/*-
 * Copyright (c) 2015-2016 Kevin Lo <kevlo@FreeBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sbuf.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>

#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>

/* needed for checksum offload */
#include <netinet/in.h>
#include <netinet/ip.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include "usbdevs.h"

#define USB_DEBUG_VAR	ure_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_process.h>

#include <dev/usb/net/usb_ethernet.h>
#include <dev/usb/net/if_urereg.h>

#include "miibus_if.h"

#include "opt_inet6.h"

#ifdef USB_DEBUG
static int ure_debug = 0;

static SYSCTL_NODE(_hw_usb, OID_AUTO, ure, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "USB ure");
SYSCTL_INT(_hw_usb_ure, OID_AUTO, debug, CTLFLAG_RWTUN, &ure_debug, 0,
    "Debug level");
#endif

#ifdef USB_DEBUG_VAR
#ifdef USB_DEBUG
#define DEVPRINTFN(n,dev,fmt,...) do {			\
	if ((USB_DEBUG_VAR) >= (n)) {			\
		device_printf((dev), "%s: " fmt,	\
		    __FUNCTION__ ,##__VA_ARGS__);	\
	}						\
} while (0)
#define DEVPRINTF(...)    DEVPRINTFN(1, __VA_ARGS__)
#else
#define DEVPRINTF(...) do { } while (0)
#define DEVPRINTFN(...) do { } while (0)
#endif
#endif

/*
 * Various supported device vendors/products.
 */
static const STRUCT_USB_HOST_ID ure_devs[] = {
#define	URE_DEV(v,p,i)	{ \
  USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i), \
  USB_IFACE_CLASS(UICLASS_VENDOR), \
  USB_IFACE_SUBCLASS(UISUBCLASS_VENDOR) }
	URE_DEV(LENOVO, RTL8153, URE_FLAG_8153),
	URE_DEV(LENOVO, TBT3LAN, 0),
	URE_DEV(LENOVO, TBT3LANGEN2, 0),
	URE_DEV(LENOVO, ONELINK, 0),
	URE_DEV(LENOVO, USBCLAN, 0),
	URE_DEV(LENOVO, USBCLANGEN2, 0),
	URE_DEV(NVIDIA, RTL8153, URE_FLAG_8153),
	URE_DEV(REALTEK, RTL8152, URE_FLAG_8152),
	URE_DEV(REALTEK, RTL8153, URE_FLAG_8153),
	URE_DEV(TPLINK, RTL8153, URE_FLAG_8153),
	URE_DEV(REALTEK, RTL8156, URE_FLAG_8156),
#undef URE_DEV
};

static device_probe_t ure_probe;
static device_attach_t ure_attach;
static device_detach_t ure_detach;

static usb_callback_t ure_bulk_read_callback;
static usb_callback_t ure_bulk_write_callback;

static miibus_readreg_t ure_miibus_readreg;
static miibus_writereg_t ure_miibus_writereg;
static miibus_statchg_t ure_miibus_statchg;

static uether_fn_t ure_attach_post;
static uether_fn_t ure_init;
static uether_fn_t ure_stop;
static uether_fn_t ure_start;
static uether_fn_t ure_tick;
static uether_fn_t ure_rxfilter;

static int	ure_ctl(struct ure_softc *, uint8_t, uint16_t, uint16_t,
		    void *, int);
static int	ure_read_mem(struct ure_softc *, uint16_t, uint16_t, void *,
		    int);
static int	ure_write_mem(struct ure_softc *, uint16_t, uint16_t, void *,
		    int);
static uint8_t	ure_read_1(struct ure_softc *, uint16_t, uint16_t);
static uint16_t	ure_read_2(struct ure_softc *, uint16_t, uint16_t);
static uint32_t	ure_read_4(struct ure_softc *, uint16_t, uint16_t);
static int	ure_write_1(struct ure_softc *, uint16_t, uint16_t, uint32_t);
static int	ure_write_2(struct ure_softc *, uint16_t, uint16_t, uint32_t);
static int	ure_write_4(struct ure_softc *, uint16_t, uint16_t, uint32_t);
static uint16_t	ure_ocp_reg_read(struct ure_softc *, uint16_t);
static void	ure_ocp_reg_write(struct ure_softc *, uint16_t, uint16_t);
static void	ure_sram_write(struct ure_softc *, uint16_t, uint16_t);

static int	ure_sysctl_chipver(SYSCTL_HANDLER_ARGS);

static void	ure_read_chipver(struct ure_softc *);
static int	ure_attach_post_sub(struct usb_ether *);
static void	ure_reset(struct ure_softc *);
static int	ure_ifmedia_upd(struct ifnet *);
static void	ure_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void	ure_add_media_types(struct ure_softc *);
static void	ure_link_state(struct ure_softc *sc);
static int		ure_get_link_status(struct ure_softc *);
static int		ure_ioctl(struct ifnet *, u_long, caddr_t);
static void	ure_rtl8152_init(struct ure_softc *);
static void	ure_rtl8152_nic_reset(struct ure_softc *);
static void	ure_rtl8153_init(struct ure_softc *);
static void	ure_rtl8153b_init(struct ure_softc *);
static void	ure_rtl8153b_nic_reset(struct ure_softc *);
static void	ure_disable_teredo(struct ure_softc *);
static void	ure_enable_aldps(struct ure_softc *, bool);
static uint16_t	ure_phy_status(struct ure_softc *, uint16_t);
static void	ure_rxcsum(int capenb, struct ure_rxpkt *rp, struct mbuf *m);
static int	ure_txcsum(struct mbuf *m, int caps, uint32_t *regout);

static device_method_t ure_methods[] = {
	/* Device interface. */
	DEVMETHOD(device_probe, ure_probe),
	DEVMETHOD(device_attach, ure_attach),
	DEVMETHOD(device_detach, ure_detach),

	/* MII interface. */
	DEVMETHOD(miibus_readreg, ure_miibus_readreg),
	DEVMETHOD(miibus_writereg, ure_miibus_writereg),
	DEVMETHOD(miibus_statchg, ure_miibus_statchg),

	DEVMETHOD_END
};

static driver_t ure_driver = {
	.name = "ure",
	.methods = ure_methods,
	.size = sizeof(struct ure_softc),
};

static devclass_t ure_devclass;

DRIVER_MODULE(ure, uhub, ure_driver, ure_devclass, NULL, NULL);
DRIVER_MODULE(miibus, ure, miibus_driver, miibus_devclass, NULL, NULL);
MODULE_DEPEND(ure, uether, 1, 1, 1);
MODULE_DEPEND(ure, usb, 1, 1, 1);
MODULE_DEPEND(ure, ether, 1, 1, 1);
MODULE_DEPEND(ure, miibus, 1, 1, 1);
MODULE_VERSION(ure, 1);
USB_PNP_HOST_INFO(ure_devs);

static const struct usb_ether_methods ure_ue_methods = {
	.ue_attach_post = ure_attach_post,
	.ue_attach_post_sub = ure_attach_post_sub,
	.ue_start = ure_start,
	.ue_init = ure_init,
	.ue_stop = ure_stop,
	.ue_tick = ure_tick,
	.ue_setmulti = ure_rxfilter,
	.ue_setpromisc = ure_rxfilter,
	.ue_mii_upd = ure_ifmedia_upd,
	.ue_mii_sts = ure_ifmedia_sts,
};

#define	URE_SETBIT_1(sc, reg, index, x) \
	ure_write_1(sc, reg, index, ure_read_1(sc, reg, index) | (x))
#define	URE_SETBIT_2(sc, reg, index, x) \
	ure_write_2(sc, reg, index, ure_read_2(sc, reg, index) | (x))
#define	URE_SETBIT_4(sc, reg, index, x) \
	ure_write_4(sc, reg, index, ure_read_4(sc, reg, index) | (x))

#define	URE_CLRBIT_1(sc, reg, index, x) \
	ure_write_1(sc, reg, index, ure_read_1(sc, reg, index) & ~(x))
#define	URE_CLRBIT_2(sc, reg, index, x) \
	ure_write_2(sc, reg, index, ure_read_2(sc, reg, index) & ~(x))
#define	URE_CLRBIT_4(sc, reg, index, x) \
	ure_write_4(sc, reg, index, ure_read_4(sc, reg, index) & ~(x))

static int
ure_ctl(struct ure_softc *sc, uint8_t rw, uint16_t val, uint16_t index,
    void *buf, int len)
{
	struct usb_device_request req;

	URE_LOCK_ASSERT(sc, MA_OWNED);

	if (rw == URE_CTL_WRITE)
		req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
	else
		req.bmRequestType = UT_READ_VENDOR_DEVICE;
	req.bRequest = UR_SET_ADDRESS;
	USETW(req.wValue, val);
	USETW(req.wIndex, index);
	USETW(req.wLength, len);

	return (uether_do_request(&sc->sc_ue, &req, buf, 1000));
}

static int
ure_read_mem(struct ure_softc *sc, uint16_t addr, uint16_t index,
    void *buf, int len)
{

	return (ure_ctl(sc, URE_CTL_READ, addr, index, buf, len));
}

static int
ure_write_mem(struct ure_softc *sc, uint16_t addr, uint16_t index,
    void *buf, int len)
{

	return (ure_ctl(sc, URE_CTL_WRITE, addr, index, buf, len));
}

static uint8_t
ure_read_1(struct ure_softc *sc, uint16_t reg, uint16_t index)
{
	uint32_t val;
	uint8_t temp[4];
	uint8_t shift;

	shift = (reg & 3) << 3;
	reg &= ~3;

	ure_read_mem(sc, reg, index, &temp, 4);
	val = UGETDW(temp);
	val >>= shift;

	return (val & 0xff);
}

static uint16_t
ure_read_2(struct ure_softc *sc, uint16_t reg, uint16_t index)
{
	uint32_t val;
	uint8_t temp[4];
	uint8_t shift;

	shift = (reg & 2) << 3;
	reg &= ~3;

	ure_read_mem(sc, reg, index, &temp, 4);
	val = UGETDW(temp);
	val >>= shift;

	return (val & 0xffff);
}

static uint32_t
ure_read_4(struct ure_softc *sc, uint16_t reg, uint16_t index)
{
	uint8_t temp[4];

	ure_read_mem(sc, reg, index, &temp, 4);
	return (UGETDW(temp));
}

static int
ure_write_1(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val)
{
	uint16_t byen;
	uint8_t temp[4];
	uint8_t shift;

	byen = URE_BYTE_EN_BYTE;
	shift = reg & 3;
	val &= 0xff;

	if (reg & 3) {
		byen <<= shift;
		val <<= (shift << 3);
		reg &= ~3;
	}

	USETDW(temp, val);
	return (ure_write_mem(sc, reg, index | byen, &temp, 4));
}

static int
ure_write_2(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val)
{
	uint16_t byen;
	uint8_t temp[4];
	uint8_t shift;

	byen = URE_BYTE_EN_WORD;
	shift = reg & 2;
	val &= 0xffff;

	if (reg & 2) {
		byen <<= shift;
		val <<= (shift << 3);
		reg &= ~3;
	}

	USETDW(temp, val);
	return (ure_write_mem(sc, reg, index | byen, &temp, 4));
}

static int
ure_write_4(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val)
{
	uint8_t temp[4];

	USETDW(temp, val);
	return (ure_write_mem(sc, reg, index | URE_BYTE_EN_DWORD, &temp, 4));
}

static uint16_t
ure_ocp_reg_read(struct ure_softc *sc, uint16_t addr)
{
	uint16_t reg;

	ure_write_2(sc, URE_PLA_OCP_GPHY_BASE, URE_MCU_TYPE_PLA, addr & 0xf000);
	reg = (addr & 0x0fff) | 0xb000;

	return (ure_read_2(sc, reg, URE_MCU_TYPE_PLA));
}

static void
ure_ocp_reg_write(struct ure_softc *sc, uint16_t addr, uint16_t data)
{
	uint16_t reg;

	ure_write_2(sc, URE_PLA_OCP_GPHY_BASE, URE_MCU_TYPE_PLA, addr & 0xf000);
	reg = (addr & 0x0fff) | 0xb000;

	ure_write_2(sc, reg, URE_MCU_TYPE_PLA, data);
}

static void
ure_sram_write(struct ure_softc *sc, uint16_t addr, uint16_t data)
{
	ure_ocp_reg_write(sc, URE_OCP_SRAM_ADDR, addr);
	ure_ocp_reg_write(sc, URE_OCP_SRAM_DATA, data);
}

static int
ure_miibus_readreg(device_t dev, int phy, int reg)
{
	struct ure_softc *sc;
	uint16_t val;
	int locked;

	sc = device_get_softc(dev);
	locked = mtx_owned(&sc->sc_mtx);
	if (!locked)
		URE_LOCK(sc);

	/* Let the rgephy driver read the URE_GMEDIASTAT register. */
	if (reg == URE_GMEDIASTAT) {
		if (!locked)
			URE_UNLOCK(sc);
		return (ure_read_1(sc, URE_GMEDIASTAT, URE_MCU_TYPE_PLA));
	}

	val = ure_ocp_reg_read(sc, URE_OCP_BASE_MII + reg * 2);

	if (!locked)
		URE_UNLOCK(sc);
	return (val);
}

static int
ure_miibus_writereg(device_t dev, int phy, int reg, int val)
{
	struct ure_softc *sc;
	int locked;

	sc = device_get_softc(dev);
	if (sc->sc_phyno != phy)
		return (0);

	locked = mtx_owned(&sc->sc_mtx);
	if (!locked)
		URE_LOCK(sc);

	ure_ocp_reg_write(sc, URE_OCP_BASE_MII + reg * 2, val);

	if (!locked)
		URE_UNLOCK(sc);
	return (0);
}

static void
ure_miibus_statchg(device_t dev)
{
	struct ure_softc *sc;
	struct mii_data *mii;
	struct ifnet *ifp;
	int locked;

	sc = device_get_softc(dev);
	mii = GET_MII(sc);
	locked = mtx_owned(&sc->sc_mtx);
	if (!locked)
		URE_LOCK(sc);

	ifp = uether_getifp(&sc->sc_ue);
	if (mii == NULL || ifp == NULL ||
	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
		goto done;

	sc->sc_flags &= ~URE_FLAG_LINK;
	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
	    (IFM_ACTIVE | IFM_AVALID)) {
		switch (IFM_SUBTYPE(mii->mii_media_active)) {
		case IFM_10_T:
		case IFM_100_TX:
			sc->sc_flags |= URE_FLAG_LINK;
			sc->sc_rxstarted = 0;
			break;
		case IFM_1000_T:
			if ((sc->sc_flags & URE_FLAG_8152) != 0)
				break;
			sc->sc_flags |= URE_FLAG_LINK;
			sc->sc_rxstarted = 0;
			break;
		default:
			break;
		}
	}

	/* Lost link, do nothing. */
	if ((sc->sc_flags & URE_FLAG_LINK) == 0)
		goto done;
done:
	if (!locked)
		URE_UNLOCK(sc);
}

/*
 * Probe for a RTL8152/RTL8153 chip.
 */
static int
ure_probe(device_t dev)
{
	struct usb_attach_arg *uaa;

	uaa = device_get_ivars(dev);
	if (uaa->usb_mode != USB_MODE_HOST)
		return (ENXIO);
	if (uaa->info.bIfaceIndex != URE_IFACE_IDX)
		return (ENXIO);

	return (usbd_lookup_id_by_uaa(ure_devs, sizeof(ure_devs), uaa));
}

/*
 * Attach the interface. Allocate softc structures, do ifmedia
 * setup and ethernet/BPF attach.
 */
static int
ure_attach(device_t dev)
{
	struct usb_attach_arg *uaa = device_get_ivars(dev);
	struct ure_softc *sc = device_get_softc(dev);
	struct usb_ether *ue = &sc->sc_ue;
	struct usb_config ure_config_rx[URE_MAX_RX];
	struct usb_config ure_config_tx[URE_MAX_TX];
	uint8_t iface_index;
	int error;
	int i;

	sc->sc_flags = USB_GET_DRIVER_INFO(uaa);
	device_set_usb_desc(dev);
	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);

	iface_index = URE_IFACE_IDX;

	if (sc->sc_flags & (URE_FLAG_8153 | URE_FLAG_8153B))
		sc->sc_rxbufsz = URE_8153_RX_BUFSZ;
	else if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B))
		sc->sc_rxbufsz = URE_8156_RX_BUFSZ;
	else
		sc->sc_rxbufsz = URE_8152_RX_BUFSZ;

	for (i = 0; i < URE_MAX_RX; i++) {
		ure_config_rx[i] = (struct usb_config) {
			.type = UE_BULK,
			.endpoint = UE_ADDR_ANY,
			.direction = UE_DIR_IN,
			.bufsize = sc->sc_rxbufsz,
			.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
			.callback = ure_bulk_read_callback,
			.timeout = 0,	/* no timeout */
		};
	}
	error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_rx_xfer,
	    ure_config_rx, URE_MAX_RX, sc, &sc->sc_mtx);
	if (error != 0) {
		device_printf(dev, "allocating USB RX transfers failed\n");
		goto detach;
	}

	for (i = 0; i < URE_MAX_TX; i++) {
		ure_config_tx[i] = (struct usb_config) {
			.type = UE_BULK,
			.endpoint = UE_ADDR_ANY,
			.direction = UE_DIR_OUT,
			.bufsize = URE_TX_BUFSZ,
			.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
			.callback = ure_bulk_write_callback,
			.timeout = 10000,	/* 10 seconds */
		};
	}
	error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_tx_xfer,
	    ure_config_tx, URE_MAX_TX, sc, &sc->sc_mtx);
	if (error != 0) {
		usbd_transfer_unsetup(sc->sc_rx_xfer, URE_MAX_RX);
		device_printf(dev, "allocating USB TX transfers failed\n");
		goto detach;
	}

	ue->ue_sc = sc;
	ue->ue_dev = dev;
	ue->ue_udev = uaa->device;
	ue->ue_mtx = &sc->sc_mtx;
	ue->ue_methods = &ure_ue_methods;

	error = uether_ifattach(ue);
	if (error != 0) {
		device_printf(dev, "could not attach interface\n");
		goto detach;
	}
	return (0);			/* success */

detach:
	ure_detach(dev);
	return (ENXIO);			/* failure */
}

static int
ure_detach(device_t dev)
{
	struct ure_softc *sc = device_get_softc(dev);
	struct usb_ether *ue = &sc->sc_ue;

	usbd_transfer_unsetup(sc->sc_tx_xfer, URE_MAX_TX);
	usbd_transfer_unsetup(sc->sc_rx_xfer, URE_MAX_RX);
	uether_ifdetach(ue);
	mtx_destroy(&sc->sc_mtx);

	return (0);
}

/*
 * Copy from USB buffers to a new mbuf chain with pkt header.
 *
 * This will use m_getm2 to get a mbuf chain w/ properly sized mbuf
 * clusters as necessary.
 */
static struct mbuf *
ure_makembuf(struct usb_page_cache *pc, usb_frlength_t offset,
    usb_frlength_t len)
{
	struct usb_page_search_res;
	struct mbuf *m, *mb;
	usb_frlength_t tlen;

	m = m_getm2(NULL, len + ETHER_ALIGN, M_NOWAIT, MT_DATA, M_PKTHDR);
	if (m == NULL)
		return (m);

	/* uether_newbuf does this. */
	m_adj(m, ETHER_ALIGN);

	m->m_pkthdr.len = len;

	for (mb = m; len > 0; mb = mb->m_next) {
		tlen = MIN(len, M_TRAILINGSPACE(mb));

		usbd_copy_out(pc, offset, mtod(mb, uint8_t *), tlen);
		mb->m_len = tlen;

		offset += tlen;
		len -= tlen;
	}

	return (m);
}

static void
ure_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
	struct ure_softc *sc = usbd_xfer_softc(xfer);
	struct usb_ether *ue = &sc->sc_ue;
	struct ifnet *ifp = uether_getifp(ue);
	struct usb_page_cache *pc;
	struct mbuf *m;
	struct ure_rxpkt pkt;
	int actlen, off, len;
	int caps;
	uint32_t pktcsum;

	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);

	switch (USB_GET_STATE(xfer)) {
	case USB_ST_TRANSFERRED:
		off = 0;
		pc = usbd_xfer_get_frame(xfer, 0);
		caps = if_getcapenable(ifp);
		DEVPRINTFN(13, sc->sc_ue.ue_dev, "rcb start\n");
		while (actlen > 0) {
			if (actlen < (int)(sizeof(pkt))) {
				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
				goto tr_setup;
			}
			usbd_copy_out(pc, off, &pkt, sizeof(pkt));

			off += sizeof(pkt);
			actlen -= sizeof(pkt);

			len = le32toh(pkt.ure_pktlen) & URE_RXPKT_LEN_MASK;

			DEVPRINTFN(13, sc->sc_ue.ue_dev,
			    "rxpkt: %#x, %#x, %#x, %#x, %#x, %#x\n",
			    pkt.ure_pktlen, pkt.ure_csum, pkt.ure_misc,
			    pkt.ure_rsvd2, pkt.ure_rsvd3, pkt.ure_rsvd4);
			DEVPRINTFN(13, sc->sc_ue.ue_dev, "len: %d\n", len);

			if (len >= URE_RXPKT_LEN_MASK) {
				/*
				 * drop the rest of this segment.  With out
				 * more information, we cannot know where next
				 * packet starts.  Blindly continuing would
				 * cause a packet in packet attack, allowing
				 * one VLAN to inject packets w/o a VLAN tag,
				 * or injecting packets into other VLANs.
				 */
				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
				goto tr_setup;
			}

			if (actlen < len) {
				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
				goto tr_setup;
			}

			if (len >= (ETHER_HDR_LEN + ETHER_CRC_LEN))
				m = ure_makembuf(pc, off, len - ETHER_CRC_LEN);
			else
				m = NULL;
			if (m == NULL) {
				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
			} else {
				/* make mbuf and queue */
				pktcsum = le32toh(pkt.ure_csum);
				if (caps & IFCAP_VLAN_HWTAGGING &&
				    pktcsum & URE_RXPKT_RX_VLAN_TAG) {
					m->m_pkthdr.ether_vtag =
					    bswap16(pktcsum &
					    URE_RXPKT_VLAN_MASK);
					m->m_flags |= M_VLANTAG;
				}

				/* set the necessary flags for rx checksum */
				ure_rxcsum(caps, &pkt, m);

				uether_rxmbuf(ue, m, len - ETHER_CRC_LEN);
			}

			off += roundup(len, URE_RXPKT_ALIGN);
			actlen -= roundup(len, URE_RXPKT_ALIGN);
		}
		DEVPRINTFN(13, sc->sc_ue.ue_dev, "rcb end\n");

		/* FALLTHROUGH */
	case USB_ST_SETUP:
tr_setup:
		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
		usbd_transfer_submit(xfer);
		uether_rxflush(ue);
		return;

	default:			/* Error */
		DPRINTF("bulk read error, %s\n",
		    usbd_errstr(error));

		if (error != USB_ERR_CANCELLED) {
			/* try to clear stall first */
			usbd_xfer_set_stall(xfer);
			goto tr_setup;
		}
		return;
	}
}

static void
ure_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
	struct ure_softc *sc = usbd_xfer_softc(xfer);
	struct ifnet *ifp = uether_getifp(&sc->sc_ue);
	struct usb_page_cache *pc;
	struct mbuf *m;
	struct ure_txpkt txpkt;
	uint32_t regtmp;
	int len, pos;
	int rem;
	int caps;

	switch (USB_GET_STATE(xfer)) {
	case USB_ST_TRANSFERRED:
		DPRINTFN(11, "transfer complete\n");
		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

		/* FALLTHROUGH */
	case USB_ST_SETUP:
tr_setup:
		if ((sc->sc_flags & URE_FLAG_LINK) == 0) {
			/* don't send anything if there is no link! */
			break;
		}

		pc = usbd_xfer_get_frame(xfer, 0);
		caps = if_getcapenable(ifp);

		pos = 0;
		rem = URE_TX_BUFSZ;
		while (rem > sizeof(txpkt)) {
			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
			if (m == NULL)
				break;

			/*
			 * make sure we don't ever send too large of a
			 * packet
			 */
			len = m->m_pkthdr.len;
			if ((len & URE_TXPKT_LEN_MASK) != len) {
				device_printf(sc->sc_ue.ue_dev,
				    "pkt len too large: %#x", len);
pkterror:
				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
				m_freem(m);
				continue;
			}

			if (sizeof(txpkt) +
			    roundup(len, URE_TXPKT_ALIGN) > rem) {
				/* out of space */
				IFQ_DRV_PREPEND(&ifp->if_snd, m);
				m = NULL;
				break;
			}

			txpkt = (struct ure_txpkt){};
			txpkt.ure_pktlen = htole32((len & URE_TXPKT_LEN_MASK) |
			    URE_TKPKT_TX_FS | URE_TKPKT_TX_LS);
			if (m->m_flags & M_VLANTAG) {
				txpkt.ure_csum = htole32(
				    bswap16(m->m_pkthdr.ether_vtag &
				    URE_TXPKT_VLAN_MASK) | URE_TXPKT_VLAN);
			}
			if (ure_txcsum(m, caps, &regtmp)) {
				device_printf(sc->sc_ue.ue_dev,
				    "pkt l4 off too large");
				goto pkterror;
			}
			txpkt.ure_csum |= htole32(regtmp);

			DEVPRINTFN(13, sc->sc_ue.ue_dev,
			    "txpkt: mbflg: %#x, %#x, %#x\n",
			    m->m_pkthdr.csum_flags, le32toh(txpkt.ure_pktlen),
			    le32toh(txpkt.ure_csum));

			usbd_copy_in(pc, pos, &txpkt, sizeof(txpkt));

			pos += sizeof(txpkt);
			rem -= sizeof(txpkt);

			usbd_m_copy_in(pc, pos, m, 0, len);

			pos += roundup(len, URE_TXPKT_ALIGN);
			rem -= roundup(len, URE_TXPKT_ALIGN);

			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);

			/*
			 * If there's a BPF listener, bounce a copy
			 * of this frame to him.
			 */
			BPF_MTAP(ifp, m);

			m_freem(m);
		}

		/* no packets to send */
		if (pos == 0)
			break;

		/* Set frame length. */
		usbd_xfer_set_frame_len(xfer, 0, pos);

		usbd_transfer_submit(xfer);

		return;

	default:			/* Error */
		DPRINTFN(11, "transfer error, %s\n",
		    usbd_errstr(error));

		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

		if (error == USB_ERR_TIMEOUT) {
			DEVPRINTFN(12, sc->sc_ue.ue_dev,
			    "pkt tx timeout\n");
		}

		if (error != USB_ERR_CANCELLED) {
			/* try to clear stall first */
			usbd_xfer_set_stall(xfer);
			goto tr_setup;
		}
	}
}

static void
ure_read_chipver(struct ure_softc *sc)
{
	uint16_t ver;

	ver = ure_read_2(sc, URE_PLA_TCR1, URE_MCU_TYPE_PLA) & URE_VERSION_MASK;
	sc->sc_ver = ver;
	switch (ver) {
	case 0x4c00:
		sc->sc_chip |= URE_CHIP_VER_4C00;
		sc->sc_flags = URE_FLAG_8152;
		break;
	case 0x4c10:
		sc->sc_chip |= URE_CHIP_VER_4C10;
		sc->sc_flags = URE_FLAG_8152;
		break;
	case 0x5c00:
		sc->sc_chip |= URE_CHIP_VER_5C00;
		sc->sc_flags = URE_FLAG_8153;
		break;
	case 0x5c10:
		sc->sc_chip |= URE_CHIP_VER_5C10;
		sc->sc_flags = URE_FLAG_8153;
		break;
	case 0x5c20:
		sc->sc_chip |= URE_CHIP_VER_5C20;
		sc->sc_flags = URE_FLAG_8153;
		break;
	case 0x5c30:
		sc->sc_chip |= URE_CHIP_VER_5C30;
		sc->sc_flags = URE_FLAG_8153;
		break;
	case 0x6000:
		sc->sc_flags = URE_FLAG_8153B;
		sc->sc_chip |= URE_CHIP_VER_6000;
		break;
	case 0x6010:
		sc->sc_flags = URE_FLAG_8153B;
		sc->sc_chip |= URE_CHIP_VER_6010;
		break;
	case 0x7020:
		sc->sc_flags = URE_FLAG_8156;
		sc->sc_chip |= URE_CHIP_VER_7020;
		break;
	case 0x7030:
		sc->sc_flags = URE_FLAG_8156;
		sc->sc_chip |= URE_CHIP_VER_7030;
		break;
	case 0x7400:
		sc->sc_flags = URE_FLAG_8156B;
		sc->sc_chip |= URE_CHIP_VER_7400;
		break;
	case 0x7410:
		sc->sc_flags = URE_FLAG_8156B;
		sc->sc_chip |= URE_CHIP_VER_7410;
		break;
	default:
		device_printf(sc->sc_ue.ue_dev,
		    "unknown version 0x%04x\n", ver);
		break;
	}
}

static int
ure_sysctl_chipver(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sb;
	struct ure_softc *sc = arg1;
	int error;

	sbuf_new_for_sysctl(&sb, NULL, 0, req);

	sbuf_printf(&sb, "%04x", sc->sc_ver);

	error = sbuf_finish(&sb);
	sbuf_delete(&sb);

	return (error);
}

static void
ure_attach_post(struct usb_ether *ue)
{
	struct ure_softc *sc = uether_getsc(ue);

	sc->sc_rxstarted = 0;
	sc->sc_phyno = 0;

	/* Determine the chip version. */
	ure_read_chipver(sc);

	/* Initialize controller and get station address. */
	if (sc->sc_flags & URE_FLAG_8152)
		ure_rtl8152_init(sc);
	else if (sc->sc_flags & (URE_FLAG_8153B | URE_FLAG_8156 | URE_FLAG_8156B))
		ure_rtl8153b_init(sc);
	else
		ure_rtl8153_init(sc);

	if ((sc->sc_chip & URE_CHIP_VER_4C00) ||
	    (sc->sc_chip & URE_CHIP_VER_4C10))
		ure_read_mem(sc, URE_PLA_IDR, URE_MCU_TYPE_PLA,
		    ue->ue_eaddr, 8);
	else
		ure_read_mem(sc, URE_PLA_BACKUP, URE_MCU_TYPE_PLA,
		    ue->ue_eaddr, 8);

	if (ETHER_IS_ZERO(sc->sc_ue.ue_eaddr)) {
		device_printf(sc->sc_ue.ue_dev, "MAC assigned randomly\n");
		arc4rand(sc->sc_ue.ue_eaddr, ETHER_ADDR_LEN, 0);
		sc->sc_ue.ue_eaddr[0] &= ~0x01; /* unicast */
		sc->sc_ue.ue_eaddr[0] |= 0x02;  /* locally administered */
	}
}

static int
ure_attach_post_sub(struct usb_ether *ue)
{
	struct sysctl_ctx_list *sctx;
	struct sysctl_oid *soid;
	struct ure_softc *sc;
	struct ifnet *ifp;
	int error;

	sc = uether_getsc(ue);
	ifp = ue->ue_ifp;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_start = uether_start;
	ifp->if_ioctl = ure_ioctl;
	ifp->if_init = uether_init;
	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
	/*
	 * Try to keep two transfers full at a time.
	 * ~(TRANSFER_SIZE / 80 bytes/pkt * 2 buffers in flight)
	 */
	ifp->if_snd.ifq_drv_maxlen = 512;
	IFQ_SET_READY(&ifp->if_snd);

	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0);
	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM|IFCAP_HWCSUM, 0);
	if_sethwassist(ifp, CSUM_IP|CSUM_IP_UDP|CSUM_IP_TCP);
#ifdef INET6
	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM_IPV6, 0);
#endif
	if_setcapenable(ifp, if_getcapabilities(ifp));

	mtx_lock(&Giant);
	if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) {
		ifmedia_init(&sc->sc_ifmedia, IFM_IMASK, ure_ifmedia_upd,
		    ure_ifmedia_sts);
		ure_add_media_types(sc);
		ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
		ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_AUTO);
		sc->sc_ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
		error = 0;
	} else {
		error = mii_attach(ue->ue_dev, &ue->ue_miibus, ifp,
		    uether_ifmedia_upd, ue->ue_methods->ue_mii_sts,
		    BMSR_DEFCAPMASK, sc->sc_phyno, MII_OFFSET_ANY, 0);
	}
	mtx_unlock(&Giant);

	sctx = device_get_sysctl_ctx(sc->sc_ue.ue_dev);
	soid = device_get_sysctl_tree(sc->sc_ue.ue_dev);
	SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "chipver",
	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
	    ure_sysctl_chipver, "A",
	    "Return string with chip version.");

	return (error);
}

static void
ure_init(struct usb_ether *ue)
{
	struct ure_softc *sc = uether_getsc(ue);
	struct ifnet *ifp = uether_getifp(ue);
	uint16_t cpcr;
	uint32_t reg;

	URE_LOCK_ASSERT(sc, MA_OWNED);

	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
		return;

	/* Cancel pending I/O. */
	ure_stop(ue);

	if (sc->sc_flags & (URE_FLAG_8153B | URE_FLAG_8156 | URE_FLAG_8156B))
		ure_rtl8153b_nic_reset(sc);
	else
		ure_reset(sc);

	/* Set MAC address. */
	ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_CONFIG);
	ure_write_mem(sc, URE_PLA_IDR, URE_MCU_TYPE_PLA | URE_BYTE_EN_SIX_BYTES,
	    IF_LLADDR(ifp), 8);
	ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_NORAML);

	/* Set RX EARLY timeout and size */
	if (sc->sc_flags & URE_FLAG_8153) {
		switch (usbd_get_speed(sc->sc_ue.ue_udev)) {
		case USB_SPEED_SUPER:
			reg = URE_COALESCE_SUPER / 8;
			break;
		case USB_SPEED_HIGH:
			reg = URE_COALESCE_HIGH / 8;
			break;
		default:
			reg = URE_COALESCE_SLOW / 8;
			break;
		}
		ure_write_2(sc, URE_USB_RX_EARLY_AGG, URE_MCU_TYPE_USB, reg);
		reg = URE_8153_RX_BUFSZ - (URE_FRAMELEN(if_getmtu(ifp)) +
		    sizeof(struct ure_rxpkt) + URE_RXPKT_ALIGN);
		ure_write_2(sc, URE_USB_RX_EARLY_SIZE, URE_MCU_TYPE_USB, reg / 4);
	} else if (sc->sc_flags & URE_FLAG_8153B) {
		ure_write_2(sc, URE_USB_RX_EARLY_AGG, URE_MCU_TYPE_USB, 158);
		ure_write_2(sc, URE_USB_RX_EXTRA_AGG_TMR, URE_MCU_TYPE_USB, 1875);
		reg = URE_8153_RX_BUFSZ - (URE_FRAMELEN(if_getmtu(ifp)) +
		    sizeof(struct ure_rxpkt) + URE_RXPKT_ALIGN);
		ure_write_2(sc, URE_USB_RX_EARLY_SIZE, URE_MCU_TYPE_USB, reg / 8);
		ure_write_1(sc, URE_USB_UPT_RXDMA_OWN, URE_MCU_TYPE_USB,
		    URE_OWN_UPDATE | URE_OWN_CLEAR);
	} else if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) {
		ure_write_2(sc, URE_USB_RX_EARLY_AGG, URE_MCU_TYPE_USB, 80);
		ure_write_2(sc, URE_USB_RX_EXTRA_AGG_TMR, URE_MCU_TYPE_USB, 1875);
		reg = URE_8156_RX_BUFSZ - (URE_FRAMELEN(if_getmtu(ifp)) +
		    sizeof(struct ure_rxpkt) + URE_RXPKT_ALIGN);
		ure_write_2(sc, URE_USB_RX_EARLY_SIZE, URE_MCU_TYPE_USB, reg / 8);
		ure_write_1(sc, URE_USB_UPT_RXDMA_OWN, URE_MCU_TYPE_USB,
		    URE_OWN_UPDATE | URE_OWN_CLEAR);
	}

	if (sc->sc_flags & URE_FLAG_8156B) {
		URE_CLRBIT_2(sc, URE_USB_FW_TASK, URE_MCU_TYPE_USB, URE_FC_PATCH_TASK);
		uether_pause(&sc->sc_ue, hz / 500);
		URE_SETBIT_2(sc, URE_USB_FW_TASK, URE_MCU_TYPE_USB, URE_FC_PATCH_TASK);
	}

	/* Reset the packet filter. */
	URE_CLRBIT_2(sc, URE_PLA_FMC, URE_MCU_TYPE_PLA, URE_FMC_FCR_MCU_EN);
	URE_SETBIT_2(sc, URE_PLA_FMC, URE_MCU_TYPE_PLA, URE_FMC_FCR_MCU_EN);

	/* Enable RX VLANs if enabled */
	cpcr = ure_read_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA);
	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
		DEVPRINTFN(12, sc->sc_ue.ue_dev, "enabled hw vlan tag\n");
		cpcr |= URE_CPCR_RX_VLAN;
	} else {
		DEVPRINTFN(12, sc->sc_ue.ue_dev, "disabled hw vlan tag\n");
		cpcr &= ~URE_CPCR_RX_VLAN;
	}
	ure_write_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA, cpcr);

	/* Enable transmit and receive. */
	URE_SETBIT_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, URE_CR_RE | URE_CR_TE);

	URE_CLRBIT_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA, URE_RXDY_GATED_EN);

	/*  Configure RX filters. */
	ure_rxfilter(ue);

	usbd_xfer_set_stall(sc->sc_tx_xfer[0]);

	/* Indicate we are up and running. */
	ifp->if_drv_flags |= IFF_DRV_RUNNING;

	/* Switch to selected media. */
	ure_ifmedia_upd(ifp);
}

static void
ure_tick(struct usb_ether *ue)
{
	struct ure_softc *sc = uether_getsc(ue);
	struct ifnet *ifp = uether_getifp(ue);
	struct mii_data *mii;

	URE_LOCK_ASSERT(sc, MA_OWNED);

	(void)ifp;
	for (int i = 0; i < URE_MAX_RX; i++)
		DEVPRINTFN(13, sc->sc_ue.ue_dev,
		    "rx[%d] = %d\n", i, USB_GET_STATE(sc->sc_rx_xfer[i]));

	for (int i = 0; i < URE_MAX_TX; i++)
		DEVPRINTFN(13, sc->sc_ue.ue_dev,
		    "tx[%d] = %d\n", i, USB_GET_STATE(sc->sc_tx_xfer[i]));

	if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) {
		ure_link_state(sc);
	} else {
		mii = GET_MII(sc);
		mii_tick(mii);
		if ((sc->sc_flags & URE_FLAG_LINK) == 0
			&& mii->mii_media_status & IFM_ACTIVE &&
			IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
			sc->sc_flags |= URE_FLAG_LINK;
			sc->sc_rxstarted = 0;
			ure_start(ue);
		}
	}
}

static u_int
ure_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
	uint32_t h, *hashes = arg;

	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
	if (h < 32)
		hashes[0] |= (1 << h);
	else
		hashes[1] |= (1 << (h - 32));
	return (1);
}

/*
 * Program the 64-bit multicast hash filter.
 */
static void
ure_rxfilter(struct usb_ether *ue)
{
	struct ure_softc *sc = uether_getsc(ue);
	struct ifnet *ifp = uether_getifp(ue);
	uint32_t rxmode;
	uint32_t h, hashes[2] = { 0, 0 };

	URE_LOCK_ASSERT(sc, MA_OWNED);

	rxmode = ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA);
	rxmode &= ~(URE_RCR_AAP | URE_RCR_AM);
	rxmode |= URE_RCR_APM;	/* accept physical match packets */
	rxmode |= URE_RCR_AB;	/* always accept broadcasts */
	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
		if (ifp->if_flags & IFF_PROMISC)
			rxmode |= URE_RCR_AAP;
		rxmode |= URE_RCR_AM;
		hashes[0] = hashes[1] = 0xffffffff;
		goto done;
	}

	/* calculate multicast masks */
	if_foreach_llmaddr(ifp, ure_hash_maddr, &hashes);

	h = bswap32(hashes[0]);
	hashes[0] = bswap32(hashes[1]);
	hashes[1] = h;
	rxmode |= URE_RCR_AM;	/* accept multicast packets */

done:
	DEVPRINTFN(14, ue->ue_dev, "rxfilt: RCR: %#x\n",
	    ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA));
	ure_write_4(sc, URE_PLA_MAR0, URE_MCU_TYPE_PLA, hashes[0]);
	ure_write_4(sc, URE_PLA_MAR4, URE_MCU_TYPE_PLA, hashes[1]);
	ure_write_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA, rxmode);
}

static void
ure_start(struct usb_ether *ue)
{
	struct ure_softc *sc = uether_getsc(ue);
	unsigned i;

	URE_LOCK_ASSERT(sc, MA_OWNED);

	if (!sc->sc_rxstarted) {
		sc->sc_rxstarted = 1;
		for (i = 0; i != URE_MAX_RX; i++)
			usbd_transfer_start(sc->sc_rx_xfer[i]);
	}

	for (i = 0; i != URE_MAX_TX; i++)
		usbd_transfer_start(sc->sc_tx_xfer[i]);
}

static void
ure_reset(struct ure_softc *sc)
{
	int i;

	ure_write_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, URE_CR_RST);

	for (i = 0; i < URE_TIMEOUT; i++) {
		if (!(ure_read_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA) &
		    URE_CR_RST))
			break;
		uether_pause(&sc->sc_ue, hz / 100);
	}
	if (i == URE_TIMEOUT)
		device_printf(sc->sc_ue.ue_dev, "reset never completed\n");
}

/*
 * Set media options.
 */
static int
ure_ifmedia_upd(struct ifnet *ifp)
{
	struct ure_softc *sc = ifp->if_softc;
	struct ifmedia *ifm;
	struct mii_data *mii;
	struct mii_softc *miisc;
	int gig;
	int reg;
	int anar;
	int locked;
	int error;

	if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) {
		ifm = &sc->sc_ifmedia;
		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
			return (EINVAL);

		locked = mtx_owned(&sc->sc_mtx);
		if (!locked)
			URE_LOCK(sc);
		reg = ure_ocp_reg_read(sc, 0xa5d4);
		reg &= ~URE_ADV_2500TFDX;

		anar = gig = 0;
		switch (IFM_SUBTYPE(ifm->ifm_media)) {
		case IFM_AUTO:
			anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
			gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
			reg |= URE_ADV_2500TFDX;
			break;
		case IFM_2500_T:
			anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
			gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
			reg |= URE_ADV_2500TFDX;
			ifp->if_baudrate = IF_Mbps(2500);
			break;
		case IFM_1000_T:
			anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
			gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
			ifp->if_baudrate = IF_Gbps(1);
			break;
		case IFM_100_TX:
			anar |= ANAR_TX | ANAR_TX_FD;
			ifp->if_baudrate = IF_Mbps(100);
			break;
		case IFM_10_T:
			anar |= ANAR_10 | ANAR_10_FD;
			ifp->if_baudrate = IF_Mbps(10);
			break;
		default:
			device_printf(sc->sc_ue.ue_dev, "unsupported media type\n");
			if (!locked)
				URE_UNLOCK(sc);
			return (EINVAL);
		}

		ure_ocp_reg_write(sc, URE_OCP_BASE_MII + MII_ANAR * 2,
		    anar | ANAR_PAUSE_ASYM | ANAR_FC);
		ure_ocp_reg_write(sc, URE_OCP_BASE_MII + MII_100T2CR * 2, gig);
		ure_ocp_reg_write(sc, 0xa5d4, reg);
		ure_ocp_reg_write(sc, URE_OCP_BASE_MII + MII_BMCR,
		    BMCR_AUTOEN | BMCR_STARTNEG);
		if (!locked)
			URE_UNLOCK(sc);
		return (0);
	}

	mii = GET_MII(sc);

	URE_LOCK_ASSERT(sc, MA_OWNED);
	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
		PHY_RESET(miisc);
	error = mii_mediachg(mii);
	return (error);
}

/*
 * Report current media status.
 */
static void
ure_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
	struct ure_softc *sc;
	struct mii_data *mii;
	uint16_t status;

	sc = ifp->if_softc;
	if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) {
		URE_LOCK(sc);
		ifmr->ifm_status = IFM_AVALID;
		if (ure_get_link_status(sc)) {
			ifmr->ifm_status |= IFM_ACTIVE;
			status = ure_read_2(sc, URE_PLA_PHYSTATUS,
			    URE_MCU_TYPE_PLA);
			if ((status & URE_PHYSTATUS_FDX) ||
			    (status & URE_PHYSTATUS_2500MBPS))
				ifmr->ifm_active |= IFM_FDX;
			else
				ifmr->ifm_active |= IFM_HDX;
			if (status & URE_PHYSTATUS_10MBPS)
				ifmr->ifm_active |= IFM_10_T;
			else if (status & URE_PHYSTATUS_100MBPS)
				ifmr->ifm_active |= IFM_100_TX;
			else if (status & URE_PHYSTATUS_1000MBPS)
				ifmr->ifm_active |= IFM_1000_T;
			else if (status & URE_PHYSTATUS_2500MBPS)
				ifmr->ifm_active |= IFM_2500_T;
		}
		URE_UNLOCK(sc);
		return;
	}

	mii = GET_MII(sc);

	URE_LOCK(sc);
	mii_pollstat(mii);
	ifmr->ifm_active = mii->mii_media_active;
	ifmr->ifm_status = mii->mii_media_status;
	URE_UNLOCK(sc);
}

static void
ure_add_media_types(struct ure_softc *sc)
{
	ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
	ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
	ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
	ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
	ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
	ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
}

static void
ure_link_state(struct ure_softc *sc)
{
	struct ifnet *ifp = uether_getifp(&sc->sc_ue);

	if (ure_get_link_status(sc)) {
		if (ifp->if_link_state != LINK_STATE_UP) {
			if_link_state_change(ifp, LINK_STATE_UP);
			/* Enable transmit and receive. */
			URE_SETBIT_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, URE_CR_RE | URE_CR_TE);

			if (ure_read_2(sc, URE_PLA_PHYSTATUS, URE_MCU_TYPE_PLA) &
			    URE_PHYSTATUS_2500MBPS)
				URE_CLRBIT_2(sc, URE_PLA_MAC_PWR_CTRL4, URE_MCU_TYPE_PLA, 0x40);
			else
				URE_SETBIT_2(sc, URE_PLA_MAC_PWR_CTRL4, URE_MCU_TYPE_PLA, 0x40);
		}
	} else {
		if (ifp->if_link_state != LINK_STATE_DOWN) {
			if_link_state_change(ifp, LINK_STATE_DOWN);
		}
	}
}

static int
ure_get_link_status(struct ure_softc *sc)
{
	if (ure_read_2(sc, URE_PLA_PHYSTATUS, URE_MCU_TYPE_PLA) &
	    URE_PHYSTATUS_LINK) {
		sc->sc_flags |= URE_FLAG_LINK;
		return (1);
	} else {
		sc->sc_flags &= ~URE_FLAG_LINK;
		return (0);
	}
}

static int
ure_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
	struct usb_ether *ue = ifp->if_softc;
	struct ure_softc *sc;
	struct ifreq *ifr;
	int error, mask, reinit;

	sc = uether_getsc(ue);
	ifr = (struct ifreq *)data;
	error = 0;
	reinit = 0;
	switch (cmd) {
	case SIOCSIFCAP:
		URE_LOCK(sc);
		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
			reinit++;
		}
		if ((mask & IFCAP_TXCSUM) != 0 &&
		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
			ifp->if_capenable ^= IFCAP_TXCSUM;
		}
		if ((mask & IFCAP_RXCSUM) != 0 &&
		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
			ifp->if_capenable ^= IFCAP_RXCSUM;
		}
		if ((mask & IFCAP_TXCSUM_IPV6) != 0 &&
		    (ifp->if_capabilities & IFCAP_TXCSUM_IPV6) != 0) {
			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
		}
		if ((mask & IFCAP_RXCSUM_IPV6) != 0 &&
		    (ifp->if_capabilities & IFCAP_RXCSUM_IPV6) != 0) {
			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
		}
		if (reinit > 0 && ifp->if_drv_flags & IFF_DRV_RUNNING)
			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
		else
			reinit = 0;
		URE_UNLOCK(sc);
		if (reinit > 0)
			uether_init(ue);
		break;

	case SIOCSIFMTU:
		/*
		 * in testing large MTUs "crashes" the device, it
		 * leaves the device w/ a broken state where link
		 * is in a bad state.
		 */
		if (ifr->ifr_mtu < ETHERMIN ||
		    ifr->ifr_mtu > (4096 - ETHER_HDR_LEN -
		    ETHER_VLAN_ENCAP_LEN - ETHER_CRC_LEN)) {
			error = EINVAL;
			break;
		}
		URE_LOCK(sc);
		if (if_getmtu(ifp) != ifr->ifr_mtu)
			if_setmtu(ifp, ifr->ifr_mtu);
		URE_UNLOCK(sc);
		break;

	case SIOCGIFMEDIA:
	case SIOCSIFMEDIA:
		if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B))
			error = ifmedia_ioctl(ifp, ifr, &sc->sc_ifmedia, cmd);
		else
			error = uether_ioctl(ifp, cmd, data);
		break;

	default:
		error = uether_ioctl(ifp, cmd, data);
		break;
	}

	return (error);
}

static void
ure_rtl8152_init(struct ure_softc *sc)
{
	uint32_t pwrctrl;

	ure_enable_aldps(sc, false);

	if (sc->sc_chip & URE_CHIP_VER_4C00) {
		URE_CLRBIT_2(sc, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA, URE_LED_MODE_MASK);
	}

	URE_CLRBIT_2(sc, URE_USB_UPS_CTRL, URE_MCU_TYPE_USB, URE_POWER_CUT);

	URE_CLRBIT_2(sc, URE_USB_PM_CTRL_STATUS, URE_MCU_TYPE_USB, URE_RESUME_INDICATE);

	URE_SETBIT_2(sc, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA, URE_TX_10M_IDLE_EN | URE_PFM_PWM_SWITCH);

	pwrctrl = ure_read_4(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA);
	pwrctrl &= ~URE_MCU_CLK_RATIO_MASK;
	pwrctrl |= URE_MCU_CLK_RATIO | URE_D3_CLK_GATED_EN;
	ure_write_4(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA, pwrctrl);
	ure_write_2(sc, URE_PLA_GPHY_INTR_IMR, URE_MCU_TYPE_PLA,
	    URE_GPHY_STS_MSK | URE_SPEED_DOWN_MSK | URE_SPDWN_RXDV_MSK |
	    URE_SPDWN_LINKCHG_MSK);

	/* Enable Rx aggregation. */
	URE_CLRBIT_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB, URE_RX_AGG_DISABLE | URE_RX_ZERO_EN);

	ure_enable_aldps(sc, false);

	ure_rtl8152_nic_reset(sc);

	ure_write_1(sc, URE_USB_TX_AGG, URE_MCU_TYPE_USB,
	    URE_TX_AGG_MAX_THRESHOLD);
	ure_write_4(sc, URE_USB_RX_BUF_TH, URE_MCU_TYPE_USB, URE_RX_THR_HIGH);
	ure_write_4(sc, URE_USB_TX_DMA, URE_MCU_TYPE_USB,
	    URE_TEST_MODE_DISABLE | URE_TX_SIZE_ADJUST1);
}

static void
ure_rtl8153_init(struct ure_softc *sc)
{
	uint16_t val;
	uint8_t u1u2[8];
	int i;

	ure_enable_aldps(sc, false);

	memset(u1u2, 0x00, sizeof(u1u2));
	ure_write_mem(sc, URE_USB_TOLERANCE,
	    URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));

	for (i = 0; i < URE_TIMEOUT; i++) {
		if (ure_read_2(sc, URE_PLA_BOOT_CTRL, URE_MCU_TYPE_PLA) &
		    URE_AUTOLOAD_DONE)
			break;
		uether_pause(&sc->sc_ue, hz / 100);
	}
	if (i == URE_TIMEOUT)
		device_printf(sc->sc_ue.ue_dev,
		    "timeout waiting for chip autoload\n");

	for (i = 0; i < URE_TIMEOUT; i++) {
		val = ure_ocp_reg_read(sc, URE_OCP_PHY_STATUS) &
		    URE_PHY_STAT_MASK;
		if (val == URE_PHY_STAT_LAN_ON || val == URE_PHY_STAT_PWRDN)
			break;
		uether_pause(&sc->sc_ue, hz / 100);
	}
	if (i == URE_TIMEOUT)
		device_printf(sc->sc_ue.ue_dev,
		    "timeout waiting for phy to stabilize\n");

	URE_CLRBIT_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, URE_U2P3_ENABLE);

	if (sc->sc_chip & URE_CHIP_VER_5C10) {
		val = ure_read_2(sc, URE_USB_SSPHYLINK2, URE_MCU_TYPE_USB);
		val &= ~URE_PWD_DN_SCALE_MASK;
		val |= URE_PWD_DN_SCALE(96);
		ure_write_2(sc, URE_USB_SSPHYLINK2, URE_MCU_TYPE_USB, val);

		URE_SETBIT_1(sc, URE_USB_USB2PHY, URE_MCU_TYPE_USB, URE_USB2PHY_L1 | URE_USB2PHY_SUSPEND);
	} else if (sc->sc_chip & URE_CHIP_VER_5C20)
		URE_CLRBIT_1(sc, URE_PLA_DMY_REG0, URE_MCU_TYPE_PLA, URE_ECM_ALDPS);

	if (sc->sc_chip & (URE_CHIP_VER_5C20 | URE_CHIP_VER_5C30)) {
		val = ure_read_1(sc, URE_USB_CSR_DUMMY1, URE_MCU_TYPE_USB);
		if (ure_read_2(sc, URE_USB_BURST_SIZE, URE_MCU_TYPE_USB) ==
		    0)
			val &= ~URE_DYNAMIC_BURST;
		else
			val |= URE_DYNAMIC_BURST;
		ure_write_1(sc, URE_USB_CSR_DUMMY1, URE_MCU_TYPE_USB, val);
	}

	URE_SETBIT_1(sc, URE_USB_CSR_DUMMY2, URE_MCU_TYPE_USB, URE_EP4_FULL_FC);

	URE_CLRBIT_2(sc, URE_USB_WDT11_CTRL, URE_MCU_TYPE_USB, URE_TIMER11_EN);

	URE_CLRBIT_2(sc, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA, URE_LED_MODE_MASK);

	if ((sc->sc_chip & URE_CHIP_VER_5C10) &&
	    usbd_get_speed(sc->sc_ue.ue_udev) != USB_SPEED_SUPER)
		val = URE_LPM_TIMER_500MS;
	else
		val = URE_LPM_TIMER_500US;
	ure_write_1(sc, URE_USB_LPM_CTRL, URE_MCU_TYPE_USB,
	    val | URE_FIFO_EMPTY_1FB | URE_ROK_EXIT_LPM);

	val = ure_read_2(sc, URE_USB_AFE_CTRL2, URE_MCU_TYPE_USB);
	val &= ~URE_SEN_VAL_MASK;
	val |= URE_SEN_VAL_NORMAL | URE_SEL_RXIDLE;
	ure_write_2(sc, URE_USB_AFE_CTRL2, URE_MCU_TYPE_USB, val);

	ure_write_2(sc, URE_USB_CONNECT_TIMER, URE_MCU_TYPE_USB, 0x0001);

	URE_CLRBIT_2(sc, URE_USB_POWER_CUT, URE_MCU_TYPE_USB, URE_PWR_EN | URE_PHASE2_EN);

	URE_CLRBIT_2(sc, URE_USB_MISC_0, URE_MCU_TYPE_USB, URE_PCUT_STATUS);

	memset(u1u2, 0xff, sizeof(u1u2));
	ure_write_mem(sc, URE_USB_TOLERANCE,
	    URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));

	ure_write_2(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA,
	    URE_ALDPS_SPDWN_RATIO);
	ure_write_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_PLA,
	    URE_EEE_SPDWN_RATIO);
	ure_write_2(sc, URE_PLA_MAC_PWR_CTRL3, URE_MCU_TYPE_PLA,
	    URE_PKT_AVAIL_SPDWN_EN | URE_SUSPEND_SPDWN_EN |
	    URE_U1U2_SPDWN_EN | URE_L1_SPDWN_EN);
	ure_write_2(sc, URE_PLA_MAC_PWR_CTRL4, URE_MCU_TYPE_PLA,
	    URE_PWRSAVE_SPDWN_EN | URE_RXDV_SPDWN_EN | URE_TX10MIDLE_EN |
	    URE_TP100_SPDWN_EN | URE_TP500_SPDWN_EN | URE_TP1000_SPDWN_EN |
	    URE_EEE_SPDWN_EN);

	val = ure_read_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB);
	if (!(sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10)))
		val |= URE_U2P3_ENABLE;
	else
		val &= ~URE_U2P3_ENABLE;
	ure_write_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, val);

	memset(u1u2, 0x00, sizeof(u1u2));
	ure_write_mem(sc, URE_USB_TOLERANCE,
	    URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));

	ure_enable_aldps(sc, false);

	if (sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10 |
	    URE_CHIP_VER_5C20)) {
		ure_ocp_reg_write(sc, URE_OCP_ADC_CFG,
		    URE_CKADSEL_L | URE_ADC_EN | URE_EN_EMI_L);
	}
	if (sc->sc_chip & URE_CHIP_VER_5C00) {
		ure_ocp_reg_write(sc, URE_OCP_EEE_CFG,
		    ure_ocp_reg_read(sc, URE_OCP_EEE_CFG) &
		    ~URE_CTAP_SHORT_EN);
	}
	ure_ocp_reg_write(sc, URE_OCP_POWER_CFG,
	    ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) |
	    URE_EEE_CLKDIV_EN);
	ure_ocp_reg_write(sc, URE_OCP_DOWN_SPEED,
	    ure_ocp_reg_read(sc, URE_OCP_DOWN_SPEED) |
	    URE_EN_10M_BGOFF);
	ure_ocp_reg_write(sc, URE_OCP_POWER_CFG,
	    ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) |
	    URE_EN_10M_PLLOFF);
	ure_sram_write(sc, URE_SRAM_IMPEDANCE, 0x0b13);
	URE_SETBIT_2(sc, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA, URE_PFM_PWM_SWITCH);

	/* Enable LPF corner auto tune. */
	ure_sram_write(sc, URE_SRAM_LPF_CFG, 0xf70f);

	/* Adjust 10M amplitude. */
	ure_sram_write(sc, URE_SRAM_10M_AMP1, 0x00af);
	ure_sram_write(sc, URE_SRAM_10M_AMP2, 0x0208);

	ure_rtl8152_nic_reset(sc);

	/* Enable Rx aggregation. */
	URE_CLRBIT_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB, URE_RX_AGG_DISABLE | URE_RX_ZERO_EN);

	val = ure_read_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB);
	if (!(sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10)))
		val |= URE_U2P3_ENABLE;
	else
		val &= ~URE_U2P3_ENABLE;
	ure_write_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, val);

	memset(u1u2, 0xff, sizeof(u1u2));
	ure_write_mem(sc, URE_USB_TOLERANCE,
	    URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
}

static void
ure_rtl8153b_init(struct ure_softc *sc)
{
	uint16_t val;
	int i;

	if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) {
		URE_CLRBIT_1(sc, 0xd26b, URE_MCU_TYPE_USB, 0x01);
		ure_write_2(sc, 0xd32a, URE_MCU_TYPE_USB, 0);
		URE_SETBIT_2(sc, 0xcfee, URE_MCU_TYPE_USB, 0x0020);
	}

	if (sc->sc_flags & URE_FLAG_8156B) {
		URE_SETBIT_2(sc, 0xb460, URE_MCU_TYPE_USB, 0x08);
	}

	ure_enable_aldps(sc, false);

	/* Disable U1U2 */
	URE_CLRBIT_2(sc, URE_USB_LPM_CONFIG, URE_MCU_TYPE_USB, URE_LPM_U1U2_EN);

	/* Wait loading flash */
	if (sc->sc_chip == URE_CHIP_VER_7410) {
		if ((ure_read_2(sc, 0xd3ae, URE_MCU_TYPE_PLA) & 0x0002) &&
		    !(ure_read_2(sc, 0xd284, URE_MCU_TYPE_USB) & 0x0020)) {
			for (i=0; i < 100; i++) {
				if (ure_read_2(sc, 0xd284, URE_MCU_TYPE_USB) & 0x0004)
					break;
				uether_pause(&sc->sc_ue, hz / 1000);
			}
		}
	}

	for (i = 0; i < URE_TIMEOUT; i++) {
		if (ure_read_2(sc, URE_PLA_BOOT_CTRL, URE_MCU_TYPE_PLA) &
		    URE_AUTOLOAD_DONE)
			break;
		uether_pause(&sc->sc_ue, hz / 100);
	}
	if (i == URE_TIMEOUT)
		device_printf(sc->sc_ue.ue_dev,
		    "timeout waiting for chip autoload\n");

	val = ure_phy_status(sc, 0);
	if ((val == URE_PHY_STAT_EXT_INIT) &
	    (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B))) {
		ure_ocp_reg_write(sc, 0xa468,
		    ure_ocp_reg_read(sc, 0xa468) & ~0x0a);
		if (sc->sc_flags & URE_FLAG_8156B)
			ure_ocp_reg_write(sc, 0xa466,
				ure_ocp_reg_read(sc, 0xa466) & ~0x01);
	}

	val = ure_ocp_reg_read(sc, URE_OCP_BASE_MII + MII_BMCR);
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		ure_ocp_reg_write(sc, URE_OCP_BASE_MII + MII_BMCR, val);
	}

	ure_phy_status(sc, URE_PHY_STAT_LAN_ON);

	/* Disable U2P3 */
	URE_CLRBIT_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, URE_U2P3_ENABLE);

	/* MSC timer, 32760 ms. */
	ure_write_2(sc, URE_USB_MSC_TIMER, URE_MCU_TYPE_USB, 0x0fff);

	/* U1/U2/L1 idle timer, 500 us. */
	ure_write_2(sc, URE_USB_U1U2_TIMER, URE_MCU_TYPE_USB, 500);

	/* Disable power cut */
	URE_CLRBIT_2(sc, URE_USB_POWER_CUT, URE_MCU_TYPE_USB, URE_PWR_EN);
	URE_CLRBIT_2(sc, URE_USB_MISC_0, URE_MCU_TYPE_USB, URE_PCUT_STATUS);

	/* Disable ups */
	URE_CLRBIT_1(sc, URE_USB_POWER_CUT, URE_MCU_TYPE_USB, URE_UPS_EN | URE_USP_PREWAKE);
	URE_CLRBIT_1(sc, 0xcfff, URE_MCU_TYPE_USB, 0x01);

	/* Disable queue wake */
	URE_CLRBIT_1(sc, URE_PLA_INDICATE_FALG, URE_MCU_TYPE_USB, URE_UPCOMING_RUNTIME_D3);
	URE_CLRBIT_1(sc, URE_PLA_SUSPEND_FLAG, URE_MCU_TYPE_USB, URE_LINK_CHG_EVENT);
	URE_CLRBIT_2(sc, URE_PLA_EXTRA_STATUS, URE_MCU_TYPE_USB, URE_LINK_CHANGE_FLAG);

	/* Disable runtime suspend */
	ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_CONFIG);
	URE_CLRBIT_2(sc, URE_PLA_CONFIG34, URE_MCU_TYPE_USB, URE_LINK_OFF_WAKE_EN);
	ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_NORAML);

	/* Enable U1U2 */
	if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_SUPER)
		URE_SETBIT_2(sc, URE_USB_LPM_CONFIG, URE_MCU_TYPE_USB, URE_LPM_U1U2_EN);

	if (sc->sc_flags & URE_FLAG_8156B) {
		URE_CLRBIT_2(sc, 0xc010, URE_MCU_TYPE_PLA, 0x0800);
		URE_SETBIT_2(sc, 0xe854, URE_MCU_TYPE_PLA, 0x0001);

		/* enable fc timer and set timer to 600 ms. */
		ure_write_2(sc, URE_USB_FC_TIMER, URE_MCU_TYPE_USB, URE_CTRL_TIMER_EN | (600 / 8));

		if (!(ure_read_1(sc, 0xdc6b, URE_MCU_TYPE_PLA) & 0x80)) {
			val = ure_read_2(sc, URE_USB_FW_CTRL, URE_MCU_TYPE_USB);
			val |= URE_FLOW_CTRL_PATCH_OPT | 0x0100;
			val &= ~0x08;
			ure_write_2(sc, URE_USB_FW_CTRL, URE_MCU_TYPE_USB, val);
		}

		URE_SETBIT_2(sc, URE_USB_FW_TASK, URE_MCU_TYPE_USB, URE_FC_PATCH_TASK);
	}

	val = ure_read_2(sc, URE_PLA_EXTRA_STATUS, URE_MCU_TYPE_PLA);
	if (ure_get_link_status(sc))
		val |= URE_CUR_LINK_OK;
	else
		val &= ~URE_CUR_LINK_OK;
	val |= URE_POLL_LINK_CHG;
	ure_write_2(sc, URE_PLA_EXTRA_STATUS, URE_MCU_TYPE_PLA, val);

	/* MAC clock speed down */
	if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) {
		ure_write_2(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA, 0x0403);
		val = ure_read_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_PLA);
		val &= ~0xff;
		val |= URE_MAC_CLK_SPDWN_EN | 0x03;
		ure_write_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_PLA, val);
	} else {
		URE_SETBIT_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_USB, URE_MAC_CLK_SPDWN_EN);
	}
	URE_CLRBIT_2(sc, URE_PLA_MAC_PWR_CTRL3, URE_MCU_TYPE_PLA, URE_PLA_MCU_SPDWN_EN);

	/* Enable Rx aggregation. */
	URE_CLRBIT_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB, URE_RX_AGG_DISABLE | URE_RX_ZERO_EN);

	if (sc->sc_flags & URE_FLAG_8156)
		URE_SETBIT_1(sc, 0xd4b4, URE_MCU_TYPE_USB, 0x02);

	/* Reset tally */
	URE_SETBIT_2(sc, URE_PLA_RSTTALLY, URE_MCU_TYPE_USB, URE_TALLY_RESET);
}

static void
ure_rtl8153b_nic_reset(struct ure_softc *sc)
{
	struct ifnet *ifp = uether_getifp(&sc->sc_ue);
	uint16_t val;
	int i;

	/* Disable U1U2 */
	URE_CLRBIT_2(sc, URE_USB_LPM_CONFIG, URE_MCU_TYPE_USB, URE_LPM_U1U2_EN);

	/* Disable U2P3 */
	URE_CLRBIT_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, URE_U2P3_ENABLE);

	ure_enable_aldps(sc, false);

	/* Enable rxdy_gated */
	URE_SETBIT_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA, URE_RXDY_GATED_EN);

	/* Disable teredo */
	ure_disable_teredo(sc);

	DEVPRINTFN(14, sc->sc_ue.ue_dev, "rtl8153b_nic_reset: RCR: %#x\n", ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA));
	URE_CLRBIT_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA, URE_RCR_ACPT_ALL);

	ure_reset(sc);

	/* Reset BMU */
	URE_CLRBIT_1(sc, URE_USB_BMU_RESET, URE_MCU_TYPE_USB, URE_BMU_RESET_EP_IN | URE_BMU_RESET_EP_OUT);
	URE_SETBIT_1(sc, URE_USB_BMU_RESET, URE_MCU_TYPE_USB, URE_BMU_RESET_EP_IN | URE_BMU_RESET_EP_OUT);

	URE_CLRBIT_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA, URE_NOW_IS_OOB);
	URE_CLRBIT_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA, URE_MCU_BORW_EN);
	if (sc->sc_flags & URE_FLAG_8153B) {
		for (i = 0; i < URE_TIMEOUT; i++) {
			if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
			    URE_LINK_LIST_READY)
				break;
			uether_pause(&sc->sc_ue, hz / 100);
		}
		if (i == URE_TIMEOUT)
			device_printf(sc->sc_ue.ue_dev,
			    "timeout waiting for OOB control\n");

		URE_SETBIT_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA, URE_RE_INIT_LL);
		for (i = 0; i < URE_TIMEOUT; i++) {
			if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
			    URE_LINK_LIST_READY)
			break;
			uether_pause(&sc->sc_ue, hz / 100);
		}
		if (i == URE_TIMEOUT)
			device_printf(sc->sc_ue.ue_dev,
			    "timeout waiting for OOB control\n");
	}

	/* Configure rxvlan */
	val = ure_read_2(sc, 0xc012, URE_MCU_TYPE_PLA);
	val &= ~0x00c0;
	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
		val |= 0x00c0;
	ure_write_2(sc, 0xc012, URE_MCU_TYPE_PLA, val);

	val = if_getmtu(ifp);
	ure_write_2(sc, URE_PLA_RMS, URE_MCU_TYPE_PLA, URE_FRAMELEN(val));
	ure_write_1(sc, URE_PLA_MTPS, URE_MCU_TYPE_PLA, URE_MTPS_JUMBO);

	if (sc->sc_flags & URE_FLAG_8153B) {
		URE_SETBIT_2(sc, URE_PLA_TCR0, URE_MCU_TYPE_PLA, URE_TCR0_AUTO_FIFO);
		ure_reset(sc);
	}

	/* Configure fc parameter */
	if (sc->sc_flags & URE_FLAG_8156) {
		ure_write_2(sc, 0xc0a6, URE_MCU_TYPE_PLA, 0x0400);
		ure_write_2(sc, 0xc0aa, URE_MCU_TYPE_PLA, 0x0800);
	} else if (sc->sc_flags & URE_FLAG_8156B) {
		ure_write_2(sc, 0xc0a6, URE_MCU_TYPE_PLA, 0x0200);
		ure_write_2(sc, 0xc0aa, URE_MCU_TYPE_PLA, 0x0400);
	}

	/* Configure Rx FIFO threshold. */
	if (sc->sc_flags & URE_FLAG_8153B) {
		ure_write_4(sc, URE_PLA_RXFIFO_CTRL0, URE_MCU_TYPE_PLA,	URE_RXFIFO_THR1_NORMAL);
		ure_write_2(sc, URE_PLA_RXFIFO_CTRL1, URE_MCU_TYPE_PLA, URE_RXFIFO_THR2_NORMAL);
		ure_write_2(sc, URE_PLA_RXFIFO_CTRL2, URE_MCU_TYPE_PLA, URE_RXFIFO_THR3_NORMAL);
		ure_write_4(sc, URE_USB_RX_BUF_TH, URE_MCU_TYPE_USB, URE_RX_THR_B);
	} else {
		ure_write_2(sc, 0xc0a2, URE_MCU_TYPE_PLA,
		    (ure_read_2(sc, 0xc0a2, URE_MCU_TYPE_PLA) & ~0xfff) | 0x08);
		ure_write_4(sc, URE_USB_RX_BUF_TH, URE_MCU_TYPE_USB, 0x00600400);
	}

	/* Configure Tx FIFO threshold. */
	if (sc->sc_flags & URE_FLAG_8153B) {
		ure_write_4(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA, URE_TXFIFO_THR_NORMAL2);
	} else if (sc->sc_flags & URE_FLAG_8156) {
		ure_write_2(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA, URE_TXFIFO_THR_NORMAL2);
		URE_SETBIT_2(sc, 0xd4b4, URE_MCU_TYPE_USB, 0x0002);
	} else if (sc->sc_flags & URE_FLAG_8156B) {
		ure_write_2(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA, 0x0008);
		ure_write_2(sc, 0xe61a, URE_MCU_TYPE_PLA,
		    (URE_FRAMELEN(val) + 0x100) / 16 );
	}

	URE_CLRBIT_2(sc, URE_PLA_MAC_PWR_CTRL3, URE_MCU_TYPE_PLA, URE_PLA_MCU_SPDWN_EN);

	if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B))
		URE_CLRBIT_2(sc, 0xd32a, URE_MCU_TYPE_USB, 0x300);

	ure_enable_aldps(sc, true);

	if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) {
		/* Enable U2P3 */
		URE_SETBIT_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, URE_U2P3_ENABLE);
	}

	/* Enable U1U2 */
	if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_SUPER)
		URE_SETBIT_2(sc, URE_USB_LPM_CONFIG, URE_MCU_TYPE_USB, URE_LPM_U1U2_EN);
}

static void
ure_stop(struct usb_ether *ue)
{
	struct ure_softc *sc = uether_getsc(ue);
	struct ifnet *ifp = uether_getifp(ue);

	URE_LOCK_ASSERT(sc, MA_OWNED);

	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
	sc->sc_flags &= ~URE_FLAG_LINK;
	sc->sc_rxstarted = 0;

	/*
	 * stop all the transfers, if not already stopped:
	 */
	for (int i = 0; i < URE_MAX_RX; i++)
		usbd_transfer_stop(sc->sc_rx_xfer[i]);
	for (int i = 0; i < URE_MAX_TX; i++)
		usbd_transfer_stop(sc->sc_tx_xfer[i]);
}

static void
ure_disable_teredo(struct ure_softc *sc)
{

	if (sc->sc_flags & (URE_FLAG_8153B | URE_FLAG_8156 | URE_FLAG_8156B))
		ure_write_1(sc, URE_PLA_TEREDO_CFG, URE_MCU_TYPE_PLA, 0xff);
	else {
		URE_CLRBIT_2(sc, URE_PLA_TEREDO_CFG, URE_MCU_TYPE_PLA,
		    (URE_TEREDO_SEL | URE_TEREDO_RS_EVENT_MASK | URE_OOB_TEREDO_EN));
	}
	ure_write_2(sc, URE_PLA_WDT6_CTRL, URE_MCU_TYPE_PLA, URE_WDT6_SET_MODE);
	ure_write_2(sc, URE_PLA_REALWOW_TIMER, URE_MCU_TYPE_PLA, 0);
	ure_write_4(sc, URE_PLA_TEREDO_TIMER, URE_MCU_TYPE_PLA, 0);
}

static void
ure_enable_aldps(struct ure_softc *sc, bool enable)
{
	int i;

	if (enable) {
		ure_ocp_reg_write(sc, URE_OCP_POWER_CFG,
			ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) | URE_EN_ALDPS);
	} else {
		ure_ocp_reg_write(sc, URE_OCP_ALDPS_CONFIG, URE_ENPDNPS | URE_LINKENA |
			URE_DIS_SDSAVE);
		for (i = 0; i < 20; i++) {
			uether_pause(&sc->sc_ue, hz / 1000);
			if (ure_ocp_reg_read(sc, 0xe000) & 0x0100)
				break;
		}
	}
}

static uint16_t
ure_phy_status(struct ure_softc *sc, uint16_t desired)
{
	uint16_t val;
	int i;

	for (i = 0; i < URE_TIMEOUT; i++) {
		val = ure_ocp_reg_read(sc, URE_OCP_PHY_STATUS) &
		    URE_PHY_STAT_MASK;
		if (desired) {
			if (val == desired)
				break;
		} else {
			if (val == URE_PHY_STAT_LAN_ON ||
				val == URE_PHY_STAT_PWRDN ||
			    val == URE_PHY_STAT_EXT_INIT)
				break;
		}
		uether_pause(&sc->sc_ue, hz / 100);
	}
	if (i == URE_TIMEOUT)
		device_printf(sc->sc_ue.ue_dev,
		    "timeout waiting for phy to stabilize\n");

	return (val);
}

static void
ure_rtl8152_nic_reset(struct ure_softc *sc)
{
	uint32_t rx_fifo1, rx_fifo2;
	int i;

	URE_SETBIT_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA, URE_RXDY_GATED_EN);

	ure_disable_teredo(sc);

	DEVPRINTFN(14, sc->sc_ue.ue_dev, "rtl8152_nic_reset: RCR: %#x\n", ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA));
	URE_CLRBIT_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA, URE_RCR_ACPT_ALL);

	ure_reset(sc);

	ure_write_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, 0);

	URE_CLRBIT_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA, URE_NOW_IS_OOB);

	URE_CLRBIT_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA, URE_MCU_BORW_EN);
	for (i = 0; i < URE_TIMEOUT; i++) {
		if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
		    URE_LINK_LIST_READY)
			break;
		uether_pause(&sc->sc_ue, hz / 100);
	}
	if (i == URE_TIMEOUT)
		device_printf(sc->sc_ue.ue_dev,
		    "timeout waiting for OOB control\n");
	URE_SETBIT_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA, URE_RE_INIT_LL);
	for (i = 0; i < URE_TIMEOUT; i++) {
		if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
		    URE_LINK_LIST_READY)
			break;
		uether_pause(&sc->sc_ue, hz / 100);
	}
	if (i == URE_TIMEOUT)
		device_printf(sc->sc_ue.ue_dev,
		    "timeout waiting for OOB control\n");

	URE_CLRBIT_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA, URE_CPCR_RX_VLAN);

	URE_SETBIT_2(sc, URE_PLA_TCR0, URE_MCU_TYPE_PLA, URE_TCR0_AUTO_FIFO);

	/* Configure Rx FIFO threshold. */
	ure_write_4(sc, URE_PLA_RXFIFO_CTRL0, URE_MCU_TYPE_PLA,
	    URE_RXFIFO_THR1_NORMAL);
	if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_FULL) {
		rx_fifo1 = URE_RXFIFO_THR2_FULL;
		rx_fifo2 = URE_RXFIFO_THR3_FULL;
	} else {
		rx_fifo1 = URE_RXFIFO_THR2_HIGH;
		rx_fifo2 = URE_RXFIFO_THR3_HIGH;
	}
	ure_write_4(sc, URE_PLA_RXFIFO_CTRL1, URE_MCU_TYPE_PLA, rx_fifo1);
	ure_write_4(sc, URE_PLA_RXFIFO_CTRL2, URE_MCU_TYPE_PLA, rx_fifo2);

	/* Configure Tx FIFO threshold. */
	ure_write_4(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA,
	    URE_TXFIFO_THR_NORMAL);
}

/*
 * Update mbuf for rx checksum from hardware
 */
static void
ure_rxcsum(int capenb, struct ure_rxpkt *rp, struct mbuf *m)
{
	int flags;
	uint32_t csum, misc;
	int tcp, udp;

	m->m_pkthdr.csum_flags = 0;

	if (!(capenb & IFCAP_RXCSUM))
		return;

	csum = le32toh(rp->ure_csum);
	misc = le32toh(rp->ure_misc);

	tcp = udp = 0;

	flags = 0;
	if (csum & URE_RXPKT_IPV4_CS)
		flags |= CSUM_IP_CHECKED;
	else if (csum & URE_RXPKT_IPV6_CS)
		flags = 0;

	tcp = rp->ure_csum & URE_RXPKT_TCP_CS;
	udp = rp->ure_csum & URE_RXPKT_UDP_CS;

	if (__predict_true((flags & CSUM_IP_CHECKED) &&
	    !(misc & URE_RXPKT_IP_F))) {
		flags |= CSUM_IP_VALID;
	}
	if (__predict_true(
	    (tcp && !(misc & URE_RXPKT_TCP_F)) ||
	    (udp && !(misc & URE_RXPKT_UDP_F)))) {
		flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
		m->m_pkthdr.csum_data = 0xFFFF;
	}

	m->m_pkthdr.csum_flags = flags;
}

/*
 * If the L4 checksum offset is larger than 0x7ff (2047), return failure.
 * We currently restrict MTU such that it can't happen, and even if we
 * did have a large enough MTU, only a very specially crafted IPv6 packet
 * with MANY headers could possibly come close.
 *
 * Returns 0 for success, and 1 if the packet cannot be checksummed and
 * should be dropped.
 */
static int
ure_txcsum(struct mbuf *m, int caps, uint32_t *regout)
{
	struct ip ip;
	struct ether_header *eh;
	int flags;
	uint32_t data;
	uint32_t reg;
	int l3off, l4off;
	uint16_t type;

	*regout = 0;
	flags = m->m_pkthdr.csum_flags;
	if (flags == 0)
		return (0);

	if (__predict_true(m->m_len >= (int)sizeof(*eh))) {
		eh = mtod(m, struct ether_header *);
		type = eh->ether_type;
	} else
		m_copydata(m, offsetof(struct ether_header, ether_type),
		    sizeof(type), (caddr_t)&type);

	switch (type = htons(type)) {
	case ETHERTYPE_IP:
	case ETHERTYPE_IPV6:
		l3off = ETHER_HDR_LEN;
		break;
	case ETHERTYPE_VLAN:
		/* XXX - what about QinQ? */
		l3off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
		break;
	default:
		return (0);
	}

	reg = 0;

	if (flags & CSUM_IP)
		reg |= URE_TXPKT_IPV4_CS;

	data = m->m_pkthdr.csum_data;
	if (flags & (CSUM_IP_TCP | CSUM_IP_UDP)) {
		m_copydata(m, l3off, sizeof ip, (caddr_t)&ip);
		l4off = l3off + (ip.ip_hl << 2) + data;
		if (__predict_false(l4off > URE_L4_OFFSET_MAX))
			return (1);

		reg |= URE_TXPKT_IPV4_CS;
		if (flags & CSUM_IP_TCP)
			reg |= URE_TXPKT_TCP_CS;
		else if (flags & CSUM_IP_UDP)
			reg |= URE_TXPKT_UDP_CS;
		reg |= l4off << URE_L4_OFFSET_SHIFT;
	}
#ifdef INET6
	else if (flags & (CSUM_IP6_TCP | CSUM_IP6_UDP)) {
		l4off = l3off + data;
		if (__predict_false(l4off > URE_L4_OFFSET_MAX))
			return (1);

		reg |= URE_TXPKT_IPV6_CS;
		if (flags & CSUM_IP6_TCP)
			reg |= URE_TXPKT_TCP_CS;
		else if (flags & CSUM_IP6_UDP)
			reg |= URE_TXPKT_UDP_CS;
		reg |= l4off << URE_L4_OFFSET_SHIFT;
	}
#endif
	*regout = reg;
	return 0;
}