/*- * Copyright (c) 2015-2016 Kevin Lo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* needed for checksum offload */ #include #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR ure_debug #include #include #include #include #include "miibus_if.h" #include "opt_inet6.h" #ifdef USB_DEBUG static int ure_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, ure, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "USB ure"); SYSCTL_INT(_hw_usb_ure, OID_AUTO, debug, CTLFLAG_RWTUN, &ure_debug, 0, "Debug level"); #endif #ifdef USB_DEBUG_VAR #ifdef USB_DEBUG #define DEVPRINTFN(n,dev,fmt,...) do { \ if ((USB_DEBUG_VAR) >= (n)) { \ device_printf((dev), "%s: " fmt, \ __FUNCTION__ ,##__VA_ARGS__); \ } \ } while (0) #define DEVPRINTF(...) DEVPRINTFN(1, __VA_ARGS__) #else #define DEVPRINTF(...) do { } while (0) #define DEVPRINTFN(...) do { } while (0) #endif #endif /* * Various supported device vendors/products. */ static const STRUCT_USB_HOST_ID ure_devs[] = { #define URE_DEV(v,p,i) { \ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i), \ USB_IFACE_CLASS(UICLASS_VENDOR), \ USB_IFACE_SUBCLASS(UISUBCLASS_VENDOR) } URE_DEV(LENOVO, RTL8153, URE_FLAG_8153), URE_DEV(LENOVO, TBT3LAN, 0), URE_DEV(LENOVO, TBT3LANGEN2, 0), URE_DEV(LENOVO, ONELINK, 0), URE_DEV(LENOVO, USBCLAN, 0), URE_DEV(LENOVO, USBCLANGEN2, 0), URE_DEV(NVIDIA, RTL8153, URE_FLAG_8153), URE_DEV(REALTEK, RTL8152, URE_FLAG_8152), URE_DEV(REALTEK, RTL8153, URE_FLAG_8153), URE_DEV(TPLINK, RTL8153, URE_FLAG_8153), URE_DEV(REALTEK, RTL8156, URE_FLAG_8156), #undef URE_DEV }; static device_probe_t ure_probe; static device_attach_t ure_attach; static device_detach_t ure_detach; static usb_callback_t ure_bulk_read_callback; static usb_callback_t ure_bulk_write_callback; static miibus_readreg_t ure_miibus_readreg; static miibus_writereg_t ure_miibus_writereg; static miibus_statchg_t ure_miibus_statchg; static uether_fn_t ure_attach_post; static uether_fn_t ure_init; static uether_fn_t ure_stop; static uether_fn_t ure_start; static uether_fn_t ure_tick; static uether_fn_t ure_rxfilter; static int ure_ctl(struct ure_softc *, uint8_t, uint16_t, uint16_t, void *, int); static int ure_read_mem(struct ure_softc *, uint16_t, uint16_t, void *, int); static int ure_write_mem(struct ure_softc *, uint16_t, uint16_t, void *, int); static uint8_t ure_read_1(struct ure_softc *, uint16_t, uint16_t); static uint16_t ure_read_2(struct ure_softc *, uint16_t, uint16_t); static uint32_t ure_read_4(struct ure_softc *, uint16_t, uint16_t); static int ure_write_1(struct ure_softc *, uint16_t, uint16_t, uint32_t); static int ure_write_2(struct ure_softc *, uint16_t, uint16_t, uint32_t); static int ure_write_4(struct ure_softc *, uint16_t, uint16_t, uint32_t); static uint16_t ure_ocp_reg_read(struct ure_softc *, uint16_t); static void ure_ocp_reg_write(struct ure_softc *, uint16_t, uint16_t); static void ure_sram_write(struct ure_softc *, uint16_t, uint16_t); static int ure_sysctl_chipver(SYSCTL_HANDLER_ARGS); static void ure_read_chipver(struct ure_softc *); static int ure_attach_post_sub(struct usb_ether *); static void ure_reset(struct ure_softc *); static int ure_ifmedia_upd(struct ifnet *); static void ure_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void ure_add_media_types(struct ure_softc *); static void ure_link_state(struct ure_softc *sc); static int ure_get_link_status(struct ure_softc *); static int ure_ioctl(struct ifnet *, u_long, caddr_t); static void ure_rtl8152_init(struct ure_softc *); static void ure_rtl8152_nic_reset(struct ure_softc *); static void ure_rtl8153_init(struct ure_softc *); static void ure_rtl8153b_init(struct ure_softc *); static void ure_rtl8153b_nic_reset(struct ure_softc *); static void ure_disable_teredo(struct ure_softc *); static void ure_enable_aldps(struct ure_softc *, bool); static uint16_t ure_phy_status(struct ure_softc *, uint16_t); static void ure_rxcsum(int capenb, struct ure_rxpkt *rp, struct mbuf *m); static int ure_txcsum(struct mbuf *m, int caps, uint32_t *regout); static device_method_t ure_methods[] = { /* Device interface. */ DEVMETHOD(device_probe, ure_probe), DEVMETHOD(device_attach, ure_attach), DEVMETHOD(device_detach, ure_detach), /* MII interface. */ DEVMETHOD(miibus_readreg, ure_miibus_readreg), DEVMETHOD(miibus_writereg, ure_miibus_writereg), DEVMETHOD(miibus_statchg, ure_miibus_statchg), DEVMETHOD_END }; static driver_t ure_driver = { .name = "ure", .methods = ure_methods, .size = sizeof(struct ure_softc), }; DRIVER_MODULE(ure, uhub, ure_driver, NULL, NULL); DRIVER_MODULE(miibus, ure, miibus_driver, NULL, NULL); MODULE_DEPEND(ure, uether, 1, 1, 1); MODULE_DEPEND(ure, usb, 1, 1, 1); MODULE_DEPEND(ure, ether, 1, 1, 1); MODULE_DEPEND(ure, miibus, 1, 1, 1); MODULE_VERSION(ure, 1); USB_PNP_HOST_INFO(ure_devs); static const struct usb_ether_methods ure_ue_methods = { .ue_attach_post = ure_attach_post, .ue_attach_post_sub = ure_attach_post_sub, .ue_start = ure_start, .ue_init = ure_init, .ue_stop = ure_stop, .ue_tick = ure_tick, .ue_setmulti = ure_rxfilter, .ue_setpromisc = ure_rxfilter, .ue_mii_upd = ure_ifmedia_upd, .ue_mii_sts = ure_ifmedia_sts, }; #define URE_SETBIT_1(sc, reg, index, x) \ ure_write_1(sc, reg, index, ure_read_1(sc, reg, index) | (x)) #define URE_SETBIT_2(sc, reg, index, x) \ ure_write_2(sc, reg, index, ure_read_2(sc, reg, index) | (x)) #define URE_SETBIT_4(sc, reg, index, x) \ ure_write_4(sc, reg, index, ure_read_4(sc, reg, index) | (x)) #define URE_CLRBIT_1(sc, reg, index, x) \ ure_write_1(sc, reg, index, ure_read_1(sc, reg, index) & ~(x)) #define URE_CLRBIT_2(sc, reg, index, x) \ ure_write_2(sc, reg, index, ure_read_2(sc, reg, index) & ~(x)) #define URE_CLRBIT_4(sc, reg, index, x) \ ure_write_4(sc, reg, index, ure_read_4(sc, reg, index) & ~(x)) static int ure_ctl(struct ure_softc *sc, uint8_t rw, uint16_t val, uint16_t index, void *buf, int len) { struct usb_device_request req; URE_LOCK_ASSERT(sc, MA_OWNED); if (rw == URE_CTL_WRITE) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = UR_SET_ADDRESS; USETW(req.wValue, val); USETW(req.wIndex, index); USETW(req.wLength, len); return (uether_do_request(&sc->sc_ue, &req, buf, 1000)); } static int ure_read_mem(struct ure_softc *sc, uint16_t addr, uint16_t index, void *buf, int len) { return (ure_ctl(sc, URE_CTL_READ, addr, index, buf, len)); } static int ure_write_mem(struct ure_softc *sc, uint16_t addr, uint16_t index, void *buf, int len) { return (ure_ctl(sc, URE_CTL_WRITE, addr, index, buf, len)); } static uint8_t ure_read_1(struct ure_softc *sc, uint16_t reg, uint16_t index) { uint32_t val; uint8_t temp[4]; uint8_t shift; shift = (reg & 3) << 3; reg &= ~3; ure_read_mem(sc, reg, index, &temp, 4); val = UGETDW(temp); val >>= shift; return (val & 0xff); } static uint16_t ure_read_2(struct ure_softc *sc, uint16_t reg, uint16_t index) { uint32_t val; uint8_t temp[4]; uint8_t shift; shift = (reg & 2) << 3; reg &= ~3; ure_read_mem(sc, reg, index, &temp, 4); val = UGETDW(temp); val >>= shift; return (val & 0xffff); } static uint32_t ure_read_4(struct ure_softc *sc, uint16_t reg, uint16_t index) { uint8_t temp[4]; ure_read_mem(sc, reg, index, &temp, 4); return (UGETDW(temp)); } static int ure_write_1(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val) { uint16_t byen; uint8_t temp[4]; uint8_t shift; byen = URE_BYTE_EN_BYTE; shift = reg & 3; val &= 0xff; if (reg & 3) { byen <<= shift; val <<= (shift << 3); reg &= ~3; } USETDW(temp, val); return (ure_write_mem(sc, reg, index | byen, &temp, 4)); } static int ure_write_2(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val) { uint16_t byen; uint8_t temp[4]; uint8_t shift; byen = URE_BYTE_EN_WORD; shift = reg & 2; val &= 0xffff; if (reg & 2) { byen <<= shift; val <<= (shift << 3); reg &= ~3; } USETDW(temp, val); return (ure_write_mem(sc, reg, index | byen, &temp, 4)); } static int ure_write_4(struct ure_softc *sc, uint16_t reg, uint16_t index, uint32_t val) { uint8_t temp[4]; USETDW(temp, val); return (ure_write_mem(sc, reg, index | URE_BYTE_EN_DWORD, &temp, 4)); } static uint16_t ure_ocp_reg_read(struct ure_softc *sc, uint16_t addr) { uint16_t reg; ure_write_2(sc, URE_PLA_OCP_GPHY_BASE, URE_MCU_TYPE_PLA, addr & 0xf000); reg = (addr & 0x0fff) | 0xb000; return (ure_read_2(sc, reg, URE_MCU_TYPE_PLA)); } static void ure_ocp_reg_write(struct ure_softc *sc, uint16_t addr, uint16_t data) { uint16_t reg; ure_write_2(sc, URE_PLA_OCP_GPHY_BASE, URE_MCU_TYPE_PLA, addr & 0xf000); reg = (addr & 0x0fff) | 0xb000; ure_write_2(sc, reg, URE_MCU_TYPE_PLA, data); } static void ure_sram_write(struct ure_softc *sc, uint16_t addr, uint16_t data) { ure_ocp_reg_write(sc, URE_OCP_SRAM_ADDR, addr); ure_ocp_reg_write(sc, URE_OCP_SRAM_DATA, data); } static int ure_miibus_readreg(device_t dev, int phy, int reg) { struct ure_softc *sc; uint16_t val; int locked; sc = device_get_softc(dev); locked = mtx_owned(&sc->sc_mtx); if (!locked) URE_LOCK(sc); /* Let the rgephy driver read the URE_GMEDIASTAT register. */ if (reg == URE_GMEDIASTAT) { if (!locked) URE_UNLOCK(sc); return (ure_read_1(sc, URE_GMEDIASTAT, URE_MCU_TYPE_PLA)); } val = ure_ocp_reg_read(sc, URE_OCP_BASE_MII + reg * 2); if (!locked) URE_UNLOCK(sc); return (val); } static int ure_miibus_writereg(device_t dev, int phy, int reg, int val) { struct ure_softc *sc; int locked; sc = device_get_softc(dev); if (sc->sc_phyno != phy) return (0); locked = mtx_owned(&sc->sc_mtx); if (!locked) URE_LOCK(sc); ure_ocp_reg_write(sc, URE_OCP_BASE_MII + reg * 2, val); if (!locked) URE_UNLOCK(sc); return (0); } static void ure_miibus_statchg(device_t dev) { struct ure_softc *sc; struct mii_data *mii; struct ifnet *ifp; int locked; sc = device_get_softc(dev); mii = GET_MII(sc); locked = mtx_owned(&sc->sc_mtx); if (!locked) URE_LOCK(sc); ifp = uether_getifp(&sc->sc_ue); if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done; sc->sc_flags &= ~URE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->sc_flags |= URE_FLAG_LINK; sc->sc_rxstarted = 0; break; case IFM_1000_T: if ((sc->sc_flags & URE_FLAG_8152) != 0) break; sc->sc_flags |= URE_FLAG_LINK; sc->sc_rxstarted = 0; break; default: break; } } /* Lost link, do nothing. */ if ((sc->sc_flags & URE_FLAG_LINK) == 0) goto done; done: if (!locked) URE_UNLOCK(sc); } /* * Probe for a RTL8152/RTL8153 chip. */ static int ure_probe(device_t dev) { struct usb_attach_arg *uaa; uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bIfaceIndex != URE_IFACE_IDX) return (ENXIO); return (usbd_lookup_id_by_uaa(ure_devs, sizeof(ure_devs), uaa)); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int ure_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct ure_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; struct usb_config ure_config_rx[URE_MAX_RX]; struct usb_config ure_config_tx[URE_MAX_TX]; uint8_t iface_index; int error; int i; sc->sc_flags = USB_GET_DRIVER_INFO(uaa); device_set_usb_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF); iface_index = URE_IFACE_IDX; if (sc->sc_flags & (URE_FLAG_8153 | URE_FLAG_8153B)) sc->sc_rxbufsz = URE_8153_RX_BUFSZ; else if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) sc->sc_rxbufsz = URE_8156_RX_BUFSZ; else sc->sc_rxbufsz = URE_8152_RX_BUFSZ; for (i = 0; i < URE_MAX_RX; i++) { ure_config_rx[i] = (struct usb_config) { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = sc->sc_rxbufsz, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = ure_bulk_read_callback, .timeout = 0, /* no timeout */ }; } error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_rx_xfer, ure_config_rx, URE_MAX_RX, sc, &sc->sc_mtx); if (error != 0) { device_printf(dev, "allocating USB RX transfers failed\n"); goto detach; } for (i = 0; i < URE_MAX_TX; i++) { ure_config_tx[i] = (struct usb_config) { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = URE_TX_BUFSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = ure_bulk_write_callback, .timeout = 10000, /* 10 seconds */ }; } error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_tx_xfer, ure_config_tx, URE_MAX_TX, sc, &sc->sc_mtx); if (error != 0) { usbd_transfer_unsetup(sc->sc_rx_xfer, URE_MAX_RX); device_printf(dev, "allocating USB TX transfers failed\n"); goto detach; } ue->ue_sc = sc; ue->ue_dev = dev; ue->ue_udev = uaa->device; ue->ue_mtx = &sc->sc_mtx; ue->ue_methods = &ure_ue_methods; error = uether_ifattach(ue); if (error != 0) { device_printf(dev, "could not attach interface\n"); goto detach; } return (0); /* success */ detach: ure_detach(dev); return (ENXIO); /* failure */ } static int ure_detach(device_t dev) { struct ure_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; usbd_transfer_unsetup(sc->sc_tx_xfer, URE_MAX_TX); usbd_transfer_unsetup(sc->sc_rx_xfer, URE_MAX_RX); uether_ifdetach(ue); mtx_destroy(&sc->sc_mtx); return (0); } /* * Copy from USB buffers to a new mbuf chain with pkt header. * * This will use m_getm2 to get a mbuf chain w/ properly sized mbuf * clusters as necessary. */ static struct mbuf * ure_makembuf(struct usb_page_cache *pc, usb_frlength_t offset, usb_frlength_t len) { struct usb_page_search_res; struct mbuf *m, *mb; usb_frlength_t tlen; m = m_getm2(NULL, len + ETHER_ALIGN, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (m); /* uether_newbuf does this. */ m_adj(m, ETHER_ALIGN); m->m_pkthdr.len = len; for (mb = m; len > 0; mb = mb->m_next) { tlen = MIN(len, M_TRAILINGSPACE(mb)); usbd_copy_out(pc, offset, mtod(mb, uint8_t *), tlen); mb->m_len = tlen; offset += tlen; len -= tlen; } return (m); } static void ure_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct ure_softc *sc = usbd_xfer_softc(xfer); struct usb_ether *ue = &sc->sc_ue; struct ifnet *ifp = uether_getifp(ue); struct usb_page_cache *pc; struct mbuf *m; struct ure_rxpkt pkt; int actlen, off, len; int caps; uint32_t pktcsum; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: off = 0; pc = usbd_xfer_get_frame(xfer, 0); caps = if_getcapenable(ifp); DEVPRINTFN(13, sc->sc_ue.ue_dev, "rcb start\n"); while (actlen > 0) { if (actlen < (int)(sizeof(pkt))) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto tr_setup; } usbd_copy_out(pc, off, &pkt, sizeof(pkt)); off += sizeof(pkt); actlen -= sizeof(pkt); len = le32toh(pkt.ure_pktlen) & URE_RXPKT_LEN_MASK; DEVPRINTFN(13, sc->sc_ue.ue_dev, "rxpkt: %#x, %#x, %#x, %#x, %#x, %#x\n", pkt.ure_pktlen, pkt.ure_csum, pkt.ure_misc, pkt.ure_rsvd2, pkt.ure_rsvd3, pkt.ure_rsvd4); DEVPRINTFN(13, sc->sc_ue.ue_dev, "len: %d\n", len); if (len >= URE_RXPKT_LEN_MASK) { /* * drop the rest of this segment. With out * more information, we cannot know where next * packet starts. Blindly continuing would * cause a packet in packet attack, allowing * one VLAN to inject packets w/o a VLAN tag, * or injecting packets into other VLANs. */ if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto tr_setup; } if (actlen < len) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto tr_setup; } if (len >= (ETHER_HDR_LEN + ETHER_CRC_LEN)) m = ure_makembuf(pc, off, len - ETHER_CRC_LEN); else m = NULL; if (m == NULL) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); } else { /* make mbuf and queue */ pktcsum = le32toh(pkt.ure_csum); if (caps & IFCAP_VLAN_HWTAGGING && pktcsum & URE_RXPKT_RX_VLAN_TAG) { m->m_pkthdr.ether_vtag = bswap16(pktcsum & URE_RXPKT_VLAN_MASK); m->m_flags |= M_VLANTAG; } /* set the necessary flags for rx checksum */ ure_rxcsum(caps, &pkt, m); uether_rxmbuf(ue, m, len - ETHER_CRC_LEN); } off += roundup(len, URE_RXPKT_ALIGN); actlen -= roundup(len, URE_RXPKT_ALIGN); } DEVPRINTFN(13, sc->sc_ue.ue_dev, "rcb end\n"); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); uether_rxflush(ue); return; default: /* Error */ DPRINTF("bulk read error, %s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static void ure_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct ure_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = uether_getifp(&sc->sc_ue); struct usb_page_cache *pc; struct mbuf *m; struct ure_txpkt txpkt; uint32_t regtmp; int len, pos; int rem; int caps; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete\n"); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: if ((sc->sc_flags & URE_FLAG_LINK) == 0) { /* don't send anything if there is no link! */ break; } pc = usbd_xfer_get_frame(xfer, 0); caps = if_getcapenable(ifp); pos = 0; rem = URE_TX_BUFSZ; while (rem > sizeof(txpkt)) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; /* * make sure we don't ever send too large of a * packet */ len = m->m_pkthdr.len; if ((len & URE_TXPKT_LEN_MASK) != len) { device_printf(sc->sc_ue.ue_dev, "pkt len too large: %#x", len); pkterror: if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); continue; } if (sizeof(txpkt) + roundup(len, URE_TXPKT_ALIGN) > rem) { /* out of space */ IFQ_DRV_PREPEND(&ifp->if_snd, m); m = NULL; break; } txpkt = (struct ure_txpkt){}; txpkt.ure_pktlen = htole32((len & URE_TXPKT_LEN_MASK) | URE_TKPKT_TX_FS | URE_TKPKT_TX_LS); if (m->m_flags & M_VLANTAG) { txpkt.ure_csum = htole32( bswap16(m->m_pkthdr.ether_vtag & URE_TXPKT_VLAN_MASK) | URE_TXPKT_VLAN); } if (ure_txcsum(m, caps, ®tmp)) { device_printf(sc->sc_ue.ue_dev, "pkt l4 off too large"); goto pkterror; } txpkt.ure_csum |= htole32(regtmp); DEVPRINTFN(13, sc->sc_ue.ue_dev, "txpkt: mbflg: %#x, %#x, %#x\n", m->m_pkthdr.csum_flags, le32toh(txpkt.ure_pktlen), le32toh(txpkt.ure_csum)); usbd_copy_in(pc, pos, &txpkt, sizeof(txpkt)); pos += sizeof(txpkt); rem -= sizeof(txpkt); usbd_m_copy_in(pc, pos, m, 0, len); pos += roundup(len, URE_TXPKT_ALIGN); rem -= roundup(len, URE_TXPKT_ALIGN); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); /* * If there's a BPF listener, bounce a copy * of this frame to him. */ BPF_MTAP(ifp, m); m_freem(m); } /* no packets to send */ if (pos == 0) break; /* Set frame length. */ usbd_xfer_set_frame_len(xfer, 0, pos); usbd_transfer_submit(xfer); return; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usbd_errstr(error)); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (error == USB_ERR_TIMEOUT) { DEVPRINTFN(12, sc->sc_ue.ue_dev, "pkt tx timeout\n"); } if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } } } static void ure_read_chipver(struct ure_softc *sc) { uint16_t ver; ver = ure_read_2(sc, URE_PLA_TCR1, URE_MCU_TYPE_PLA) & URE_VERSION_MASK; sc->sc_ver = ver; switch (ver) { case 0x4c00: sc->sc_chip |= URE_CHIP_VER_4C00; sc->sc_flags = URE_FLAG_8152; break; case 0x4c10: sc->sc_chip |= URE_CHIP_VER_4C10; sc->sc_flags = URE_FLAG_8152; break; case 0x5c00: sc->sc_chip |= URE_CHIP_VER_5C00; sc->sc_flags = URE_FLAG_8153; break; case 0x5c10: sc->sc_chip |= URE_CHIP_VER_5C10; sc->sc_flags = URE_FLAG_8153; break; case 0x5c20: sc->sc_chip |= URE_CHIP_VER_5C20; sc->sc_flags = URE_FLAG_8153; break; case 0x5c30: sc->sc_chip |= URE_CHIP_VER_5C30; sc->sc_flags = URE_FLAG_8153; break; case 0x6000: sc->sc_flags = URE_FLAG_8153B; sc->sc_chip |= URE_CHIP_VER_6000; break; case 0x6010: sc->sc_flags = URE_FLAG_8153B; sc->sc_chip |= URE_CHIP_VER_6010; break; case 0x7020: sc->sc_flags = URE_FLAG_8156; sc->sc_chip |= URE_CHIP_VER_7020; break; case 0x7030: sc->sc_flags = URE_FLAG_8156; sc->sc_chip |= URE_CHIP_VER_7030; break; case 0x7400: sc->sc_flags = URE_FLAG_8156B; sc->sc_chip |= URE_CHIP_VER_7400; break; case 0x7410: sc->sc_flags = URE_FLAG_8156B; sc->sc_chip |= URE_CHIP_VER_7410; break; default: device_printf(sc->sc_ue.ue_dev, "unknown version 0x%04x\n", ver); break; } } static int ure_sysctl_chipver(SYSCTL_HANDLER_ARGS) { struct sbuf sb; struct ure_softc *sc = arg1; int error; sbuf_new_for_sysctl(&sb, NULL, 0, req); sbuf_printf(&sb, "%04x", sc->sc_ver); error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } static void ure_attach_post(struct usb_ether *ue) { struct ure_softc *sc = uether_getsc(ue); sc->sc_rxstarted = 0; sc->sc_phyno = 0; /* Determine the chip version. */ ure_read_chipver(sc); /* Initialize controller and get station address. */ if (sc->sc_flags & URE_FLAG_8152) ure_rtl8152_init(sc); else if (sc->sc_flags & (URE_FLAG_8153B | URE_FLAG_8156 | URE_FLAG_8156B)) ure_rtl8153b_init(sc); else ure_rtl8153_init(sc); if ((sc->sc_chip & URE_CHIP_VER_4C00) || (sc->sc_chip & URE_CHIP_VER_4C10)) ure_read_mem(sc, URE_PLA_IDR, URE_MCU_TYPE_PLA, ue->ue_eaddr, 8); else ure_read_mem(sc, URE_PLA_BACKUP, URE_MCU_TYPE_PLA, ue->ue_eaddr, 8); if (ETHER_IS_ZERO(sc->sc_ue.ue_eaddr)) { device_printf(sc->sc_ue.ue_dev, "MAC assigned randomly\n"); arc4rand(sc->sc_ue.ue_eaddr, ETHER_ADDR_LEN, 0); sc->sc_ue.ue_eaddr[0] &= ~0x01; /* unicast */ sc->sc_ue.ue_eaddr[0] |= 0x02; /* locally administered */ } } static int ure_attach_post_sub(struct usb_ether *ue) { struct sysctl_ctx_list *sctx; struct sysctl_oid *soid; struct ure_softc *sc; struct ifnet *ifp; int error; sc = uether_getsc(ue); ifp = ue->ue_ifp; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = uether_start; ifp->if_ioctl = ure_ioctl; ifp->if_init = uether_init; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); /* * Try to keep two transfers full at a time. * ~(TRANSFER_SIZE / 80 bytes/pkt * 2 buffers in flight) */ ifp->if_snd.ifq_drv_maxlen = 512; IFQ_SET_READY(&ifp->if_snd); if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0); if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM|IFCAP_HWCSUM, 0); if_sethwassist(ifp, CSUM_IP|CSUM_IP_UDP|CSUM_IP_TCP); #ifdef INET6 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM_IPV6, 0); #endif if_setcapenable(ifp, if_getcapabilities(ifp)); if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) { ifmedia_init(&sc->sc_ifmedia, IFM_IMASK, ure_ifmedia_upd, ure_ifmedia_sts); ure_add_media_types(sc); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_AUTO); sc->sc_ifmedia.ifm_media = IFM_ETHER | IFM_AUTO; error = 0; } else { bus_topo_lock(); error = mii_attach(ue->ue_dev, &ue->ue_miibus, ifp, uether_ifmedia_upd, ue->ue_methods->ue_mii_sts, BMSR_DEFCAPMASK, sc->sc_phyno, MII_OFFSET_ANY, 0); bus_topo_unlock(); } sctx = device_get_sysctl_ctx(sc->sc_ue.ue_dev); soid = device_get_sysctl_tree(sc->sc_ue.ue_dev); SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "chipver", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, ure_sysctl_chipver, "A", "Return string with chip version."); return (error); } static void ure_init(struct usb_ether *ue) { struct ure_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); uint16_t cpcr; uint32_t reg; URE_LOCK_ASSERT(sc, MA_OWNED); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* Cancel pending I/O. */ ure_stop(ue); if (sc->sc_flags & (URE_FLAG_8153B | URE_FLAG_8156 | URE_FLAG_8156B)) ure_rtl8153b_nic_reset(sc); else ure_reset(sc); /* Set MAC address. */ ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_CONFIG); ure_write_mem(sc, URE_PLA_IDR, URE_MCU_TYPE_PLA | URE_BYTE_EN_SIX_BYTES, IF_LLADDR(ifp), 8); ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_NORAML); /* Set RX EARLY timeout and size */ if (sc->sc_flags & URE_FLAG_8153) { switch (usbd_get_speed(sc->sc_ue.ue_udev)) { case USB_SPEED_SUPER: reg = URE_COALESCE_SUPER / 8; break; case USB_SPEED_HIGH: reg = URE_COALESCE_HIGH / 8; break; default: reg = URE_COALESCE_SLOW / 8; break; } ure_write_2(sc, URE_USB_RX_EARLY_AGG, URE_MCU_TYPE_USB, reg); reg = URE_8153_RX_BUFSZ - (URE_FRAMELEN(if_getmtu(ifp)) + sizeof(struct ure_rxpkt) + URE_RXPKT_ALIGN); ure_write_2(sc, URE_USB_RX_EARLY_SIZE, URE_MCU_TYPE_USB, reg / 4); } else if (sc->sc_flags & URE_FLAG_8153B) { ure_write_2(sc, URE_USB_RX_EARLY_AGG, URE_MCU_TYPE_USB, 158); ure_write_2(sc, URE_USB_RX_EXTRA_AGG_TMR, URE_MCU_TYPE_USB, 1875); reg = URE_8153_RX_BUFSZ - (URE_FRAMELEN(if_getmtu(ifp)) + sizeof(struct ure_rxpkt) + URE_RXPKT_ALIGN); ure_write_2(sc, URE_USB_RX_EARLY_SIZE, URE_MCU_TYPE_USB, reg / 8); ure_write_1(sc, URE_USB_UPT_RXDMA_OWN, URE_MCU_TYPE_USB, URE_OWN_UPDATE | URE_OWN_CLEAR); } else if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) { ure_write_2(sc, URE_USB_RX_EARLY_AGG, URE_MCU_TYPE_USB, 80); ure_write_2(sc, URE_USB_RX_EXTRA_AGG_TMR, URE_MCU_TYPE_USB, 1875); reg = URE_8156_RX_BUFSZ - (URE_FRAMELEN(if_getmtu(ifp)) + sizeof(struct ure_rxpkt) + URE_RXPKT_ALIGN); ure_write_2(sc, URE_USB_RX_EARLY_SIZE, URE_MCU_TYPE_USB, reg / 8); ure_write_1(sc, URE_USB_UPT_RXDMA_OWN, URE_MCU_TYPE_USB, URE_OWN_UPDATE | URE_OWN_CLEAR); } if (sc->sc_flags & URE_FLAG_8156B) { URE_CLRBIT_2(sc, URE_USB_FW_TASK, URE_MCU_TYPE_USB, URE_FC_PATCH_TASK); uether_pause(&sc->sc_ue, hz / 500); URE_SETBIT_2(sc, URE_USB_FW_TASK, URE_MCU_TYPE_USB, URE_FC_PATCH_TASK); } /* Reset the packet filter. */ URE_CLRBIT_2(sc, URE_PLA_FMC, URE_MCU_TYPE_PLA, URE_FMC_FCR_MCU_EN); URE_SETBIT_2(sc, URE_PLA_FMC, URE_MCU_TYPE_PLA, URE_FMC_FCR_MCU_EN); /* Enable RX VLANs if enabled */ cpcr = ure_read_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA); if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { DEVPRINTFN(12, sc->sc_ue.ue_dev, "enabled hw vlan tag\n"); cpcr |= URE_CPCR_RX_VLAN; } else { DEVPRINTFN(12, sc->sc_ue.ue_dev, "disabled hw vlan tag\n"); cpcr &= ~URE_CPCR_RX_VLAN; } ure_write_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA, cpcr); /* Enable transmit and receive. */ URE_SETBIT_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, URE_CR_RE | URE_CR_TE); URE_CLRBIT_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA, URE_RXDY_GATED_EN); /* Configure RX filters. */ ure_rxfilter(ue); usbd_xfer_set_stall(sc->sc_tx_xfer[0]); /* Indicate we are up and running. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; /* Switch to selected media. */ ure_ifmedia_upd(ifp); } static void ure_tick(struct usb_ether *ue) { struct ure_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); struct mii_data *mii; URE_LOCK_ASSERT(sc, MA_OWNED); (void)ifp; for (int i = 0; i < URE_MAX_RX; i++) DEVPRINTFN(13, sc->sc_ue.ue_dev, "rx[%d] = %d\n", i, USB_GET_STATE(sc->sc_rx_xfer[i])); for (int i = 0; i < URE_MAX_TX; i++) DEVPRINTFN(13, sc->sc_ue.ue_dev, "tx[%d] = %d\n", i, USB_GET_STATE(sc->sc_tx_xfer[i])); if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) { ure_link_state(sc); } else { mii = GET_MII(sc); mii_tick(mii); if ((sc->sc_flags & URE_FLAG_LINK) == 0 && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->sc_flags |= URE_FLAG_LINK; sc->sc_rxstarted = 0; ure_start(ue); } } } static u_int ure_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { uint32_t h, *hashes = arg; h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); return (1); } /* * Program the 64-bit multicast hash filter. */ static void ure_rxfilter(struct usb_ether *ue) { struct ure_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); uint32_t rxmode; uint32_t h, hashes[2] = { 0, 0 }; URE_LOCK_ASSERT(sc, MA_OWNED); rxmode = ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA); rxmode &= ~(URE_RCR_AAP | URE_RCR_AM); rxmode |= URE_RCR_APM; /* accept physical match packets */ rxmode |= URE_RCR_AB; /* always accept broadcasts */ if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { if (ifp->if_flags & IFF_PROMISC) rxmode |= URE_RCR_AAP; rxmode |= URE_RCR_AM; hashes[0] = hashes[1] = 0xffffffff; goto done; } /* calculate multicast masks */ if_foreach_llmaddr(ifp, ure_hash_maddr, &hashes); h = bswap32(hashes[0]); hashes[0] = bswap32(hashes[1]); hashes[1] = h; rxmode |= URE_RCR_AM; /* accept multicast packets */ done: DEVPRINTFN(14, ue->ue_dev, "rxfilt: RCR: %#x\n", ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA)); ure_write_4(sc, URE_PLA_MAR0, URE_MCU_TYPE_PLA, hashes[0]); ure_write_4(sc, URE_PLA_MAR4, URE_MCU_TYPE_PLA, hashes[1]); ure_write_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA, rxmode); } static void ure_start(struct usb_ether *ue) { struct ure_softc *sc = uether_getsc(ue); unsigned i; URE_LOCK_ASSERT(sc, MA_OWNED); if (!sc->sc_rxstarted) { sc->sc_rxstarted = 1; for (i = 0; i != URE_MAX_RX; i++) usbd_transfer_start(sc->sc_rx_xfer[i]); } for (i = 0; i != URE_MAX_TX; i++) usbd_transfer_start(sc->sc_tx_xfer[i]); } static void ure_reset(struct ure_softc *sc) { int i; ure_write_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, URE_CR_RST); for (i = 0; i < URE_TIMEOUT; i++) { if (!(ure_read_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA) & URE_CR_RST)) break; uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "reset never completed\n"); } /* * Set media options. */ static int ure_ifmedia_upd(struct ifnet *ifp) { struct ure_softc *sc = ifp->if_softc; struct ifmedia *ifm; struct mii_data *mii; struct mii_softc *miisc; int gig; int reg; int anar; int locked; int error; if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) { ifm = &sc->sc_ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); locked = mtx_owned(&sc->sc_mtx); if (!locked) URE_LOCK(sc); reg = ure_ocp_reg_read(sc, 0xa5d4); reg &= ~URE_ADV_2500TFDX; anar = gig = 0; switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10; gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX; reg |= URE_ADV_2500TFDX; break; case IFM_2500_T: anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10; gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX; reg |= URE_ADV_2500TFDX; ifp->if_baudrate = IF_Mbps(2500); break; case IFM_1000_T: anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10; gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX; ifp->if_baudrate = IF_Gbps(1); break; case IFM_100_TX: anar |= ANAR_TX | ANAR_TX_FD; ifp->if_baudrate = IF_Mbps(100); break; case IFM_10_T: anar |= ANAR_10 | ANAR_10_FD; ifp->if_baudrate = IF_Mbps(10); break; default: device_printf(sc->sc_ue.ue_dev, "unsupported media type\n"); if (!locked) URE_UNLOCK(sc); return (EINVAL); } ure_ocp_reg_write(sc, URE_OCP_BASE_MII + MII_ANAR * 2, anar | ANAR_PAUSE_ASYM | ANAR_FC); ure_ocp_reg_write(sc, URE_OCP_BASE_MII + MII_100T2CR * 2, gig); ure_ocp_reg_write(sc, 0xa5d4, reg); ure_ocp_reg_write(sc, URE_OCP_BASE_MII + MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); if (!locked) URE_UNLOCK(sc); return (0); } mii = GET_MII(sc); URE_LOCK_ASSERT(sc, MA_OWNED); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); return (error); } /* * Report current media status. */ static void ure_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct ure_softc *sc; struct mii_data *mii; uint16_t status; sc = ifp->if_softc; if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) { URE_LOCK(sc); ifmr->ifm_status = IFM_AVALID; if (ure_get_link_status(sc)) { ifmr->ifm_status |= IFM_ACTIVE; status = ure_read_2(sc, URE_PLA_PHYSTATUS, URE_MCU_TYPE_PLA); if ((status & URE_PHYSTATUS_FDX) || (status & URE_PHYSTATUS_2500MBPS)) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; if (status & URE_PHYSTATUS_10MBPS) ifmr->ifm_active |= IFM_10_T; else if (status & URE_PHYSTATUS_100MBPS) ifmr->ifm_active |= IFM_100_TX; else if (status & URE_PHYSTATUS_1000MBPS) ifmr->ifm_active |= IFM_1000_T; else if (status & URE_PHYSTATUS_2500MBPS) ifmr->ifm_active |= IFM_2500_T; } URE_UNLOCK(sc); return; } mii = GET_MII(sc); URE_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; URE_UNLOCK(sc); } static void ure_add_media_types(struct ure_softc *sc) { ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL); } static void ure_link_state(struct ure_softc *sc) { struct ifnet *ifp = uether_getifp(&sc->sc_ue); if (ure_get_link_status(sc)) { if (ifp->if_link_state != LINK_STATE_UP) { if_link_state_change(ifp, LINK_STATE_UP); /* Enable transmit and receive. */ URE_SETBIT_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, URE_CR_RE | URE_CR_TE); if (ure_read_2(sc, URE_PLA_PHYSTATUS, URE_MCU_TYPE_PLA) & URE_PHYSTATUS_2500MBPS) URE_CLRBIT_2(sc, URE_PLA_MAC_PWR_CTRL4, URE_MCU_TYPE_PLA, 0x40); else URE_SETBIT_2(sc, URE_PLA_MAC_PWR_CTRL4, URE_MCU_TYPE_PLA, 0x40); } } else { if (ifp->if_link_state != LINK_STATE_DOWN) { if_link_state_change(ifp, LINK_STATE_DOWN); } } } static int ure_get_link_status(struct ure_softc *sc) { if (ure_read_2(sc, URE_PLA_PHYSTATUS, URE_MCU_TYPE_PLA) & URE_PHYSTATUS_LINK) { sc->sc_flags |= URE_FLAG_LINK; return (1); } else { sc->sc_flags &= ~URE_FLAG_LINK; return (0); } } static int ure_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct usb_ether *ue = ifp->if_softc; struct ure_softc *sc; struct ifreq *ifr; int error, mask, reinit; sc = uether_getsc(ue); ifr = (struct ifreq *)data; error = 0; reinit = 0; switch (cmd) { case SIOCSIFCAP: URE_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; reinit++; } if ((mask & IFCAP_TXCSUM) != 0 && (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; } if ((mask & IFCAP_RXCSUM) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { ifp->if_capenable ^= IFCAP_RXCSUM; } if ((mask & IFCAP_TXCSUM_IPV6) != 0 && (ifp->if_capabilities & IFCAP_TXCSUM_IPV6) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; } if ((mask & IFCAP_RXCSUM_IPV6) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM_IPV6) != 0) { ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; } if (reinit > 0 && ifp->if_drv_flags & IFF_DRV_RUNNING) ifp->if_drv_flags &= ~IFF_DRV_RUNNING; else reinit = 0; URE_UNLOCK(sc); if (reinit > 0) uether_init(ue); break; case SIOCSIFMTU: /* * in testing large MTUs "crashes" the device, it * leaves the device w/ a broken state where link * is in a bad state. */ if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > (4096 - ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN - ETHER_CRC_LEN)) { error = EINVAL; break; } URE_LOCK(sc); if (if_getmtu(ifp) != ifr->ifr_mtu) if_setmtu(ifp, ifr->ifr_mtu); URE_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) error = ifmedia_ioctl(ifp, ifr, &sc->sc_ifmedia, cmd); else error = uether_ioctl(ifp, cmd, data); break; default: error = uether_ioctl(ifp, cmd, data); break; } return (error); } static void ure_rtl8152_init(struct ure_softc *sc) { uint32_t pwrctrl; ure_enable_aldps(sc, false); if (sc->sc_chip & URE_CHIP_VER_4C00) { URE_CLRBIT_2(sc, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA, URE_LED_MODE_MASK); } URE_CLRBIT_2(sc, URE_USB_UPS_CTRL, URE_MCU_TYPE_USB, URE_POWER_CUT); URE_CLRBIT_2(sc, URE_USB_PM_CTRL_STATUS, URE_MCU_TYPE_USB, URE_RESUME_INDICATE); URE_SETBIT_2(sc, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA, URE_TX_10M_IDLE_EN | URE_PFM_PWM_SWITCH); pwrctrl = ure_read_4(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA); pwrctrl &= ~URE_MCU_CLK_RATIO_MASK; pwrctrl |= URE_MCU_CLK_RATIO | URE_D3_CLK_GATED_EN; ure_write_4(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA, pwrctrl); ure_write_2(sc, URE_PLA_GPHY_INTR_IMR, URE_MCU_TYPE_PLA, URE_GPHY_STS_MSK | URE_SPEED_DOWN_MSK | URE_SPDWN_RXDV_MSK | URE_SPDWN_LINKCHG_MSK); /* Enable Rx aggregation. */ URE_CLRBIT_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB, URE_RX_AGG_DISABLE | URE_RX_ZERO_EN); ure_enable_aldps(sc, false); ure_rtl8152_nic_reset(sc); ure_write_1(sc, URE_USB_TX_AGG, URE_MCU_TYPE_USB, URE_TX_AGG_MAX_THRESHOLD); ure_write_4(sc, URE_USB_RX_BUF_TH, URE_MCU_TYPE_USB, URE_RX_THR_HIGH); ure_write_4(sc, URE_USB_TX_DMA, URE_MCU_TYPE_USB, URE_TEST_MODE_DISABLE | URE_TX_SIZE_ADJUST1); } static void ure_rtl8153_init(struct ure_softc *sc) { uint16_t val; uint8_t u1u2[8]; int i; ure_enable_aldps(sc, false); memset(u1u2, 0x00, sizeof(u1u2)); ure_write_mem(sc, URE_USB_TOLERANCE, URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2)); for (i = 0; i < URE_TIMEOUT; i++) { if (ure_read_2(sc, URE_PLA_BOOT_CTRL, URE_MCU_TYPE_PLA) & URE_AUTOLOAD_DONE) break; uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "timeout waiting for chip autoload\n"); for (i = 0; i < URE_TIMEOUT; i++) { val = ure_ocp_reg_read(sc, URE_OCP_PHY_STATUS) & URE_PHY_STAT_MASK; if (val == URE_PHY_STAT_LAN_ON || val == URE_PHY_STAT_PWRDN) break; uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "timeout waiting for phy to stabilize\n"); URE_CLRBIT_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, URE_U2P3_ENABLE); if (sc->sc_chip & URE_CHIP_VER_5C10) { val = ure_read_2(sc, URE_USB_SSPHYLINK2, URE_MCU_TYPE_USB); val &= ~URE_PWD_DN_SCALE_MASK; val |= URE_PWD_DN_SCALE(96); ure_write_2(sc, URE_USB_SSPHYLINK2, URE_MCU_TYPE_USB, val); URE_SETBIT_1(sc, URE_USB_USB2PHY, URE_MCU_TYPE_USB, URE_USB2PHY_L1 | URE_USB2PHY_SUSPEND); } else if (sc->sc_chip & URE_CHIP_VER_5C20) URE_CLRBIT_1(sc, URE_PLA_DMY_REG0, URE_MCU_TYPE_PLA, URE_ECM_ALDPS); if (sc->sc_chip & (URE_CHIP_VER_5C20 | URE_CHIP_VER_5C30)) { val = ure_read_1(sc, URE_USB_CSR_DUMMY1, URE_MCU_TYPE_USB); if (ure_read_2(sc, URE_USB_BURST_SIZE, URE_MCU_TYPE_USB) == 0) val &= ~URE_DYNAMIC_BURST; else val |= URE_DYNAMIC_BURST; ure_write_1(sc, URE_USB_CSR_DUMMY1, URE_MCU_TYPE_USB, val); } URE_SETBIT_1(sc, URE_USB_CSR_DUMMY2, URE_MCU_TYPE_USB, URE_EP4_FULL_FC); URE_CLRBIT_2(sc, URE_USB_WDT11_CTRL, URE_MCU_TYPE_USB, URE_TIMER11_EN); URE_CLRBIT_2(sc, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA, URE_LED_MODE_MASK); if ((sc->sc_chip & URE_CHIP_VER_5C10) && usbd_get_speed(sc->sc_ue.ue_udev) != USB_SPEED_SUPER) val = URE_LPM_TIMER_500MS; else val = URE_LPM_TIMER_500US; ure_write_1(sc, URE_USB_LPM_CTRL, URE_MCU_TYPE_USB, val | URE_FIFO_EMPTY_1FB | URE_ROK_EXIT_LPM); val = ure_read_2(sc, URE_USB_AFE_CTRL2, URE_MCU_TYPE_USB); val &= ~URE_SEN_VAL_MASK; val |= URE_SEN_VAL_NORMAL | URE_SEL_RXIDLE; ure_write_2(sc, URE_USB_AFE_CTRL2, URE_MCU_TYPE_USB, val); ure_write_2(sc, URE_USB_CONNECT_TIMER, URE_MCU_TYPE_USB, 0x0001); URE_CLRBIT_2(sc, URE_USB_POWER_CUT, URE_MCU_TYPE_USB, URE_PWR_EN | URE_PHASE2_EN); URE_CLRBIT_2(sc, URE_USB_MISC_0, URE_MCU_TYPE_USB, URE_PCUT_STATUS); memset(u1u2, 0xff, sizeof(u1u2)); ure_write_mem(sc, URE_USB_TOLERANCE, URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2)); ure_write_2(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA, URE_ALDPS_SPDWN_RATIO); ure_write_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_PLA, URE_EEE_SPDWN_RATIO); ure_write_2(sc, URE_PLA_MAC_PWR_CTRL3, URE_MCU_TYPE_PLA, URE_PKT_AVAIL_SPDWN_EN | URE_SUSPEND_SPDWN_EN | URE_U1U2_SPDWN_EN | URE_L1_SPDWN_EN); ure_write_2(sc, URE_PLA_MAC_PWR_CTRL4, URE_MCU_TYPE_PLA, URE_PWRSAVE_SPDWN_EN | URE_RXDV_SPDWN_EN | URE_TX10MIDLE_EN | URE_TP100_SPDWN_EN | URE_TP500_SPDWN_EN | URE_TP1000_SPDWN_EN | URE_EEE_SPDWN_EN); val = ure_read_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB); if (!(sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10))) val |= URE_U2P3_ENABLE; else val &= ~URE_U2P3_ENABLE; ure_write_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, val); memset(u1u2, 0x00, sizeof(u1u2)); ure_write_mem(sc, URE_USB_TOLERANCE, URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2)); ure_enable_aldps(sc, false); if (sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10 | URE_CHIP_VER_5C20)) { ure_ocp_reg_write(sc, URE_OCP_ADC_CFG, URE_CKADSEL_L | URE_ADC_EN | URE_EN_EMI_L); } if (sc->sc_chip & URE_CHIP_VER_5C00) { ure_ocp_reg_write(sc, URE_OCP_EEE_CFG, ure_ocp_reg_read(sc, URE_OCP_EEE_CFG) & ~URE_CTAP_SHORT_EN); } ure_ocp_reg_write(sc, URE_OCP_POWER_CFG, ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) | URE_EEE_CLKDIV_EN); ure_ocp_reg_write(sc, URE_OCP_DOWN_SPEED, ure_ocp_reg_read(sc, URE_OCP_DOWN_SPEED) | URE_EN_10M_BGOFF); ure_ocp_reg_write(sc, URE_OCP_POWER_CFG, ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) | URE_EN_10M_PLLOFF); ure_sram_write(sc, URE_SRAM_IMPEDANCE, 0x0b13); URE_SETBIT_2(sc, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA, URE_PFM_PWM_SWITCH); /* Enable LPF corner auto tune. */ ure_sram_write(sc, URE_SRAM_LPF_CFG, 0xf70f); /* Adjust 10M amplitude. */ ure_sram_write(sc, URE_SRAM_10M_AMP1, 0x00af); ure_sram_write(sc, URE_SRAM_10M_AMP2, 0x0208); ure_rtl8152_nic_reset(sc); /* Enable Rx aggregation. */ URE_CLRBIT_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB, URE_RX_AGG_DISABLE | URE_RX_ZERO_EN); val = ure_read_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB); if (!(sc->sc_chip & (URE_CHIP_VER_5C00 | URE_CHIP_VER_5C10))) val |= URE_U2P3_ENABLE; else val &= ~URE_U2P3_ENABLE; ure_write_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, val); memset(u1u2, 0xff, sizeof(u1u2)); ure_write_mem(sc, URE_USB_TOLERANCE, URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2)); } static void ure_rtl8153b_init(struct ure_softc *sc) { uint16_t val; int i; if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) { URE_CLRBIT_1(sc, 0xd26b, URE_MCU_TYPE_USB, 0x01); ure_write_2(sc, 0xd32a, URE_MCU_TYPE_USB, 0); URE_SETBIT_2(sc, 0xcfee, URE_MCU_TYPE_USB, 0x0020); } if (sc->sc_flags & URE_FLAG_8156B) { URE_SETBIT_2(sc, 0xb460, URE_MCU_TYPE_USB, 0x08); } ure_enable_aldps(sc, false); /* Disable U1U2 */ URE_CLRBIT_2(sc, URE_USB_LPM_CONFIG, URE_MCU_TYPE_USB, URE_LPM_U1U2_EN); /* Wait loading flash */ if (sc->sc_chip == URE_CHIP_VER_7410) { if ((ure_read_2(sc, 0xd3ae, URE_MCU_TYPE_PLA) & 0x0002) && !(ure_read_2(sc, 0xd284, URE_MCU_TYPE_USB) & 0x0020)) { for (i=0; i < 100; i++) { if (ure_read_2(sc, 0xd284, URE_MCU_TYPE_USB) & 0x0004) break; uether_pause(&sc->sc_ue, hz / 1000); } } } for (i = 0; i < URE_TIMEOUT; i++) { if (ure_read_2(sc, URE_PLA_BOOT_CTRL, URE_MCU_TYPE_PLA) & URE_AUTOLOAD_DONE) break; uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "timeout waiting for chip autoload\n"); val = ure_phy_status(sc, 0); if ((val == URE_PHY_STAT_EXT_INIT) & (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B))) { ure_ocp_reg_write(sc, 0xa468, ure_ocp_reg_read(sc, 0xa468) & ~0x0a); if (sc->sc_flags & URE_FLAG_8156B) ure_ocp_reg_write(sc, 0xa466, ure_ocp_reg_read(sc, 0xa466) & ~0x01); } val = ure_ocp_reg_read(sc, URE_OCP_BASE_MII + MII_BMCR); if (val & BMCR_PDOWN) { val &= ~BMCR_PDOWN; ure_ocp_reg_write(sc, URE_OCP_BASE_MII + MII_BMCR, val); } ure_phy_status(sc, URE_PHY_STAT_LAN_ON); /* Disable U2P3 */ URE_CLRBIT_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, URE_U2P3_ENABLE); /* MSC timer, 32760 ms. */ ure_write_2(sc, URE_USB_MSC_TIMER, URE_MCU_TYPE_USB, 0x0fff); /* U1/U2/L1 idle timer, 500 us. */ ure_write_2(sc, URE_USB_U1U2_TIMER, URE_MCU_TYPE_USB, 500); /* Disable power cut */ URE_CLRBIT_2(sc, URE_USB_POWER_CUT, URE_MCU_TYPE_USB, URE_PWR_EN); URE_CLRBIT_2(sc, URE_USB_MISC_0, URE_MCU_TYPE_USB, URE_PCUT_STATUS); /* Disable ups */ URE_CLRBIT_1(sc, URE_USB_POWER_CUT, URE_MCU_TYPE_USB, URE_UPS_EN | URE_USP_PREWAKE); URE_CLRBIT_1(sc, 0xcfff, URE_MCU_TYPE_USB, 0x01); /* Disable queue wake */ URE_CLRBIT_1(sc, URE_PLA_INDICATE_FALG, URE_MCU_TYPE_USB, URE_UPCOMING_RUNTIME_D3); URE_CLRBIT_1(sc, URE_PLA_SUSPEND_FLAG, URE_MCU_TYPE_USB, URE_LINK_CHG_EVENT); URE_CLRBIT_2(sc, URE_PLA_EXTRA_STATUS, URE_MCU_TYPE_USB, URE_LINK_CHANGE_FLAG); /* Disable runtime suspend */ ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_CONFIG); URE_CLRBIT_2(sc, URE_PLA_CONFIG34, URE_MCU_TYPE_USB, URE_LINK_OFF_WAKE_EN); ure_write_1(sc, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_NORAML); /* Enable U1U2 */ if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_SUPER) URE_SETBIT_2(sc, URE_USB_LPM_CONFIG, URE_MCU_TYPE_USB, URE_LPM_U1U2_EN); if (sc->sc_flags & URE_FLAG_8156B) { URE_CLRBIT_2(sc, 0xc010, URE_MCU_TYPE_PLA, 0x0800); URE_SETBIT_2(sc, 0xe854, URE_MCU_TYPE_PLA, 0x0001); /* enable fc timer and set timer to 600 ms. */ ure_write_2(sc, URE_USB_FC_TIMER, URE_MCU_TYPE_USB, URE_CTRL_TIMER_EN | (600 / 8)); if (!(ure_read_1(sc, 0xdc6b, URE_MCU_TYPE_PLA) & 0x80)) { val = ure_read_2(sc, URE_USB_FW_CTRL, URE_MCU_TYPE_USB); val |= URE_FLOW_CTRL_PATCH_OPT | 0x0100; val &= ~0x08; ure_write_2(sc, URE_USB_FW_CTRL, URE_MCU_TYPE_USB, val); } URE_SETBIT_2(sc, URE_USB_FW_TASK, URE_MCU_TYPE_USB, URE_FC_PATCH_TASK); } val = ure_read_2(sc, URE_PLA_EXTRA_STATUS, URE_MCU_TYPE_PLA); if (ure_get_link_status(sc)) val |= URE_CUR_LINK_OK; else val &= ~URE_CUR_LINK_OK; val |= URE_POLL_LINK_CHG; ure_write_2(sc, URE_PLA_EXTRA_STATUS, URE_MCU_TYPE_PLA, val); /* MAC clock speed down */ if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) { ure_write_2(sc, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA, 0x0403); val = ure_read_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_PLA); val &= ~0xff; val |= URE_MAC_CLK_SPDWN_EN | 0x03; ure_write_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_PLA, val); } else { URE_SETBIT_2(sc, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_USB, URE_MAC_CLK_SPDWN_EN); } URE_CLRBIT_2(sc, URE_PLA_MAC_PWR_CTRL3, URE_MCU_TYPE_PLA, URE_PLA_MCU_SPDWN_EN); /* Enable Rx aggregation. */ URE_CLRBIT_2(sc, URE_USB_USB_CTRL, URE_MCU_TYPE_USB, URE_RX_AGG_DISABLE | URE_RX_ZERO_EN); if (sc->sc_flags & URE_FLAG_8156) URE_SETBIT_1(sc, 0xd4b4, URE_MCU_TYPE_USB, 0x02); /* Reset tally */ URE_SETBIT_2(sc, URE_PLA_RSTTALLY, URE_MCU_TYPE_USB, URE_TALLY_RESET); } static void ure_rtl8153b_nic_reset(struct ure_softc *sc) { struct ifnet *ifp = uether_getifp(&sc->sc_ue); uint16_t val; int i; /* Disable U1U2 */ URE_CLRBIT_2(sc, URE_USB_LPM_CONFIG, URE_MCU_TYPE_USB, URE_LPM_U1U2_EN); /* Disable U2P3 */ URE_CLRBIT_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, URE_U2P3_ENABLE); ure_enable_aldps(sc, false); /* Enable rxdy_gated */ URE_SETBIT_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA, URE_RXDY_GATED_EN); /* Disable teredo */ ure_disable_teredo(sc); DEVPRINTFN(14, sc->sc_ue.ue_dev, "rtl8153b_nic_reset: RCR: %#x\n", ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA)); URE_CLRBIT_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA, URE_RCR_ACPT_ALL); ure_reset(sc); /* Reset BMU */ URE_CLRBIT_1(sc, URE_USB_BMU_RESET, URE_MCU_TYPE_USB, URE_BMU_RESET_EP_IN | URE_BMU_RESET_EP_OUT); URE_SETBIT_1(sc, URE_USB_BMU_RESET, URE_MCU_TYPE_USB, URE_BMU_RESET_EP_IN | URE_BMU_RESET_EP_OUT); URE_CLRBIT_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA, URE_NOW_IS_OOB); URE_CLRBIT_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA, URE_MCU_BORW_EN); if (sc->sc_flags & URE_FLAG_8153B) { for (i = 0; i < URE_TIMEOUT; i++) { if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) & URE_LINK_LIST_READY) break; uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "timeout waiting for OOB control\n"); URE_SETBIT_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA, URE_RE_INIT_LL); for (i = 0; i < URE_TIMEOUT; i++) { if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) & URE_LINK_LIST_READY) break; uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "timeout waiting for OOB control\n"); } /* Configure rxvlan */ val = ure_read_2(sc, 0xc012, URE_MCU_TYPE_PLA); val &= ~0x00c0; if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) val |= 0x00c0; ure_write_2(sc, 0xc012, URE_MCU_TYPE_PLA, val); val = if_getmtu(ifp); ure_write_2(sc, URE_PLA_RMS, URE_MCU_TYPE_PLA, URE_FRAMELEN(val)); ure_write_1(sc, URE_PLA_MTPS, URE_MCU_TYPE_PLA, URE_MTPS_JUMBO); if (sc->sc_flags & URE_FLAG_8153B) { URE_SETBIT_2(sc, URE_PLA_TCR0, URE_MCU_TYPE_PLA, URE_TCR0_AUTO_FIFO); ure_reset(sc); } /* Configure fc parameter */ if (sc->sc_flags & URE_FLAG_8156) { ure_write_2(sc, 0xc0a6, URE_MCU_TYPE_PLA, 0x0400); ure_write_2(sc, 0xc0aa, URE_MCU_TYPE_PLA, 0x0800); } else if (sc->sc_flags & URE_FLAG_8156B) { ure_write_2(sc, 0xc0a6, URE_MCU_TYPE_PLA, 0x0200); ure_write_2(sc, 0xc0aa, URE_MCU_TYPE_PLA, 0x0400); } /* Configure Rx FIFO threshold. */ if (sc->sc_flags & URE_FLAG_8153B) { ure_write_4(sc, URE_PLA_RXFIFO_CTRL0, URE_MCU_TYPE_PLA, URE_RXFIFO_THR1_NORMAL); ure_write_2(sc, URE_PLA_RXFIFO_CTRL1, URE_MCU_TYPE_PLA, URE_RXFIFO_THR2_NORMAL); ure_write_2(sc, URE_PLA_RXFIFO_CTRL2, URE_MCU_TYPE_PLA, URE_RXFIFO_THR3_NORMAL); ure_write_4(sc, URE_USB_RX_BUF_TH, URE_MCU_TYPE_USB, URE_RX_THR_B); } else { ure_write_2(sc, 0xc0a2, URE_MCU_TYPE_PLA, (ure_read_2(sc, 0xc0a2, URE_MCU_TYPE_PLA) & ~0xfff) | 0x08); ure_write_4(sc, URE_USB_RX_BUF_TH, URE_MCU_TYPE_USB, 0x00600400); } /* Configure Tx FIFO threshold. */ if (sc->sc_flags & URE_FLAG_8153B) { ure_write_4(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA, URE_TXFIFO_THR_NORMAL2); } else if (sc->sc_flags & URE_FLAG_8156) { ure_write_2(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA, URE_TXFIFO_THR_NORMAL2); URE_SETBIT_2(sc, 0xd4b4, URE_MCU_TYPE_USB, 0x0002); } else if (sc->sc_flags & URE_FLAG_8156B) { ure_write_2(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA, 0x0008); ure_write_2(sc, 0xe61a, URE_MCU_TYPE_PLA, (URE_FRAMELEN(val) + 0x100) / 16 ); } URE_CLRBIT_2(sc, URE_PLA_MAC_PWR_CTRL3, URE_MCU_TYPE_PLA, URE_PLA_MCU_SPDWN_EN); if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) URE_CLRBIT_2(sc, 0xd32a, URE_MCU_TYPE_USB, 0x300); ure_enable_aldps(sc, true); if (sc->sc_flags & (URE_FLAG_8156 | URE_FLAG_8156B)) { /* Enable U2P3 */ URE_SETBIT_2(sc, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, URE_U2P3_ENABLE); } /* Enable U1U2 */ if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_SUPER) URE_SETBIT_2(sc, URE_USB_LPM_CONFIG, URE_MCU_TYPE_USB, URE_LPM_U1U2_EN); } static void ure_stop(struct usb_ether *ue) { struct ure_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); URE_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_flags &= ~URE_FLAG_LINK; sc->sc_rxstarted = 0; /* * stop all the transfers, if not already stopped: */ for (int i = 0; i < URE_MAX_RX; i++) usbd_transfer_stop(sc->sc_rx_xfer[i]); for (int i = 0; i < URE_MAX_TX; i++) usbd_transfer_stop(sc->sc_tx_xfer[i]); } static void ure_disable_teredo(struct ure_softc *sc) { if (sc->sc_flags & (URE_FLAG_8153B | URE_FLAG_8156 | URE_FLAG_8156B)) ure_write_1(sc, URE_PLA_TEREDO_CFG, URE_MCU_TYPE_PLA, 0xff); else { URE_CLRBIT_2(sc, URE_PLA_TEREDO_CFG, URE_MCU_TYPE_PLA, (URE_TEREDO_SEL | URE_TEREDO_RS_EVENT_MASK | URE_OOB_TEREDO_EN)); } ure_write_2(sc, URE_PLA_WDT6_CTRL, URE_MCU_TYPE_PLA, URE_WDT6_SET_MODE); ure_write_2(sc, URE_PLA_REALWOW_TIMER, URE_MCU_TYPE_PLA, 0); ure_write_4(sc, URE_PLA_TEREDO_TIMER, URE_MCU_TYPE_PLA, 0); } static void ure_enable_aldps(struct ure_softc *sc, bool enable) { int i; if (enable) { ure_ocp_reg_write(sc, URE_OCP_POWER_CFG, ure_ocp_reg_read(sc, URE_OCP_POWER_CFG) | URE_EN_ALDPS); } else { ure_ocp_reg_write(sc, URE_OCP_ALDPS_CONFIG, URE_ENPDNPS | URE_LINKENA | URE_DIS_SDSAVE); for (i = 0; i < 20; i++) { uether_pause(&sc->sc_ue, hz / 1000); if (ure_ocp_reg_read(sc, 0xe000) & 0x0100) break; } } } static uint16_t ure_phy_status(struct ure_softc *sc, uint16_t desired) { uint16_t val; int i; for (i = 0; i < URE_TIMEOUT; i++) { val = ure_ocp_reg_read(sc, URE_OCP_PHY_STATUS) & URE_PHY_STAT_MASK; if (desired) { if (val == desired) break; } else { if (val == URE_PHY_STAT_LAN_ON || val == URE_PHY_STAT_PWRDN || val == URE_PHY_STAT_EXT_INIT) break; } uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "timeout waiting for phy to stabilize\n"); return (val); } static void ure_rtl8152_nic_reset(struct ure_softc *sc) { uint32_t rx_fifo1, rx_fifo2; int i; URE_SETBIT_2(sc, URE_PLA_MISC_1, URE_MCU_TYPE_PLA, URE_RXDY_GATED_EN); ure_disable_teredo(sc); DEVPRINTFN(14, sc->sc_ue.ue_dev, "rtl8152_nic_reset: RCR: %#x\n", ure_read_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA)); URE_CLRBIT_4(sc, URE_PLA_RCR, URE_MCU_TYPE_PLA, URE_RCR_ACPT_ALL); ure_reset(sc); ure_write_1(sc, URE_PLA_CR, URE_MCU_TYPE_PLA, 0); URE_CLRBIT_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA, URE_NOW_IS_OOB); URE_CLRBIT_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA, URE_MCU_BORW_EN); for (i = 0; i < URE_TIMEOUT; i++) { if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) & URE_LINK_LIST_READY) break; uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "timeout waiting for OOB control\n"); URE_SETBIT_2(sc, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA, URE_RE_INIT_LL); for (i = 0; i < URE_TIMEOUT; i++) { if (ure_read_1(sc, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) & URE_LINK_LIST_READY) break; uether_pause(&sc->sc_ue, hz / 100); } if (i == URE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "timeout waiting for OOB control\n"); URE_CLRBIT_2(sc, URE_PLA_CPCR, URE_MCU_TYPE_PLA, URE_CPCR_RX_VLAN); URE_SETBIT_2(sc, URE_PLA_TCR0, URE_MCU_TYPE_PLA, URE_TCR0_AUTO_FIFO); /* Configure Rx FIFO threshold. */ ure_write_4(sc, URE_PLA_RXFIFO_CTRL0, URE_MCU_TYPE_PLA, URE_RXFIFO_THR1_NORMAL); if (usbd_get_speed(sc->sc_ue.ue_udev) == USB_SPEED_FULL) { rx_fifo1 = URE_RXFIFO_THR2_FULL; rx_fifo2 = URE_RXFIFO_THR3_FULL; } else { rx_fifo1 = URE_RXFIFO_THR2_HIGH; rx_fifo2 = URE_RXFIFO_THR3_HIGH; } ure_write_4(sc, URE_PLA_RXFIFO_CTRL1, URE_MCU_TYPE_PLA, rx_fifo1); ure_write_4(sc, URE_PLA_RXFIFO_CTRL2, URE_MCU_TYPE_PLA, rx_fifo2); /* Configure Tx FIFO threshold. */ ure_write_4(sc, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA, URE_TXFIFO_THR_NORMAL); } /* * Update mbuf for rx checksum from hardware */ static void ure_rxcsum(int capenb, struct ure_rxpkt *rp, struct mbuf *m) { int flags; uint32_t csum, misc; int tcp, udp; m->m_pkthdr.csum_flags = 0; if (!(capenb & IFCAP_RXCSUM)) return; csum = le32toh(rp->ure_csum); misc = le32toh(rp->ure_misc); tcp = udp = 0; flags = 0; if (csum & URE_RXPKT_IPV4_CS) flags |= CSUM_IP_CHECKED; else if (csum & URE_RXPKT_IPV6_CS) flags = 0; tcp = rp->ure_csum & URE_RXPKT_TCP_CS; udp = rp->ure_csum & URE_RXPKT_UDP_CS; if (__predict_true((flags & CSUM_IP_CHECKED) && !(misc & URE_RXPKT_IP_F))) { flags |= CSUM_IP_VALID; } if (__predict_true( (tcp && !(misc & URE_RXPKT_TCP_F)) || (udp && !(misc & URE_RXPKT_UDP_F)))) { flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xFFFF; } m->m_pkthdr.csum_flags = flags; } /* * If the L4 checksum offset is larger than 0x7ff (2047), return failure. * We currently restrict MTU such that it can't happen, and even if we * did have a large enough MTU, only a very specially crafted IPv6 packet * with MANY headers could possibly come close. * * Returns 0 for success, and 1 if the packet cannot be checksummed and * should be dropped. */ static int ure_txcsum(struct mbuf *m, int caps, uint32_t *regout) { struct ip ip; struct ether_header *eh; int flags; uint32_t data; uint32_t reg; int l3off, l4off; uint16_t type; *regout = 0; flags = m->m_pkthdr.csum_flags; if (flags == 0) return (0); if (__predict_true(m->m_len >= (int)sizeof(*eh))) { eh = mtod(m, struct ether_header *); type = eh->ether_type; } else m_copydata(m, offsetof(struct ether_header, ether_type), sizeof(type), (caddr_t)&type); switch (type = htons(type)) { case ETHERTYPE_IP: case ETHERTYPE_IPV6: l3off = ETHER_HDR_LEN; break; case ETHERTYPE_VLAN: /* XXX - what about QinQ? */ l3off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; break; default: return (0); } reg = 0; if (flags & CSUM_IP) reg |= URE_TXPKT_IPV4_CS; data = m->m_pkthdr.csum_data; if (flags & (CSUM_IP_TCP | CSUM_IP_UDP)) { m_copydata(m, l3off, sizeof ip, (caddr_t)&ip); l4off = l3off + (ip.ip_hl << 2) + data; if (__predict_false(l4off > URE_L4_OFFSET_MAX)) return (1); reg |= URE_TXPKT_IPV4_CS; if (flags & CSUM_IP_TCP) reg |= URE_TXPKT_TCP_CS; else if (flags & CSUM_IP_UDP) reg |= URE_TXPKT_UDP_CS; reg |= l4off << URE_L4_OFFSET_SHIFT; } #ifdef INET6 else if (flags & (CSUM_IP6_TCP | CSUM_IP6_UDP)) { l4off = l3off + data; if (__predict_false(l4off > URE_L4_OFFSET_MAX)) return (1); reg |= URE_TXPKT_IPV6_CS; if (flags & CSUM_IP6_TCP) reg |= URE_TXPKT_TCP_CS; else if (flags & CSUM_IP6_UDP) reg |= URE_TXPKT_UDP_CS; reg |= l4off << URE_L4_OFFSET_SHIFT; } #endif *regout = reg; return 0; }