/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011, Bryan Venteicher * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Driver for VirtIO network devices. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virtio_if.h" #include "opt_inet.h" #include "opt_inet6.h" #if defined(INET) || defined(INET6) #include #endif static int vtnet_modevent(module_t, int, void *); static int vtnet_probe(device_t); static int vtnet_attach(device_t); static int vtnet_detach(device_t); static int vtnet_suspend(device_t); static int vtnet_resume(device_t); static int vtnet_shutdown(device_t); static int vtnet_attach_completed(device_t); static int vtnet_config_change(device_t); static int vtnet_negotiate_features(struct vtnet_softc *); static int vtnet_setup_features(struct vtnet_softc *); static int vtnet_init_rxq(struct vtnet_softc *, int); static int vtnet_init_txq(struct vtnet_softc *, int); static int vtnet_alloc_rxtx_queues(struct vtnet_softc *); static void vtnet_free_rxtx_queues(struct vtnet_softc *); static int vtnet_alloc_rx_filters(struct vtnet_softc *); static void vtnet_free_rx_filters(struct vtnet_softc *); static int vtnet_alloc_virtqueues(struct vtnet_softc *); static int vtnet_alloc_interface(struct vtnet_softc *); static int vtnet_setup_interface(struct vtnet_softc *); static int vtnet_ioctl_mtu(struct vtnet_softc *, u_int); static int vtnet_ioctl_ifflags(struct vtnet_softc *); static int vtnet_ioctl_multi(struct vtnet_softc *); static int vtnet_ioctl_ifcap(struct vtnet_softc *, struct ifreq *); static int vtnet_ioctl(if_t, u_long, caddr_t); static uint64_t vtnet_get_counter(if_t, ift_counter); static int vtnet_rxq_populate(struct vtnet_rxq *); static void vtnet_rxq_free_mbufs(struct vtnet_rxq *); static struct mbuf * vtnet_rx_alloc_buf(struct vtnet_softc *, int , struct mbuf **); static int vtnet_rxq_replace_lro_nomrg_buf(struct vtnet_rxq *, struct mbuf *, int); static int vtnet_rxq_replace_buf(struct vtnet_rxq *, struct mbuf *, int); static int vtnet_rxq_enqueue_buf(struct vtnet_rxq *, struct mbuf *); static int vtnet_rxq_new_buf(struct vtnet_rxq *); static int vtnet_rxq_csum_needs_csum(struct vtnet_rxq *, struct mbuf *, uint16_t, int, struct virtio_net_hdr *); static int vtnet_rxq_csum_data_valid(struct vtnet_rxq *, struct mbuf *, uint16_t, int, struct virtio_net_hdr *); static int vtnet_rxq_csum(struct vtnet_rxq *, struct mbuf *, struct virtio_net_hdr *); static void vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *, int); static void vtnet_rxq_discard_buf(struct vtnet_rxq *, struct mbuf *); static int vtnet_rxq_merged_eof(struct vtnet_rxq *, struct mbuf *, int); static void vtnet_rxq_input(struct vtnet_rxq *, struct mbuf *, struct virtio_net_hdr *); static int vtnet_rxq_eof(struct vtnet_rxq *); static void vtnet_rx_vq_process(struct vtnet_rxq *rxq, int tries); static void vtnet_rx_vq_intr(void *); static void vtnet_rxq_tq_intr(void *, int); static int vtnet_txq_intr_threshold(struct vtnet_txq *); static int vtnet_txq_below_threshold(struct vtnet_txq *); static int vtnet_txq_notify(struct vtnet_txq *); static void vtnet_txq_free_mbufs(struct vtnet_txq *); static int vtnet_txq_offload_ctx(struct vtnet_txq *, struct mbuf *, int *, int *, int *); static int vtnet_txq_offload_tso(struct vtnet_txq *, struct mbuf *, int, int, struct virtio_net_hdr *); static struct mbuf * vtnet_txq_offload(struct vtnet_txq *, struct mbuf *, struct virtio_net_hdr *); static int vtnet_txq_enqueue_buf(struct vtnet_txq *, struct mbuf **, struct vtnet_tx_header *); static int vtnet_txq_encap(struct vtnet_txq *, struct mbuf **, int); #ifdef VTNET_LEGACY_TX static void vtnet_start_locked(struct vtnet_txq *, if_t); static void vtnet_start(if_t); #else static int vtnet_txq_mq_start_locked(struct vtnet_txq *, struct mbuf *); static int vtnet_txq_mq_start(if_t, struct mbuf *); static void vtnet_txq_tq_deferred(void *, int); #endif static void vtnet_txq_start(struct vtnet_txq *); static void vtnet_txq_tq_intr(void *, int); static int vtnet_txq_eof(struct vtnet_txq *); static void vtnet_tx_vq_intr(void *); static void vtnet_tx_start_all(struct vtnet_softc *); #ifndef VTNET_LEGACY_TX static void vtnet_qflush(if_t); #endif static int vtnet_watchdog(struct vtnet_txq *); static void vtnet_accum_stats(struct vtnet_softc *, struct vtnet_rxq_stats *, struct vtnet_txq_stats *); static void vtnet_tick(void *); static void vtnet_start_taskqueues(struct vtnet_softc *); static void vtnet_free_taskqueues(struct vtnet_softc *); static void vtnet_drain_taskqueues(struct vtnet_softc *); static void vtnet_drain_rxtx_queues(struct vtnet_softc *); static void vtnet_stop_rendezvous(struct vtnet_softc *); static void vtnet_stop(struct vtnet_softc *); static int vtnet_virtio_reinit(struct vtnet_softc *); static void vtnet_init_rx_filters(struct vtnet_softc *); static int vtnet_init_rx_queues(struct vtnet_softc *); static int vtnet_init_tx_queues(struct vtnet_softc *); static int vtnet_init_rxtx_queues(struct vtnet_softc *); static void vtnet_set_active_vq_pairs(struct vtnet_softc *); static void vtnet_update_rx_offloads(struct vtnet_softc *); static int vtnet_reinit(struct vtnet_softc *); static void vtnet_init_locked(struct vtnet_softc *, int); static void vtnet_init(void *); static void vtnet_free_ctrl_vq(struct vtnet_softc *); static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *, struct sglist *, int, int); static int vtnet_ctrl_mac_cmd(struct vtnet_softc *, uint8_t *); static int vtnet_ctrl_guest_offloads(struct vtnet_softc *, uint64_t); static int vtnet_ctrl_mq_cmd(struct vtnet_softc *, uint16_t); static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, uint8_t, bool); static int vtnet_set_promisc(struct vtnet_softc *, bool); static int vtnet_set_allmulti(struct vtnet_softc *, bool); static void vtnet_rx_filter(struct vtnet_softc *); static void vtnet_rx_filter_mac(struct vtnet_softc *); static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t); static void vtnet_rx_filter_vlan(struct vtnet_softc *); static void vtnet_update_vlan_filter(struct vtnet_softc *, int, uint16_t); static void vtnet_register_vlan(void *, if_t, uint16_t); static void vtnet_unregister_vlan(void *, if_t, uint16_t); static void vtnet_update_speed_duplex(struct vtnet_softc *); static int vtnet_is_link_up(struct vtnet_softc *); static void vtnet_update_link_status(struct vtnet_softc *); static int vtnet_ifmedia_upd(if_t); static void vtnet_ifmedia_sts(if_t, struct ifmediareq *); static void vtnet_get_macaddr(struct vtnet_softc *); static void vtnet_set_macaddr(struct vtnet_softc *); static void vtnet_attached_set_macaddr(struct vtnet_softc *); static void vtnet_vlan_tag_remove(struct mbuf *); static void vtnet_set_rx_process_limit(struct vtnet_softc *); static void vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *, struct sysctl_oid_list *, struct vtnet_rxq *); static void vtnet_setup_txq_sysctl(struct sysctl_ctx_list *, struct sysctl_oid_list *, struct vtnet_txq *); static void vtnet_setup_queue_sysctl(struct vtnet_softc *); static void vtnet_load_tunables(struct vtnet_softc *); static void vtnet_setup_sysctl(struct vtnet_softc *); static int vtnet_rxq_enable_intr(struct vtnet_rxq *); static void vtnet_rxq_disable_intr(struct vtnet_rxq *); static int vtnet_txq_enable_intr(struct vtnet_txq *); static void vtnet_txq_disable_intr(struct vtnet_txq *); static void vtnet_enable_rx_interrupts(struct vtnet_softc *); static void vtnet_enable_tx_interrupts(struct vtnet_softc *); static void vtnet_enable_interrupts(struct vtnet_softc *); static void vtnet_disable_rx_interrupts(struct vtnet_softc *); static void vtnet_disable_tx_interrupts(struct vtnet_softc *); static void vtnet_disable_interrupts(struct vtnet_softc *); static int vtnet_tunable_int(struct vtnet_softc *, const char *, int); DEBUGNET_DEFINE(vtnet); #define vtnet_htog16(_sc, _val) virtio_htog16(vtnet_modern(_sc), _val) #define vtnet_htog32(_sc, _val) virtio_htog32(vtnet_modern(_sc), _val) #define vtnet_htog64(_sc, _val) virtio_htog64(vtnet_modern(_sc), _val) #define vtnet_gtoh16(_sc, _val) virtio_gtoh16(vtnet_modern(_sc), _val) #define vtnet_gtoh32(_sc, _val) virtio_gtoh32(vtnet_modern(_sc), _val) #define vtnet_gtoh64(_sc, _val) virtio_gtoh64(vtnet_modern(_sc), _val) /* Tunables. */ static SYSCTL_NODE(_hw, OID_AUTO, vtnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "VirtIO Net driver parameters"); static int vtnet_csum_disable = 0; SYSCTL_INT(_hw_vtnet, OID_AUTO, csum_disable, CTLFLAG_RDTUN, &vtnet_csum_disable, 0, "Disables receive and send checksum offload"); static int vtnet_fixup_needs_csum = 0; SYSCTL_INT(_hw_vtnet, OID_AUTO, fixup_needs_csum, CTLFLAG_RDTUN, &vtnet_fixup_needs_csum, 0, "Calculate valid checksum for NEEDS_CSUM packets"); static int vtnet_tso_disable = 0; SYSCTL_INT(_hw_vtnet, OID_AUTO, tso_disable, CTLFLAG_RDTUN, &vtnet_tso_disable, 0, "Disables TSO"); static int vtnet_lro_disable = 0; SYSCTL_INT(_hw_vtnet, OID_AUTO, lro_disable, CTLFLAG_RDTUN, &vtnet_lro_disable, 0, "Disables hardware LRO"); static int vtnet_mq_disable = 0; SYSCTL_INT(_hw_vtnet, OID_AUTO, mq_disable, CTLFLAG_RDTUN, &vtnet_mq_disable, 0, "Disables multiqueue support"); static int vtnet_mq_max_pairs = VTNET_MAX_QUEUE_PAIRS; SYSCTL_INT(_hw_vtnet, OID_AUTO, mq_max_pairs, CTLFLAG_RDTUN, &vtnet_mq_max_pairs, 0, "Maximum number of multiqueue pairs"); static int vtnet_tso_maxlen = IP_MAXPACKET; SYSCTL_INT(_hw_vtnet, OID_AUTO, tso_maxlen, CTLFLAG_RDTUN, &vtnet_tso_maxlen, 0, "TSO burst limit"); static int vtnet_rx_process_limit = 1024; SYSCTL_INT(_hw_vtnet, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, &vtnet_rx_process_limit, 0, "Number of RX segments processed in one pass"); static int vtnet_lro_entry_count = 128; SYSCTL_INT(_hw_vtnet, OID_AUTO, lro_entry_count, CTLFLAG_RDTUN, &vtnet_lro_entry_count, 0, "Software LRO entry count"); /* Enable sorted LRO, and the depth of the mbuf queue. */ static int vtnet_lro_mbufq_depth = 0; SYSCTL_UINT(_hw_vtnet, OID_AUTO, lro_mbufq_depth, CTLFLAG_RDTUN, &vtnet_lro_mbufq_depth, 0, "Depth of software LRO mbuf queue"); static uma_zone_t vtnet_tx_header_zone; static struct virtio_feature_desc vtnet_feature_desc[] = { { VIRTIO_NET_F_CSUM, "TxChecksum" }, { VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" }, { VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, "CtrlRxOffloads" }, { VIRTIO_NET_F_MAC, "MAC" }, { VIRTIO_NET_F_GSO, "TxGSO" }, { VIRTIO_NET_F_GUEST_TSO4, "RxLROv4" }, { VIRTIO_NET_F_GUEST_TSO6, "RxLROv6" }, { VIRTIO_NET_F_GUEST_ECN, "RxLROECN" }, { VIRTIO_NET_F_GUEST_UFO, "RxUFO" }, { VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" }, { VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" }, { VIRTIO_NET_F_HOST_ECN, "TxTSOECN" }, { VIRTIO_NET_F_HOST_UFO, "TxUFO" }, { VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" }, { VIRTIO_NET_F_STATUS, "Status" }, { VIRTIO_NET_F_CTRL_VQ, "CtrlVq" }, { VIRTIO_NET_F_CTRL_RX, "CtrlRxMode" }, { VIRTIO_NET_F_CTRL_VLAN, "CtrlVLANFilter" }, { VIRTIO_NET_F_CTRL_RX_EXTRA, "CtrlRxModeExtra" }, { VIRTIO_NET_F_GUEST_ANNOUNCE, "GuestAnnounce" }, { VIRTIO_NET_F_MQ, "Multiqueue" }, { VIRTIO_NET_F_CTRL_MAC_ADDR, "CtrlMacAddr" }, { VIRTIO_NET_F_SPEED_DUPLEX, "SpeedDuplex" }, { 0, NULL } }; static device_method_t vtnet_methods[] = { /* Device methods. */ DEVMETHOD(device_probe, vtnet_probe), DEVMETHOD(device_attach, vtnet_attach), DEVMETHOD(device_detach, vtnet_detach), DEVMETHOD(device_suspend, vtnet_suspend), DEVMETHOD(device_resume, vtnet_resume), DEVMETHOD(device_shutdown, vtnet_shutdown), /* VirtIO methods. */ DEVMETHOD(virtio_attach_completed, vtnet_attach_completed), DEVMETHOD(virtio_config_change, vtnet_config_change), DEVMETHOD_END }; #ifdef DEV_NETMAP #include #endif static driver_t vtnet_driver = { .name = "vtnet", .methods = vtnet_methods, .size = sizeof(struct vtnet_softc) }; VIRTIO_DRIVER_MODULE(vtnet, vtnet_driver, vtnet_modevent, NULL); MODULE_VERSION(vtnet, 1); MODULE_DEPEND(vtnet, virtio, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(vtnet, netmap, 1, 1, 1); #endif VIRTIO_SIMPLE_PNPINFO(vtnet, VIRTIO_ID_NETWORK, "VirtIO Networking Adapter"); static int vtnet_modevent(module_t mod __unused, int type, void *unused __unused) { int error = 0; static int loaded = 0; switch (type) { case MOD_LOAD: if (loaded++ == 0) { vtnet_tx_header_zone = uma_zcreate("vtnet_tx_hdr", sizeof(struct vtnet_tx_header), NULL, NULL, NULL, NULL, 0, 0); #ifdef DEBUGNET /* * We need to allocate from this zone in the transmit path, so ensure * that we have at least one item per header available. * XXX add a separate zone like we do for mbufs? otherwise we may alloc * buckets */ uma_zone_reserve(vtnet_tx_header_zone, DEBUGNET_MAX_IN_FLIGHT * 2); uma_prealloc(vtnet_tx_header_zone, DEBUGNET_MAX_IN_FLIGHT * 2); #endif } break; case MOD_QUIESCE: if (uma_zone_get_cur(vtnet_tx_header_zone) > 0) error = EBUSY; break; case MOD_UNLOAD: if (--loaded == 0) { uma_zdestroy(vtnet_tx_header_zone); vtnet_tx_header_zone = NULL; } break; case MOD_SHUTDOWN: break; default: error = EOPNOTSUPP; break; } return (error); } static int vtnet_probe(device_t dev) { return (VIRTIO_SIMPLE_PROBE(dev, vtnet)); } static int vtnet_attach(device_t dev) { struct vtnet_softc *sc; int error; sc = device_get_softc(dev); sc->vtnet_dev = dev; virtio_set_feature_desc(dev, vtnet_feature_desc); VTNET_CORE_LOCK_INIT(sc); callout_init_mtx(&sc->vtnet_tick_ch, VTNET_CORE_MTX(sc), 0); vtnet_load_tunables(sc); error = vtnet_alloc_interface(sc); if (error) { device_printf(dev, "cannot allocate interface\n"); goto fail; } vtnet_setup_sysctl(sc); error = vtnet_setup_features(sc); if (error) { device_printf(dev, "cannot setup features\n"); goto fail; } error = vtnet_alloc_rx_filters(sc); if (error) { device_printf(dev, "cannot allocate Rx filters\n"); goto fail; } error = vtnet_alloc_rxtx_queues(sc); if (error) { device_printf(dev, "cannot allocate queues\n"); goto fail; } error = vtnet_alloc_virtqueues(sc); if (error) { device_printf(dev, "cannot allocate virtqueues\n"); goto fail; } error = vtnet_setup_interface(sc); if (error) { device_printf(dev, "cannot setup interface\n"); goto fail; } error = virtio_setup_intr(dev, INTR_TYPE_NET); if (error) { device_printf(dev, "cannot setup interrupts\n"); ether_ifdetach(sc->vtnet_ifp); goto fail; } #ifdef DEV_NETMAP vtnet_netmap_attach(sc); #endif vtnet_start_taskqueues(sc); fail: if (error) vtnet_detach(dev); return (error); } static int vtnet_detach(device_t dev) { struct vtnet_softc *sc; if_t ifp; sc = device_get_softc(dev); ifp = sc->vtnet_ifp; if (device_is_attached(dev)) { VTNET_CORE_LOCK(sc); vtnet_stop(sc); VTNET_CORE_UNLOCK(sc); callout_drain(&sc->vtnet_tick_ch); vtnet_drain_taskqueues(sc); ether_ifdetach(ifp); } #ifdef DEV_NETMAP netmap_detach(ifp); #endif if (sc->vtnet_pfil != NULL) { pfil_head_unregister(sc->vtnet_pfil); sc->vtnet_pfil = NULL; } vtnet_free_taskqueues(sc); if (sc->vtnet_vlan_attach != NULL) { EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach); sc->vtnet_vlan_attach = NULL; } if (sc->vtnet_vlan_detach != NULL) { EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vtnet_vlan_detach); sc->vtnet_vlan_detach = NULL; } ifmedia_removeall(&sc->vtnet_media); if (ifp != NULL) { if_free(ifp); sc->vtnet_ifp = NULL; } vtnet_free_rxtx_queues(sc); vtnet_free_rx_filters(sc); if (sc->vtnet_ctrl_vq != NULL) vtnet_free_ctrl_vq(sc); VTNET_CORE_LOCK_DESTROY(sc); return (0); } static int vtnet_suspend(device_t dev) { struct vtnet_softc *sc; sc = device_get_softc(dev); VTNET_CORE_LOCK(sc); vtnet_stop(sc); sc->vtnet_flags |= VTNET_FLAG_SUSPENDED; VTNET_CORE_UNLOCK(sc); return (0); } static int vtnet_resume(device_t dev) { struct vtnet_softc *sc; if_t ifp; sc = device_get_softc(dev); ifp = sc->vtnet_ifp; VTNET_CORE_LOCK(sc); if (if_getflags(ifp) & IFF_UP) vtnet_init_locked(sc, 0); sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED; VTNET_CORE_UNLOCK(sc); return (0); } static int vtnet_shutdown(device_t dev) { /* * Suspend already does all of what we need to * do here; we just never expect to be resumed. */ return (vtnet_suspend(dev)); } static int vtnet_attach_completed(device_t dev) { struct vtnet_softc *sc; sc = device_get_softc(dev); VTNET_CORE_LOCK(sc); vtnet_attached_set_macaddr(sc); VTNET_CORE_UNLOCK(sc); return (0); } static int vtnet_config_change(device_t dev) { struct vtnet_softc *sc; sc = device_get_softc(dev); VTNET_CORE_LOCK(sc); vtnet_update_link_status(sc); if (sc->vtnet_link_active != 0) vtnet_tx_start_all(sc); VTNET_CORE_UNLOCK(sc); return (0); } static int vtnet_negotiate_features(struct vtnet_softc *sc) { device_t dev; uint64_t features, negotiated_features; int no_csum; dev = sc->vtnet_dev; features = virtio_bus_is_modern(dev) ? VTNET_MODERN_FEATURES : VTNET_LEGACY_FEATURES; /* * TSO and LRO are only available when their corresponding checksum * offload feature is also negotiated. */ no_csum = vtnet_tunable_int(sc, "csum_disable", vtnet_csum_disable); if (no_csum) features &= ~(VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM); if (no_csum || vtnet_tunable_int(sc, "tso_disable", vtnet_tso_disable)) features &= ~VTNET_TSO_FEATURES; if (no_csum || vtnet_tunable_int(sc, "lro_disable", vtnet_lro_disable)) features &= ~VTNET_LRO_FEATURES; #ifndef VTNET_LEGACY_TX if (vtnet_tunable_int(sc, "mq_disable", vtnet_mq_disable)) features &= ~VIRTIO_NET_F_MQ; #else features &= ~VIRTIO_NET_F_MQ; #endif negotiated_features = virtio_negotiate_features(dev, features); if (virtio_with_feature(dev, VIRTIO_NET_F_MTU)) { uint16_t mtu; mtu = virtio_read_dev_config_2(dev, offsetof(struct virtio_net_config, mtu)); if (mtu < VTNET_MIN_MTU /* || mtu > VTNET_MAX_MTU */) { device_printf(dev, "Invalid MTU value: %d. " "MTU feature disabled.\n", mtu); features &= ~VIRTIO_NET_F_MTU; negotiated_features = virtio_negotiate_features(dev, features); } } if (virtio_with_feature(dev, VIRTIO_NET_F_MQ)) { uint16_t npairs; npairs = virtio_read_dev_config_2(dev, offsetof(struct virtio_net_config, max_virtqueue_pairs)); if (npairs < VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN || npairs > VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX) { device_printf(dev, "Invalid max_virtqueue_pairs value: " "%d. Multiqueue feature disabled.\n", npairs); features &= ~VIRTIO_NET_F_MQ; negotiated_features = virtio_negotiate_features(dev, features); } } if (virtio_with_feature(dev, VTNET_LRO_FEATURES) && virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0) { /* * LRO without mergeable buffers requires special care. This * is not ideal because every receive buffer must be large * enough to hold the maximum TCP packet, the Ethernet header, * and the header. This requires up to 34 descriptors with * MCLBYTES clusters. If we do not have indirect descriptors, * LRO is disabled since the virtqueue will not contain very * many receive buffers. */ if (!virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) { device_printf(dev, "Host LRO disabled since both mergeable buffers " "and indirect descriptors were not negotiated\n"); features &= ~VTNET_LRO_FEATURES; negotiated_features = virtio_negotiate_features(dev, features); } else sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG; } sc->vtnet_features = negotiated_features; sc->vtnet_negotiated_features = negotiated_features; return (virtio_finalize_features(dev)); } static int vtnet_setup_features(struct vtnet_softc *sc) { device_t dev; int error; dev = sc->vtnet_dev; error = vtnet_negotiate_features(sc); if (error) return (error); if (virtio_with_feature(dev, VIRTIO_F_VERSION_1)) sc->vtnet_flags |= VTNET_FLAG_MODERN; if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) sc->vtnet_flags |= VTNET_FLAG_INDIRECT; if (virtio_with_feature(dev, VIRTIO_RING_F_EVENT_IDX)) sc->vtnet_flags |= VTNET_FLAG_EVENT_IDX; if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) { /* This feature should always be negotiated. */ sc->vtnet_flags |= VTNET_FLAG_MAC; } if (virtio_with_feature(dev, VIRTIO_NET_F_MTU)) { sc->vtnet_max_mtu = virtio_read_dev_config_2(dev, offsetof(struct virtio_net_config, mtu)); } else sc->vtnet_max_mtu = VTNET_MAX_MTU; if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) { sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS; sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf); } else if (vtnet_modern(sc)) { /* This is identical to the mergeable header. */ sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_v1); } else sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr); if (vtnet_modern(sc) || sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) sc->vtnet_rx_nsegs = VTNET_RX_SEGS_HDR_INLINE; else if (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) sc->vtnet_rx_nsegs = VTNET_RX_SEGS_LRO_NOMRG; else sc->vtnet_rx_nsegs = VTNET_RX_SEGS_HDR_SEPARATE; /* * Favor "hardware" LRO if negotiated, but support software LRO as * a fallback; there is usually little benefit (or worse) with both. */ if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) == 0 && virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6) == 0) sc->vtnet_flags |= VTNET_FLAG_SW_LRO; if (virtio_with_feature(dev, VIRTIO_NET_F_GSO) || virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4) || virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) sc->vtnet_tx_nsegs = VTNET_TX_SEGS_MAX; else sc->vtnet_tx_nsegs = VTNET_TX_SEGS_MIN; sc->vtnet_req_vq_pairs = 1; sc->vtnet_max_vq_pairs = 1; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) { sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX)) sc->vtnet_flags |= VTNET_FLAG_CTRL_RX; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN)) sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER; if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_MAC_ADDR)) sc->vtnet_flags |= VTNET_FLAG_CTRL_MAC; if (virtio_with_feature(dev, VIRTIO_NET_F_MQ)) { sc->vtnet_max_vq_pairs = virtio_read_dev_config_2(dev, offsetof(struct virtio_net_config, max_virtqueue_pairs)); } } if (sc->vtnet_max_vq_pairs > 1) { int req; /* * Limit the maximum number of requested queue pairs to the * number of CPUs and the configured maximum. */ req = vtnet_tunable_int(sc, "mq_max_pairs", vtnet_mq_max_pairs); if (req < 0) req = 1; if (req == 0) req = mp_ncpus; if (req > sc->vtnet_max_vq_pairs) req = sc->vtnet_max_vq_pairs; if (req > mp_ncpus) req = mp_ncpus; if (req > 1) { sc->vtnet_req_vq_pairs = req; sc->vtnet_flags |= VTNET_FLAG_MQ; } } return (0); } static int vtnet_init_rxq(struct vtnet_softc *sc, int id) { struct vtnet_rxq *rxq; rxq = &sc->vtnet_rxqs[id]; snprintf(rxq->vtnrx_name, sizeof(rxq->vtnrx_name), "%s-rx%d", device_get_nameunit(sc->vtnet_dev), id); mtx_init(&rxq->vtnrx_mtx, rxq->vtnrx_name, NULL, MTX_DEF); rxq->vtnrx_sc = sc; rxq->vtnrx_id = id; rxq->vtnrx_sg = sglist_alloc(sc->vtnet_rx_nsegs, M_NOWAIT); if (rxq->vtnrx_sg == NULL) return (ENOMEM); #if defined(INET) || defined(INET6) if (vtnet_software_lro(sc)) { if (tcp_lro_init_args(&rxq->vtnrx_lro, sc->vtnet_ifp, sc->vtnet_lro_entry_count, sc->vtnet_lro_mbufq_depth) != 0) return (ENOMEM); } #endif NET_TASK_INIT(&rxq->vtnrx_intrtask, 0, vtnet_rxq_tq_intr, rxq); rxq->vtnrx_tq = taskqueue_create(rxq->vtnrx_name, M_NOWAIT, taskqueue_thread_enqueue, &rxq->vtnrx_tq); return (rxq->vtnrx_tq == NULL ? ENOMEM : 0); } static int vtnet_init_txq(struct vtnet_softc *sc, int id) { struct vtnet_txq *txq; txq = &sc->vtnet_txqs[id]; snprintf(txq->vtntx_name, sizeof(txq->vtntx_name), "%s-tx%d", device_get_nameunit(sc->vtnet_dev), id); mtx_init(&txq->vtntx_mtx, txq->vtntx_name, NULL, MTX_DEF); txq->vtntx_sc = sc; txq->vtntx_id = id; txq->vtntx_sg = sglist_alloc(sc->vtnet_tx_nsegs, M_NOWAIT); if (txq->vtntx_sg == NULL) return (ENOMEM); #ifndef VTNET_LEGACY_TX txq->vtntx_br = buf_ring_alloc(VTNET_DEFAULT_BUFRING_SIZE, M_DEVBUF, M_NOWAIT, &txq->vtntx_mtx); if (txq->vtntx_br == NULL) return (ENOMEM); TASK_INIT(&txq->vtntx_defrtask, 0, vtnet_txq_tq_deferred, txq); #endif TASK_INIT(&txq->vtntx_intrtask, 0, vtnet_txq_tq_intr, txq); txq->vtntx_tq = taskqueue_create(txq->vtntx_name, M_NOWAIT, taskqueue_thread_enqueue, &txq->vtntx_tq); if (txq->vtntx_tq == NULL) return (ENOMEM); return (0); } static int vtnet_alloc_rxtx_queues(struct vtnet_softc *sc) { int i, npairs, error; npairs = sc->vtnet_max_vq_pairs; sc->vtnet_rxqs = malloc(sizeof(struct vtnet_rxq) * npairs, M_DEVBUF, M_NOWAIT | M_ZERO); sc->vtnet_txqs = malloc(sizeof(struct vtnet_txq) * npairs, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->vtnet_rxqs == NULL || sc->vtnet_txqs == NULL) return (ENOMEM); for (i = 0; i < npairs; i++) { error = vtnet_init_rxq(sc, i); if (error) return (error); error = vtnet_init_txq(sc, i); if (error) return (error); } vtnet_set_rx_process_limit(sc); vtnet_setup_queue_sysctl(sc); return (0); } static void vtnet_destroy_rxq(struct vtnet_rxq *rxq) { rxq->vtnrx_sc = NULL; rxq->vtnrx_id = -1; #if defined(INET) || defined(INET6) tcp_lro_free(&rxq->vtnrx_lro); #endif if (rxq->vtnrx_sg != NULL) { sglist_free(rxq->vtnrx_sg); rxq->vtnrx_sg = NULL; } if (mtx_initialized(&rxq->vtnrx_mtx) != 0) mtx_destroy(&rxq->vtnrx_mtx); } static void vtnet_destroy_txq(struct vtnet_txq *txq) { txq->vtntx_sc = NULL; txq->vtntx_id = -1; if (txq->vtntx_sg != NULL) { sglist_free(txq->vtntx_sg); txq->vtntx_sg = NULL; } #ifndef VTNET_LEGACY_TX if (txq->vtntx_br != NULL) { buf_ring_free(txq->vtntx_br, M_DEVBUF); txq->vtntx_br = NULL; } #endif if (mtx_initialized(&txq->vtntx_mtx) != 0) mtx_destroy(&txq->vtntx_mtx); } static void vtnet_free_rxtx_queues(struct vtnet_softc *sc) { int i; if (sc->vtnet_rxqs != NULL) { for (i = 0; i < sc->vtnet_max_vq_pairs; i++) vtnet_destroy_rxq(&sc->vtnet_rxqs[i]); free(sc->vtnet_rxqs, M_DEVBUF); sc->vtnet_rxqs = NULL; } if (sc->vtnet_txqs != NULL) { for (i = 0; i < sc->vtnet_max_vq_pairs; i++) vtnet_destroy_txq(&sc->vtnet_txqs[i]); free(sc->vtnet_txqs, M_DEVBUF); sc->vtnet_txqs = NULL; } } static int vtnet_alloc_rx_filters(struct vtnet_softc *sc) { if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { sc->vtnet_mac_filter = malloc(sizeof(struct vtnet_mac_filter), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->vtnet_mac_filter == NULL) return (ENOMEM); } if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { sc->vtnet_vlan_filter = malloc(sizeof(uint32_t) * VTNET_VLAN_FILTER_NWORDS, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->vtnet_vlan_filter == NULL) return (ENOMEM); } return (0); } static void vtnet_free_rx_filters(struct vtnet_softc *sc) { if (sc->vtnet_mac_filter != NULL) { free(sc->vtnet_mac_filter, M_DEVBUF); sc->vtnet_mac_filter = NULL; } if (sc->vtnet_vlan_filter != NULL) { free(sc->vtnet_vlan_filter, M_DEVBUF); sc->vtnet_vlan_filter = NULL; } } static int vtnet_alloc_virtqueues(struct vtnet_softc *sc) { device_t dev; struct vq_alloc_info *info; struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i, idx, nvqs, error; dev = sc->vtnet_dev; nvqs = sc->vtnet_max_vq_pairs * 2; if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) nvqs++; info = malloc(sizeof(struct vq_alloc_info) * nvqs, M_TEMP, M_NOWAIT); if (info == NULL) return (ENOMEM); for (i = 0, idx = 0; i < sc->vtnet_req_vq_pairs; i++, idx += 2) { rxq = &sc->vtnet_rxqs[i]; VQ_ALLOC_INFO_INIT(&info[idx], sc->vtnet_rx_nsegs, vtnet_rx_vq_intr, rxq, &rxq->vtnrx_vq, "%s-rx%d", device_get_nameunit(dev), rxq->vtnrx_id); txq = &sc->vtnet_txqs[i]; VQ_ALLOC_INFO_INIT(&info[idx+1], sc->vtnet_tx_nsegs, vtnet_tx_vq_intr, txq, &txq->vtntx_vq, "%s-tx%d", device_get_nameunit(dev), txq->vtntx_id); } /* These queues will not be used so allocate the minimum resources. */ for (/**/; i < sc->vtnet_max_vq_pairs; i++, idx += 2) { rxq = &sc->vtnet_rxqs[i]; VQ_ALLOC_INFO_INIT(&info[idx], 0, NULL, rxq, &rxq->vtnrx_vq, "%s-rx%d", device_get_nameunit(dev), rxq->vtnrx_id); txq = &sc->vtnet_txqs[i]; VQ_ALLOC_INFO_INIT(&info[idx+1], 0, NULL, txq, &txq->vtntx_vq, "%s-tx%d", device_get_nameunit(dev), txq->vtntx_id); } if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) { VQ_ALLOC_INFO_INIT(&info[idx], 0, NULL, NULL, &sc->vtnet_ctrl_vq, "%s ctrl", device_get_nameunit(dev)); } error = virtio_alloc_virtqueues(dev, nvqs, info); free(info, M_TEMP); return (error); } static int vtnet_alloc_interface(struct vtnet_softc *sc) { device_t dev; if_t ifp; dev = sc->vtnet_dev; ifp = if_alloc(IFT_ETHER); if (ifp == NULL) return (ENOMEM); sc->vtnet_ifp = ifp; if_setsoftc(ifp, sc); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); return (0); } static int vtnet_setup_interface(struct vtnet_softc *sc) { device_t dev; struct pfil_head_args pa; if_t ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); if_setbaudrate(ifp, IF_Gbps(10)); if_setinitfn(ifp, vtnet_init); if_setioctlfn(ifp, vtnet_ioctl); if_setgetcounterfn(ifp, vtnet_get_counter); #ifndef VTNET_LEGACY_TX if_settransmitfn(ifp, vtnet_txq_mq_start); if_setqflushfn(ifp, vtnet_qflush); #else struct virtqueue *vq = sc->vtnet_txqs[0].vtntx_vq; if_setstartfn(ifp, vtnet_start); if_setsendqlen(ifp, virtqueue_size(vq) - 1); if_setsendqready(ifp); #endif vtnet_get_macaddr(sc); if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0); ifmedia_init(&sc->vtnet_media, 0, vtnet_ifmedia_upd, vtnet_ifmedia_sts); ifmedia_add(&sc->vtnet_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->vtnet_media, IFM_ETHER | IFM_AUTO); if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) { int gso; if_setcapabilitiesbit(ifp, IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6, 0); gso = virtio_with_feature(dev, VIRTIO_NET_F_GSO); if (gso || virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4)) if_setcapabilitiesbit(ifp, IFCAP_TSO4, 0); if (gso || virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6)) if_setcapabilitiesbit(ifp, IFCAP_TSO6, 0); if (gso || virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN)) sc->vtnet_flags |= VTNET_FLAG_TSO_ECN; if (if_getcapabilities(ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { int tso_maxlen; if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTSO, 0); tso_maxlen = vtnet_tunable_int(sc, "tso_maxlen", vtnet_tso_maxlen); if_sethwtsomax(ifp, tso_maxlen - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); if_sethwtsomaxsegcount(ifp, sc->vtnet_tx_nsegs - 1); if_sethwtsomaxsegsize(ifp, PAGE_SIZE); } } if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) { if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0); #ifdef notyet /* BMV: Rx checksums not distinguished between IPv4 and IPv6. */ if_setcapabilitiesbit(ifp, IFCAP_RXCSUM_IPV6, 0); #endif if (vtnet_tunable_int(sc, "fixup_needs_csum", vtnet_fixup_needs_csum) != 0) sc->vtnet_flags |= VTNET_FLAG_FIXUP_NEEDS_CSUM; /* Support either "hardware" or software LRO. */ if_setcapabilitiesbit(ifp, IFCAP_LRO, 0); } if (if_getcapabilities(ifp) & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6)) { /* * VirtIO does not support VLAN tagging, but we can fake * it by inserting and removing the 802.1Q header during * transmit and receive. We are then able to do checksum * offloading of VLAN frames. */ if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM, 0); } if (sc->vtnet_max_mtu >= ETHERMTU_JUMBO) if_setcapabilitiesbit(ifp, IFCAP_JUMBO_MTU, 0); if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); /* * Capabilities after here are not enabled by default. */ if_setcapenable(ifp, if_getcapabilities(ifp)); if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) { if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWFILTER, 0); sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config, vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST); sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); } ether_ifattach(ifp, sc->vtnet_hwaddr); /* Tell the upper layer(s) we support long frames. */ if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); DEBUGNET_SET(ifp, vtnet); pa.pa_version = PFIL_VERSION; pa.pa_flags = PFIL_IN; pa.pa_type = PFIL_TYPE_ETHERNET; pa.pa_headname = if_name(ifp); sc->vtnet_pfil = pfil_head_register(&pa); return (0); } static int vtnet_rx_cluster_size(struct vtnet_softc *sc, int mtu) { int framesz; if (sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) return (MJUMPAGESIZE); else if (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) return (MCLBYTES); /* * Try to scale the receive mbuf cluster size from the MTU. We * could also use the VQ size to influence the selected size, * but that would only matter for very small queues. */ if (vtnet_modern(sc)) { MPASS(sc->vtnet_hdr_size == sizeof(struct virtio_net_hdr_v1)); framesz = sizeof(struct virtio_net_hdr_v1); } else framesz = sizeof(struct vtnet_rx_header); framesz += sizeof(struct ether_vlan_header) + mtu; if (framesz <= MCLBYTES) return (MCLBYTES); else if (framesz <= MJUMPAGESIZE) return (MJUMPAGESIZE); else if (framesz <= MJUM9BYTES) return (MJUM9BYTES); /* Sane default; avoid 16KB clusters. */ return (MCLBYTES); } static int vtnet_ioctl_mtu(struct vtnet_softc *sc, u_int mtu) { if_t ifp; int clustersz; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); if (if_getmtu(ifp) == mtu) return (0); else if (mtu < ETHERMIN || mtu > sc->vtnet_max_mtu) return (EINVAL); if_setmtu(ifp, mtu); clustersz = vtnet_rx_cluster_size(sc, mtu); if (clustersz != sc->vtnet_rx_clustersz && if_getdrvflags(ifp) & IFF_DRV_RUNNING) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); vtnet_init_locked(sc, 0); } return (0); } static int vtnet_ioctl_ifflags(struct vtnet_softc *sc) { if_t ifp; int drv_running; ifp = sc->vtnet_ifp; drv_running = (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0; VTNET_CORE_LOCK_ASSERT(sc); if ((if_getflags(ifp) & IFF_UP) == 0) { if (drv_running) vtnet_stop(sc); goto out; } if (!drv_running) { vtnet_init_locked(sc, 0); goto out; } if ((if_getflags(ifp) ^ sc->vtnet_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) { if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) vtnet_rx_filter(sc); else { /* * We don't support filtering out multicast, so * ALLMULTI is always set. */ if_setflagbits(ifp, IFF_ALLMULTI, 0); if_setflagbits(ifp, IFF_PROMISC, 0); } } out: sc->vtnet_if_flags = if_getflags(ifp); return (0); } static int vtnet_ioctl_multi(struct vtnet_softc *sc) { if_t ifp; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX && if_getdrvflags(ifp) & IFF_DRV_RUNNING) vtnet_rx_filter_mac(sc); return (0); } static int vtnet_ioctl_ifcap(struct vtnet_softc *sc, struct ifreq *ifr) { if_t ifp; int mask, reinit, update; ifp = sc->vtnet_ifp; mask = (ifr->ifr_reqcap & if_getcapabilities(ifp)) ^ if_getcapenable(ifp); reinit = update = 0; VTNET_CORE_LOCK_ASSERT(sc); if (mask & IFCAP_TXCSUM) if_togglecapenable(ifp, IFCAP_TXCSUM); if (mask & IFCAP_TXCSUM_IPV6) if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); if (mask & IFCAP_TSO4) if_togglecapenable(ifp, IFCAP_TSO4); if (mask & IFCAP_TSO6) if_togglecapenable(ifp, IFCAP_TSO6); if (mask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_LRO)) { /* * These Rx features require the negotiated features to * be updated. Avoid a full reinit if possible. */ if (sc->vtnet_features & VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) update = 1; else reinit = 1; /* BMV: Avoid needless renegotiation for just software LRO. */ if ((mask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_LRO)) == IFCAP_LRO && vtnet_software_lro(sc)) reinit = update = 0; if (mask & IFCAP_RXCSUM) if_togglecapenable(ifp, IFCAP_RXCSUM); if (mask & IFCAP_RXCSUM_IPV6) if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); if (mask & IFCAP_LRO) if_togglecapenable(ifp, IFCAP_LRO); /* * VirtIO does not distinguish between IPv4 and IPv6 checksums * so treat them as a pair. Guest TSO (LRO) requires receive * checksums. */ if (if_getcapenable(ifp) & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) { if_setcapenablebit(ifp, IFCAP_RXCSUM, 0); #ifdef notyet if_setcapenablebit(ifp, IFCAP_RXCSUM_IPV6, 0); #endif } else if_setcapenablebit(ifp, 0, (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_LRO)); } if (mask & IFCAP_VLAN_HWFILTER) { /* These Rx features require renegotiation. */ reinit = 1; if (mask & IFCAP_VLAN_HWFILTER) if_togglecapenable(ifp, IFCAP_VLAN_HWFILTER); } if (mask & IFCAP_VLAN_HWTSO) if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); if (mask & IFCAP_VLAN_HWTAGGING) if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { if (reinit) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); vtnet_init_locked(sc, 0); } else if (update) vtnet_update_rx_offloads(sc); } return (0); } static int vtnet_ioctl(if_t ifp, u_long cmd, caddr_t data) { struct vtnet_softc *sc; struct ifreq *ifr; int error; sc = if_getsoftc(ifp); ifr = (struct ifreq *) data; error = 0; switch (cmd) { case SIOCSIFMTU: VTNET_CORE_LOCK(sc); error = vtnet_ioctl_mtu(sc, ifr->ifr_mtu); VTNET_CORE_UNLOCK(sc); break; case SIOCSIFFLAGS: VTNET_CORE_LOCK(sc); error = vtnet_ioctl_ifflags(sc); VTNET_CORE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: VTNET_CORE_LOCK(sc); error = vtnet_ioctl_multi(sc); VTNET_CORE_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd); break; case SIOCSIFCAP: VTNET_CORE_LOCK(sc); error = vtnet_ioctl_ifcap(sc, ifr); VTNET_CORE_UNLOCK(sc); VLAN_CAPABILITIES(ifp); break; default: error = ether_ioctl(ifp, cmd, data); break; } VTNET_CORE_LOCK_ASSERT_NOTOWNED(sc); return (error); } static int vtnet_rxq_populate(struct vtnet_rxq *rxq) { struct virtqueue *vq; int nbufs, error; #ifdef DEV_NETMAP error = vtnet_netmap_rxq_populate(rxq); if (error >= 0) return (error); #endif /* DEV_NETMAP */ vq = rxq->vtnrx_vq; error = ENOSPC; for (nbufs = 0; !virtqueue_full(vq); nbufs++) { error = vtnet_rxq_new_buf(rxq); if (error) break; } if (nbufs > 0) { virtqueue_notify(vq); /* * EMSGSIZE signifies the virtqueue did not have enough * entries available to hold the last mbuf. This is not * an error. */ if (error == EMSGSIZE) error = 0; } return (error); } static void vtnet_rxq_free_mbufs(struct vtnet_rxq *rxq) { struct virtqueue *vq; struct mbuf *m; int last; #ifdef DEV_NETMAP struct netmap_kring *kring = netmap_kring_on(NA(rxq->vtnrx_sc->vtnet_ifp), rxq->vtnrx_id, NR_RX); #else /* !DEV_NETMAP */ void *kring = NULL; #endif /* !DEV_NETMAP */ vq = rxq->vtnrx_vq; last = 0; while ((m = virtqueue_drain(vq, &last)) != NULL) { if (kring == NULL) m_freem(m); } KASSERT(virtqueue_empty(vq), ("%s: mbufs remaining in rx queue %p", __func__, rxq)); } static struct mbuf * vtnet_rx_alloc_buf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp) { struct mbuf *m_head, *m_tail, *m; int i, size; m_head = NULL; size = sc->vtnet_rx_clustersz; KASSERT(nbufs == 1 || sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, ("%s: mbuf %d chain requested without LRO_NOMRG", __func__, nbufs)); for (i = 0; i < nbufs; i++) { m = m_getjcl(M_NOWAIT, MT_DATA, i == 0 ? M_PKTHDR : 0, size); if (m == NULL) { sc->vtnet_stats.mbuf_alloc_failed++; m_freem(m_head); return (NULL); } m->m_len = size; if (m_head != NULL) { m_tail->m_next = m; m_tail = m; } else m_head = m_tail = m; } if (m_tailp != NULL) *m_tailp = m_tail; return (m_head); } /* * Slow path for when LRO without mergeable buffers is negotiated. */ static int vtnet_rxq_replace_lro_nomrg_buf(struct vtnet_rxq *rxq, struct mbuf *m0, int len0) { struct vtnet_softc *sc; struct mbuf *m, *m_prev, *m_new, *m_tail; int len, clustersz, nreplace, error; sc = rxq->vtnrx_sc; clustersz = sc->vtnet_rx_clustersz; m_prev = NULL; m_tail = NULL; nreplace = 0; m = m0; len = len0; /* * Since these mbuf chains are so large, avoid allocating a complete * replacement when the received frame did not consume the entire * chain. Unused mbufs are moved to the tail of the replacement mbuf. */ while (len > 0) { if (m == NULL) { sc->vtnet_stats.rx_frame_too_large++; return (EMSGSIZE); } /* * Every mbuf should have the expected cluster size since that * is also used to allocate the replacements. */ KASSERT(m->m_len == clustersz, ("%s: mbuf size %d not expected cluster size %d", __func__, m->m_len, clustersz)); m->m_len = MIN(m->m_len, len); len -= m->m_len; m_prev = m; m = m->m_next; nreplace++; } KASSERT(nreplace > 0 && nreplace <= sc->vtnet_rx_nmbufs, ("%s: invalid replacement mbuf count %d max %d", __func__, nreplace, sc->vtnet_rx_nmbufs)); m_new = vtnet_rx_alloc_buf(sc, nreplace, &m_tail); if (m_new == NULL) { m_prev->m_len = clustersz; return (ENOBUFS); } /* * Move any unused mbufs from the received mbuf chain onto the * end of the replacement chain. */ if (m_prev->m_next != NULL) { m_tail->m_next = m_prev->m_next; m_prev->m_next = NULL; } error = vtnet_rxq_enqueue_buf(rxq, m_new); if (error) { /* * The replacement is suppose to be an copy of the one * dequeued so this is a very unexpected error. * * Restore the m0 chain to the original state if it was * modified so we can then discard it. */ if (m_tail->m_next != NULL) { m_prev->m_next = m_tail->m_next; m_tail->m_next = NULL; } m_prev->m_len = clustersz; sc->vtnet_stats.rx_enq_replacement_failed++; m_freem(m_new); } return (error); } static int vtnet_rxq_replace_buf(struct vtnet_rxq *rxq, struct mbuf *m, int len) { struct vtnet_softc *sc; struct mbuf *m_new; int error; sc = rxq->vtnrx_sc; if (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) return (vtnet_rxq_replace_lro_nomrg_buf(rxq, m, len)); MPASS(m->m_next == NULL); if (m->m_len < len) return (EMSGSIZE); m_new = vtnet_rx_alloc_buf(sc, 1, NULL); if (m_new == NULL) return (ENOBUFS); error = vtnet_rxq_enqueue_buf(rxq, m_new); if (error) { sc->vtnet_stats.rx_enq_replacement_failed++; m_freem(m_new); } else m->m_len = len; return (error); } static int vtnet_rxq_enqueue_buf(struct vtnet_rxq *rxq, struct mbuf *m) { struct vtnet_softc *sc; struct sglist *sg; int header_inlined, error; sc = rxq->vtnrx_sc; sg = rxq->vtnrx_sg; KASSERT(m->m_next == NULL || sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG, ("%s: mbuf chain without LRO_NOMRG", __func__)); VTNET_RXQ_LOCK_ASSERT(rxq); sglist_reset(sg); header_inlined = vtnet_modern(sc) || (sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) != 0; /* TODO: ANY_LAYOUT */ if (header_inlined) error = sglist_append_mbuf(sg, m); else { struct vtnet_rx_header *rxhdr = mtod(m, struct vtnet_rx_header *); MPASS(sc->vtnet_hdr_size == sizeof(struct virtio_net_hdr)); /* Append the header and remaining mbuf data. */ error = sglist_append(sg, &rxhdr->vrh_hdr, sc->vtnet_hdr_size); if (error) return (error); error = sglist_append(sg, &rxhdr[1], m->m_len - sizeof(struct vtnet_rx_header)); if (error) return (error); if (m->m_next != NULL) error = sglist_append_mbuf(sg, m->m_next); } if (error) return (error); return (virtqueue_enqueue(rxq->vtnrx_vq, m, sg, 0, sg->sg_nseg)); } static int vtnet_rxq_new_buf(struct vtnet_rxq *rxq) { struct vtnet_softc *sc; struct mbuf *m; int error; sc = rxq->vtnrx_sc; m = vtnet_rx_alloc_buf(sc, sc->vtnet_rx_nmbufs, NULL); if (m == NULL) return (ENOBUFS); error = vtnet_rxq_enqueue_buf(rxq, m); if (error) m_freem(m); return (error); } static int vtnet_rxq_csum_needs_csum(struct vtnet_rxq *rxq, struct mbuf *m, uint16_t etype, int hoff, struct virtio_net_hdr *hdr) { struct vtnet_softc *sc; int error; sc = rxq->vtnrx_sc; /* * NEEDS_CSUM corresponds to Linux's CHECKSUM_PARTIAL, but FreeBSD does * not have an analogous CSUM flag. The checksum has been validated, * but is incomplete (TCP/UDP pseudo header). * * The packet is likely from another VM on the same host that itself * performed checksum offloading so Tx/Rx is basically a memcpy and * the checksum has little value. * * Default to receiving the packet as-is for performance reasons, but * this can cause issues if the packet is to be forwarded because it * does not contain a valid checksum. This patch may be helpful: * https://reviews.freebsd.org/D6611. In the meantime, have the driver * compute the checksum if requested. * * BMV: Need to add an CSUM_PARTIAL flag? */ if ((sc->vtnet_flags & VTNET_FLAG_FIXUP_NEEDS_CSUM) == 0) { error = vtnet_rxq_csum_data_valid(rxq, m, etype, hoff, hdr); return (error); } /* * Compute the checksum in the driver so the packet will contain a * valid checksum. The checksum is at csum_offset from csum_start. */ switch (etype) { #if defined(INET) || defined(INET6) case ETHERTYPE_IP: case ETHERTYPE_IPV6: { int csum_off, csum_end; uint16_t csum; csum_off = hdr->csum_start + hdr->csum_offset; csum_end = csum_off + sizeof(uint16_t); /* Assume checksum will be in the first mbuf. */ if (m->m_len < csum_end || m->m_pkthdr.len < csum_end) return (1); /* * Like in_delayed_cksum()/in6_delayed_cksum(), compute the * checksum and write it at the specified offset. We could * try to verify the packet: csum_start should probably * correspond to the start of the TCP/UDP header. * * BMV: Need to properly handle UDP with zero checksum. Is * the IPv4 header checksum implicitly validated? */ csum = in_cksum_skip(m, m->m_pkthdr.len, hdr->csum_start); *(uint16_t *)(mtodo(m, csum_off)) = csum; m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xFFFF; break; } #endif default: sc->vtnet_stats.rx_csum_bad_ethtype++; return (1); } return (0); } static int vtnet_rxq_csum_data_valid(struct vtnet_rxq *rxq, struct mbuf *m, uint16_t etype, int hoff, struct virtio_net_hdr *hdr __unused) { #if 0 struct vtnet_softc *sc; #endif int protocol; #if 0 sc = rxq->vtnrx_sc; #endif switch (etype) { #if defined(INET) case ETHERTYPE_IP: if (__predict_false(m->m_len < hoff + sizeof(struct ip))) protocol = IPPROTO_DONE; else { struct ip *ip = (struct ip *)(m->m_data + hoff); protocol = ip->ip_p; } break; #endif #if defined(INET6) case ETHERTYPE_IPV6: if (__predict_false(m->m_len < hoff + sizeof(struct ip6_hdr)) || ip6_lasthdr(m, hoff, IPPROTO_IPV6, &protocol) < 0) protocol = IPPROTO_DONE; break; #endif default: protocol = IPPROTO_DONE; break; } switch (protocol) { case IPPROTO_TCP: case IPPROTO_UDP: m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xFFFF; break; default: /* * FreeBSD does not support checksum offloading of this * protocol. Let the stack re-verify the checksum later * if the protocol is supported. */ #if 0 if_printf(sc->vtnet_ifp, "%s: checksum offload of unsupported protocol " "etype=%#x protocol=%d csum_start=%d csum_offset=%d\n", __func__, etype, protocol, hdr->csum_start, hdr->csum_offset); #endif break; } return (0); } static int vtnet_rxq_csum(struct vtnet_rxq *rxq, struct mbuf *m, struct virtio_net_hdr *hdr) { const struct ether_header *eh; int hoff; uint16_t etype; eh = mtod(m, const struct ether_header *); etype = ntohs(eh->ether_type); if (etype == ETHERTYPE_VLAN) { /* TODO BMV: Handle QinQ. */ const struct ether_vlan_header *evh = mtod(m, const struct ether_vlan_header *); etype = ntohs(evh->evl_proto); hoff = sizeof(struct ether_vlan_header); } else hoff = sizeof(struct ether_header); if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) return (vtnet_rxq_csum_needs_csum(rxq, m, etype, hoff, hdr)); else /* VIRTIO_NET_HDR_F_DATA_VALID */ return (vtnet_rxq_csum_data_valid(rxq, m, etype, hoff, hdr)); } static void vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *rxq, int nbufs) { struct mbuf *m; while (--nbufs > 0) { m = virtqueue_dequeue(rxq->vtnrx_vq, NULL); if (m == NULL) break; vtnet_rxq_discard_buf(rxq, m); } } static void vtnet_rxq_discard_buf(struct vtnet_rxq *rxq, struct mbuf *m) { int error __diagused; /* * Requeue the discarded mbuf. This should always be successful * since it was just dequeued. */ error = vtnet_rxq_enqueue_buf(rxq, m); KASSERT(error == 0, ("%s: cannot requeue discarded mbuf %d", __func__, error)); } static int vtnet_rxq_merged_eof(struct vtnet_rxq *rxq, struct mbuf *m_head, int nbufs) { struct vtnet_softc *sc; struct virtqueue *vq; struct mbuf *m_tail; sc = rxq->vtnrx_sc; vq = rxq->vtnrx_vq; m_tail = m_head; while (--nbufs > 0) { struct mbuf *m; uint32_t len; m = virtqueue_dequeue(vq, &len); if (m == NULL) { rxq->vtnrx_stats.vrxs_ierrors++; goto fail; } if (vtnet_rxq_new_buf(rxq) != 0) { rxq->vtnrx_stats.vrxs_iqdrops++; vtnet_rxq_discard_buf(rxq, m); if (nbufs > 1) vtnet_rxq_discard_merged_bufs(rxq, nbufs); goto fail; } if (m->m_len < len) len = m->m_len; m->m_len = len; m->m_flags &= ~M_PKTHDR; m_head->m_pkthdr.len += len; m_tail->m_next = m; m_tail = m; } return (0); fail: sc->vtnet_stats.rx_mergeable_failed++; m_freem(m_head); return (1); } #if defined(INET) || defined(INET6) static int vtnet_lro_rx(struct vtnet_rxq *rxq, struct mbuf *m) { struct lro_ctrl *lro; lro = &rxq->vtnrx_lro; if (lro->lro_mbuf_max != 0) { tcp_lro_queue_mbuf(lro, m); return (0); } return (tcp_lro_rx(lro, m, 0)); } #endif static void vtnet_rxq_input(struct vtnet_rxq *rxq, struct mbuf *m, struct virtio_net_hdr *hdr) { struct vtnet_softc *sc; if_t ifp; sc = rxq->vtnrx_sc; ifp = sc->vtnet_ifp; if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { struct ether_header *eh = mtod(m, struct ether_header *); if (eh->ether_type == htons(ETHERTYPE_VLAN)) { vtnet_vlan_tag_remove(m); /* * With the 802.1Q header removed, update the * checksum starting location accordingly. */ if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) hdr->csum_start -= ETHER_VLAN_ENCAP_LEN; } } m->m_pkthdr.flowid = rxq->vtnrx_id; M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); if (hdr->flags & (VIRTIO_NET_HDR_F_NEEDS_CSUM | VIRTIO_NET_HDR_F_DATA_VALID)) { if (vtnet_rxq_csum(rxq, m, hdr) == 0) rxq->vtnrx_stats.vrxs_csum++; else rxq->vtnrx_stats.vrxs_csum_failed++; } if (hdr->gso_size != 0) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_TCPV6: m->m_pkthdr.lro_nsegs = howmany(m->m_pkthdr.len, hdr->gso_size); rxq->vtnrx_stats.vrxs_host_lro++; break; } } rxq->vtnrx_stats.vrxs_ipackets++; rxq->vtnrx_stats.vrxs_ibytes += m->m_pkthdr.len; #if defined(INET) || defined(INET6) if (vtnet_software_lro(sc) && if_getcapenable(ifp) & IFCAP_LRO) { if (vtnet_lro_rx(rxq, m) == 0) return; } #endif if_input(ifp, m); } static int vtnet_rxq_eof(struct vtnet_rxq *rxq) { struct virtio_net_hdr lhdr, *hdr; struct vtnet_softc *sc; if_t ifp; struct virtqueue *vq; int deq, count; sc = rxq->vtnrx_sc; vq = rxq->vtnrx_vq; ifp = sc->vtnet_ifp; deq = 0; count = sc->vtnet_rx_process_limit; VTNET_RXQ_LOCK_ASSERT(rxq); while (count-- > 0) { struct mbuf *m; uint32_t len, nbufs, adjsz; m = virtqueue_dequeue(vq, &len); if (m == NULL) break; deq++; if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) { rxq->vtnrx_stats.vrxs_ierrors++; vtnet_rxq_discard_buf(rxq, m); continue; } if (sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) { struct virtio_net_hdr_mrg_rxbuf *mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *); kmsan_mark(mhdr, sizeof(*mhdr), KMSAN_STATE_INITED); nbufs = vtnet_htog16(sc, mhdr->num_buffers); adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf); } else if (vtnet_modern(sc)) { nbufs = 1; /* num_buffers is always 1 */ adjsz = sizeof(struct virtio_net_hdr_v1); } else { nbufs = 1; adjsz = sizeof(struct vtnet_rx_header); /* * Account for our gap between the header and start of * data to keep the segments separated. */ len += VTNET_RX_HEADER_PAD; } if (vtnet_rxq_replace_buf(rxq, m, len) != 0) { rxq->vtnrx_stats.vrxs_iqdrops++; vtnet_rxq_discard_buf(rxq, m); if (nbufs > 1) vtnet_rxq_discard_merged_bufs(rxq, nbufs); continue; } m->m_pkthdr.len = len; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.csum_flags = 0; if (nbufs > 1) { /* Dequeue the rest of chain. */ if (vtnet_rxq_merged_eof(rxq, m, nbufs) != 0) continue; } kmsan_mark_mbuf(m, KMSAN_STATE_INITED); /* * Save an endian swapped version of the header prior to it * being stripped. The header is always at the start of the * mbuf data. num_buffers was already saved (and not needed) * so use the standard header. */ hdr = mtod(m, struct virtio_net_hdr *); lhdr.flags = hdr->flags; lhdr.gso_type = hdr->gso_type; lhdr.hdr_len = vtnet_htog16(sc, hdr->hdr_len); lhdr.gso_size = vtnet_htog16(sc, hdr->gso_size); lhdr.csum_start = vtnet_htog16(sc, hdr->csum_start); lhdr.csum_offset = vtnet_htog16(sc, hdr->csum_offset); m_adj(m, adjsz); if (PFIL_HOOKED_IN(sc->vtnet_pfil)) { pfil_return_t pfil; pfil = pfil_mbuf_in(sc->vtnet_pfil, &m, ifp, NULL); switch (pfil) { case PFIL_DROPPED: case PFIL_CONSUMED: continue; default: KASSERT(pfil == PFIL_PASS, ("Filter returned %d!", pfil)); } } vtnet_rxq_input(rxq, m, &lhdr); } if (deq > 0) { #if defined(INET) || defined(INET6) if (vtnet_software_lro(sc)) tcp_lro_flush_all(&rxq->vtnrx_lro); #endif virtqueue_notify(vq); } return (count > 0 ? 0 : EAGAIN); } static void vtnet_rx_vq_process(struct vtnet_rxq *rxq, int tries) { struct vtnet_softc *sc; if_t ifp; u_int more; #ifdef DEV_NETMAP int nmirq; #endif /* DEV_NETMAP */ sc = rxq->vtnrx_sc; ifp = sc->vtnet_ifp; if (__predict_false(rxq->vtnrx_id >= sc->vtnet_act_vq_pairs)) { /* * Ignore this interrupt. Either this is a spurious interrupt * or multiqueue without per-VQ MSIX so every queue needs to * be polled (a brain dead configuration we could try harder * to avoid). */ vtnet_rxq_disable_intr(rxq); return; } VTNET_RXQ_LOCK(rxq); #ifdef DEV_NETMAP /* * We call netmap_rx_irq() under lock to prevent concurrent calls. * This is not necessary to serialize the access to the RX vq, but * rather to avoid races that may happen if this interface is * attached to a VALE switch, which would cause received packets * to stall in the RX queue (nm_kr_tryget() could find the kring * busy when called from netmap_bwrap_intr_notify()). */ nmirq = netmap_rx_irq(ifp, rxq->vtnrx_id, &more); if (nmirq != NM_IRQ_PASS) { VTNET_RXQ_UNLOCK(rxq); if (nmirq == NM_IRQ_RESCHED) { taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); } return; } #endif /* DEV_NETMAP */ again: if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { VTNET_RXQ_UNLOCK(rxq); return; } more = vtnet_rxq_eof(rxq); if (more || vtnet_rxq_enable_intr(rxq) != 0) { if (!more) vtnet_rxq_disable_intr(rxq); /* * This is an occasional condition or race (when !more), * so retry a few times before scheduling the taskqueue. */ if (tries-- > 0) goto again; rxq->vtnrx_stats.vrxs_rescheduled++; VTNET_RXQ_UNLOCK(rxq); taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); } else VTNET_RXQ_UNLOCK(rxq); } static void vtnet_rx_vq_intr(void *xrxq) { struct vtnet_rxq *rxq; rxq = xrxq; vtnet_rx_vq_process(rxq, VTNET_INTR_DISABLE_RETRIES); } static void vtnet_rxq_tq_intr(void *xrxq, int pending __unused) { struct vtnet_rxq *rxq; rxq = xrxq; vtnet_rx_vq_process(rxq, 0); } static int vtnet_txq_intr_threshold(struct vtnet_txq *txq) { struct vtnet_softc *sc; int threshold; sc = txq->vtntx_sc; /* * The Tx interrupt is disabled until the queue free count falls * below our threshold. Completed frames are drained from the Tx * virtqueue before transmitting new frames and in the watchdog * callout, so the frequency of Tx interrupts is greatly reduced, * at the cost of not freeing mbufs as quickly as they otherwise * would be. */ threshold = virtqueue_size(txq->vtntx_vq) / 4; /* * Without indirect descriptors, leave enough room for the most * segments we handle. */ if ((sc->vtnet_flags & VTNET_FLAG_INDIRECT) == 0 && threshold < sc->vtnet_tx_nsegs) threshold = sc->vtnet_tx_nsegs; return (threshold); } static int vtnet_txq_below_threshold(struct vtnet_txq *txq) { struct virtqueue *vq; vq = txq->vtntx_vq; return (virtqueue_nfree(vq) <= txq->vtntx_intr_threshold); } static int vtnet_txq_notify(struct vtnet_txq *txq) { struct virtqueue *vq; vq = txq->vtntx_vq; txq->vtntx_watchdog = VTNET_TX_TIMEOUT; virtqueue_notify(vq); if (vtnet_txq_enable_intr(txq) == 0) return (0); /* * Drain frames that were completed since last checked. If this * causes the queue to go above the threshold, the caller should * continue transmitting. */ if (vtnet_txq_eof(txq) != 0 && vtnet_txq_below_threshold(txq) == 0) { virtqueue_disable_intr(vq); return (1); } return (0); } static void vtnet_txq_free_mbufs(struct vtnet_txq *txq) { struct virtqueue *vq; struct vtnet_tx_header *txhdr; int last; #ifdef DEV_NETMAP struct netmap_kring *kring = netmap_kring_on(NA(txq->vtntx_sc->vtnet_ifp), txq->vtntx_id, NR_TX); #else /* !DEV_NETMAP */ void *kring = NULL; #endif /* !DEV_NETMAP */ vq = txq->vtntx_vq; last = 0; while ((txhdr = virtqueue_drain(vq, &last)) != NULL) { if (kring == NULL) { m_freem(txhdr->vth_mbuf); uma_zfree(vtnet_tx_header_zone, txhdr); } } KASSERT(virtqueue_empty(vq), ("%s: mbufs remaining in tx queue %p", __func__, txq)); } /* * BMV: This can go away once we finally have offsets in the mbuf header. */ static int vtnet_txq_offload_ctx(struct vtnet_txq *txq, struct mbuf *m, int *etype, int *proto, int *start) { struct vtnet_softc *sc; struct ether_vlan_header *evh; #if defined(INET) || defined(INET6) int offset; #endif sc = txq->vtntx_sc; evh = mtod(m, struct ether_vlan_header *); if (evh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { /* BMV: We should handle nested VLAN tags too. */ *etype = ntohs(evh->evl_proto); #if defined(INET) || defined(INET6) offset = sizeof(struct ether_vlan_header); #endif } else { *etype = ntohs(evh->evl_encap_proto); #if defined(INET) || defined(INET6) offset = sizeof(struct ether_header); #endif } switch (*etype) { #if defined(INET) case ETHERTYPE_IP: { struct ip *ip, iphdr; if (__predict_false(m->m_len < offset + sizeof(struct ip))) { m_copydata(m, offset, sizeof(struct ip), (caddr_t) &iphdr); ip = &iphdr; } else ip = (struct ip *)(m->m_data + offset); *proto = ip->ip_p; *start = offset + (ip->ip_hl << 2); break; } #endif #if defined(INET6) case ETHERTYPE_IPV6: *proto = -1; *start = ip6_lasthdr(m, offset, IPPROTO_IPV6, proto); /* Assert the network stack sent us a valid packet. */ KASSERT(*start > offset, ("%s: mbuf %p start %d offset %d proto %d", __func__, m, *start, offset, *proto)); break; #endif default: sc->vtnet_stats.tx_csum_unknown_ethtype++; return (EINVAL); } return (0); } static int vtnet_txq_offload_tso(struct vtnet_txq *txq, struct mbuf *m, int eth_type, int offset, struct virtio_net_hdr *hdr) { static struct timeval lastecn; static int curecn; struct vtnet_softc *sc; struct tcphdr *tcp, tcphdr; sc = txq->vtntx_sc; if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) { m_copydata(m, offset, sizeof(struct tcphdr), (caddr_t) &tcphdr); tcp = &tcphdr; } else tcp = (struct tcphdr *)(m->m_data + offset); hdr->hdr_len = vtnet_gtoh16(sc, offset + (tcp->th_off << 2)); hdr->gso_size = vtnet_gtoh16(sc, m->m_pkthdr.tso_segsz); hdr->gso_type = eth_type == ETHERTYPE_IP ? VIRTIO_NET_HDR_GSO_TCPV4 : VIRTIO_NET_HDR_GSO_TCPV6; if (__predict_false(tcp->th_flags & TH_CWR)) { /* * Drop if VIRTIO_NET_F_HOST_ECN was not negotiated. In * FreeBSD, ECN support is not on a per-interface basis, * but globally via the net.inet.tcp.ecn.enable sysctl * knob. The default is off. */ if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) { if (ppsratecheck(&lastecn, &curecn, 1)) if_printf(sc->vtnet_ifp, "TSO with ECN not negotiated with host\n"); return (ENOTSUP); } hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; } txq->vtntx_stats.vtxs_tso++; return (0); } static struct mbuf * vtnet_txq_offload(struct vtnet_txq *txq, struct mbuf *m, struct virtio_net_hdr *hdr) { struct vtnet_softc *sc; int flags, etype, csum_start, proto, error; sc = txq->vtntx_sc; flags = m->m_pkthdr.csum_flags; error = vtnet_txq_offload_ctx(txq, m, &etype, &proto, &csum_start); if (error) goto drop; if (flags & (VTNET_CSUM_OFFLOAD | VTNET_CSUM_OFFLOAD_IPV6)) { /* Sanity check the parsed mbuf matches the offload flags. */ if (__predict_false((flags & VTNET_CSUM_OFFLOAD && etype != ETHERTYPE_IP) || (flags & VTNET_CSUM_OFFLOAD_IPV6 && etype != ETHERTYPE_IPV6))) { sc->vtnet_stats.tx_csum_proto_mismatch++; goto drop; } hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM; hdr->csum_start = vtnet_gtoh16(sc, csum_start); hdr->csum_offset = vtnet_gtoh16(sc, m->m_pkthdr.csum_data); txq->vtntx_stats.vtxs_csum++; } if (flags & (CSUM_IP_TSO | CSUM_IP6_TSO)) { /* * Sanity check the parsed mbuf IP protocol is TCP, and * VirtIO TSO reqires the checksum offloading above. */ if (__predict_false(proto != IPPROTO_TCP)) { sc->vtnet_stats.tx_tso_not_tcp++; goto drop; } else if (__predict_false((hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) == 0)) { sc->vtnet_stats.tx_tso_without_csum++; goto drop; } error = vtnet_txq_offload_tso(txq, m, etype, csum_start, hdr); if (error) goto drop; } return (m); drop: m_freem(m); return (NULL); } static int vtnet_txq_enqueue_buf(struct vtnet_txq *txq, struct mbuf **m_head, struct vtnet_tx_header *txhdr) { struct vtnet_softc *sc; struct virtqueue *vq; struct sglist *sg; struct mbuf *m; int error; sc = txq->vtntx_sc; vq = txq->vtntx_vq; sg = txq->vtntx_sg; m = *m_head; sglist_reset(sg); error = sglist_append(sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size); if (error != 0 || sg->sg_nseg != 1) { KASSERT(0, ("%s: cannot add header to sglist error %d nseg %d", __func__, error, sg->sg_nseg)); goto fail; } error = sglist_append_mbuf(sg, m); if (error) { m = m_defrag(m, M_NOWAIT); if (m == NULL) goto fail; *m_head = m; sc->vtnet_stats.tx_defragged++; error = sglist_append_mbuf(sg, m); if (error) goto fail; } txhdr->vth_mbuf = m; error = virtqueue_enqueue(vq, txhdr, sg, sg->sg_nseg, 0); return (error); fail: sc->vtnet_stats.tx_defrag_failed++; m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } static int vtnet_txq_encap(struct vtnet_txq *txq, struct mbuf **m_head, int flags) { struct vtnet_tx_header *txhdr; struct virtio_net_hdr *hdr; struct mbuf *m; int error; m = *m_head; M_ASSERTPKTHDR(m); txhdr = uma_zalloc(vtnet_tx_header_zone, flags | M_ZERO); if (txhdr == NULL) { m_freem(m); *m_head = NULL; return (ENOMEM); } /* * Always use the non-mergeable header, regardless if mergable headers * were negotiated, because for transmit num_buffers is always zero. * The vtnet_hdr_size is used to enqueue the right header size segment. */ hdr = &txhdr->vth_uhdr.hdr; if (m->m_flags & M_VLANTAG) { m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); if ((*m_head = m) == NULL) { error = ENOBUFS; goto fail; } m->m_flags &= ~M_VLANTAG; } if (m->m_pkthdr.csum_flags & VTNET_CSUM_ALL_OFFLOAD) { m = vtnet_txq_offload(txq, m, hdr); if ((*m_head = m) == NULL) { error = ENOBUFS; goto fail; } } error = vtnet_txq_enqueue_buf(txq, m_head, txhdr); fail: if (error) uma_zfree(vtnet_tx_header_zone, txhdr); return (error); } #ifdef VTNET_LEGACY_TX static void vtnet_start_locked(struct vtnet_txq *txq, if_t ifp) { struct vtnet_softc *sc; struct virtqueue *vq; struct mbuf *m0; int tries, enq; sc = txq->vtntx_sc; vq = txq->vtntx_vq; tries = 0; VTNET_TXQ_LOCK_ASSERT(txq); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || sc->vtnet_link_active == 0) return; vtnet_txq_eof(txq); again: enq = 0; while (!if_sendq_empty(ifp)) { if (virtqueue_full(vq)) break; m0 = if_dequeue(ifp); if (m0 == NULL) break; if (vtnet_txq_encap(txq, &m0, M_NOWAIT) != 0) { if (m0 != NULL) if_sendq_prepend(ifp, m0); break; } enq++; ETHER_BPF_MTAP(ifp, m0); } if (enq > 0 && vtnet_txq_notify(txq) != 0) { if (tries++ < VTNET_NOTIFY_RETRIES) goto again; txq->vtntx_stats.vtxs_rescheduled++; taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask); } } static void vtnet_start(if_t ifp) { struct vtnet_softc *sc; struct vtnet_txq *txq; sc = if_getsoftc(ifp); txq = &sc->vtnet_txqs[0]; VTNET_TXQ_LOCK(txq); vtnet_start_locked(txq, ifp); VTNET_TXQ_UNLOCK(txq); } #else /* !VTNET_LEGACY_TX */ static int vtnet_txq_mq_start_locked(struct vtnet_txq *txq, struct mbuf *m) { struct vtnet_softc *sc; struct virtqueue *vq; struct buf_ring *br; if_t ifp; int enq, tries, error; sc = txq->vtntx_sc; vq = txq->vtntx_vq; br = txq->vtntx_br; ifp = sc->vtnet_ifp; tries = 0; error = 0; VTNET_TXQ_LOCK_ASSERT(txq); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || sc->vtnet_link_active == 0) { if (m != NULL) error = drbr_enqueue(ifp, br, m); return (error); } if (m != NULL) { error = drbr_enqueue(ifp, br, m); if (error) return (error); } vtnet_txq_eof(txq); again: enq = 0; while ((m = drbr_peek(ifp, br)) != NULL) { if (virtqueue_full(vq)) { drbr_putback(ifp, br, m); break; } if (vtnet_txq_encap(txq, &m, M_NOWAIT) != 0) { if (m != NULL) drbr_putback(ifp, br, m); else drbr_advance(ifp, br); break; } drbr_advance(ifp, br); enq++; ETHER_BPF_MTAP(ifp, m); } if (enq > 0 && vtnet_txq_notify(txq) != 0) { if (tries++ < VTNET_NOTIFY_RETRIES) goto again; txq->vtntx_stats.vtxs_rescheduled++; taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask); } return (0); } static int vtnet_txq_mq_start(if_t ifp, struct mbuf *m) { struct vtnet_softc *sc; struct vtnet_txq *txq; int i, npairs, error; sc = if_getsoftc(ifp); npairs = sc->vtnet_act_vq_pairs; if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) i = m->m_pkthdr.flowid % npairs; else i = curcpu % npairs; txq = &sc->vtnet_txqs[i]; if (VTNET_TXQ_TRYLOCK(txq) != 0) { error = vtnet_txq_mq_start_locked(txq, m); VTNET_TXQ_UNLOCK(txq); } else { error = drbr_enqueue(ifp, txq->vtntx_br, m); taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_defrtask); } return (error); } static void vtnet_txq_tq_deferred(void *xtxq, int pending __unused) { struct vtnet_softc *sc; struct vtnet_txq *txq; txq = xtxq; sc = txq->vtntx_sc; VTNET_TXQ_LOCK(txq); if (!drbr_empty(sc->vtnet_ifp, txq->vtntx_br)) vtnet_txq_mq_start_locked(txq, NULL); VTNET_TXQ_UNLOCK(txq); } #endif /* VTNET_LEGACY_TX */ static void vtnet_txq_start(struct vtnet_txq *txq) { struct vtnet_softc *sc; if_t ifp; sc = txq->vtntx_sc; ifp = sc->vtnet_ifp; #ifdef VTNET_LEGACY_TX if (!if_sendq_empty(ifp)) vtnet_start_locked(txq, ifp); #else if (!drbr_empty(ifp, txq->vtntx_br)) vtnet_txq_mq_start_locked(txq, NULL); #endif } static void vtnet_txq_tq_intr(void *xtxq, int pending __unused) { struct vtnet_softc *sc; struct vtnet_txq *txq; if_t ifp; txq = xtxq; sc = txq->vtntx_sc; ifp = sc->vtnet_ifp; VTNET_TXQ_LOCK(txq); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { VTNET_TXQ_UNLOCK(txq); return; } vtnet_txq_eof(txq); vtnet_txq_start(txq); VTNET_TXQ_UNLOCK(txq); } static int vtnet_txq_eof(struct vtnet_txq *txq) { struct virtqueue *vq; struct vtnet_tx_header *txhdr; struct mbuf *m; int deq; vq = txq->vtntx_vq; deq = 0; VTNET_TXQ_LOCK_ASSERT(txq); while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) { m = txhdr->vth_mbuf; deq++; txq->vtntx_stats.vtxs_opackets++; txq->vtntx_stats.vtxs_obytes += m->m_pkthdr.len; if (m->m_flags & M_MCAST) txq->vtntx_stats.vtxs_omcasts++; m_freem(m); uma_zfree(vtnet_tx_header_zone, txhdr); } if (virtqueue_empty(vq)) txq->vtntx_watchdog = 0; return (deq); } static void vtnet_tx_vq_intr(void *xtxq) { struct vtnet_softc *sc; struct vtnet_txq *txq; if_t ifp; txq = xtxq; sc = txq->vtntx_sc; ifp = sc->vtnet_ifp; if (__predict_false(txq->vtntx_id >= sc->vtnet_act_vq_pairs)) { /* * Ignore this interrupt. Either this is a spurious interrupt * or multiqueue without per-VQ MSIX so every queue needs to * be polled (a brain dead configuration we could try harder * to avoid). */ vtnet_txq_disable_intr(txq); return; } #ifdef DEV_NETMAP if (netmap_tx_irq(ifp, txq->vtntx_id) != NM_IRQ_PASS) return; #endif /* DEV_NETMAP */ VTNET_TXQ_LOCK(txq); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { VTNET_TXQ_UNLOCK(txq); return; } vtnet_txq_eof(txq); vtnet_txq_start(txq); VTNET_TXQ_UNLOCK(txq); } static void vtnet_tx_start_all(struct vtnet_softc *sc) { struct vtnet_txq *txq; int i; VTNET_CORE_LOCK_ASSERT(sc); for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { txq = &sc->vtnet_txqs[i]; VTNET_TXQ_LOCK(txq); vtnet_txq_start(txq); VTNET_TXQ_UNLOCK(txq); } } #ifndef VTNET_LEGACY_TX static void vtnet_qflush(if_t ifp) { struct vtnet_softc *sc; struct vtnet_txq *txq; struct mbuf *m; int i; sc = if_getsoftc(ifp); for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { txq = &sc->vtnet_txqs[i]; VTNET_TXQ_LOCK(txq); while ((m = buf_ring_dequeue_sc(txq->vtntx_br)) != NULL) m_freem(m); VTNET_TXQ_UNLOCK(txq); } if_qflush(ifp); } #endif static int vtnet_watchdog(struct vtnet_txq *txq) { if_t ifp; ifp = txq->vtntx_sc->vtnet_ifp; VTNET_TXQ_LOCK(txq); if (txq->vtntx_watchdog == 1) { /* * Only drain completed frames if the watchdog is about to * expire. If any frames were drained, there may be enough * free descriptors now available to transmit queued frames. * In that case, the timer will immediately be decremented * below, but the timeout is generous enough that should not * be a problem. */ if (vtnet_txq_eof(txq) != 0) vtnet_txq_start(txq); } if (txq->vtntx_watchdog == 0 || --txq->vtntx_watchdog) { VTNET_TXQ_UNLOCK(txq); return (0); } VTNET_TXQ_UNLOCK(txq); if_printf(ifp, "watchdog timeout on queue %d\n", txq->vtntx_id); return (1); } static void vtnet_accum_stats(struct vtnet_softc *sc, struct vtnet_rxq_stats *rxacc, struct vtnet_txq_stats *txacc) { bzero(rxacc, sizeof(struct vtnet_rxq_stats)); bzero(txacc, sizeof(struct vtnet_txq_stats)); for (int i = 0; i < sc->vtnet_max_vq_pairs; i++) { struct vtnet_rxq_stats *rxst; struct vtnet_txq_stats *txst; rxst = &sc->vtnet_rxqs[i].vtnrx_stats; rxacc->vrxs_ipackets += rxst->vrxs_ipackets; rxacc->vrxs_ibytes += rxst->vrxs_ibytes; rxacc->vrxs_iqdrops += rxst->vrxs_iqdrops; rxacc->vrxs_csum += rxst->vrxs_csum; rxacc->vrxs_csum_failed += rxst->vrxs_csum_failed; rxacc->vrxs_rescheduled += rxst->vrxs_rescheduled; txst = &sc->vtnet_txqs[i].vtntx_stats; txacc->vtxs_opackets += txst->vtxs_opackets; txacc->vtxs_obytes += txst->vtxs_obytes; txacc->vtxs_csum += txst->vtxs_csum; txacc->vtxs_tso += txst->vtxs_tso; txacc->vtxs_rescheduled += txst->vtxs_rescheduled; } } static uint64_t vtnet_get_counter(if_t ifp, ift_counter cnt) { struct vtnet_softc *sc; struct vtnet_rxq_stats rxaccum; struct vtnet_txq_stats txaccum; sc = if_getsoftc(ifp); vtnet_accum_stats(sc, &rxaccum, &txaccum); switch (cnt) { case IFCOUNTER_IPACKETS: return (rxaccum.vrxs_ipackets); case IFCOUNTER_IQDROPS: return (rxaccum.vrxs_iqdrops); case IFCOUNTER_IERRORS: return (rxaccum.vrxs_ierrors); case IFCOUNTER_OPACKETS: return (txaccum.vtxs_opackets); #ifndef VTNET_LEGACY_TX case IFCOUNTER_OBYTES: return (txaccum.vtxs_obytes); case IFCOUNTER_OMCASTS: return (txaccum.vtxs_omcasts); #endif default: return (if_get_counter_default(ifp, cnt)); } } static void vtnet_tick(void *xsc) { struct vtnet_softc *sc; if_t ifp; int i, timedout; sc = xsc; ifp = sc->vtnet_ifp; timedout = 0; VTNET_CORE_LOCK_ASSERT(sc); for (i = 0; i < sc->vtnet_act_vq_pairs; i++) timedout |= vtnet_watchdog(&sc->vtnet_txqs[i]); if (timedout != 0) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); vtnet_init_locked(sc, 0); } else callout_schedule(&sc->vtnet_tick_ch, hz); } static void vtnet_start_taskqueues(struct vtnet_softc *sc) { device_t dev; struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i, error; dev = sc->vtnet_dev; /* * Errors here are very difficult to recover from - we cannot * easily fail because, if this is during boot, we will hang * when freeing any successfully started taskqueues because * the scheduler isn't up yet. * * Most drivers just ignore the return value - it only fails * with ENOMEM so an error is not likely. */ for (i = 0; i < sc->vtnet_req_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; error = taskqueue_start_threads(&rxq->vtnrx_tq, 1, PI_NET, "%s rxq %d", device_get_nameunit(dev), rxq->vtnrx_id); if (error) { device_printf(dev, "failed to start rx taskq %d\n", rxq->vtnrx_id); } txq = &sc->vtnet_txqs[i]; error = taskqueue_start_threads(&txq->vtntx_tq, 1, PI_NET, "%s txq %d", device_get_nameunit(dev), txq->vtntx_id); if (error) { device_printf(dev, "failed to start tx taskq %d\n", txq->vtntx_id); } } } static void vtnet_free_taskqueues(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i; for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; if (rxq->vtnrx_tq != NULL) { taskqueue_free(rxq->vtnrx_tq); rxq->vtnrx_tq = NULL; } txq = &sc->vtnet_txqs[i]; if (txq->vtntx_tq != NULL) { taskqueue_free(txq->vtntx_tq); txq->vtntx_tq = NULL; } } } static void vtnet_drain_taskqueues(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i; for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; if (rxq->vtnrx_tq != NULL) taskqueue_drain(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); txq = &sc->vtnet_txqs[i]; if (txq->vtntx_tq != NULL) { taskqueue_drain(txq->vtntx_tq, &txq->vtntx_intrtask); #ifndef VTNET_LEGACY_TX taskqueue_drain(txq->vtntx_tq, &txq->vtntx_defrtask); #endif } } } static void vtnet_drain_rxtx_queues(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i; for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; vtnet_rxq_free_mbufs(rxq); txq = &sc->vtnet_txqs[i]; vtnet_txq_free_mbufs(txq); } } static void vtnet_stop_rendezvous(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; struct vtnet_txq *txq; int i; VTNET_CORE_LOCK_ASSERT(sc); /* * Lock and unlock the per-queue mutex so we known the stop * state is visible. Doing only the active queues should be * sufficient, but it does not cost much extra to do all the * queues. */ for (i = 0; i < sc->vtnet_max_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; VTNET_RXQ_LOCK(rxq); VTNET_RXQ_UNLOCK(rxq); txq = &sc->vtnet_txqs[i]; VTNET_TXQ_LOCK(txq); VTNET_TXQ_UNLOCK(txq); } } static void vtnet_stop(struct vtnet_softc *sc) { device_t dev; if_t ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); sc->vtnet_link_active = 0; callout_stop(&sc->vtnet_tick_ch); /* Only advisory. */ vtnet_disable_interrupts(sc); #ifdef DEV_NETMAP /* Stop any pending txsync/rxsync and disable them. */ netmap_disable_all_rings(ifp); #endif /* DEV_NETMAP */ /* * Stop the host adapter. This resets it to the pre-initialized * state. It will not generate any interrupts until after it is * reinitialized. */ virtio_stop(dev); vtnet_stop_rendezvous(sc); vtnet_drain_rxtx_queues(sc); sc->vtnet_act_vq_pairs = 1; } static int vtnet_virtio_reinit(struct vtnet_softc *sc) { device_t dev; if_t ifp; uint64_t features; int error; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; features = sc->vtnet_negotiated_features; /* * Re-negotiate with the host, removing any disabled receive * features. Transmit features are disabled only on our side * via if_capenable and if_hwassist. */ if ((if_getcapenable(ifp) & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) == 0) features &= ~(VIRTIO_NET_F_GUEST_CSUM | VTNET_LRO_FEATURES); if ((if_getcapenable(ifp) & IFCAP_LRO) == 0) features &= ~VTNET_LRO_FEATURES; if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) == 0) features &= ~VIRTIO_NET_F_CTRL_VLAN; error = virtio_reinit(dev, features); if (error) { device_printf(dev, "virtio reinit error %d\n", error); return (error); } sc->vtnet_features = features; virtio_reinit_complete(dev); return (0); } static void vtnet_init_rx_filters(struct vtnet_softc *sc) { if_t ifp; ifp = sc->vtnet_ifp; if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) { vtnet_rx_filter(sc); vtnet_rx_filter_mac(sc); } if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) vtnet_rx_filter_vlan(sc); } static int vtnet_init_rx_queues(struct vtnet_softc *sc) { device_t dev; if_t ifp; struct vtnet_rxq *rxq; int i, clustersz, error; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; clustersz = vtnet_rx_cluster_size(sc, if_getmtu(ifp)); sc->vtnet_rx_clustersz = clustersz; if (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) { sc->vtnet_rx_nmbufs = howmany(sizeof(struct vtnet_rx_header) + VTNET_MAX_RX_SIZE, clustersz); KASSERT(sc->vtnet_rx_nmbufs < sc->vtnet_rx_nsegs, ("%s: too many rx mbufs %d for %d segments", __func__, sc->vtnet_rx_nmbufs, sc->vtnet_rx_nsegs)); } else sc->vtnet_rx_nmbufs = 1; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; /* Hold the lock to satisfy asserts. */ VTNET_RXQ_LOCK(rxq); error = vtnet_rxq_populate(rxq); VTNET_RXQ_UNLOCK(rxq); if (error) { device_printf(dev, "cannot populate Rx queue %d\n", i); return (error); } } return (0); } static int vtnet_init_tx_queues(struct vtnet_softc *sc) { struct vtnet_txq *txq; int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { txq = &sc->vtnet_txqs[i]; txq->vtntx_watchdog = 0; txq->vtntx_intr_threshold = vtnet_txq_intr_threshold(txq); #ifdef DEV_NETMAP netmap_reset(NA(sc->vtnet_ifp), NR_TX, i, 0); #endif /* DEV_NETMAP */ } return (0); } static int vtnet_init_rxtx_queues(struct vtnet_softc *sc) { int error; error = vtnet_init_rx_queues(sc); if (error) return (error); error = vtnet_init_tx_queues(sc); if (error) return (error); return (0); } static void vtnet_set_active_vq_pairs(struct vtnet_softc *sc) { device_t dev; int npairs; dev = sc->vtnet_dev; if ((sc->vtnet_flags & VTNET_FLAG_MQ) == 0) { sc->vtnet_act_vq_pairs = 1; return; } npairs = sc->vtnet_req_vq_pairs; if (vtnet_ctrl_mq_cmd(sc, npairs) != 0) { device_printf(dev, "cannot set active queue pairs to %d, " "falling back to 1 queue pair\n", npairs); npairs = 1; } sc->vtnet_act_vq_pairs = npairs; } static void vtnet_update_rx_offloads(struct vtnet_softc *sc) { if_t ifp; uint64_t features; int error; ifp = sc->vtnet_ifp; features = sc->vtnet_features; VTNET_CORE_LOCK_ASSERT(sc); if (if_getcapabilities(ifp) & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) { if (if_getcapenable(ifp) & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) features |= VIRTIO_NET_F_GUEST_CSUM; else features &= ~VIRTIO_NET_F_GUEST_CSUM; } if (if_getcapabilities(ifp) & IFCAP_LRO && !vtnet_software_lro(sc)) { if (if_getcapenable(ifp) & IFCAP_LRO) features |= VTNET_LRO_FEATURES; else features &= ~VTNET_LRO_FEATURES; } error = vtnet_ctrl_guest_offloads(sc, features & (VIRTIO_NET_F_GUEST_CSUM | VIRTIO_NET_F_GUEST_TSO4 | VIRTIO_NET_F_GUEST_TSO6 | VIRTIO_NET_F_GUEST_ECN | VIRTIO_NET_F_GUEST_UFO)); if (error) { device_printf(sc->vtnet_dev, "%s: cannot update Rx features\n", __func__); if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); vtnet_init_locked(sc, 0); } } else sc->vtnet_features = features; } static int vtnet_reinit(struct vtnet_softc *sc) { if_t ifp; int error; ifp = sc->vtnet_ifp; bcopy(if_getlladdr(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN); error = vtnet_virtio_reinit(sc); if (error) return (error); vtnet_set_macaddr(sc); vtnet_set_active_vq_pairs(sc); if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) vtnet_init_rx_filters(sc); if_sethwassist(ifp, 0); if (if_getcapenable(ifp) & IFCAP_TXCSUM) if_sethwassistbits(ifp, VTNET_CSUM_OFFLOAD, 0); if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6) if_sethwassistbits(ifp, VTNET_CSUM_OFFLOAD_IPV6, 0); if (if_getcapenable(ifp) & IFCAP_TSO4) if_sethwassistbits(ifp, CSUM_IP_TSO, 0); if (if_getcapenable(ifp) & IFCAP_TSO6) if_sethwassistbits(ifp, CSUM_IP6_TSO, 0); error = vtnet_init_rxtx_queues(sc); if (error) return (error); return (0); } static void vtnet_init_locked(struct vtnet_softc *sc, int init_mode) { if_t ifp; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) return; vtnet_stop(sc); #ifdef DEV_NETMAP /* Once stopped we can update the netmap flags, if necessary. */ switch (init_mode) { case VTNET_INIT_NETMAP_ENTER: nm_set_native_flags(NA(ifp)); break; case VTNET_INIT_NETMAP_EXIT: nm_clear_native_flags(NA(ifp)); break; } #endif /* DEV_NETMAP */ if (vtnet_reinit(sc) != 0) { vtnet_stop(sc); return; } if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); vtnet_update_link_status(sc); vtnet_enable_interrupts(sc); callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc); #ifdef DEV_NETMAP /* Re-enable txsync/rxsync. */ netmap_enable_all_rings(ifp); #endif /* DEV_NETMAP */ } static void vtnet_init(void *xsc) { struct vtnet_softc *sc; sc = xsc; VTNET_CORE_LOCK(sc); vtnet_init_locked(sc, 0); VTNET_CORE_UNLOCK(sc); } static void vtnet_free_ctrl_vq(struct vtnet_softc *sc) { /* * The control virtqueue is only polled and therefore it should * already be empty. */ KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq), ("%s: ctrl vq %p not empty", __func__, sc->vtnet_ctrl_vq)); } static void vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie, struct sglist *sg, int readable, int writable) { struct virtqueue *vq; vq = sc->vtnet_ctrl_vq; MPASS(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ); VTNET_CORE_LOCK_ASSERT(sc); if (!virtqueue_empty(vq)) return; /* * Poll for the response, but the command is likely completed before * returning from the notify. */ if (virtqueue_enqueue(vq, cookie, sg, readable, writable) == 0) { virtqueue_notify(vq); virtqueue_poll(vq, NULL); } } static int vtnet_ctrl_mac_cmd(struct vtnet_softc *sc, uint8_t *hwaddr) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr __aligned(2); uint8_t pad1; uint8_t addr[ETHER_ADDR_LEN] __aligned(8); uint8_t pad2; uint8_t ack; } s; int error; error = 0; MPASS(sc->vtnet_flags & VTNET_FLAG_CTRL_MAC); s.hdr.class = VIRTIO_NET_CTRL_MAC; s.hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET; bcopy(hwaddr, &s.addr[0], ETHER_ADDR_LEN); s.ack = VIRTIO_NET_ERR; sglist_init(&sg, nitems(segs), segs); error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.addr[0], ETHER_ADDR_LEN); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); MPASS(error == 0 && sg.sg_nseg == nitems(segs)); if (error == 0) vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static int vtnet_ctrl_guest_offloads(struct vtnet_softc *sc, uint64_t offloads) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr __aligned(2); uint8_t pad1; uint64_t offloads __aligned(8); uint8_t pad2; uint8_t ack; } s; int error; error = 0; MPASS(sc->vtnet_features & VIRTIO_NET_F_CTRL_GUEST_OFFLOADS); s.hdr.class = VIRTIO_NET_CTRL_GUEST_OFFLOADS; s.hdr.cmd = VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET; s.offloads = vtnet_gtoh64(sc, offloads); s.ack = VIRTIO_NET_ERR; sglist_init(&sg, nitems(segs), segs); error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.offloads, sizeof(uint64_t)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); MPASS(error == 0 && sg.sg_nseg == nitems(segs)); if (error == 0) vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static int vtnet_ctrl_mq_cmd(struct vtnet_softc *sc, uint16_t npairs) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr __aligned(2); uint8_t pad1; struct virtio_net_ctrl_mq mq __aligned(2); uint8_t pad2; uint8_t ack; } s; int error; error = 0; MPASS(sc->vtnet_flags & VTNET_FLAG_MQ); s.hdr.class = VIRTIO_NET_CTRL_MQ; s.hdr.cmd = VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET; s.mq.virtqueue_pairs = vtnet_gtoh16(sc, npairs); s.ack = VIRTIO_NET_ERR; sglist_init(&sg, nitems(segs), segs); error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.mq, sizeof(struct virtio_net_ctrl_mq)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); MPASS(error == 0 && sg.sg_nseg == nitems(segs)); if (error == 0) vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static int vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, uint8_t cmd, bool on) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr __aligned(2); uint8_t pad1; uint8_t onoff; uint8_t pad2; uint8_t ack; } s; int error; error = 0; MPASS(sc->vtnet_flags & VTNET_FLAG_CTRL_RX); s.hdr.class = VIRTIO_NET_CTRL_RX; s.hdr.cmd = cmd; s.onoff = on; s.ack = VIRTIO_NET_ERR; sglist_init(&sg, nitems(segs), segs); error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.onoff, sizeof(uint8_t)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); MPASS(error == 0 && sg.sg_nseg == nitems(segs)); if (error == 0) vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static int vtnet_set_promisc(struct vtnet_softc *sc, bool on) { return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on)); } static int vtnet_set_allmulti(struct vtnet_softc *sc, bool on) { return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on)); } static void vtnet_rx_filter(struct vtnet_softc *sc) { device_t dev; if_t ifp; dev = sc->vtnet_dev; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); if (vtnet_set_promisc(sc, if_getflags(ifp) & IFF_PROMISC) != 0) { device_printf(dev, "cannot %s promiscuous mode\n", if_getflags(ifp) & IFF_PROMISC ? "enable" : "disable"); } if (vtnet_set_allmulti(sc, if_getflags(ifp) & IFF_ALLMULTI) != 0) { device_printf(dev, "cannot %s all-multicast mode\n", if_getflags(ifp) & IFF_ALLMULTI ? "enable" : "disable"); } } static u_int vtnet_copy_ifaddr(void *arg, struct sockaddr_dl *sdl, u_int ucnt) { struct vtnet_softc *sc = arg; if (memcmp(LLADDR(sdl), sc->vtnet_hwaddr, ETHER_ADDR_LEN) == 0) return (0); if (ucnt < VTNET_MAX_MAC_ENTRIES) bcopy(LLADDR(sdl), &sc->vtnet_mac_filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN); return (1); } static u_int vtnet_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int mcnt) { struct vtnet_mac_filter *filter = arg; if (mcnt < VTNET_MAX_MAC_ENTRIES) bcopy(LLADDR(sdl), &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN); return (1); } static void vtnet_rx_filter_mac(struct vtnet_softc *sc) { struct virtio_net_ctrl_hdr hdr __aligned(2); struct vtnet_mac_filter *filter; struct sglist_seg segs[4]; struct sglist sg; if_t ifp; bool promisc, allmulti; u_int ucnt, mcnt; int error; uint8_t ack; ifp = sc->vtnet_ifp; filter = sc->vtnet_mac_filter; error = 0; MPASS(sc->vtnet_flags & VTNET_FLAG_CTRL_RX); VTNET_CORE_LOCK_ASSERT(sc); /* Unicast MAC addresses: */ ucnt = if_foreach_lladdr(ifp, vtnet_copy_ifaddr, sc); promisc = (ucnt > VTNET_MAX_MAC_ENTRIES); if (promisc) { ucnt = 0; if_printf(ifp, "more than %d MAC addresses assigned, " "falling back to promiscuous mode\n", VTNET_MAX_MAC_ENTRIES); } /* Multicast MAC addresses: */ mcnt = if_foreach_llmaddr(ifp, vtnet_copy_maddr, filter); allmulti = (mcnt > VTNET_MAX_MAC_ENTRIES); if (allmulti) { mcnt = 0; if_printf(ifp, "more than %d multicast MAC addresses " "assigned, falling back to all-multicast mode\n", VTNET_MAX_MAC_ENTRIES); } if (promisc && allmulti) goto out; filter->vmf_unicast.nentries = vtnet_gtoh32(sc, ucnt); filter->vmf_multicast.nentries = vtnet_gtoh32(sc, mcnt); hdr.class = VIRTIO_NET_CTRL_MAC; hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; ack = VIRTIO_NET_ERR; sglist_init(&sg, nitems(segs), segs); error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &filter->vmf_unicast, sizeof(uint32_t) + ucnt * ETHER_ADDR_LEN); error |= sglist_append(&sg, &filter->vmf_multicast, sizeof(uint32_t) + mcnt * ETHER_ADDR_LEN); error |= sglist_append(&sg, &ack, sizeof(uint8_t)); MPASS(error == 0 && sg.sg_nseg == nitems(segs)); if (error == 0) vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1); if (ack != VIRTIO_NET_OK) if_printf(ifp, "error setting host MAC filter table\n"); out: if (promisc != 0 && vtnet_set_promisc(sc, true) != 0) if_printf(ifp, "cannot enable promiscuous mode\n"); if (allmulti != 0 && vtnet_set_allmulti(sc, true) != 0) if_printf(ifp, "cannot enable all-multicast mode\n"); } static int vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) { struct sglist_seg segs[3]; struct sglist sg; struct { struct virtio_net_ctrl_hdr hdr __aligned(2); uint8_t pad1; uint16_t tag __aligned(2); uint8_t pad2; uint8_t ack; } s; int error; error = 0; MPASS(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER); s.hdr.class = VIRTIO_NET_CTRL_VLAN; s.hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL; s.tag = vtnet_gtoh16(sc, tag); s.ack = VIRTIO_NET_ERR; sglist_init(&sg, nitems(segs), segs); error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr)); error |= sglist_append(&sg, &s.tag, sizeof(uint16_t)); error |= sglist_append(&sg, &s.ack, sizeof(uint8_t)); MPASS(error == 0 && sg.sg_nseg == nitems(segs)); if (error == 0) vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1); return (s.ack == VIRTIO_NET_OK ? 0 : EIO); } static void vtnet_rx_filter_vlan(struct vtnet_softc *sc) { int i, bit; uint32_t w; uint16_t tag; MPASS(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER); VTNET_CORE_LOCK_ASSERT(sc); /* Enable the filter for each configured VLAN. */ for (i = 0; i < VTNET_VLAN_FILTER_NWORDS; i++) { w = sc->vtnet_vlan_filter[i]; while ((bit = ffs(w) - 1) != -1) { w &= ~(1 << bit); tag = sizeof(w) * CHAR_BIT * i + bit; if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) { device_printf(sc->vtnet_dev, "cannot enable VLAN %d filter\n", tag); } } } } static void vtnet_update_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag) { if_t ifp; int idx, bit; ifp = sc->vtnet_ifp; idx = (tag >> 5) & 0x7F; bit = tag & 0x1F; if (tag == 0 || tag > 4095) return; VTNET_CORE_LOCK(sc); if (add) sc->vtnet_vlan_filter[idx] |= (1 << bit); else sc->vtnet_vlan_filter[idx] &= ~(1 << bit); if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER && if_getdrvflags(ifp) & IFF_DRV_RUNNING && vtnet_exec_vlan_filter(sc, add, tag) != 0) { device_printf(sc->vtnet_dev, "cannot %s VLAN %d %s the host filter table\n", add ? "add" : "remove", tag, add ? "to" : "from"); } VTNET_CORE_UNLOCK(sc); } static void vtnet_register_vlan(void *arg, if_t ifp, uint16_t tag) { if (if_getsoftc(ifp) != arg) return; vtnet_update_vlan_filter(arg, 1, tag); } static void vtnet_unregister_vlan(void *arg, if_t ifp, uint16_t tag) { if (if_getsoftc(ifp) != arg) return; vtnet_update_vlan_filter(arg, 0, tag); } static void vtnet_update_speed_duplex(struct vtnet_softc *sc) { if_t ifp; uint32_t speed; ifp = sc->vtnet_ifp; if ((sc->vtnet_features & VIRTIO_NET_F_SPEED_DUPLEX) == 0) return; /* BMV: Ignore duplex. */ speed = virtio_read_dev_config_4(sc->vtnet_dev, offsetof(struct virtio_net_config, speed)); if (speed != UINT32_MAX) if_setbaudrate(ifp, IF_Mbps(speed)); } static int vtnet_is_link_up(struct vtnet_softc *sc) { uint16_t status; if ((sc->vtnet_features & VIRTIO_NET_F_STATUS) == 0) return (1); status = virtio_read_dev_config_2(sc->vtnet_dev, offsetof(struct virtio_net_config, status)); return ((status & VIRTIO_NET_S_LINK_UP) != 0); } static void vtnet_update_link_status(struct vtnet_softc *sc) { if_t ifp; int link; ifp = sc->vtnet_ifp; VTNET_CORE_LOCK_ASSERT(sc); link = vtnet_is_link_up(sc); /* Notify if the link status has changed. */ if (link != 0 && sc->vtnet_link_active == 0) { vtnet_update_speed_duplex(sc); sc->vtnet_link_active = 1; if_link_state_change(ifp, LINK_STATE_UP); } else if (link == 0 && sc->vtnet_link_active != 0) { sc->vtnet_link_active = 0; if_link_state_change(ifp, LINK_STATE_DOWN); } } static int vtnet_ifmedia_upd(if_t ifp __unused) { return (EOPNOTSUPP); } static void vtnet_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) { struct vtnet_softc *sc; sc = if_getsoftc(ifp); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; VTNET_CORE_LOCK(sc); if (vtnet_is_link_up(sc) != 0) { ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_10G_T | IFM_FDX; } else ifmr->ifm_active |= IFM_NONE; VTNET_CORE_UNLOCK(sc); } static void vtnet_get_macaddr(struct vtnet_softc *sc) { if (sc->vtnet_flags & VTNET_FLAG_MAC) { virtio_read_device_config_array(sc->vtnet_dev, offsetof(struct virtio_net_config, mac), &sc->vtnet_hwaddr[0], sizeof(uint8_t), ETHER_ADDR_LEN); } else { /* Generate a random locally administered unicast address. */ sc->vtnet_hwaddr[0] = 0xB2; arc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1, 0); } } static void vtnet_set_macaddr(struct vtnet_softc *sc) { device_t dev; int error; dev = sc->vtnet_dev; if (sc->vtnet_flags & VTNET_FLAG_CTRL_MAC) { error = vtnet_ctrl_mac_cmd(sc, sc->vtnet_hwaddr); if (error) device_printf(dev, "unable to set MAC address\n"); return; } /* MAC in config is read-only in modern VirtIO. */ if (!vtnet_modern(sc) && sc->vtnet_flags & VTNET_FLAG_MAC) { for (int i = 0; i < ETHER_ADDR_LEN; i++) { virtio_write_dev_config_1(dev, offsetof(struct virtio_net_config, mac) + i, sc->vtnet_hwaddr[i]); } } } static void vtnet_attached_set_macaddr(struct vtnet_softc *sc) { /* Assign MAC address if it was generated. */ if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) vtnet_set_macaddr(sc); } static void vtnet_vlan_tag_remove(struct mbuf *m) { struct ether_vlan_header *evh; evh = mtod(m, struct ether_vlan_header *); m->m_pkthdr.ether_vtag = ntohs(evh->evl_tag); m->m_flags |= M_VLANTAG; /* Strip the 802.1Q header. */ bcopy((char *) evh, (char *) evh + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); } static void vtnet_set_rx_process_limit(struct vtnet_softc *sc) { int limit; limit = vtnet_tunable_int(sc, "rx_process_limit", vtnet_rx_process_limit); if (limit < 0) limit = INT_MAX; sc->vtnet_rx_process_limit = limit; } static void vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child, struct vtnet_rxq *rxq) { struct sysctl_oid *node; struct sysctl_oid_list *list; struct vtnet_rxq_stats *stats; char namebuf[16]; snprintf(namebuf, sizeof(namebuf), "rxq%d", rxq->vtnrx_id); node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Receive Queue"); list = SYSCTL_CHILDREN(node); stats = &rxq->vtnrx_stats; SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ipackets", CTLFLAG_RD, &stats->vrxs_ipackets, "Receive packets"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ibytes", CTLFLAG_RD, &stats->vrxs_ibytes, "Receive bytes"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "iqdrops", CTLFLAG_RD, &stats->vrxs_iqdrops, "Receive drops"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ierrors", CTLFLAG_RD, &stats->vrxs_ierrors, "Receive errors"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD, &stats->vrxs_csum, "Receive checksum offloaded"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum_failed", CTLFLAG_RD, &stats->vrxs_csum_failed, "Receive checksum offload failed"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "host_lro", CTLFLAG_RD, &stats->vrxs_host_lro, "Receive host segmentation offloaded"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD, &stats->vrxs_rescheduled, "Receive interrupt handler rescheduled"); } static void vtnet_setup_txq_sysctl(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child, struct vtnet_txq *txq) { struct sysctl_oid *node; struct sysctl_oid_list *list; struct vtnet_txq_stats *stats; char namebuf[16]; snprintf(namebuf, sizeof(namebuf), "txq%d", txq->vtntx_id); node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Transmit Queue"); list = SYSCTL_CHILDREN(node); stats = &txq->vtntx_stats; SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "opackets", CTLFLAG_RD, &stats->vtxs_opackets, "Transmit packets"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "obytes", CTLFLAG_RD, &stats->vtxs_obytes, "Transmit bytes"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "omcasts", CTLFLAG_RD, &stats->vtxs_omcasts, "Transmit multicasts"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD, &stats->vtxs_csum, "Transmit checksum offloaded"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "tso", CTLFLAG_RD, &stats->vtxs_tso, "Transmit TCP segmentation offloaded"); SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD, &stats->vtxs_rescheduled, "Transmit interrupt handler rescheduled"); } static void vtnet_setup_queue_sysctl(struct vtnet_softc *sc) { device_t dev; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; struct sysctl_oid_list *child; int i; dev = sc->vtnet_dev; ctx = device_get_sysctl_ctx(dev); tree = device_get_sysctl_tree(dev); child = SYSCTL_CHILDREN(tree); for (i = 0; i < sc->vtnet_req_vq_pairs; i++) { vtnet_setup_rxq_sysctl(ctx, child, &sc->vtnet_rxqs[i]); vtnet_setup_txq_sysctl(ctx, child, &sc->vtnet_txqs[i]); } } static void vtnet_setup_stat_sysctl(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child, struct vtnet_softc *sc) { struct vtnet_statistics *stats; struct vtnet_rxq_stats rxaccum; struct vtnet_txq_stats txaccum; vtnet_accum_stats(sc, &rxaccum, &txaccum); stats = &sc->vtnet_stats; stats->rx_csum_offloaded = rxaccum.vrxs_csum; stats->rx_csum_failed = rxaccum.vrxs_csum_failed; stats->rx_task_rescheduled = rxaccum.vrxs_rescheduled; stats->tx_csum_offloaded = txaccum.vtxs_csum; stats->tx_tso_offloaded = txaccum.vtxs_tso; stats->tx_task_rescheduled = txaccum.vtxs_rescheduled; SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "mbuf_alloc_failed", CTLFLAG_RD, &stats->mbuf_alloc_failed, "Mbuf cluster allocation failures"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_frame_too_large", CTLFLAG_RD, &stats->rx_frame_too_large, "Received frame larger than the mbuf chain"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_enq_replacement_failed", CTLFLAG_RD, &stats->rx_enq_replacement_failed, "Enqueuing the replacement receive mbuf failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_mergeable_failed", CTLFLAG_RD, &stats->rx_mergeable_failed, "Mergeable buffers receive failures"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ethtype", CTLFLAG_RD, &stats->rx_csum_bad_ethtype, "Received checksum offloaded buffer with unsupported " "Ethernet type"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ipproto", CTLFLAG_RD, &stats->rx_csum_bad_ipproto, "Received checksum offloaded buffer with incorrect IP protocol"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_offset", CTLFLAG_RD, &stats->rx_csum_bad_offset, "Received checksum offloaded buffer with incorrect offset"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_proto", CTLFLAG_RD, &stats->rx_csum_bad_proto, "Received checksum offloaded buffer with incorrect protocol"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_failed", CTLFLAG_RD, &stats->rx_csum_failed, "Received buffer checksum offload failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_offloaded", CTLFLAG_RD, &stats->rx_csum_offloaded, "Received buffer checksum offload succeeded"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_task_rescheduled", CTLFLAG_RD, &stats->rx_task_rescheduled, "Times the receive interrupt task rescheduled itself"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_unknown_ethtype", CTLFLAG_RD, &stats->tx_csum_unknown_ethtype, "Aborted transmit of checksum offloaded buffer with unknown " "Ethernet type"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_proto_mismatch", CTLFLAG_RD, &stats->tx_csum_proto_mismatch, "Aborted transmit of checksum offloaded buffer because mismatched " "protocols"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_not_tcp", CTLFLAG_RD, &stats->tx_tso_not_tcp, "Aborted transmit of TSO buffer with non TCP protocol"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_without_csum", CTLFLAG_RD, &stats->tx_tso_without_csum, "Aborted transmit of TSO buffer without TCP checksum offload"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defragged", CTLFLAG_RD, &stats->tx_defragged, "Transmit mbufs defragged"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defrag_failed", CTLFLAG_RD, &stats->tx_defrag_failed, "Aborted transmit of buffer because defrag failed"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_offloaded", CTLFLAG_RD, &stats->tx_csum_offloaded, "Offloaded checksum of transmitted buffer"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_offloaded", CTLFLAG_RD, &stats->tx_tso_offloaded, "Segmentation offload of transmitted buffer"); SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_task_rescheduled", CTLFLAG_RD, &stats->tx_task_rescheduled, "Times the transmit interrupt task rescheduled itself"); } static void vtnet_setup_sysctl(struct vtnet_softc *sc) { device_t dev; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; struct sysctl_oid_list *child; dev = sc->vtnet_dev; ctx = device_get_sysctl_ctx(dev); tree = device_get_sysctl_tree(dev); child = SYSCTL_CHILDREN(tree); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "max_vq_pairs", CTLFLAG_RD, &sc->vtnet_max_vq_pairs, 0, "Number of maximum supported virtqueue pairs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "req_vq_pairs", CTLFLAG_RD, &sc->vtnet_req_vq_pairs, 0, "Number of requested virtqueue pairs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "act_vq_pairs", CTLFLAG_RD, &sc->vtnet_act_vq_pairs, 0, "Number of active virtqueue pairs"); vtnet_setup_stat_sysctl(ctx, child, sc); } static void vtnet_load_tunables(struct vtnet_softc *sc) { sc->vtnet_lro_entry_count = vtnet_tunable_int(sc, "lro_entry_count", vtnet_lro_entry_count); if (sc->vtnet_lro_entry_count < TCP_LRO_ENTRIES) sc->vtnet_lro_entry_count = TCP_LRO_ENTRIES; sc->vtnet_lro_mbufq_depth = vtnet_tunable_int(sc, "lro_mbufq_depth", vtnet_lro_mbufq_depth); } static int vtnet_rxq_enable_intr(struct vtnet_rxq *rxq) { return (virtqueue_enable_intr(rxq->vtnrx_vq)); } static void vtnet_rxq_disable_intr(struct vtnet_rxq *rxq) { virtqueue_disable_intr(rxq->vtnrx_vq); } static int vtnet_txq_enable_intr(struct vtnet_txq *txq) { struct virtqueue *vq; vq = txq->vtntx_vq; if (vtnet_txq_below_threshold(txq) != 0) return (virtqueue_postpone_intr(vq, VQ_POSTPONE_LONG)); /* * The free count is above our threshold. Keep the Tx interrupt * disabled until the queue is fuller. */ return (0); } static void vtnet_txq_disable_intr(struct vtnet_txq *txq) { virtqueue_disable_intr(txq->vtntx_vq); } static void vtnet_enable_rx_interrupts(struct vtnet_softc *sc) { struct vtnet_rxq *rxq; int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) { rxq = &sc->vtnet_rxqs[i]; if (vtnet_rxq_enable_intr(rxq) != 0) taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask); } } static void vtnet_enable_tx_interrupts(struct vtnet_softc *sc) { int i; for (i = 0; i < sc->vtnet_act_vq_pairs; i++) vtnet_txq_enable_intr(&sc->vtnet_txqs[i]); } static void vtnet_enable_interrupts(struct vtnet_softc *sc) { vtnet_enable_rx_interrupts(sc); vtnet_enable_tx_interrupts(sc); } static void vtnet_disable_rx_interrupts(struct vtnet_softc *sc) { int i; for (i = 0; i < sc->vtnet_max_vq_pairs; i++) vtnet_rxq_disable_intr(&sc->vtnet_rxqs[i]); } static void vtnet_disable_tx_interrupts(struct vtnet_softc *sc) { int i; for (i = 0; i < sc->vtnet_max_vq_pairs; i++) vtnet_txq_disable_intr(&sc->vtnet_txqs[i]); } static void vtnet_disable_interrupts(struct vtnet_softc *sc) { vtnet_disable_rx_interrupts(sc); vtnet_disable_tx_interrupts(sc); } static int vtnet_tunable_int(struct vtnet_softc *sc, const char *knob, int def) { char path[64]; snprintf(path, sizeof(path), "hw.vtnet.%d.%s", device_get_unit(sc->vtnet_dev), knob); TUNABLE_INT_FETCH(path, &def); return (def); } #ifdef DEBUGNET static void vtnet_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) { struct vtnet_softc *sc; sc = if_getsoftc(ifp); VTNET_CORE_LOCK(sc); *nrxr = sc->vtnet_req_vq_pairs; *ncl = DEBUGNET_MAX_IN_FLIGHT; *clsize = sc->vtnet_rx_clustersz; VTNET_CORE_UNLOCK(sc); } static void vtnet_debugnet_event(if_t ifp __unused, enum debugnet_ev event) { struct vtnet_softc *sc; static bool sw_lro_enabled = false; /* * Disable software LRO, since it would require entering the network * epoch when calling vtnet_txq_eof() in vtnet_debugnet_poll(). */ sc = if_getsoftc(ifp); switch (event) { case DEBUGNET_START: sw_lro_enabled = (sc->vtnet_flags & VTNET_FLAG_SW_LRO) != 0; if (sw_lro_enabled) sc->vtnet_flags &= ~VTNET_FLAG_SW_LRO; break; case DEBUGNET_END: if (sw_lro_enabled) sc->vtnet_flags |= VTNET_FLAG_SW_LRO; break; } } static int vtnet_debugnet_transmit(if_t ifp, struct mbuf *m) { struct vtnet_softc *sc; struct vtnet_txq *txq; int error; sc = if_getsoftc(ifp); if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (EBUSY); txq = &sc->vtnet_txqs[0]; error = vtnet_txq_encap(txq, &m, M_NOWAIT | M_USE_RESERVE); if (error == 0) (void)vtnet_txq_notify(txq); return (error); } static int vtnet_debugnet_poll(if_t ifp, int count) { struct vtnet_softc *sc; int i; sc = if_getsoftc(ifp); if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (EBUSY); (void)vtnet_txq_eof(&sc->vtnet_txqs[0]); for (i = 0; i < sc->vtnet_act_vq_pairs; i++) (void)vtnet_rxq_eof(&sc->vtnet_rxqs[i]); return (0); } #endif /* DEBUGNET */