/*- * SPDX-License-Identifier: (BSD-2-Clause AND BSD-1-Clause) * * Copyright (c) 2006 Sam Leffler, Errno Consulting * Copyright (c) 2008-2009 Weongyo Jeong * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ /* * This driver is distantly derived from a driver of the same name * by Damien Bergamini. The original copyright is included below: * * Copyright (c) 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Driver for Atheros AR5523 USB parts. * * The driver requires firmware to be loaded into the device. This * is done on device discovery from a user application (uathload) * that is launched by devd when a device with suitable product ID * is recognized. Once firmware has been loaded the device will * reset the USB port and re-attach with the original product ID+1 * and this driver will be attached. The firmware is licensed for * general use (royalty free) and may be incorporated in products. * Note that the firmware normally packaged with the NDIS drivers * for these devices does not work in this way and so does not work * with this driver. */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include "usbdevs.h" #include #include static SYSCTL_NODE(_hw_usb, OID_AUTO, uath, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "USB Atheros"); static int uath_countrycode = CTRY_DEFAULT; /* country code */ SYSCTL_INT(_hw_usb_uath, OID_AUTO, countrycode, CTLFLAG_RWTUN, &uath_countrycode, 0, "country code"); static int uath_regdomain = 0; /* regulatory domain */ SYSCTL_INT(_hw_usb_uath, OID_AUTO, regdomain, CTLFLAG_RD, &uath_regdomain, 0, "regulatory domain"); #ifdef UATH_DEBUG int uath_debug = 0; SYSCTL_INT(_hw_usb_uath, OID_AUTO, debug, CTLFLAG_RWTUN, &uath_debug, 0, "uath debug level"); enum { UATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ UATH_DEBUG_XMIT_DUMP = 0x00000002, /* xmit dump */ UATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ UATH_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */ UATH_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */ UATH_DEBUG_RECV_ALL = 0x00000020, /* trace all frames (beacons) */ UATH_DEBUG_INIT = 0x00000040, /* initialization of dev */ UATH_DEBUG_DEVCAP = 0x00000080, /* dev caps */ UATH_DEBUG_CMDS = 0x00000100, /* commands */ UATH_DEBUG_CMDS_DUMP = 0x00000200, /* command buffer dump */ UATH_DEBUG_RESET = 0x00000400, /* reset processing */ UATH_DEBUG_STATE = 0x00000800, /* 802.11 state transitions */ UATH_DEBUG_MULTICAST = 0x00001000, /* multicast */ UATH_DEBUG_WME = 0x00002000, /* WME */ UATH_DEBUG_CHANNEL = 0x00004000, /* channel */ UATH_DEBUG_RATES = 0x00008000, /* rates */ UATH_DEBUG_CRYPTO = 0x00010000, /* crypto */ UATH_DEBUG_LED = 0x00020000, /* LED */ UATH_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif /* recognized device vendors/products */ static const STRUCT_USB_HOST_ID uath_devs[] = { #define UATH_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } UATH_DEV(ACCTON, SMCWUSBTG2), UATH_DEV(ATHEROS, AR5523), UATH_DEV(ATHEROS2, AR5523_1), UATH_DEV(ATHEROS2, AR5523_2), UATH_DEV(ATHEROS2, AR5523_3), UATH_DEV(CONCEPTRONIC, AR5523_1), UATH_DEV(CONCEPTRONIC, AR5523_2), UATH_DEV(DLINK, DWLAG122), UATH_DEV(DLINK, DWLAG132), UATH_DEV(DLINK, DWLG132), UATH_DEV(DLINK2, DWA120), UATH_DEV(GIGASET, AR5523), UATH_DEV(GIGASET, SMCWUSBTG), UATH_DEV(GLOBALSUN, AR5523_1), UATH_DEV(GLOBALSUN, AR5523_2), UATH_DEV(NETGEAR, WG111U), UATH_DEV(NETGEAR3, WG111T), UATH_DEV(NETGEAR3, WPN111), UATH_DEV(NETGEAR3, WPN111_2), UATH_DEV(UMEDIA, TEW444UBEU), UATH_DEV(UMEDIA, AR5523_2), UATH_DEV(WISTRONNEWEB, AR5523_1), UATH_DEV(WISTRONNEWEB, AR5523_2), UATH_DEV(ZCOM, AR5523) #undef UATH_DEV }; static usb_callback_t uath_intr_rx_callback; static usb_callback_t uath_intr_tx_callback; static usb_callback_t uath_bulk_rx_callback; static usb_callback_t uath_bulk_tx_callback; static const struct usb_config uath_usbconfig[UATH_N_XFERS] = { [UATH_INTR_RX] = { .type = UE_BULK, .endpoint = 0x1, .direction = UE_DIR_IN, .bufsize = UATH_MAX_CMDSZ, .flags = { .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = uath_intr_rx_callback }, [UATH_INTR_TX] = { .type = UE_BULK, .endpoint = 0x1, .direction = UE_DIR_OUT, .bufsize = UATH_MAX_CMDSZ * UATH_CMD_LIST_COUNT, .flags = { .force_short_xfer = 1, .pipe_bof = 1, }, .callback = uath_intr_tx_callback, .timeout = UATH_CMD_TIMEOUT }, [UATH_BULK_RX] = { .type = UE_BULK, .endpoint = 0x2, .direction = UE_DIR_IN, .bufsize = MCLBYTES, .flags = { .ext_buffer = 1, .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = uath_bulk_rx_callback }, [UATH_BULK_TX] = { .type = UE_BULK, .endpoint = 0x2, .direction = UE_DIR_OUT, .bufsize = UATH_MAX_TXBUFSZ * UATH_TX_DATA_LIST_COUNT, .flags = { .force_short_xfer = 1, .pipe_bof = 1 }, .callback = uath_bulk_tx_callback, .timeout = UATH_DATA_TIMEOUT } }; static struct ieee80211vap *uath_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void uath_vap_delete(struct ieee80211vap *); static int uath_alloc_cmd_list(struct uath_softc *, struct uath_cmd []); static void uath_free_cmd_list(struct uath_softc *, struct uath_cmd []); static int uath_host_available(struct uath_softc *); static int uath_get_capability(struct uath_softc *, uint32_t, uint32_t *); static int uath_get_devcap(struct uath_softc *); static struct uath_cmd * uath_get_cmdbuf(struct uath_softc *); static int uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *, int, int); static int uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int); static void uath_stat(void *); #ifdef UATH_DEBUG static void uath_dump_cmd(const uint8_t *, int, char); static const char * uath_codename(int); #endif static int uath_get_devstatus(struct uath_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static int uath_get_status(struct uath_softc *, uint32_t, void *, int); static int uath_alloc_rx_data_list(struct uath_softc *); static int uath_alloc_tx_data_list(struct uath_softc *); static void uath_free_rx_data_list(struct uath_softc *); static void uath_free_tx_data_list(struct uath_softc *); static int uath_init(struct uath_softc *); static void uath_stop(struct uath_softc *); static void uath_parent(struct ieee80211com *); static int uath_transmit(struct ieee80211com *, struct mbuf *); static void uath_start(struct uath_softc *); static int uath_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void uath_scan_start(struct ieee80211com *); static void uath_scan_end(struct ieee80211com *); static void uath_set_channel(struct ieee80211com *); static void uath_update_mcast(struct ieee80211com *); static void uath_update_promisc(struct ieee80211com *); static int uath_config(struct uath_softc *, uint32_t, uint32_t); static int uath_config_multi(struct uath_softc *, uint32_t, const void *, int); static int uath_switch_channel(struct uath_softc *, struct ieee80211_channel *); static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t); static void uath_watchdog(void *); static void uath_abort_xfers(struct uath_softc *); static int uath_dataflush(struct uath_softc *); static int uath_cmdflush(struct uath_softc *); static int uath_flush(struct uath_softc *); static int uath_set_ledstate(struct uath_softc *, int); static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *); static int uath_reset_tx_queues(struct uath_softc *); static int uath_wme_init(struct uath_softc *); static struct uath_data * uath_getbuf(struct uath_softc *); static int uath_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int uath_set_key(struct uath_softc *, const struct ieee80211_key *, int); static int uath_set_keys(struct uath_softc *, struct ieee80211vap *); static void uath_sysctl_node(struct uath_softc *); static int uath_match(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != UATH_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != UATH_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(uath_devs, sizeof(uath_devs), uaa)); } static int uath_attach(device_t dev) { struct uath_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); struct ieee80211com *ic = &sc->sc_ic; uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index = UATH_IFACE_INDEX; /* XXX */ usb_error_t error; sc->sc_dev = dev; sc->sc_udev = uaa->device; #ifdef UATH_DEBUG sc->sc_debug = uath_debug; #endif device_set_usb_desc(dev); /* * Only post-firmware devices here. */ mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init(&sc->stat_ch, 0); callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, uath_usbconfig, UATH_N_XFERS, sc, &sc->sc_mtx); if (error) { device_printf(dev, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto fail; } sc->sc_cmd_dma_buf = usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_INTR_TX], 0); sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_BULK_TX], 0); /* * Setup buffers for firmware commands. */ error = uath_alloc_cmd_list(sc, sc->sc_cmd); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx command list\n"); goto fail1; } /* * We're now ready to send+receive firmware commands. */ UATH_LOCK(sc); error = uath_host_available(sc); if (error != 0) { device_printf(sc->sc_dev, "could not initialize adapter\n"); goto fail2; } error = uath_get_devcap(sc); if (error != 0) { device_printf(sc->sc_dev, "could not get device capabilities\n"); goto fail2; } UATH_UNLOCK(sc); /* Create device sysctl node. */ uath_sysctl_node(sc); UATH_LOCK(sc); error = uath_get_devstatus(sc, ic->ic_macaddr); if (error != 0) { device_printf(sc->sc_dev, "could not get device status\n"); goto fail2; } /* * Allocate xfers for Rx/Tx data pipes. */ error = uath_alloc_rx_data_list(sc); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Rx data list\n"); goto fail2; } error = uath_alloc_tx_data_list(sc); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx data list\n"); goto fail2; } UATH_UNLOCK(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA | /* station mode */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WPA | /* 802.11i */ IEEE80211_C_BGSCAN | /* capable of bg scanning */ IEEE80211_C_TXFRAG; /* handle tx frags */ /* put a regulatory domain to reveal informations. */ uath_regdomain = sc->sc_devcap.regDomain; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if ((sc->sc_devcap.analog5GhzRevision & 0xf0) == 0x30) setbit(bands, IEEE80211_MODE_11A); /* XXX turbo */ ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = uath_raw_xmit; ic->ic_scan_start = uath_scan_start; ic->ic_scan_end = uath_scan_end; ic->ic_set_channel = uath_set_channel; ic->ic_vap_create = uath_vap_create; ic->ic_vap_delete = uath_vap_delete; ic->ic_update_mcast = uath_update_mcast; ic->ic_update_promisc = uath_update_promisc; ic->ic_transmit = uath_transmit; ic->ic_parent = uath_parent; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), UATH_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), UATH_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return (0); fail2: UATH_UNLOCK(sc); uath_free_cmd_list(sc, sc->sc_cmd); fail1: usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); fail: return (error); } static int uath_detach(device_t dev) { struct uath_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; unsigned x; /* * Prevent further allocations from RX/TX/CMD * data lists and ioctls */ UATH_LOCK(sc); sc->sc_flags |= UATH_FLAG_INVALID; STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); STAILQ_INIT(&sc->sc_cmd_active); STAILQ_INIT(&sc->sc_cmd_pending); STAILQ_INIT(&sc->sc_cmd_waiting); STAILQ_INIT(&sc->sc_cmd_inactive); uath_stop(sc); UATH_UNLOCK(sc); callout_drain(&sc->stat_ch); callout_drain(&sc->watchdog_ch); /* drain USB transfers */ for (x = 0; x != UATH_N_XFERS; x++) usbd_transfer_drain(sc->sc_xfer[x]); /* free data buffers */ UATH_LOCK(sc); uath_free_rx_data_list(sc); uath_free_tx_data_list(sc); uath_free_cmd_list(sc, sc->sc_cmd); UATH_UNLOCK(sc); /* free USB transfers and some data buffers */ usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); mtx_destroy(&sc->sc_mtx); return (0); } static void uath_free_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) { int i; for (i = 0; i != UATH_CMD_LIST_COUNT; i++) cmds[i].buf = NULL; } static int uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) { int i; STAILQ_INIT(&sc->sc_cmd_active); STAILQ_INIT(&sc->sc_cmd_pending); STAILQ_INIT(&sc->sc_cmd_waiting); STAILQ_INIT(&sc->sc_cmd_inactive); for (i = 0; i != UATH_CMD_LIST_COUNT; i++) { struct uath_cmd *cmd = &cmds[i]; cmd->sc = sc; /* backpointer for callbacks */ cmd->msgid = i; cmd->buf = ((uint8_t *)sc->sc_cmd_dma_buf) + (i * UATH_MAX_CMDSZ); STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); UATH_STAT_INC(sc, st_cmd_inactive); } return (0); } static int uath_host_available(struct uath_softc *sc) { struct uath_cmd_host_available setup; UATH_ASSERT_LOCKED(sc); /* inform target the host is available */ setup.sw_ver_major = htobe32(ATH_SW_VER_MAJOR); setup.sw_ver_minor = htobe32(ATH_SW_VER_MINOR); setup.sw_ver_patch = htobe32(ATH_SW_VER_PATCH); setup.sw_ver_build = htobe32(ATH_SW_VER_BUILD); return uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE, &setup, sizeof setup, NULL, 0, 0); } #ifdef UATH_DEBUG static void uath_dump_cmd(const uint8_t *buf, int len, char prefix) { const char *sep = ""; int i; for (i = 0; i < len; i++) { if ((i % 16) == 0) { printf("%s%c ", sep, prefix); sep = "\n"; } else if ((i % 4) == 0) printf(" "); printf("%02x", buf[i]); } printf("\n"); } static const char * uath_codename(int code) { static const char *names[] = { "0x00", "HOST_AVAILABLE", "BIND", "TARGET_RESET", "TARGET_GET_CAPABILITY", "TARGET_SET_CONFIG", "TARGET_GET_STATUS", "TARGET_GET_STATS", "TARGET_START", "TARGET_STOP", "TARGET_ENABLE", "TARGET_DISABLE", "CREATE_CONNECTION", "UPDATE_CONNECT_ATTR", "DELETE_CONNECT", "SEND", "FLUSH", "STATS_UPDATE", "BMISS", "DEVICE_AVAIL", "SEND_COMPLETE", "DATA_AVAIL", "SET_PWR_MODE", "BMISS_ACK", "SET_LED_STEADY", "SET_LED_BLINK", "SETUP_BEACON_DESC", "BEACON_INIT", "RESET_KEY_CACHE", "RESET_KEY_CACHE_ENTRY", "SET_KEY_CACHE_ENTRY", "SET_DECOMP_MASK", "SET_REGULATORY_DOMAIN", "SET_LED_STATE", "WRITE_ASSOCID", "SET_STA_BEACON_TIMERS", "GET_TSF", "RESET_TSF", "SET_ADHOC_MODE", "SET_BASIC_RATE", "MIB_CONTROL", "GET_CHANNEL_DATA", "GET_CUR_RSSI", "SET_ANTENNA_SWITCH", "0x2c", "0x2d", "0x2e", "USE_SHORT_SLOT_TIME", "SET_POWER_MODE", "SETUP_PSPOLL_DESC", "SET_RX_MULTICAST_FILTER", "RX_FILTER", "PER_CALIBRATION", "RESET", "DISABLE", "PHY_DISABLE", "SET_TX_POWER_LIMIT", "SET_TX_QUEUE_PARAMS", "SETUP_TX_QUEUE", "RELEASE_TX_QUEUE", }; static char buf[8]; if (code < nitems(names)) return names[code]; if (code == WDCMSG_SET_DEFAULT_KEY) return "SET_DEFAULT_KEY"; snprintf(buf, sizeof(buf), "0x%02x", code); return buf; } #endif /* * Low-level function to send read or write commands to the firmware. */ static int uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, void *odata, int olen, int flags) { struct uath_cmd_hdr *hdr; struct uath_cmd *cmd; int error; UATH_ASSERT_LOCKED(sc); /* grab a xfer */ cmd = uath_get_cmdbuf(sc); if (cmd == NULL) { device_printf(sc->sc_dev, "%s: empty inactive queue\n", __func__); return (ENOBUFS); } cmd->flags = flags; /* always bulk-out a multiple of 4 bytes */ cmd->buflen = roundup2(sizeof(struct uath_cmd_hdr) + ilen, 4); hdr = (struct uath_cmd_hdr *)cmd->buf; memset(hdr, 0, sizeof(struct uath_cmd_hdr)); hdr->len = htobe32(cmd->buflen); hdr->code = htobe32(code); hdr->msgid = cmd->msgid; /* don't care about endianness */ hdr->magic = htobe32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0); memcpy((uint8_t *)(hdr + 1), idata, ilen); #ifdef UATH_DEBUG if (sc->sc_debug & UATH_DEBUG_CMDS) { printf("%s: send %s [flags 0x%x] olen %d\n", __func__, uath_codename(code), cmd->flags, olen); if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) uath_dump_cmd(cmd->buf, cmd->buflen, '+'); } #endif cmd->odata = odata; KASSERT(odata == NULL || olen < UATH_MAX_CMDSZ - sizeof(*hdr) + sizeof(uint32_t), ("odata %p olen %u", odata, olen)); cmd->olen = olen; STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next); UATH_STAT_INC(sc, st_cmd_pending); usbd_transfer_start(sc->sc_xfer[UATH_INTR_TX]); if (cmd->flags & UATH_CMD_FLAG_READ) { usbd_transfer_start(sc->sc_xfer[UATH_INTR_RX]); /* wait at most two seconds for command reply */ error = mtx_sleep(cmd, &sc->sc_mtx, 0, "uathcmd", 2 * hz); cmd->odata = NULL; /* in case reply comes too late */ if (error != 0) { device_printf(sc->sc_dev, "timeout waiting for reply " "to cmd 0x%x (%u)\n", code, code); } else if (cmd->olen != olen) { device_printf(sc->sc_dev, "unexpected reply data count " "to cmd 0x%x (%u), got %u, expected %u\n", code, code, cmd->olen, olen); error = EINVAL; } return (error); } return (0); } static int uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, void *odata, int olen, int flags) { flags |= UATH_CMD_FLAG_READ; return uath_cmdsend(sc, code, idata, ilen, odata, olen, flags); } static int uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len, int flags) { flags &= ~UATH_CMD_FLAG_READ; return uath_cmdsend(sc, code, data, len, NULL, 0, flags); } static struct uath_cmd * uath_get_cmdbuf(struct uath_softc *sc) { struct uath_cmd *uc; UATH_ASSERT_LOCKED(sc); uc = STAILQ_FIRST(&sc->sc_cmd_inactive); if (uc != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next); UATH_STAT_DEC(sc, st_cmd_inactive); } else uc = NULL; if (uc == NULL) DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, "out of command xmit buffers"); return (uc); } /* * This function is called periodically (every second) when associated to * query device statistics. */ static void uath_stat(void *arg) { struct uath_softc *sc = arg; int error; UATH_LOCK(sc); /* * Send request for statistics asynchronously. The timer will be * restarted when we'll get the stats notification. */ error = uath_cmd_write(sc, WDCMSG_TARGET_GET_STATS, NULL, 0, UATH_CMD_FLAG_ASYNC); if (error != 0) { device_printf(sc->sc_dev, "could not query stats, error %d\n", error); } UATH_UNLOCK(sc); } static int uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val) { int error; cap = htobe32(cap); error = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY, &cap, sizeof cap, val, sizeof(uint32_t), UATH_CMD_FLAG_MAGIC); if (error != 0) { device_printf(sc->sc_dev, "could not read capability %u\n", be32toh(cap)); return (error); } *val = be32toh(*val); return (error); } static int uath_get_devcap(struct uath_softc *sc) { #define GETCAP(x, v) do { \ error = uath_get_capability(sc, x, &v); \ if (error != 0) \ return (error); \ DPRINTF(sc, UATH_DEBUG_DEVCAP, \ "%s: %s=0x%08x\n", __func__, #x, v); \ } while (0) struct uath_devcap *cap = &sc->sc_devcap; int error; /* collect device capabilities */ GETCAP(CAP_TARGET_VERSION, cap->targetVersion); GETCAP(CAP_TARGET_REVISION, cap->targetRevision); GETCAP(CAP_MAC_VERSION, cap->macVersion); GETCAP(CAP_MAC_REVISION, cap->macRevision); GETCAP(CAP_PHY_REVISION, cap->phyRevision); GETCAP(CAP_ANALOG_5GHz_REVISION, cap->analog5GhzRevision); GETCAP(CAP_ANALOG_2GHz_REVISION, cap->analog2GhzRevision); GETCAP(CAP_REG_DOMAIN, cap->regDomain); GETCAP(CAP_REG_CAP_BITS, cap->regCapBits); #if 0 /* NB: not supported in rev 1.5 */ GETCAP(CAP_COUNTRY_CODE, cap->countryCode); #endif GETCAP(CAP_WIRELESS_MODES, cap->wirelessModes); GETCAP(CAP_CHAN_SPREAD_SUPPORT, cap->chanSpreadSupport); GETCAP(CAP_COMPRESS_SUPPORT, cap->compressSupport); GETCAP(CAP_BURST_SUPPORT, cap->burstSupport); GETCAP(CAP_FAST_FRAMES_SUPPORT, cap->fastFramesSupport); GETCAP(CAP_CHAP_TUNING_SUPPORT, cap->chapTuningSupport); GETCAP(CAP_TURBOG_SUPPORT, cap->turboGSupport); GETCAP(CAP_TURBO_PRIME_SUPPORT, cap->turboPrimeSupport); GETCAP(CAP_DEVICE_TYPE, cap->deviceType); GETCAP(CAP_WME_SUPPORT, cap->wmeSupport); GETCAP(CAP_TOTAL_QUEUES, cap->numTxQueues); GETCAP(CAP_CONNECTION_ID_MAX, cap->connectionIdMax); GETCAP(CAP_LOW_5GHZ_CHAN, cap->low5GhzChan); GETCAP(CAP_HIGH_5GHZ_CHAN, cap->high5GhzChan); GETCAP(CAP_LOW_2GHZ_CHAN, cap->low2GhzChan); GETCAP(CAP_HIGH_2GHZ_CHAN, cap->high2GhzChan); GETCAP(CAP_TWICE_ANTENNAGAIN_5G, cap->twiceAntennaGain5G); GETCAP(CAP_TWICE_ANTENNAGAIN_2G, cap->twiceAntennaGain2G); GETCAP(CAP_CIPHER_AES_CCM, cap->supportCipherAES_CCM); GETCAP(CAP_CIPHER_TKIP, cap->supportCipherTKIP); GETCAP(CAP_MIC_TKIP, cap->supportMicTKIP); cap->supportCipherWEP = 1; /* NB: always available */ return (0); } static int uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { int error; /* retrieve MAC address */ error = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN); if (error != 0) { device_printf(sc->sc_dev, "could not read MAC address\n"); return (error); } error = uath_get_status(sc, ST_SERIAL_NUMBER, &sc->sc_serial[0], sizeof(sc->sc_serial)); if (error != 0) { device_printf(sc->sc_dev, "could not read device serial number\n"); return (error); } return (0); } static int uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen) { int error; which = htobe32(which); error = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS, &which, sizeof(which), odata, olen, UATH_CMD_FLAG_MAGIC); if (error != 0) device_printf(sc->sc_dev, "could not read EEPROM offset 0x%02x\n", be32toh(which)); return (error); } static void uath_free_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, int fillmbuf) { int i; for (i = 0; i < ndata; i++) { struct uath_data *dp = &data[i]; if (fillmbuf == 1) { if (dp->m != NULL) { m_freem(dp->m); dp->m = NULL; dp->buf = NULL; } } else { dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static int uath_alloc_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, int maxsz, void *dma_buf) { int i, error; for (i = 0; i < ndata; i++) { struct uath_data *dp = &data[i]; dp->sc = sc; if (dma_buf == NULL) { /* XXX check maxsz */ dp->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (dp->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } dp->buf = mtod(dp->m, uint8_t *); } else { dp->m = NULL; dp->buf = ((uint8_t *)dma_buf) + (i * maxsz); } dp->ni = NULL; } return (0); fail: uath_free_data_list(sc, data, ndata, 1 /* free mbufs */); return (error); } static int uath_alloc_rx_data_list(struct uath_softc *sc) { int error, i; /* XXX is it enough to store the RX packet with MCLBYTES bytes? */ error = uath_alloc_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, MCLBYTES, NULL /* setup mbufs */); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) { STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); UATH_STAT_INC(sc, st_rx_inactive); } return (0); } static int uath_alloc_tx_data_list(struct uath_softc *sc) { int error, i; error = uath_alloc_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, UATH_MAX_TXBUFSZ, sc->sc_tx_dma_buf); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); UATH_STAT_INC(sc, st_tx_inactive); } return (0); } static void uath_free_rx_data_list(struct uath_softc *sc) { uath_free_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, 1 /* free mbufs */); } static void uath_free_tx_data_list(struct uath_softc *sc) { uath_free_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, 0 /* no mbufs */); } static struct ieee80211vap * uath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct uath_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct uath_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = uath_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void uath_vap_delete(struct ieee80211vap *vap) { struct uath_vap *uvp = UATH_VAP(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static int uath_init(struct uath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t val; int error; UATH_ASSERT_LOCKED(sc); if (sc->sc_flags & UATH_FLAG_INITDONE) uath_stop(sc); /* reset variables */ sc->sc_intrx_nextnum = sc->sc_msgid = 0; val = htobe32(0); uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof val, 0); /* set MAC address */ uath_config_multi(sc, CFG_MAC_ADDR, vap ? vap->iv_myaddr : ic->ic_macaddr, IEEE80211_ADDR_LEN); /* XXX honor net80211 state */ uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001); uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001); uath_config(sc, CFG_ABOLT, 0x0000003f); uath_config(sc, CFG_WME_ENABLED, 0x00000001); uath_config(sc, CFG_SERVICE_TYPE, 1); uath_config(sc, CFG_TP_SCALE, 0x00000000); uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c); uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c); uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000); uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000); uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003); uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000); uath_config(sc, CFG_MODE_CTS, 0x00000002); error = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0, &val, sizeof(val), UATH_CMD_FLAG_MAGIC); if (error) { device_printf(sc->sc_dev, "could not start target, error %d\n", error); goto fail; } DPRINTF(sc, UATH_DEBUG_INIT, "%s returns handle: 0x%x\n", uath_codename(WDCMSG_TARGET_START), be32toh(val)); /* set default channel */ error = uath_switch_channel(sc, ic->ic_curchan); if (error) { device_printf(sc->sc_dev, "could not switch channel, error %d\n", error); goto fail; } val = htobe32(TARGET_DEVICE_AWAKE); uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof val, 0); /* XXX? check */ uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0); usbd_transfer_start(sc->sc_xfer[UATH_BULK_RX]); /* enable Rx */ uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT); uath_set_rxfilter(sc, UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON, UATH_FILTER_OP_SET); sc->sc_flags |= UATH_FLAG_INITDONE; callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); return (0); fail: uath_stop(sc); return (error); } static void uath_stop(struct uath_softc *sc) { UATH_ASSERT_LOCKED(sc); sc->sc_flags &= ~UATH_FLAG_INITDONE; callout_stop(&sc->stat_ch); callout_stop(&sc->watchdog_ch); sc->sc_tx_timer = 0; /* abort pending transmits */ uath_abort_xfers(sc); /* flush data & control requests into the target */ (void)uath_flush(sc); /* set a LED status to the disconnected. */ uath_set_ledstate(sc, 0); /* stop the target */ uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0); } static int uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val) { struct uath_write_mac write; int error; write.reg = htobe32(reg); write.len = htobe32(0); /* 0 = single write */ *(uint32_t *)write.data = htobe32(val); error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 3 * sizeof (uint32_t), 0); if (error != 0) { device_printf(sc->sc_dev, "could not write register 0x%02x\n", reg); } return (error); } static int uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data, int len) { struct uath_write_mac write; int error; write.reg = htobe32(reg); write.len = htobe32(len); bcopy(data, write.data, len); /* properly handle the case where len is zero (reset) */ error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0); if (error != 0) { device_printf(sc->sc_dev, "could not write %d bytes to register 0x%02x\n", len, reg); } return (error); } static int uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c) { int error; UATH_ASSERT_LOCKED(sc); /* set radio frequency */ error = uath_set_chan(sc, c); if (error) { device_printf(sc->sc_dev, "could not set channel, error %d\n", error); goto failed; } /* reset Tx rings */ error = uath_reset_tx_queues(sc); if (error) { device_printf(sc->sc_dev, "could not reset Tx queues, error %d\n", error); goto failed; } /* set Tx rings WME properties */ error = uath_wme_init(sc); if (error) { device_printf(sc->sc_dev, "could not init Tx queues, error %d\n", error); goto failed; } error = uath_set_ledstate(sc, 0); if (error) { device_printf(sc->sc_dev, "could not set led state, error %d\n", error); goto failed; } error = uath_flush(sc); if (error) { device_printf(sc->sc_dev, "could not flush pipes, error %d\n", error); goto failed; } failed: return (error); } static int uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op) { struct uath_cmd_rx_filter rxfilter; rxfilter.bits = htobe32(bits); rxfilter.op = htobe32(op); DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "setting Rx filter=0x%x flags=0x%x\n", bits, op); return uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter, sizeof rxfilter, 0); } static void uath_watchdog(void *arg) { struct uath_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(ic->ic_oerrors, 1); ieee80211_restart_all(ic); return; } callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); } } static void uath_abort_xfers(struct uath_softc *sc) { int i; UATH_ASSERT_LOCKED(sc); /* abort any pending transfers */ for (i = 0; i < UATH_N_XFERS; i++) usbd_transfer_stop(sc->sc_xfer[i]); } static int uath_flush(struct uath_softc *sc) { int error; error = uath_dataflush(sc); if (error != 0) goto failed; error = uath_cmdflush(sc); if (error != 0) goto failed; failed: return (error); } static int uath_cmdflush(struct uath_softc *sc) { return uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0); } static int uath_dataflush(struct uath_softc *sc) { struct uath_data *data; struct uath_chunk *chunk; struct uath_tx_desc *desc; UATH_ASSERT_LOCKED(sc); data = uath_getbuf(sc); if (data == NULL) return (ENOBUFS); data->buflen = sizeof(struct uath_chunk) + sizeof(struct uath_tx_desc); data->m = NULL; data->ni = NULL; chunk = (struct uath_chunk *)data->buf; desc = (struct uath_tx_desc *)(chunk + 1); /* one chunk only */ chunk->seqnum = 0; chunk->flags = UATH_CFLAGS_FINAL; chunk->length = htobe16(sizeof (struct uath_tx_desc)); memset(desc, 0, sizeof(struct uath_tx_desc)); desc->msglen = htobe32(sizeof(struct uath_tx_desc)); desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ desc->type = htobe32(WDCMSG_FLUSH); desc->txqid = htobe32(0); desc->connid = htobe32(0); desc->flags = htobe32(0); #ifdef UATH_DEBUG if (sc->sc_debug & UATH_DEBUG_CMDS) { DPRINTF(sc, UATH_DEBUG_RESET, "send flush ix %d\n", desc->msgid); if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) uath_dump_cmd(data->buf, data->buflen, '+'); } #endif STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); UATH_STAT_INC(sc, st_tx_pending); sc->sc_tx_timer = 5; usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); return (0); } static struct uath_data * _uath_getbuf(struct uath_softc *sc) { struct uath_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); UATH_STAT_DEC(sc, st_tx_inactive); } else bf = NULL; if (bf == NULL) DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, "out of xmit buffers"); return (bf); } static struct uath_data * uath_getbuf(struct uath_softc *sc) { struct uath_data *bf; UATH_ASSERT_LOCKED(sc); bf = _uath_getbuf(sc); if (bf == NULL) DPRINTF(sc, UATH_DEBUG_XMIT, "%s: stop queue\n", __func__); return (bf); } static int uath_set_ledstate(struct uath_softc *sc, int connected) { DPRINTF(sc, UATH_DEBUG_LED, "set led state %sconnected\n", connected ? "" : "!"); connected = htobe32(connected); return uath_cmd_write(sc, WDCMSG_SET_LED_STATE, &connected, sizeof connected, 0); } static int uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c) { #ifdef UATH_DEBUG struct ieee80211com *ic = &sc->sc_ic; #endif struct uath_cmd_reset reset; memset(&reset, 0, sizeof(reset)); if (IEEE80211_IS_CHAN_2GHZ(c)) reset.flags |= htobe32(UATH_CHAN_2GHZ); if (IEEE80211_IS_CHAN_5GHZ(c)) reset.flags |= htobe32(UATH_CHAN_5GHZ); /* NB: 11g =>'s 11b so don't specify both OFDM and CCK */ if (IEEE80211_IS_CHAN_OFDM(c)) reset.flags |= htobe32(UATH_CHAN_OFDM); else if (IEEE80211_IS_CHAN_CCK(c)) reset.flags |= htobe32(UATH_CHAN_CCK); /* turbo can be used in either 2GHz or 5GHz */ if (c->ic_flags & IEEE80211_CHAN_TURBO) reset.flags |= htobe32(UATH_CHAN_TURBO); reset.freq = htobe32(c->ic_freq); reset.maxrdpower = htobe32(50); /* XXX */ reset.channelchange = htobe32(1); reset.keeprccontent = htobe32(0); DPRINTF(sc, UATH_DEBUG_CHANNEL, "set channel %d, flags 0x%x freq %u\n", ieee80211_chan2ieee(ic, c), be32toh(reset.flags), be32toh(reset.freq)); return uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof reset, 0); } static int uath_reset_tx_queues(struct uath_softc *sc) { int ac, error; DPRINTF(sc, UATH_DEBUG_RESET, "%s: reset Tx queues\n", __func__); for (ac = 0; ac < 4; ac++) { const uint32_t qid = htobe32(ac); error = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid, sizeof qid, 0); if (error != 0) break; } return (error); } static int uath_wme_init(struct uath_softc *sc) { /* XXX get from net80211 */ static const struct uath_wme_settings uath_wme_11g[4] = { { 7, 4, 10, 0, 0 }, /* Background */ { 3, 4, 10, 0, 0 }, /* Best-Effort */ { 3, 3, 4, 26, 0 }, /* Video */ { 2, 2, 3, 47, 0 } /* Voice */ }; struct uath_cmd_txq_setup qinfo; int ac, error; DPRINTF(sc, UATH_DEBUG_WME, "%s: setup Tx queues\n", __func__); for (ac = 0; ac < 4; ac++) { qinfo.qid = htobe32(ac); qinfo.len = htobe32(sizeof(qinfo.attr)); qinfo.attr.priority = htobe32(ac); /* XXX */ qinfo.attr.aifs = htobe32(uath_wme_11g[ac].aifsn); qinfo.attr.logcwmin = htobe32(uath_wme_11g[ac].logcwmin); qinfo.attr.logcwmax = htobe32(uath_wme_11g[ac].logcwmax); qinfo.attr.bursttime = htobe32(IEEE80211_TXOP_TO_US( uath_wme_11g[ac].txop)); qinfo.attr.mode = htobe32(uath_wme_11g[ac].acm);/*XXX? */ qinfo.attr.qflags = htobe32(1); /* XXX? */ error = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo, sizeof qinfo, 0); if (error != 0) break; } return (error); } static void uath_parent(struct ieee80211com *ic) { struct uath_softc *sc = ic->ic_softc; int startall = 0; UATH_LOCK(sc); if (sc->sc_flags & UATH_FLAG_INVALID) { UATH_UNLOCK(sc); return; } if (ic->ic_nrunning > 0) { if (!(sc->sc_flags & UATH_FLAG_INITDONE)) { uath_init(sc); startall = 1; } } else if (sc->sc_flags & UATH_FLAG_INITDONE) uath_stop(sc); UATH_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int uath_tx_start(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, struct uath_data *data) { struct ieee80211vap *vap = ni->ni_vap; struct uath_chunk *chunk; struct uath_tx_desc *desc; const struct ieee80211_frame *wh; struct ieee80211_key *k; int framelen, msglen; UATH_ASSERT_LOCKED(sc); data->ni = ni; data->m = m0; chunk = (struct uath_chunk *)data->buf; desc = (struct uath_tx_desc *)(chunk + 1); if (ieee80211_radiotap_active_vap(vap)) { struct uath_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; if (m0->m_flags & M_FRAG) tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; ieee80211_radiotap_tx(vap, m0); } wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return (ENOBUFS); } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1)); framelen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; msglen = framelen + sizeof (struct uath_tx_desc); data->buflen = msglen + sizeof (struct uath_chunk); /* one chunk only for now */ chunk->seqnum = sc->sc_seqnum++; chunk->flags = (m0->m_flags & M_FRAG) ? 0 : UATH_CFLAGS_FINAL; if (m0->m_flags & M_LASTFRAG) chunk->flags |= UATH_CFLAGS_FINAL; chunk->flags = UATH_CFLAGS_FINAL; chunk->length = htobe16(msglen); /* fill Tx descriptor */ desc->msglen = htobe32(msglen); /* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */ desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ desc->type = htobe32(WDCMSG_SEND); switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_CTL: case IEEE80211_FC0_TYPE_MGT: /* NB: force all management frames to highest queue */ if (ni->ni_flags & IEEE80211_NODE_QOS) { /* NB: force all management frames to highest queue */ desc->txqid = htobe32(WME_AC_VO | UATH_TXQID_MINRATE); } else desc->txqid = htobe32(WME_AC_BE | UATH_TXQID_MINRATE); break; case IEEE80211_FC0_TYPE_DATA: /* XXX multicast frames should honor mcastrate */ desc->txqid = htobe32(M_WME_GETAC(m0)); break; default: device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); m_freem(m0); return (EIO); } if (vap->iv_state == IEEE80211_S_AUTH || vap->iv_state == IEEE80211_S_ASSOC || vap->iv_state == IEEE80211_S_RUN) desc->connid = htobe32(UATH_ID_BSS); else desc->connid = htobe32(UATH_ID_INVALID); desc->flags = htobe32(0 /* no UATH_TX_NOTIFY */); desc->buflen = htobe32(m0->m_pkthdr.len); #ifdef UATH_DEBUG DPRINTF(sc, UATH_DEBUG_XMIT, "send frame ix %u framelen %d msglen %d connid 0x%x txqid 0x%x\n", desc->msgid, framelen, msglen, be32toh(desc->connid), be32toh(desc->txqid)); if (sc->sc_debug & UATH_DEBUG_XMIT_DUMP) uath_dump_cmd(data->buf, data->buflen, '+'); #endif STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); UATH_STAT_INC(sc, st_tx_pending); usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); return (0); } /* * Cleanup driver resources when we run out of buffers while processing * fragments; return the tx buffers allocated and drop node references. */ static void uath_txfrag_cleanup(struct uath_softc *sc, uath_datahead *frags, struct ieee80211_node *ni) { struct uath_data *bf, *next; UATH_ASSERT_LOCKED(sc); STAILQ_FOREACH_SAFE(bf, frags, next, next) { /* NB: bf assumed clean */ STAILQ_REMOVE_HEAD(frags, next); STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); UATH_STAT_INC(sc, st_tx_inactive); ieee80211_node_decref(ni); } } /* * Setup xmit of a fragmented frame. Allocate a buffer for each frag and bump * the node reference count to reflect the held reference to be setup by * uath_tx_start. */ static int uath_txfrag_setup(struct uath_softc *sc, uath_datahead *frags, struct mbuf *m0, struct ieee80211_node *ni) { struct mbuf *m; struct uath_data *bf; UATH_ASSERT_LOCKED(sc); for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { bf = uath_getbuf(sc); if (bf == NULL) { /* out of buffers, cleanup */ uath_txfrag_cleanup(sc, frags, ni); break; } ieee80211_node_incref(ni); STAILQ_INSERT_TAIL(frags, bf, next); } return !STAILQ_EMPTY(frags); } static int uath_transmit(struct ieee80211com *ic, struct mbuf *m) { struct uath_softc *sc = ic->ic_softc; int error; UATH_LOCK(sc); if ((sc->sc_flags & UATH_FLAG_INITDONE) == 0) { UATH_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { UATH_UNLOCK(sc); return (error); } uath_start(sc); UATH_UNLOCK(sc); return (0); } static void uath_start(struct uath_softc *sc) { struct uath_data *bf; struct ieee80211_node *ni; struct mbuf *m, *next; uath_datahead frags; UATH_ASSERT_LOCKED(sc); if ((sc->sc_flags & UATH_FLAG_INITDONE) == 0 || (sc->sc_flags & UATH_FLAG_INVALID)) return; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = uath_getbuf(sc); if (bf == NULL) { mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; /* * Check for fragmentation. If this frame has been broken up * verify we have enough buffers to send all the fragments * so all go out or none... */ STAILQ_INIT(&frags); if ((m->m_flags & M_FRAG) && !uath_txfrag_setup(sc, &frags, m, ni)) { DPRINTF(sc, UATH_DEBUG_XMIT, "%s: out of txfrag buffers\n", __func__); ieee80211_free_mbuf(m); goto bad; } sc->sc_seqnum = 0; nextfrag: /* * Pass the frame to the h/w for transmission. * Fragmented frames have each frag chained together * with m_nextpkt. We know there are sufficient uath_data's * to send all the frags because of work done by * uath_txfrag_setup. */ next = m->m_nextpkt; if (uath_tx_start(sc, m, ni, bf) != 0) { bad: if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); reclaim: STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); UATH_STAT_INC(sc, st_tx_inactive); uath_txfrag_cleanup(sc, &frags, ni); ieee80211_free_node(ni); continue; } if (next != NULL) { /* * Beware of state changing between frags. XXX check sta power-save state? */ if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { DPRINTF(sc, UATH_DEBUG_XMIT, "%s: flush fragmented packet, state %s\n", __func__, ieee80211_state_name[ni->ni_vap->iv_state]); ieee80211_free_mbuf(next); goto reclaim; } m = next; bf = STAILQ_FIRST(&frags); KASSERT(bf != NULL, ("no buf for txfrag")); STAILQ_REMOVE_HEAD(&frags, next); goto nextfrag; } sc->sc_tx_timer = 5; } } static int uath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct uath_data *bf; struct uath_softc *sc = ic->ic_softc; UATH_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if ((sc->sc_flags & UATH_FLAG_INVALID) || !(sc->sc_flags & UATH_FLAG_INITDONE)) { m_freem(m); UATH_UNLOCK(sc); return (ENETDOWN); } /* grab a TX buffer */ bf = uath_getbuf(sc); if (bf == NULL) { m_freem(m); UATH_UNLOCK(sc); return (ENOBUFS); } sc->sc_seqnum = 0; if (uath_tx_start(sc, m, ni, bf) != 0) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); UATH_STAT_INC(sc, st_tx_inactive); UATH_UNLOCK(sc); return (EIO); } UATH_UNLOCK(sc); sc->sc_tx_timer = 5; return (0); } static void uath_scan_start(struct ieee80211com *ic) { /* do nothing */ } static void uath_scan_end(struct ieee80211com *ic) { /* do nothing */ } static void uath_set_channel(struct ieee80211com *ic) { struct uath_softc *sc = ic->ic_softc; UATH_LOCK(sc); if ((sc->sc_flags & UATH_FLAG_INVALID) || (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { UATH_UNLOCK(sc); return; } (void)uath_switch_channel(sc, ic->ic_curchan); UATH_UNLOCK(sc); } static int uath_set_rxmulti_filter(struct uath_softc *sc) { /* XXX broken */ return (0); } static void uath_update_mcast(struct ieee80211com *ic) { struct uath_softc *sc = ic->ic_softc; UATH_LOCK(sc); if ((sc->sc_flags & UATH_FLAG_INVALID) || (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { UATH_UNLOCK(sc); return; } /* * this is for avoiding the race condition when we're try to * connect to the AP with WPA. */ if (sc->sc_flags & UATH_FLAG_INITDONE) (void)uath_set_rxmulti_filter(sc); UATH_UNLOCK(sc); } static void uath_update_promisc(struct ieee80211com *ic) { struct uath_softc *sc = ic->ic_softc; UATH_LOCK(sc); if ((sc->sc_flags & UATH_FLAG_INVALID) || (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { UATH_UNLOCK(sc); return; } if (sc->sc_flags & UATH_FLAG_INITDONE) { uath_set_rxfilter(sc, UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON | UATH_FILTER_RX_PROM, UATH_FILTER_OP_SET); } UATH_UNLOCK(sc); } static int uath_create_connection(struct uath_softc *sc, uint32_t connid) { const struct ieee80211_rateset *rs; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct uath_cmd_create_connection create; ni = ieee80211_ref_node(vap->iv_bss); memset(&create, 0, sizeof(create)); create.connid = htobe32(connid); create.bssid = htobe32(0); /* XXX packed or not? */ create.size = htobe32(sizeof(struct uath_cmd_rateset)); rs = &ni->ni_rates; create.connattr.rateset.length = rs->rs_nrates; bcopy(rs->rs_rates, &create.connattr.rateset.set[0], rs->rs_nrates); /* XXX turbo */ if (IEEE80211_IS_CHAN_A(ni->ni_chan)) create.connattr.wlanmode = htobe32(WLAN_MODE_11a); else if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) create.connattr.wlanmode = htobe32(WLAN_MODE_11g); else create.connattr.wlanmode = htobe32(WLAN_MODE_11b); ieee80211_free_node(ni); return uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create, sizeof create, 0); } static int uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs) { struct uath_cmd_rates rates; memset(&rates, 0, sizeof(rates)); rates.connid = htobe32(UATH_ID_BSS); /* XXX */ rates.size = htobe32(sizeof(struct uath_cmd_rateset)); /* XXX bounds check rs->rs_nrates */ rates.rateset.length = rs->rs_nrates; bcopy(rs->rs_rates, &rates.rateset.set[0], rs->rs_nrates); DPRINTF(sc, UATH_DEBUG_RATES, "setting supported rates nrates=%d\n", rs->rs_nrates); return uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE, &rates, sizeof rates, 0); } static int uath_write_associd(struct uath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct uath_cmd_set_associd associd; ni = ieee80211_ref_node(vap->iv_bss); memset(&associd, 0, sizeof(associd)); associd.defaultrateix = htobe32(1); /* XXX */ associd.associd = htobe32(ni->ni_associd); associd.timoffset = htobe32(0x3b); /* XXX */ IEEE80211_ADDR_COPY(associd.bssid, ni->ni_bssid); ieee80211_free_node(ni); return uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd, sizeof associd, 0); } static int uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode) { struct uath_cmd_ledsteady led; led.lednum = htobe32(lednum); led.ledmode = htobe32(ledmode); DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (steady)\n", (lednum == UATH_LED_LINK) ? "link" : "activity", ledmode ? "on" : "off"); return uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof led, 0); } static int uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode, int blinkrate, int slowmode) { struct uath_cmd_ledblink led; led.lednum = htobe32(lednum); led.ledmode = htobe32(ledmode); led.blinkrate = htobe32(blinkrate); led.slowmode = htobe32(slowmode); DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (blink)\n", (lednum == UATH_LED_LINK) ? "link" : "activity", ledmode ? "on" : "off"); return uath_cmd_write(sc, WDCMSG_SET_LED_BLINK, &led, sizeof led, 0); } static int uath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { enum ieee80211_state ostate = vap->iv_state; int error; struct ieee80211_node *ni; struct ieee80211com *ic = vap->iv_ic; struct uath_softc *sc = ic->ic_softc; struct uath_vap *uvp = UATH_VAP(vap); DPRINTF(sc, UATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); UATH_LOCK(sc); callout_stop(&sc->stat_ch); callout_stop(&sc->watchdog_ch); ni = ieee80211_ref_node(vap->iv_bss); switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* turn link and activity LEDs off */ uath_set_ledstate(sc, 0); } break; case IEEE80211_S_SCAN: break; case IEEE80211_S_AUTH: /* XXX good place? set RTS threshold */ uath_config(sc, CFG_USER_RTS_THRESHOLD, vap->iv_rtsthreshold); /* XXX bad place */ error = uath_set_keys(sc, vap); if (error != 0) { device_printf(sc->sc_dev, "could not set crypto keys, error %d\n", error); break; } if (uath_switch_channel(sc, ni->ni_chan) != 0) { device_printf(sc->sc_dev, "could not switch channel\n"); break; } if (uath_create_connection(sc, UATH_ID_BSS) != 0) { device_printf(sc->sc_dev, "could not create connection\n"); break; } break; case IEEE80211_S_ASSOC: if (uath_set_rates(sc, &ni->ni_rates) != 0) { device_printf(sc->sc_dev, "could not set negotiated rate set\n"); break; } break; case IEEE80211_S_RUN: /* XXX monitor mode doesn't be tested */ if (ic->ic_opmode == IEEE80211_M_MONITOR) { uath_set_ledstate(sc, 1); break; } /* * Tx rate is controlled by firmware, report the maximum * negotiated rate in ifconfig output. */ ni->ni_txrate = ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1]; if (uath_write_associd(sc) != 0) { device_printf(sc->sc_dev, "could not write association id\n"); break; } /* turn link LED on */ uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON); /* make activity LED blink */ uath_set_ledblink(sc, UATH_LED_ACTIVITY, UATH_LED_ON, 1, 2); /* set state to associated */ uath_set_ledstate(sc, 1); /* start statistics timer */ callout_reset(&sc->stat_ch, hz, uath_stat, sc); break; default: break; } ieee80211_free_node(ni); UATH_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } static int uath_set_key(struct uath_softc *sc, const struct ieee80211_key *wk, int index) { #if 0 struct uath_cmd_crypto crypto; int i; memset(&crypto, 0, sizeof(crypto)); crypto.keyidx = htobe32(index); crypto.magic1 = htobe32(1); crypto.size = htobe32(368); crypto.mask = htobe32(0xffff); crypto.flags = htobe32(0x80000068); if (index != UATH_DEFAULT_KEY) crypto.flags |= htobe32(index << 16); memset(crypto.magic2, 0xff, sizeof(crypto.magic2)); /* * Each byte of the key must be XOR'ed with 10101010 before being * transmitted to the firmware. */ for (i = 0; i < wk->wk_keylen; i++) crypto.key[i] = wk->wk_key[i] ^ 0xaa; DPRINTF(sc, UATH_DEBUG_CRYPTO, "setting crypto key index=%d len=%d\n", index, wk->wk_keylen); return uath_cmd_write(sc, WDCMSG_SET_KEY_CACHE_ENTRY, &crypto, sizeof crypto, 0); #else /* XXX support H/W cryto */ return (0); #endif } static int uath_set_keys(struct uath_softc *sc, struct ieee80211vap *vap) { int i, error; error = 0; for (i = 0; i < IEEE80211_WEP_NKID; i++) { const struct ieee80211_key *wk = &vap->iv_nw_keys[i]; if (wk->wk_flags & (IEEE80211_KEY_XMIT|IEEE80211_KEY_RECV)) { error = uath_set_key(sc, wk, i); if (error) return (error); } } if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { error = uath_set_key(sc, &vap->iv_nw_keys[vap->iv_def_txkey], UATH_DEFAULT_KEY); } return (error); } #define UATH_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) static void uath_sysctl_node(struct uath_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child; struct sysctl_oid *tree; struct uath_stat *stats; stats = &sc->sc_stat; ctx = device_get_sysctl_ctx(sc->sc_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "UATH statistics"); child = SYSCTL_CHILDREN(tree); UATH_SYSCTL_STAT_ADD32(ctx, child, "badchunkseqnum", &stats->st_badchunkseqnum, "Bad chunk sequence numbers"); UATH_SYSCTL_STAT_ADD32(ctx, child, "invalidlen", &stats->st_invalidlen, "Invalid length"); UATH_SYSCTL_STAT_ADD32(ctx, child, "multichunk", &stats->st_multichunk, "Multi chunks"); UATH_SYSCTL_STAT_ADD32(ctx, child, "toobigrxpkt", &stats->st_toobigrxpkt, "Too big rx packets"); UATH_SYSCTL_STAT_ADD32(ctx, child, "stopinprogress", &stats->st_stopinprogress, "Stop in progress"); UATH_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->st_crcerr, "CRC errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "phyerr", &stats->st_phyerr, "PHY errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_crcerr", &stats->st_decrypt_crcerr, "Decryption CRC errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_micerr", &stats->st_decrypt_micerr, "Decryption Misc errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "decomperr", &stats->st_decomperr, "Decomp errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "keyerr", &stats->st_keyerr, "Key errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "err", &stats->st_err, "Unknown errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_active", &stats->st_cmd_active, "Active numbers in Command queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_inactive", &stats->st_cmd_inactive, "Inactive numbers in Command queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_pending", &stats->st_cmd_pending, "Pending numbers in Command queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_waiting", &stats->st_cmd_waiting, "Waiting numbers in Command queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_active", &stats->st_rx_active, "Active numbers in RX queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_inactive", &stats->st_rx_inactive, "Inactive numbers in RX queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_active", &stats->st_tx_active, "Active numbers in TX queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", &stats->st_tx_inactive, "Inactive numbers in TX queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", &stats->st_tx_pending, "Pending numbers in TX queue"); } #undef UATH_SYSCTL_STAT_ADD32 CTASSERT(sizeof(u_int) >= sizeof(uint32_t)); static void uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd) { struct uath_cmd_hdr *hdr; uint32_t dlen; hdr = (struct uath_cmd_hdr *)cmd->buf; /* NB: msgid is passed thru w/o byte swapping */ #ifdef UATH_DEBUG if (sc->sc_debug & UATH_DEBUG_CMDS) { uint32_t len = be32toh(hdr->len); printf("%s: %s [ix %u] len %u status %u\n", __func__, uath_codename(be32toh(hdr->code)), hdr->msgid, len, be32toh(hdr->magic)); if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) uath_dump_cmd(cmd->buf, len > UATH_MAX_CMDSZ ? sizeof(*hdr) : len, '-'); } #endif hdr->code = be32toh(hdr->code); hdr->len = be32toh(hdr->len); hdr->magic = be32toh(hdr->magic); /* target status on return */ switch (hdr->code & 0xff) { /* reply to a read command */ default: DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, "%s: code %d hdr len %u\n", __func__, hdr->code & 0xff, hdr->len); /* * The first response from the target after the * HOST_AVAILABLE has an invalid msgid so we must * treat it specially. */ if (hdr->msgid < UATH_CMD_LIST_COUNT) { uint32_t *rp = (uint32_t *)(hdr+1); u_int olen; if (sizeof(*hdr) > hdr->len || hdr->len > UATH_MAX_CMDSZ) { device_printf(sc->sc_dev, "%s: invalid WDC msg length %u; " "msg ignored\n", __func__, hdr->len); return; } /* * Calculate return/receive payload size; the * first word, if present, always gives the * number of bytes--unless it's 0 in which * case a single 32-bit word should be present. */ dlen = hdr->len - sizeof(*hdr); if (dlen >= sizeof(uint32_t)) { olen = be32toh(rp[0]); dlen -= sizeof(uint32_t); if (olen == 0) { /* convention is 0 =>'s one word */ olen = sizeof(uint32_t); /* XXX KASSERT(olen == dlen ) */ } } else olen = 0; if (cmd->odata != NULL) { /* NB: cmd->olen validated in uath_cmd */ if (olen > (u_int)cmd->olen) { /* XXX complain? */ device_printf(sc->sc_dev, "%s: cmd 0x%x olen %u cmd olen %u\n", __func__, hdr->code, olen, cmd->olen); olen = cmd->olen; } if (olen > dlen) { /* XXX complain, shouldn't happen */ device_printf(sc->sc_dev, "%s: cmd 0x%x olen %u dlen %u\n", __func__, hdr->code, olen, dlen); olen = dlen; } /* XXX have submitter do this */ /* copy answer into caller's supplied buffer */ bcopy(&rp[1], cmd->odata, olen); cmd->olen = olen; } } wakeup_one(cmd); /* wake up caller */ break; case WDCMSG_TARGET_START: if (hdr->msgid >= UATH_CMD_LIST_COUNT) { /* XXX */ return; } dlen = hdr->len - sizeof(*hdr); if (dlen != sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: dlen (%u) != %zu!\n", __func__, dlen, sizeof(uint32_t)); return; } /* XXX have submitter do this */ /* copy answer into caller's supplied buffer */ bcopy(hdr+1, cmd->odata, sizeof(uint32_t)); cmd->olen = sizeof(uint32_t); wakeup_one(cmd); /* wake up caller */ break; case WDCMSG_SEND_COMPLETE: /* this notification is sent when UATH_TX_NOTIFY is set */ DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, "%s: received Tx notification\n", __func__); break; case WDCMSG_TARGET_GET_STATS: DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, "%s: received device statistics\n", __func__); callout_reset(&sc->stat_ch, hz, uath_stat, sc); break; } } static void uath_intr_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct uath_cmd *cmd; struct uath_cmd_hdr *hdr; struct usb_page_cache *pc; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); UATH_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: cmd = STAILQ_FIRST(&sc->sc_cmd_waiting); if (cmd == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next); UATH_STAT_DEC(sc, st_cmd_waiting); STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); UATH_STAT_INC(sc, st_cmd_inactive); if (actlen < sizeof(struct uath_cmd_hdr)) { device_printf(sc->sc_dev, "%s: short xfer error (actlen %d)\n", __func__, actlen); goto setup; } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, 0, cmd->buf, actlen); hdr = (struct uath_cmd_hdr *)cmd->buf; if (be32toh(hdr->len) > (uint32_t)actlen) { device_printf(sc->sc_dev, "%s: truncated xfer (len %u, actlen %d)\n", __func__, be32toh(hdr->len), actlen); goto setup; } uath_cmdeof(sc, cmd); case USB_ST_SETUP: setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); break; default: if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static void uath_intr_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct uath_cmd *cmd; UATH_ASSERT_LOCKED(sc); cmd = STAILQ_FIRST(&sc->sc_cmd_active); if (cmd != NULL && USB_GET_STATE(xfer) != USB_ST_SETUP) { STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next); UATH_STAT_DEC(sc, st_cmd_active); STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_READ) ? &sc->sc_cmd_waiting : &sc->sc_cmd_inactive, cmd, next); if (cmd->flags & UATH_CMD_FLAG_READ) UATH_STAT_INC(sc, st_cmd_waiting); else UATH_STAT_INC(sc, st_cmd_inactive); } switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: case USB_ST_SETUP: setup: cmd = STAILQ_FIRST(&sc->sc_cmd_pending); if (cmd == NULL) { DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", __func__); return; } STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next); UATH_STAT_DEC(sc, st_cmd_pending); STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_ASYNC) ? &sc->sc_cmd_inactive : &sc->sc_cmd_active, cmd, next); if (cmd->flags & UATH_CMD_FLAG_ASYNC) UATH_STAT_INC(sc, st_cmd_inactive); else UATH_STAT_INC(sc, st_cmd_active); usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); usbd_transfer_submit(xfer); break; default: if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static void uath_update_rxstat(struct uath_softc *sc, uint32_t status) { switch (status) { case UATH_STATUS_STOP_IN_PROGRESS: UATH_STAT_INC(sc, st_stopinprogress); break; case UATH_STATUS_CRC_ERR: UATH_STAT_INC(sc, st_crcerr); break; case UATH_STATUS_PHY_ERR: UATH_STAT_INC(sc, st_phyerr); break; case UATH_STATUS_DECRYPT_CRC_ERR: UATH_STAT_INC(sc, st_decrypt_crcerr); break; case UATH_STATUS_DECRYPT_MIC_ERR: UATH_STAT_INC(sc, st_decrypt_micerr); break; case UATH_STATUS_DECOMP_ERR: UATH_STAT_INC(sc, st_decomperr); break; case UATH_STATUS_KEY_ERR: UATH_STAT_INC(sc, st_keyerr); break; case UATH_STATUS_ERR: UATH_STAT_INC(sc, st_err); break; default: break; } } CTASSERT(UATH_MIN_RXBUFSZ >= sizeof(struct uath_chunk)); static struct mbuf * uath_data_rxeof(struct usb_xfer *xfer, struct uath_data *data, struct uath_rx_desc **pdesc) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct uath_chunk *chunk; struct uath_rx_desc *desc; struct mbuf *m = data->m, *mnew, *mp; uint16_t chunklen; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); if (actlen < (int)UATH_MIN_RXBUFSZ) { DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "%s: wrong xfer size (len=%d)\n", __func__, actlen); counter_u64_add(ic->ic_ierrors, 1); return (NULL); } chunk = (struct uath_chunk *)data->buf; chunklen = be16toh(chunk->length); if (chunk->seqnum == 0 && chunk->flags == 0 && chunklen == 0) { device_printf(sc->sc_dev, "%s: strange response\n", __func__); counter_u64_add(ic->ic_ierrors, 1); UATH_RESET_INTRX(sc); return (NULL); } if (chunklen > actlen) { device_printf(sc->sc_dev, "%s: invalid chunk length (len %u > actlen %d)\n", __func__, chunklen, actlen); counter_u64_add(ic->ic_ierrors, 1); /* XXX cleanup? */ UATH_RESET_INTRX(sc); return (NULL); } if (chunk->seqnum != sc->sc_intrx_nextnum) { DPRINTF(sc, UATH_DEBUG_XMIT, "invalid seqnum %d, expected %d\n", chunk->seqnum, sc->sc_intrx_nextnum); UATH_STAT_INC(sc, st_badchunkseqnum); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } /* check multi-chunk frames */ if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) || (chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) || chunk->flags & UATH_CFLAGS_RXMSG) UATH_STAT_INC(sc, st_multichunk); if (chunk->flags & UATH_CFLAGS_FINAL) { if (chunklen < sizeof(struct uath_rx_desc)) { device_printf(sc->sc_dev, "%s: invalid chunk length %d\n", __func__, chunklen); counter_u64_add(ic->ic_ierrors, 1); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } chunklen -= sizeof(struct uath_rx_desc); } if (chunklen > 0 && (!(chunk->flags & UATH_CFLAGS_FINAL) || !(chunk->seqnum == 0))) { /* we should use intermediate RX buffer */ if (chunk->seqnum == 0) UATH_RESET_INTRX(sc); if ((sc->sc_intrx_len + sizeof(struct uath_rx_desc) + chunklen) > UATH_MAX_INTRX_SIZE) { UATH_STAT_INC(sc, st_invalidlen); counter_u64_add(ic->ic_ierrors, 1); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } m->m_len = chunklen; m->m_data += sizeof(struct uath_chunk); if (sc->sc_intrx_head == NULL) { sc->sc_intrx_head = m; sc->sc_intrx_tail = m; } else { m->m_flags &= ~M_PKTHDR; sc->sc_intrx_tail->m_next = m; sc->sc_intrx_tail = m; } } sc->sc_intrx_len += chunklen; mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "%s: can't get new mbuf, drop frame\n", __func__); counter_u64_add(ic->ic_ierrors, 1); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } data->m = mnew; data->buf = mtod(mnew, uint8_t *); /* if the frame is not final continue the transfer */ if (!(chunk->flags & UATH_CFLAGS_FINAL)) { sc->sc_intrx_nextnum++; UATH_RESET_INTRX(sc); return (NULL); } /* * if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is * located at the end, 32-bit aligned */ desc = (chunk->flags & UATH_CFLAGS_RXMSG) ? (struct uath_rx_desc *)(chunk + 1) : (struct uath_rx_desc *)(((uint8_t *)chunk) + sizeof(struct uath_chunk) + be16toh(chunk->length) - sizeof(struct uath_rx_desc)); if ((uint8_t *)chunk + actlen - sizeof(struct uath_rx_desc) < (uint8_t *)desc) { device_printf(sc->sc_dev, "%s: wrong Rx descriptor pointer " "(desc %p chunk %p actlen %d)\n", __func__, desc, chunk, actlen); counter_u64_add(ic->ic_ierrors, 1); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } *pdesc = desc; DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "%s: frame len %u code %u status %u rate %u antenna %u " "rssi %d channel %u phyerror %u connix %u decrypterror %u " "keycachemiss %u\n", __func__, be32toh(desc->framelen) , be32toh(desc->code), be32toh(desc->status), be32toh(desc->rate) , be32toh(desc->antenna), be32toh(desc->rssi), be32toh(desc->channel) , be32toh(desc->phyerror), be32toh(desc->connix) , be32toh(desc->decrypterror), be32toh(desc->keycachemiss)); if (be32toh(desc->len) > MCLBYTES) { DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "%s: bad descriptor (len=%d)\n", __func__, be32toh(desc->len)); counter_u64_add(ic->ic_ierrors, 1); UATH_STAT_INC(sc, st_toobigrxpkt); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } uath_update_rxstat(sc, be32toh(desc->status)); /* finalize mbuf */ if (sc->sc_intrx_head == NULL) { uint32_t framelen; if (be32toh(desc->framelen) < UATH_RX_DUMMYSIZE) { device_printf(sc->sc_dev, "%s: framelen too small (%u)\n", __func__, be32toh(desc->framelen)); counter_u64_add(ic->ic_ierrors, 1); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } framelen = be32toh(desc->framelen) - UATH_RX_DUMMYSIZE; if (framelen > actlen - sizeof(struct uath_chunk) || framelen < sizeof(struct ieee80211_frame_ack)) { device_printf(sc->sc_dev, "%s: wrong frame length (%u, actlen %d)!\n", __func__, framelen, actlen); counter_u64_add(ic->ic_ierrors, 1); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } m->m_pkthdr.len = m->m_len = framelen; m->m_data += sizeof(struct uath_chunk); } else { mp = sc->sc_intrx_head; mp->m_flags |= M_PKTHDR; mp->m_pkthdr.len = sc->sc_intrx_len; m = mp; } /* there are a lot more fields in the RX descriptor */ if ((sc->sc_flags & UATH_FLAG_INVALID) == 0 && ieee80211_radiotap_active(ic)) { struct uath_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_hi = be32toh(desc->tstamp_high); uint32_t tsf_lo = be32toh(desc->tstamp_low); /* XXX only get low order 24bits of tsf from h/w */ tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; if (be32toh(desc->status) == UATH_STATUS_CRC_ERR) tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; /* XXX map other status to BADFCS? */ /* XXX ath h/w rate code, need to map */ tap->wr_rate = be32toh(desc->rate); tap->wr_antenna = be32toh(desc->antenna); tap->wr_antsignal = -95 + be32toh(desc->rssi); tap->wr_antnoise = -95; } UATH_RESET_INTRX(sc); return (m); } static void uath_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct epoch_tracker et; struct mbuf *m = NULL; struct uath_data *data; struct uath_rx_desc *desc = NULL; int8_t nf; UATH_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); UATH_STAT_DEC(sc, st_rx_active); m = uath_data_rxeof(xfer, data, &desc); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); UATH_STAT_INC(sc, st_rx_inactive); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) return; STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); UATH_STAT_DEC(sc, st_rx_inactive); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); UATH_STAT_INC(sc, st_rx_active); usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ if (sc->sc_flags & UATH_FLAG_INVALID) { if (m != NULL) m_freem(m); return; } UATH_UNLOCK(sc); if (m != NULL && desc != NULL) { wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); nf = -95; /* XXX */ NET_EPOCH_ENTER(et); if (ni != NULL) { (void) ieee80211_input(ni, m, (int)be32toh(desc->rssi), nf); /* node is no longer needed */ ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, (int)be32toh(desc->rssi), nf); NET_EPOCH_EXIT(et); m = NULL; desc = NULL; } UATH_LOCK(sc); uath_start(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); UATH_STAT_DEC(sc, st_rx_active); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); UATH_STAT_INC(sc, st_rx_inactive); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto setup; } break; } } static void uath_data_txeof(struct usb_xfer *xfer, struct uath_data *data) { struct uath_softc *sc = usbd_xfer_softc(xfer); UATH_ASSERT_LOCKED(sc); if (data->m) { /* XXX status? */ ieee80211_tx_complete(data->ni, data->m, 0); data->m = NULL; data->ni = NULL; } sc->sc_tx_timer = 0; } static void uath_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct uath_data *data; UATH_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); UATH_STAT_DEC(sc, st_tx_active); uath_data_txeof(xfer, data); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); UATH_STAT_INC(sc, st_tx_inactive); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_tx_pending); if (data == NULL) { DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", __func__); return; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); UATH_STAT_DEC(sc, st_tx_pending); STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); UATH_STAT_INC(sc, st_tx_active); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); usbd_transfer_submit(xfer); uath_start(sc); break; default: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; if (data->ni != NULL) { if_inc_counter(data->ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) ieee80211_free_node(data->ni); data->ni = NULL; } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static device_method_t uath_methods[] = { DEVMETHOD(device_probe, uath_match), DEVMETHOD(device_attach, uath_attach), DEVMETHOD(device_detach, uath_detach), DEVMETHOD_END }; static driver_t uath_driver = { .name = "uath", .methods = uath_methods, .size = sizeof(struct uath_softc) }; DRIVER_MODULE(uath, uhub, uath_driver, NULL, NULL); MODULE_DEPEND(uath, wlan, 1, 1, 1); MODULE_DEPEND(uath, usb, 1, 1, 1); MODULE_VERSION(uath, 1); USB_PNP_HOST_INFO(uath_devs);