sc = xsc; child = sc->vtpci_child_dev; if (child != NULL) rc = VIRTIO_CONFIG_CHANGE(child); return (rc ? FILTER_HANDLED : FILTER_STRAY); }