/* $FreeBSD$ */ /*- * Copyright (c) 2005-2007 Damien Bergamini * Copyright (c) 2006 Niall O'Higgins * Copyright (c) 2007-2008 Hans Petter Selasky * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2501USB/RT2601USB chipset driver * http://www.ralinktech.com.tw/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR rum_debug #include #include #include #include #ifdef USB_DEBUG static int rum_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0, "Debug level"); #endif #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) static const STRUCT_USB_HOST_ID rum_devs[] = { #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } RUM_DEV(ABOCOM, HWU54DM), RUM_DEV(ABOCOM, RT2573_2), RUM_DEV(ABOCOM, RT2573_3), RUM_DEV(ABOCOM, RT2573_4), RUM_DEV(ABOCOM, WUG2700), RUM_DEV(AMIT, CGWLUSB2GO), RUM_DEV(ASUS, RT2573_1), RUM_DEV(ASUS, RT2573_2), RUM_DEV(BELKIN, F5D7050A), RUM_DEV(BELKIN, F5D9050V3), RUM_DEV(CISCOLINKSYS, WUSB54GC), RUM_DEV(CISCOLINKSYS, WUSB54GR), RUM_DEV(CONCEPTRONIC2, C54RU2), RUM_DEV(COREGA, CGWLUSB2GL), RUM_DEV(COREGA, CGWLUSB2GPX), RUM_DEV(DICKSMITH, CWD854F), RUM_DEV(DICKSMITH, RT2573), RUM_DEV(EDIMAX, EW7318USG), RUM_DEV(DLINK2, DWLG122C1), RUM_DEV(DLINK2, WUA1340), RUM_DEV(DLINK2, DWA111), RUM_DEV(DLINK2, DWA110), RUM_DEV(GIGABYTE, GNWB01GS), RUM_DEV(GIGABYTE, GNWI05GS), RUM_DEV(GIGASET, RT2573), RUM_DEV(GOODWAY, RT2573), RUM_DEV(GUILLEMOT, HWGUSB254LB), RUM_DEV(GUILLEMOT, HWGUSB254V2AP), RUM_DEV(HUAWEI3COM, WUB320G), RUM_DEV(MELCO, G54HP), RUM_DEV(MELCO, SG54HP), RUM_DEV(MELCO, SG54HG), RUM_DEV(MELCO, WLIUCG), RUM_DEV(MELCO, WLRUCG), RUM_DEV(MELCO, WLRUCGAOSS), RUM_DEV(MSI, RT2573_1), RUM_DEV(MSI, RT2573_2), RUM_DEV(MSI, RT2573_3), RUM_DEV(MSI, RT2573_4), RUM_DEV(NOVATECH, RT2573), RUM_DEV(PLANEX2, GWUS54HP), RUM_DEV(PLANEX2, GWUS54MINI2), RUM_DEV(PLANEX2, GWUSMM), RUM_DEV(QCOM, RT2573), RUM_DEV(QCOM, RT2573_2), RUM_DEV(QCOM, RT2573_3), RUM_DEV(RALINK, RT2573), RUM_DEV(RALINK, RT2573_2), RUM_DEV(RALINK, RT2671), RUM_DEV(SITECOMEU, WL113R2), RUM_DEV(SITECOMEU, WL172), RUM_DEV(SPARKLAN, RT2573), RUM_DEV(SURECOM, RT2573), #undef RUM_DEV }; static device_probe_t rum_match; static device_attach_t rum_attach; static device_detach_t rum_detach; static usb_callback_t rum_bulk_read_callback; static usb_callback_t rum_bulk_write_callback; static usb_error_t rum_do_request(struct rum_softc *sc, struct usb_device_request *req, void *data); static struct ieee80211vap *rum_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rum_vap_delete(struct ieee80211vap *); static void rum_tx_free(struct rum_tx_data *, int); static void rum_setup_tx_list(struct rum_softc *); static void rum_unsetup_tx_list(struct rum_softc *); static int rum_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, uint32_t, uint16_t, int, int); static int rum_tx_mgt(struct rum_softc *, struct mbuf *, struct ieee80211_node *); static int rum_tx_raw(struct rum_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *); static int rum_tx_data(struct rum_softc *, struct mbuf *, struct ieee80211_node *); static void rum_start(struct ifnet *); static int rum_ioctl(struct ifnet *, u_long, caddr_t); static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); static uint32_t rum_read(struct rum_softc *, uint16_t); static void rum_read_multi(struct rum_softc *, uint16_t, void *, int); static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); static void rum_select_antenna(struct rum_softc *); static void rum_enable_mrr(struct rum_softc *); static void rum_set_txpreamble(struct rum_softc *); static void rum_set_basicrates(struct rum_softc *); static void rum_select_band(struct rum_softc *, struct ieee80211_channel *); static void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); static void rum_enable_tsf_sync(struct rum_softc *); static void rum_enable_tsf(struct rum_softc *); static void rum_update_slot(struct ifnet *); static void rum_set_bssid(struct rum_softc *, const uint8_t *); static void rum_set_macaddr(struct rum_softc *, const uint8_t *); static void rum_update_mcast(struct ifnet *); static void rum_update_promisc(struct ifnet *); static void rum_setpromisc(struct rum_softc *); static const char *rum_get_rf(int); static void rum_read_eeprom(struct rum_softc *); static int rum_bbp_init(struct rum_softc *); static void rum_init_locked(struct rum_softc *); static void rum_init(void *); static void rum_stop(struct rum_softc *); static void rum_load_microcode(struct rum_softc *, const uint8_t *, size_t); static void rum_prepare_beacon(struct rum_softc *, struct ieee80211vap *); static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void rum_scan_start(struct ieee80211com *); static void rum_scan_end(struct ieee80211com *); static void rum_set_channel(struct ieee80211com *); static int rum_get_rssi(struct rum_softc *, uint8_t); static void rum_ratectl_start(struct rum_softc *, struct ieee80211_node *); static void rum_ratectl_timeout(void *); static void rum_ratectl_task(void *, int); static int rum_pause(struct rum_softc *, int); static const struct { uint32_t reg; uint32_t val; } rum_def_mac[] = { { RT2573_TXRX_CSR0, 0x025fb032 }, { RT2573_TXRX_CSR1, 0x9eaa9eaf }, { RT2573_TXRX_CSR2, 0x8a8b8c8d }, { RT2573_TXRX_CSR3, 0x00858687 }, { RT2573_TXRX_CSR7, 0x2e31353b }, { RT2573_TXRX_CSR8, 0x2a2a2a2c }, { RT2573_TXRX_CSR15, 0x0000000f }, { RT2573_MAC_CSR6, 0x00000fff }, { RT2573_MAC_CSR8, 0x016c030a }, { RT2573_MAC_CSR10, 0x00000718 }, { RT2573_MAC_CSR12, 0x00000004 }, { RT2573_MAC_CSR13, 0x00007f00 }, { RT2573_SEC_CSR0, 0x00000000 }, { RT2573_SEC_CSR1, 0x00000000 }, { RT2573_SEC_CSR5, 0x00000000 }, { RT2573_PHY_CSR1, 0x000023b0 }, { RT2573_PHY_CSR5, 0x00040a06 }, { RT2573_PHY_CSR6, 0x00080606 }, { RT2573_PHY_CSR7, 0x00000408 }, { RT2573_AIFSN_CSR, 0x00002273 }, { RT2573_CWMIN_CSR, 0x00002344 }, { RT2573_CWMAX_CSR, 0x000034aa } }; static const struct { uint8_t reg; uint8_t val; } rum_def_bbp[] = { { 3, 0x80 }, { 15, 0x30 }, { 17, 0x20 }, { 21, 0xc8 }, { 22, 0x38 }, { 23, 0x06 }, { 24, 0xfe }, { 25, 0x0a }, { 26, 0x0d }, { 32, 0x0b }, { 34, 0x12 }, { 37, 0x07 }, { 39, 0xf8 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 60, 0x10 }, { 61, 0x04 }, { 62, 0x04 }, { 75, 0xfe }, { 86, 0xfe }, { 88, 0xfe }, { 90, 0x0f }, { 99, 0x00 }, { 102, 0x16 }, { 107, 0x04 } }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rum_rf5226[] = { { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } }, rum_rf5225[] = { { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } }; static const struct usb_config rum_config[RUM_N_TRANSFER] = { [RUM_BULK_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = rum_bulk_write_callback, .timeout = 5000, /* ms */ }, [RUM_BULK_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = rum_bulk_read_callback, }, }; static int rum_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != 0) return (ENXIO); if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); } static int rum_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct rum_softc *sc = device_get_softc(self); struct ieee80211com *ic; struct ifnet *ifp; uint8_t iface_index, bands; uint32_t tmp; int error, ntries; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); iface_index = RT2573_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } RUM_LOCK(sc); /* retrieve RT2573 rev. no */ for (ntries = 0; ntries < 100; ntries++) { if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); RUM_UNLOCK(sc); goto detach; } /* retrieve MAC address and various other things from EEPROM */ rum_read_eeprom(sc); device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", tmp, rum_get_rf(sc->rf_rev)); rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); RUM_UNLOCK(sc); ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); if (ifp == NULL) { device_printf(sc->sc_dev, "can not if_alloc()\n"); goto detach; } ic = ifp->if_l2com; ifp->if_softc = sc; if_initname(ifp, "rum", device_get_unit(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = rum_init; ifp->if_ioctl = rum_ioctl; ifp->if_start = rum_start; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_HOSTAP /* HostAp mode supported */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* bg scanning supported */ | IEEE80211_C_WPA /* 802.11i */ ; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) setbit(&bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, &bands); ieee80211_ifattach(ic, sc->sc_bssid); ic->ic_update_promisc = rum_update_promisc; ic->ic_raw_xmit = rum_raw_xmit; ic->ic_scan_start = rum_scan_start; ic->ic_scan_end = rum_scan_end; ic->ic_set_channel = rum_set_channel; ic->ic_vap_create = rum_vap_create; ic->ic_vap_delete = rum_vap_delete; ic->ic_update_mcast = rum_update_mcast; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RT2573_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RT2573_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return (0); detach: rum_detach(self); return (ENXIO); /* failure */ } static int rum_detach(device_t self) { struct rum_softc *sc = device_get_softc(self); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic; /* Prevent further ioctls */ RUM_LOCK(sc); sc->sc_detached = 1; RUM_UNLOCK(sc); /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); /* free TX list, if any */ RUM_LOCK(sc); rum_unsetup_tx_list(sc); RUM_UNLOCK(sc); if (ifp) { ic = ifp->if_l2com; ieee80211_ifdetach(ic); if_free(ifp); } mtx_destroy(&sc->sc_mtx); return (0); } static usb_error_t rum_do_request(struct rum_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); if (rum_pause(sc, hz / 100)) break; } return (err); } static struct ieee80211vap * rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rum_softc *sc = ic->ic_ifp->if_softc; struct rum_vap *rvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap), M_80211_VAP, M_NOWAIT | M_ZERO); if (rvp == NULL) return NULL; vap = &rvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) { /* out of memory */ free(rvp, M_80211_VAP); return (NULL); } /* override state transition machine */ rvp->newstate = vap->iv_newstate; vap->iv_newstate = rum_newstate; usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); ieee80211_ratectl_init(vap); ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); ic->ic_opmode = opmode; return vap; } static void rum_vap_delete(struct ieee80211vap *vap) { struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211com *ic = vap->iv_ic; usb_callout_drain(&rvp->ratectl_ch); ieee80211_draintask(ic, &rvp->ratectl_task); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } static void rum_tx_free(struct rum_tx_data *data, int txerr) { struct rum_softc *sc = data->sc; if (data->m != NULL) { if (data->m->m_flags & M_TXCB) ieee80211_process_callback(data->ni, data->m, txerr ? ETIMEDOUT : 0); m_freem(data->m); data->m = NULL; ieee80211_free_node(data->ni); data->ni = NULL; } STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } static void rum_setup_tx_list(struct rum_softc *sc) { struct rum_tx_data *data; int i; sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); for (i = 0; i < RUM_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } } static void rum_unsetup_tx_list(struct rum_softc *sc) { struct rum_tx_data *data; int i; /* make sure any subsequent use of the queues will fail */ sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); /* free up all node references and mbufs */ for (i = 0; i < RUM_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; if (data->m != NULL) { m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static int rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct rum_softc *sc = ic->ic_ifp->if_softc; const struct ieee80211_txparam *tp; enum ieee80211_state ostate; struct ieee80211_node *ni; uint32_t tmp; ostate = vap->iv_state; DPRINTF("%s -> %s\n", ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); RUM_LOCK(sc); usb_callout_stop(&rvp->ratectl_ch); switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ tmp = rum_read(sc, RT2573_TXRX_CSR9); rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); } break; case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); if (vap->iv_opmode != IEEE80211_M_MONITOR) { if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { RUM_UNLOCK(sc); IEEE80211_LOCK(ic); ieee80211_free_node(ni); return (-1); } rum_update_slot(ic->ic_ifp); rum_enable_mrr(sc); rum_set_txpreamble(sc); rum_set_basicrates(sc); IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); rum_set_bssid(sc, sc->sc_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) rum_prepare_beacon(sc, vap); if (vap->iv_opmode != IEEE80211_M_MONITOR) rum_enable_tsf_sync(sc); else rum_enable_tsf(sc); /* enable automatic rate adaptation */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) rum_ratectl_start(sc, ni); ieee80211_free_node(ni); break; default: break; } RUM_UNLOCK(sc); IEEE80211_LOCK(ic); return (rvp->newstate(vap, nstate, arg)); } static void rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct rum_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct ieee80211vap *vap; struct rum_tx_data *data; struct mbuf *m; struct usb_page_cache *pc; unsigned int len; int actlen, sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete, %d bytes\n", actlen); /* free resources */ data = usbd_xfer_get_priv(xfer); rum_tx_free(data, 0); usbd_xfer_set_priv(xfer, NULL); ifp->if_opackets++; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->tx_q); if (data) { STAILQ_REMOVE_HEAD(&sc->tx_q, next); m = data->m; if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { DPRINTFN(0, "data overflow, %u bytes\n", m->m_pkthdr.len); m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, m->m_pkthdr.len); vap = data->ni->ni_vap; if (ieee80211_radiotap_active_vap(vap)) { struct rum_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = data->rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m); } /* align end on a 4-bytes boundary */ len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; if ((len % 64) == 0) len += 4; DPRINTFN(11, "sending frame len=%u xferlen=%u\n", m->m_pkthdr.len, len); usbd_xfer_set_frame_len(xfer, 0, len); usbd_xfer_set_priv(xfer, data); usbd_transfer_submit(xfer); } RUM_UNLOCK(sc); rum_start(ifp); RUM_LOCK(sc); break; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usbd_errstr(error)); ifp->if_oerrors++; data = usbd_xfer_get_priv(xfer); if (data != NULL) { rum_tx_free(data, error); usbd_xfer_set_priv(xfer, NULL); } if (error != USB_ERR_CANCELLED) { if (error == USB_ERR_TIMEOUT) device_printf(sc->sc_dev, "device timeout\n"); /* * Try to clear stall first, also if other * errors occur, hence clearing stall * introduces a 50 ms delay: */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct rum_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_node *ni; struct mbuf *m = NULL; struct usb_page_cache *pc; uint32_t flags; uint8_t rssi = 0; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(15, "rx done, actlen=%d\n", len); if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { DPRINTF("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev), len); ifp->if_ierrors++; goto tr_setup; } len -= RT2573_RX_DESC_SIZE; pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); flags = le32toh(sc->sc_rx_desc.flags); if (flags & RT2573_RX_CRC_ERROR) { /* * This should not happen since we did not * request to receive those frames when we * filled RUM_TXRX_CSR2: */ DPRINTFN(5, "PHY or CRC error\n"); ifp->if_ierrors++; goto tr_setup; } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { DPRINTF("could not allocate mbuf\n"); ifp->if_ierrors++; goto tr_setup; } usbd_copy_out(pc, RT2573_RX_DESC_SIZE, mtod(m, uint8_t *), len); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; if (ieee80211_radiotap_active(ic)) { struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; /* XXX read tsf */ tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, (flags & RT2573_RX_OFDM) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; tap->wr_antnoise = RT2573_NOISE_FLOOR; tap->wr_antenna = sc->rx_ant; } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "ieee80211_input" here, and not some lines up! */ RUM_UNLOCK(sc); if (m) { ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, RT2573_NOISE_FLOOR); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, RT2573_NOISE_FLOOR); } if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) rum_start(ifp); RUM_LOCK(sc); return; default: /* Error */ if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static uint8_t rum_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } static void rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, uint32_t flags, uint16_t xflags, int len, int rate) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(RT2573_TX_VALID); desc->flags |= htole32(len << 16); desc->xflags = htole16(xflags); desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); /* setup PLCP fields */ desc->plcp_signal = rum_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { desc->flags |= htole32(RT2573_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2573_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } } static int rum_sendprot(struct rum_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_frame *wh; struct rum_tx_data *data; struct mbuf *mprot; int protrate, ackrate, pktlen, flags, isshort; uint16_t dur; RUM_LOCK_ASSERT(sc, MA_OWNED); KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = RT2573_TX_MORE_FRAG; if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RT2573_TX_NEED_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return (ENOBUFS); } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = mprot; data->ni = ieee80211_ref_node(ni); data->rate = protrate; rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static int rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct rum_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; uint32_t flags = 0; uint16_t dur; RUM_LOCK_ASSERT(sc, MA_OWNED); data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } wh = mtod(m0, struct ieee80211_frame *); } tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2573_TX_TIMESTAMP; } data->m = m0; data->ni = ni; data->rate = tp->mgmtrate; rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate); DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return (0); } static int rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct rum_tx_data *data; uint32_t flags; int rate, error; RUM_LOCK_ASSERT(sc, MA_OWNED); KASSERT(params != NULL, ("no raw xmit params")); rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { m_freem(m0); return EINVAL; } flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= RT2573_TX_NEED_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = rum_sendprot(sc, m0, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error || sc->tx_nfree == 0) { m_freem(m0); return ENOBUFS; } flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; /* XXX need to setup descriptor ourself */ rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending raw frame len=%u rate=%u\n", m0->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static int rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct rum_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; uint32_t flags = 0; uint16_t dur; int error, rate; RUM_LOCK_ASSERT(sc, MA_OWNED); wh = mtod(m0, struct ieee80211_frame *); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else rate = ni->ni_txrate; if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = rum_sendprot(sc, m0, ni, prot, rate); if (error || sc->tx_nfree == 0) { m_freem(m0); return ENOBUFS; } flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; } } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_NEED_ACK; flags |= RT2573_TX_MORE_FRAG; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); } rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending frame len=%d rate=%d\n", m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static void rum_start(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; struct ieee80211_node *ni; struct mbuf *m; RUM_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { RUM_UNLOCK(sc); return; } for (;;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if (sc->tx_nfree < RUM_TX_MINFREE) { IFQ_DRV_PREPEND(&ifp->if_snd, m); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (rum_tx_data(sc, m, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } } RUM_UNLOCK(sc); } static int rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; struct ifreq *ifr = (struct ifreq *) data; int error; int startall = 0; RUM_LOCK(sc); error = sc->sc_detached ? ENXIO : 0; RUM_UNLOCK(sc); if (error) return (error); switch (cmd) { case SIOCSIFFLAGS: RUM_LOCK(sc); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { rum_init_locked(sc); startall = 1; } else rum_setpromisc(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) rum_stop(sc); } RUM_UNLOCK(sc); if (startall) ieee80211_start_all(ic); break; case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; case SIOCGIFADDR: error = ether_ioctl(ifp, cmd, data); break; default: error = EINVAL; break; } return error; } static void rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = rum_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not read EEPROM: %s\n", usbd_errstr(error)); } } static uint32_t rum_read(struct rum_softc *sc, uint16_t reg) { uint32_t val; rum_read_multi(sc, reg, &val, sizeof val); return le32toh(val); } static void rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = rum_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not multi read MAC register: %s\n", usbd_errstr(error)); } } static usb_error_t rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) { uint32_t tmp = htole32(val); return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); } static usb_error_t rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) { struct usb_device_request req; usb_error_t error; size_t offset; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_WRITE_MULTI_MAC; USETW(req.wValue, 0); /* write at most 64 bytes at a time */ for (offset = 0; offset < len; offset += 64) { USETW(req.wIndex, reg + offset); USETW(req.wLength, MIN(len - offset, 64)); error = rum_do_request(sc, &req, (char *)buf + offset); if (error != 0) { device_printf(sc->sc_dev, "could not multi write MAC register: %s\n", usbd_errstr(error)); return (error); } } return (USB_ERR_NORMAL_COMPLETION); } static void rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; DPRINTFN(2, "reg=0x%08x\n", reg); for (ntries = 0; ntries < 100; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; rum_write(sc, RT2573_PHY_CSR3, tmp); } static uint8_t rum_bbp_read(struct rum_softc *sc, uint8_t reg) { uint32_t val; int ntries; DPRINTFN(2, "reg=0x%08x\n", reg); for (ntries = 0; ntries < 100; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not read BBP\n"); return 0; } val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; rum_write(sc, RT2573_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = rum_read(sc, RT2573_PHY_CSR3); if (!(val & RT2573_BBP_BUSY)) return val & 0xff; if (rum_pause(sc, hz / 100)) break; } device_printf(sc->sc_dev, "could not read BBP\n"); return 0; } static void rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | (reg & 3); rum_write(sc, RT2573_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); } static void rum_select_antenna(struct rum_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rum_bbp_read(sc, 4); bbp77 = rum_bbp_read(sc, 77); /* TBD */ /* make sure Rx is disabled before switching antenna */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); rum_bbp_write(sc, 4, bbp4); rum_bbp_write(sc, 77, bbp77); rum_write(sc, RT2573_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ static void rum_enable_mrr(struct rum_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR4); tmp &= ~RT2573_MRR_CCK_FALLBACK; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) tmp |= RT2573_MRR_CCK_FALLBACK; tmp |= RT2573_MRR_ENABLED; rum_write(sc, RT2573_TXRX_CSR4, tmp); } static void rum_set_txpreamble(struct rum_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR4); tmp &= ~RT2573_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2573_SHORT_PREAMBLE; rum_write(sc, RT2573_TXRX_CSR4, tmp); } static void rum_set_basicrates(struct rum_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x3); } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { /* 11a basic rates: 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x150); } else { /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0xf); } } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ static void rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; uint32_t tmp; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } sc->bbp17 = bbp17; rum_bbp_write(sc, 17, bbp17); rum_bbp_write(sc, 96, bbp96); rum_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rum_bbp_write(sc, 75, 0x80); rum_bbp_write(sc, 86, 0x80); rum_bbp_write(sc, 88, 0x80); } rum_bbp_write(sc, 35, bbp35); rum_bbp_write(sc, 97, bbp97); rum_bbp_write(sc, 98, bbp98); tmp = rum_read(sc, RT2573_PHY_CSR0); tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); if (IEEE80211_IS_CHAN_2GHZ(c)) tmp |= RT2573_PA_PE_2GHZ; else tmp |= RT2573_PA_PE_5GHZ; rum_write(sc, RT2573_PHY_CSR0, tmp); } static void rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; int8_t power; int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we are switching from the 2GHz band to the 5GHz band or * vice-versa, BBP registers need to be reprogrammed. */ if (c->ic_flags != ic->ic_curchan->ic_flags) { rum_select_band(sc, c); rum_select_antenna(sc); } ic->ic_curchan = c; rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_pause(sc, hz / 100); /* enable smart mode for MIMO-capable RFs */ bbp3 = rum_bbp_read(sc, 3); bbp3 &= ~RT2573_SMART_MODE; if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) bbp3 |= RT2573_SMART_MODE; rum_bbp_write(sc, 3, bbp3); if (bbp94 != RT2573_BBPR94_DEFAULT) rum_bbp_write(sc, 94, bbp94); /* give the chip some extra time to do the switchover */ rum_pause(sc, hz / 100); } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ static void rum_enable_tsf_sync(struct rum_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; if (vap->iv_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); } tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= vap->iv_bss->ni_intval * 16; tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; if (vap->iv_opmode == IEEE80211_M_STA) tmp |= RT2573_TSF_MODE(1); else tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; rum_write(sc, RT2573_TXRX_CSR9, tmp); } static void rum_enable_tsf(struct rum_softc *sc) { rum_write(sc, RT2573_TXRX_CSR9, (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) | RT2573_TSF_TICKING | RT2573_TSF_MODE(2)); } static void rum_update_slot(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; uint8_t slottime; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; tmp = rum_read(sc, RT2573_MAC_CSR9); tmp = (tmp & ~0xff) | slottime; rum_write(sc, RT2573_MAC_CSR9, tmp); DPRINTF("setting slot time to %uus\n", slottime); } static void rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; rum_write(sc, RT2573_MAC_CSR4, tmp); tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; rum_write(sc, RT2573_MAC_CSR5, tmp); } static void rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; rum_write(sc, RT2573_MAC_CSR2, tmp); tmp = addr[4] | addr[5] << 8 | 0xff << 16; rum_write(sc, RT2573_MAC_CSR3, tmp); } static void rum_setpromisc(struct rum_softc *sc) { struct ifnet *ifp = sc->sc_ifp; uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR0); tmp &= ~RT2573_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; rum_write(sc, RT2573_TXRX_CSR0, tmp); DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving"); } static void rum_update_promisc(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; RUM_LOCK(sc); rum_setpromisc(sc); RUM_UNLOCK(sc); } static void rum_update_mcast(struct ifnet *ifp) { static int warning_printed; if (warning_printed == 0) { if_printf(ifp, "need to implement %s\n", __func__); warning_printed = 1; } } static const char * rum_get_rf(int rev) { switch (rev) { case RT2573_RF_2527: return "RT2527 (MIMO XR)"; case RT2573_RF_2528: return "RT2528"; case RT2573_RF_5225: return "RT5225 (MIMO XR)"; case RT2573_RF_5226: return "RT5226"; default: return "unknown"; } } static void rum_read_eeprom(struct rum_softc *sc) { uint16_t val; #ifdef RUM_DEBUG int i; #endif /* read MAC address */ rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6); rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); val = le16toh(val); sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; DPRINTF("RF revision=%d\n", sc->rf_rev); rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); val = le16toh(val); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna); rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) sc->rssi_2ghz_corr = 0; rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) sc->rssi_5ghz_corr = 0; if (sc->ext_2ghz_lna) sc->rssi_2ghz_corr -= 14; if (sc->ext_5ghz_lna) sc->rssi_5ghz_corr -= 14; DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; DPRINTF("RF freq=%d\n", sc->rffreq); /* read Tx power for all a/b/g channels */ rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); /* XXX default Tx power for 802.11a channels */ memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); #endif /* read default values for BBP registers */ rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif } static int rum_bbp_init(struct rum_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { const uint8_t val = rum_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < N(rum_def_bbp); i++) rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; } static void rum_init_locked(struct rum_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp; usb_error_t error; int i, ntries; RUM_LOCK_ASSERT(sc, MA_OWNED); rum_stop(sc); /* initialize MAC registers to default values */ for (i = 0; i < N(rum_def_mac); i++) rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); /* set host ready */ rum_write(sc, RT2573_MAC_CSR1, 3); rum_write(sc, RT2573_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ for (ntries = 0; ntries < 100; ntries++) { if (rum_read(sc, RT2573_MAC_CSR12) & 8) break; rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP/RF to wakeup\n"); goto fail; } if ((error = rum_bbp_init(sc)) != 0) goto fail; /* select default channel */ rum_select_band(sc, ic->ic_curchan); rum_select_antenna(sc); rum_set_chan(sc, ic->ic_curchan); /* clear STA registers */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); rum_set_macaddr(sc, IF_LLADDR(ifp)); /* initialize ASIC */ rum_write(sc, RT2573_MAC_CSR1, 4); /* * Allocate Tx and Rx xfer queues. */ rum_setup_tx_list(sc); /* update Rx filter */ tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | RT2573_DROP_ACKCTS; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RT2573_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; } rum_write(sc, RT2573_TXRX_CSR0, tmp); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); return; fail: rum_stop(sc); #undef N } static void rum_init(void *priv) { struct rum_softc *sc = priv; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; RUM_LOCK(sc); rum_init_locked(sc); RUM_UNLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void rum_stop(struct rum_softc *sc) { struct ifnet *ifp = sc->sc_ifp; uint32_t tmp; RUM_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); RUM_UNLOCK(sc); /* * Drain the USB transfers, if not already drained: */ usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); RUM_LOCK(sc); rum_unsetup_tx_list(sc); /* disable Rx */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); /* reset ASIC */ rum_write(sc, RT2573_MAC_CSR1, 3); rum_write(sc, RT2573_MAC_CSR1, 0); } static void rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) { struct usb_device_request req; uint16_t reg = RT2573_MCU_CODE_BASE; usb_error_t err; /* copy firmware image into NIC */ for (; size >= 4; reg += 4, ucode += 4, size -= 4) { err = rum_write(sc, reg, UGETDW(ucode)); if (err) { /* firmware already loaded ? */ device_printf(sc->sc_dev, "Firmware load " "failure! (ignored)\n"); break; } } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_MCU_CNTL; USETW(req.wValue, RT2573_MCU_RUN); USETW(req.wIndex, 0); USETW(req.wLength, 0); err = rum_do_request(sc, &req, NULL); if (err != 0) { device_printf(sc->sc_dev, "could not run firmware: %s\n", usbd_errstr(err)); } /* give the chip some time to boot */ rum_pause(sc, hz / 8); } static void rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; const struct ieee80211_txparam *tp; struct rum_tx_desc desc; struct mbuf *m0; if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC) return; if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) return; m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo); if (m0 == NULL) return; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, m0->m_pkthdr.len, tp->mgmtrate); /* copy the first 24 bytes of Tx descriptor into NIC memory */ rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); /* copy beacon header and payload into NIC memory */ rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), m0->m_pkthdr.len); m_freem(m0); } static int rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ifnet *ifp = ni->ni_ic->ic_ifp; struct rum_softc *sc = ifp->if_softc; RUM_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { RUM_UNLOCK(sc); m_freem(m); ieee80211_free_node(ni); return ENETDOWN; } if (sc->tx_nfree < RUM_TX_MINFREE) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; RUM_UNLOCK(sc); m_freem(m); ieee80211_free_node(ni); return EIO; } ifp->if_opackets++; if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if (rum_tx_mgt(sc, m, ni) != 0) goto bad; } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if (rum_tx_raw(sc, m, ni, params) != 0) goto bad; } RUM_UNLOCK(sc); return 0; bad: ifp->if_oerrors++; RUM_UNLOCK(sc); ieee80211_free_node(ni); return EIO; } static void rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct rum_vap *rvp = RUM_VAP(vap); /* clear statistic registers (STA_CSR0 to STA_CSR5) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); } static void rum_ratectl_timeout(void *arg) { struct rum_vap *rvp = arg; struct ieee80211vap *vap = &rvp->vap; struct ieee80211com *ic = vap->iv_ic; ieee80211_runtask(ic, &rvp->ratectl_task); } static void rum_ratectl_task(void *arg, int pending) { struct rum_vap *rvp = arg; struct ieee80211vap *vap = &rvp->vap; struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = ic->ic_ifp; struct rum_softc *sc = ifp->if_softc; struct ieee80211_node *ni; int ok, fail; int sum, retrycnt; RUM_LOCK(sc); /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */ (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */ fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ sum = ok+fail; retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail; ni = ieee80211_ref_node(vap->iv_bss); ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); (void) ieee80211_ratectl_rate(ni, NULL, 0); ieee80211_free_node(ni); ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); RUM_UNLOCK(sc); } static void rum_scan_start(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct rum_softc *sc = ifp->if_softc; uint32_t tmp; RUM_LOCK(sc); /* abort TSF synchronization */ tmp = rum_read(sc, RT2573_TXRX_CSR9); rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); rum_set_bssid(sc, ifp->if_broadcastaddr); RUM_UNLOCK(sc); } static void rum_scan_end(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_ifp->if_softc; RUM_LOCK(sc); rum_enable_tsf_sync(sc); rum_set_bssid(sc, sc->sc_bssid); RUM_UNLOCK(sc); } static void rum_set_channel(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_ifp->if_softc; RUM_LOCK(sc); rum_set_chan(sc, ic->ic_curchan); RUM_UNLOCK(sc); } static int rum_get_rssi(struct rum_softc *sc, uint8_t raw) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; int lna, agc, rssi; lna = (raw >> 5) & 0x3; agc = raw & 0x1f; if (lna == 0) { /* * No RSSI mapping * * NB: Since RSSI is relative to noise floor, -1 is * adequate for caller to know error happened. */ return -1; } rssi = (2 * agc) - RT2573_NOISE_FLOOR; if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { rssi += sc->rssi_2ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 74; else if (lna == 3) rssi -= 90; } else { rssi += sc->rssi_5ghz_corr; if (!sc->ext_5ghz_lna && lna != 1) rssi += 4; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 86; else if (lna == 3) rssi -= 100; } return rssi; } static int rum_pause(struct rum_softc *sc, int timeout) { usb_pause_mtx(&sc->sc_mtx, timeout); return (0); } static device_method_t rum_methods[] = { /* Device interface */ DEVMETHOD(device_probe, rum_match), DEVMETHOD(device_attach, rum_attach), DEVMETHOD(device_detach, rum_detach), DEVMETHOD_END }; static driver_t rum_driver = { .name = "rum", .methods = rum_methods, .size = sizeof(struct rum_softc), }; static devclass_t rum_devclass; DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); MODULE_DEPEND(rum, wlan, 1, 1, 1); MODULE_DEPEND(rum, usb, 1, 1, 1); MODULE_VERSION(rum, 1);