/*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Copyright (c) 2006 * Alfred Perlstein . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * ADMtek AN986 Pegasus and AN8511 Pegasus II USB to ethernet driver. * Datasheet is available from http://www.admtek.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City * * SMP locking by Alfred Perlstein . * RED Inc. */ /* * The Pegasus chip uses four USB "endpoints" to provide 10/100 ethernet * support: the control endpoint for reading/writing registers, burst * read endpoint for packet reception, burst write for packet transmission * and one for "interrupts." The chip uses the same RX filter scheme * as the other ADMtek ethernet parts: one perfect filter entry for the * the station address and a 64-bit multicast hash table. The chip supports * both MII and HomePNA attachments. * * Since the maximum data transfer speed of USB is supposed to be 12Mbps, * you're never really going to get 100Mbps speeds from this device. I * think the idea is to allow the device to connect to 10 or 100Mbps * networks, not necessarily to provide 100Mbps performance. Also, since * the controller uses an external PHY chip, it's possible that board * designers might simply choose a 10Mbps PHY. * * Registers are accessed using uether_do_request(). Packet * transfers are done using usbd_transfer() and friends. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR aue_debug #include #include #include #include #include "miibus_if.h" #ifdef USB_DEBUG static int aue_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, aue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "USB aue"); SYSCTL_INT(_hw_usb_aue, OID_AUTO, debug, CTLFLAG_RWTUN, &aue_debug, 0, "Debug level"); #endif /* * Various supported device vendors/products. */ static const STRUCT_USB_HOST_ID aue_devs[] = { #define AUE_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) } AUE_DEV(3COM, 3C460B, AUE_FLAG_PII), AUE_DEV(ABOCOM, DSB650TX_PNA, 0), AUE_DEV(ABOCOM, UFE1000, AUE_FLAG_LSYS), AUE_DEV(ABOCOM, XX10, 0), AUE_DEV(ABOCOM, XX1, AUE_FLAG_PNA | AUE_FLAG_PII), AUE_DEV(ABOCOM, XX2, AUE_FLAG_PII), AUE_DEV(ABOCOM, XX4, AUE_FLAG_PNA), AUE_DEV(ABOCOM, XX5, AUE_FLAG_PNA), AUE_DEV(ABOCOM, XX6, AUE_FLAG_PII), AUE_DEV(ABOCOM, XX7, AUE_FLAG_PII), AUE_DEV(ABOCOM, XX8, AUE_FLAG_PII), AUE_DEV(ABOCOM, XX9, AUE_FLAG_PNA), AUE_DEV(ACCTON, SS1001, AUE_FLAG_PII), AUE_DEV(ACCTON, USB320_EC, 0), AUE_DEV(ADMTEK, PEGASUSII_2, AUE_FLAG_PII), AUE_DEV(ADMTEK, PEGASUSII_3, AUE_FLAG_PII), AUE_DEV(ADMTEK, PEGASUSII_4, AUE_FLAG_PII), AUE_DEV(ADMTEK, PEGASUSII, AUE_FLAG_PII), AUE_DEV(ADMTEK, PEGASUS, AUE_FLAG_PNA | AUE_FLAG_DUAL_PHY), AUE_DEV(AEI, FASTETHERNET, AUE_FLAG_PII), AUE_DEV(ALLIEDTELESYN, ATUSB100, AUE_FLAG_PII), AUE_DEV(ATEN, UC110T, AUE_FLAG_PII), AUE_DEV(BELKIN, USB2LAN, AUE_FLAG_PII), AUE_DEV(BILLIONTON, USB100, 0), AUE_DEV(BILLIONTON, USBE100, AUE_FLAG_PII), AUE_DEV(BILLIONTON, USBEL100, 0), AUE_DEV(BILLIONTON, USBLP100, AUE_FLAG_PNA), AUE_DEV(COREGA, FETHER_USB_TXS, AUE_FLAG_PII), AUE_DEV(COREGA, FETHER_USB_TX, 0), AUE_DEV(DLINK, DSB650TX1, AUE_FLAG_LSYS), AUE_DEV(DLINK, DSB650TX2, AUE_FLAG_LSYS | AUE_FLAG_PII), AUE_DEV(DLINK, DSB650TX3, AUE_FLAG_LSYS | AUE_FLAG_PII), AUE_DEV(DLINK, DSB650TX4, AUE_FLAG_LSYS | AUE_FLAG_PII), AUE_DEV(DLINK, DSB650TX_PNA, AUE_FLAG_PNA), AUE_DEV(DLINK, DSB650TX, AUE_FLAG_LSYS), AUE_DEV(DLINK, DSB650, AUE_FLAG_LSYS), AUE_DEV(ELCON, PLAN, AUE_FLAG_PNA | AUE_FLAG_PII), AUE_DEV(ELECOM, LDUSB20, AUE_FLAG_PII), AUE_DEV(ELECOM, LDUSBLTX, AUE_FLAG_PII), AUE_DEV(ELECOM, LDUSBTX0, 0), AUE_DEV(ELECOM, LDUSBTX1, AUE_FLAG_LSYS), AUE_DEV(ELECOM, LDUSBTX2, 0), AUE_DEV(ELECOM, LDUSBTX3, AUE_FLAG_LSYS), AUE_DEV(ELSA, USB2ETHERNET, 0), AUE_DEV(GIGABYTE, GNBR402W, 0), AUE_DEV(HAWKING, UF100, AUE_FLAG_PII), AUE_DEV(HP, HN210E, AUE_FLAG_PII), AUE_DEV(IODATA, USBETTXS, AUE_FLAG_PII), AUE_DEV(IODATA, USBETTX, 0), AUE_DEV(KINGSTON, KNU101TX, 0), AUE_DEV(LINKSYS, USB100H1, AUE_FLAG_LSYS | AUE_FLAG_PNA), AUE_DEV(LINKSYS, USB100TX, AUE_FLAG_LSYS), AUE_DEV(LINKSYS, USB10TA, AUE_FLAG_LSYS), AUE_DEV(LINKSYS, USB10TX1, AUE_FLAG_LSYS | AUE_FLAG_PII), AUE_DEV(LINKSYS, USB10TX2, AUE_FLAG_LSYS | AUE_FLAG_PII), AUE_DEV(LINKSYS, USB10T, AUE_FLAG_LSYS), AUE_DEV(MELCO, LUA2TX5, AUE_FLAG_PII), AUE_DEV(MELCO, LUATX1, 0), AUE_DEV(MELCO, LUATX5, 0), AUE_DEV(MICROSOFT, MN110, AUE_FLAG_PII), AUE_DEV(NETGEAR, FA101, AUE_FLAG_PII), AUE_DEV(SIEMENS, SPEEDSTREAM, AUE_FLAG_PII), AUE_DEV(SIIG2, USBTOETHER, AUE_FLAG_PII), AUE_DEV(SMARTBRIDGES, SMARTNIC, AUE_FLAG_PII), AUE_DEV(SMC, 2202USB, 0), AUE_DEV(SMC, 2206USB, AUE_FLAG_PII), AUE_DEV(SOHOWARE, NUB100, 0), AUE_DEV(SOHOWARE, NUB110, AUE_FLAG_PII), #undef AUE_DEV }; /* prototypes */ static device_probe_t aue_probe; static device_attach_t aue_attach; static device_detach_t aue_detach; static miibus_readreg_t aue_miibus_readreg; static miibus_writereg_t aue_miibus_writereg; static miibus_statchg_t aue_miibus_statchg; static usb_callback_t aue_intr_callback; static usb_callback_t aue_bulk_read_callback; static usb_callback_t aue_bulk_write_callback; static uether_fn_t aue_attach_post; static uether_fn_t aue_init; static uether_fn_t aue_stop; static uether_fn_t aue_start; static uether_fn_t aue_tick; static uether_fn_t aue_setmulti; static uether_fn_t aue_setpromisc; static uint8_t aue_csr_read_1(struct aue_softc *, uint16_t); static uint16_t aue_csr_read_2(struct aue_softc *, uint16_t); static void aue_csr_write_1(struct aue_softc *, uint16_t, uint8_t); static void aue_csr_write_2(struct aue_softc *, uint16_t, uint16_t); static uint16_t aue_eeprom_getword(struct aue_softc *, int); static void aue_reset(struct aue_softc *); static void aue_reset_pegasus_II(struct aue_softc *); static int aue_ifmedia_upd(struct ifnet *); static void aue_ifmedia_sts(struct ifnet *, struct ifmediareq *); static const struct usb_config aue_config[AUE_N_TRANSFER] = { [AUE_BULK_DT_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = (MCLBYTES + 2), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = aue_bulk_write_callback, .timeout = 10000, /* 10 seconds */ }, [AUE_BULK_DT_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = (MCLBYTES + 4 + ETHER_CRC_LEN), .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = aue_bulk_read_callback, }, [AUE_INTR_DT_RD] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .bufsize = 0, /* use wMaxPacketSize */ .callback = aue_intr_callback, }, }; static device_method_t aue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, aue_probe), DEVMETHOD(device_attach, aue_attach), DEVMETHOD(device_detach, aue_detach), /* MII interface */ DEVMETHOD(miibus_readreg, aue_miibus_readreg), DEVMETHOD(miibus_writereg, aue_miibus_writereg), DEVMETHOD(miibus_statchg, aue_miibus_statchg), DEVMETHOD_END }; static driver_t aue_driver = { .name = "aue", .methods = aue_methods, .size = sizeof(struct aue_softc) }; DRIVER_MODULE(aue, uhub, aue_driver, NULL, NULL); DRIVER_MODULE(miibus, aue, miibus_driver, 0, 0); MODULE_DEPEND(aue, uether, 1, 1, 1); MODULE_DEPEND(aue, usb, 1, 1, 1); MODULE_DEPEND(aue, ether, 1, 1, 1); MODULE_DEPEND(aue, miibus, 1, 1, 1); MODULE_VERSION(aue, 1); USB_PNP_HOST_INFO(aue_devs); static const struct usb_ether_methods aue_ue_methods = { .ue_attach_post = aue_attach_post, .ue_start = aue_start, .ue_init = aue_init, .ue_stop = aue_stop, .ue_tick = aue_tick, .ue_setmulti = aue_setmulti, .ue_setpromisc = aue_setpromisc, .ue_mii_upd = aue_ifmedia_upd, .ue_mii_sts = aue_ifmedia_sts, }; #define AUE_SETBIT(sc, reg, x) \ aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) | (x)) #define AUE_CLRBIT(sc, reg, x) \ aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) & ~(x)) static uint8_t aue_csr_read_1(struct aue_softc *sc, uint16_t reg) { struct usb_device_request req; usb_error_t err; uint8_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = uether_do_request(&sc->sc_ue, &req, &val, 1000); if (err) return (0); return (val); } static uint16_t aue_csr_read_2(struct aue_softc *sc, uint16_t reg) { struct usb_device_request req; usb_error_t err; uint16_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = uether_do_request(&sc->sc_ue, &req, &val, 1000); if (err) return (0); return (le16toh(val)); } static void aue_csr_write_1(struct aue_softc *sc, uint16_t reg, uint8_t val) { struct usb_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; req.wValue[0] = val; req.wValue[1] = 0; USETW(req.wIndex, reg); USETW(req.wLength, 1); if (uether_do_request(&sc->sc_ue, &req, &val, 1000)) { /* error ignored */ } } static void aue_csr_write_2(struct aue_softc *sc, uint16_t reg, uint16_t val) { struct usb_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 2); val = htole16(val); if (uether_do_request(&sc->sc_ue, &req, &val, 1000)) { /* error ignored */ } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static uint16_t aue_eeprom_getword(struct aue_softc *sc, int addr) { int i; aue_csr_write_1(sc, AUE_EE_REG, addr); aue_csr_write_1(sc, AUE_EE_CTL, AUE_EECTL_READ); for (i = 0; i != AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_EE_CTL) & AUE_EECTL_DONE) break; if (uether_pause(&sc->sc_ue, hz / 100)) break; } if (i == AUE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "EEPROM read timed out\n"); return (aue_csr_read_2(sc, AUE_EE_DATA)); } /* * Read station address(offset 0) from the EEPROM. */ static void aue_read_mac(struct aue_softc *sc, uint8_t *eaddr) { int i, offset; uint16_t word; for (i = 0, offset = 0; i < ETHER_ADDR_LEN / 2; i++) { word = aue_eeprom_getword(sc, offset + i); eaddr[i * 2] = (uint8_t)word; eaddr[i * 2 + 1] = (uint8_t)(word >> 8); } } static int aue_miibus_readreg(device_t dev, int phy, int reg) { struct aue_softc *sc = device_get_softc(dev); int i, locked; uint16_t val = 0; locked = mtx_owned(&sc->sc_mtx); if (!locked) AUE_LOCK(sc); /* * The Am79C901 HomePNA PHY actually contains two transceivers: a 1Mbps * HomePNA PHY and a 10Mbps full/half duplex ethernet PHY with NWAY * autoneg. However in the ADMtek adapter, only the 1Mbps PHY is * actually connected to anything, so we ignore the 10Mbps one. It * happens to be configured for MII address 3, so we filter that out. */ if (sc->sc_flags & AUE_FLAG_DUAL_PHY) { if (phy == 3) goto done; #if 0 if (phy != 1) goto done; #endif } aue_csr_write_1(sc, AUE_PHY_ADDR, phy); aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_READ); for (i = 0; i != AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) break; if (uether_pause(&sc->sc_ue, hz / 100)) break; } if (i == AUE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "MII read timed out\n"); val = aue_csr_read_2(sc, AUE_PHY_DATA); done: if (!locked) AUE_UNLOCK(sc); return (val); } static int aue_miibus_writereg(device_t dev, int phy, int reg, int data) { struct aue_softc *sc = device_get_softc(dev); int i; int locked; if (phy == 3) return (0); locked = mtx_owned(&sc->sc_mtx); if (!locked) AUE_LOCK(sc); aue_csr_write_2(sc, AUE_PHY_DATA, data); aue_csr_write_1(sc, AUE_PHY_ADDR, phy); aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_WRITE); for (i = 0; i != AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) break; if (uether_pause(&sc->sc_ue, hz / 100)) break; } if (i == AUE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "MII write timed out\n"); if (!locked) AUE_UNLOCK(sc); return (0); } static void aue_miibus_statchg(device_t dev) { struct aue_softc *sc = device_get_softc(dev); struct mii_data *mii = GET_MII(sc); int locked; locked = mtx_owned(&sc->sc_mtx); if (!locked) AUE_LOCK(sc); AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); else AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); else AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB); /* * Set the LED modes on the LinkSys adapter. * This turns on the 'dual link LED' bin in the auxmode * register of the Broadcom PHY. */ if (sc->sc_flags & AUE_FLAG_LSYS) { uint16_t auxmode; auxmode = aue_miibus_readreg(dev, 0, 0x1b); aue_miibus_writereg(dev, 0, 0x1b, auxmode | 0x04); } if (!locked) AUE_UNLOCK(sc); } #define AUE_BITS 6 static u_int aue_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { uint8_t *hashtbl = arg; uint32_t h; h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & ((1 << AUE_BITS) - 1); hashtbl[(h >> 3)] |= 1 << (h & 0x7); return (1); } static void aue_setmulti(struct usb_ether *ue) { struct aue_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); uint32_t i; uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; AUE_LOCK_ASSERT(sc, MA_OWNED); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); return; } AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); /* now program new ones */ if_foreach_llmaddr(ifp, aue_hash_maddr, hashtbl); /* write the hashtable */ for (i = 0; i != 8; i++) aue_csr_write_1(sc, AUE_MAR0 + i, hashtbl[i]); } static void aue_reset_pegasus_II(struct aue_softc *sc) { /* Magic constants taken from Linux driver. */ aue_csr_write_1(sc, AUE_REG_1D, 0); aue_csr_write_1(sc, AUE_REG_7B, 2); #if 0 if ((sc->sc_flags & HAS_HOME_PNA) && mii_mode) aue_csr_write_1(sc, AUE_REG_81, 6); else #endif aue_csr_write_1(sc, AUE_REG_81, 2); } static void aue_reset(struct aue_softc *sc) { int i; AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_RESETMAC); for (i = 0; i != AUE_TIMEOUT; i++) { if (!(aue_csr_read_1(sc, AUE_CTL1) & AUE_CTL1_RESETMAC)) break; if (uether_pause(&sc->sc_ue, hz / 100)) break; } if (i == AUE_TIMEOUT) device_printf(sc->sc_ue.ue_dev, "reset failed\n"); /* * The PHY(s) attached to the Pegasus chip may be held * in reset until we flip on the GPIO outputs. Make sure * to set the GPIO pins high so that the PHY(s) will * be enabled. * * NOTE: We used to force all of the GPIO pins low first and then * enable the ones we want. This has been changed to better * match the ADMtek's reference design to avoid setting the * power-down configuration line of the PHY at the same time * it is reset. */ aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0|AUE_GPIO_SEL1); aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0|AUE_GPIO_SEL1|AUE_GPIO_OUT0); if (sc->sc_flags & AUE_FLAG_LSYS) { /* Grrr. LinkSys has to be different from everyone else. */ aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0|AUE_GPIO_SEL1); aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0|AUE_GPIO_SEL1|AUE_GPIO_OUT0); } if (sc->sc_flags & AUE_FLAG_PII) aue_reset_pegasus_II(sc); /* Wait a little while for the chip to get its brains in order: */ uether_pause(&sc->sc_ue, hz / 100); } static void aue_attach_post(struct usb_ether *ue) { struct aue_softc *sc = uether_getsc(ue); /* reset the adapter */ aue_reset(sc); /* get station address from the EEPROM */ aue_read_mac(sc, ue->ue_eaddr); } /* * Probe for a Pegasus chip. */ static int aue_probe(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != AUE_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != AUE_IFACE_IDX) return (ENXIO); /* * Belkin USB Bluetooth dongles of the F8T012xx1 model series conflict * with older Belkin USB2LAN adapters. Skip if_aue if we detect one of * the devices that look like Bluetooth adapters. */ if (uaa->info.idVendor == USB_VENDOR_BELKIN && uaa->info.idProduct == USB_PRODUCT_BELKIN_F8T012 && uaa->info.bcdDevice == 0x0413) return (ENXIO); return (usbd_lookup_id_by_uaa(aue_devs, sizeof(aue_devs), uaa)); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int aue_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct aue_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; uint8_t iface_index; int error; sc->sc_flags = USB_GET_DRIVER_INFO(uaa); if (uaa->info.bcdDevice >= 0x0201) { /* XXX currently undocumented */ sc->sc_flags |= AUE_FLAG_VER_2; } device_set_usb_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF); iface_index = AUE_IFACE_IDX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, aue_config, AUE_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(dev, "allocating USB transfers failed\n"); goto detach; } ue->ue_sc = sc; ue->ue_dev = dev; ue->ue_udev = uaa->device; ue->ue_mtx = &sc->sc_mtx; ue->ue_methods = &aue_ue_methods; error = uether_ifattach(ue); if (error) { device_printf(dev, "could not attach interface\n"); goto detach; } return (0); /* success */ detach: aue_detach(dev); return (ENXIO); /* failure */ } static int aue_detach(device_t dev) { struct aue_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; usbd_transfer_unsetup(sc->sc_xfer, AUE_N_TRANSFER); uether_ifdetach(ue); mtx_destroy(&sc->sc_mtx); return (0); } static void aue_intr_callback(struct usb_xfer *xfer, usb_error_t error) { struct aue_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = uether_getifp(&sc->sc_ue); struct aue_intrpkt pkt; struct usb_page_cache *pc; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && actlen >= (int)sizeof(pkt)) { pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, 0, &pkt, sizeof(pkt)); if (pkt.aue_txstat0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (pkt.aue_txstat0 & (AUE_TXSTAT0_LATECOLL | AUE_TXSTAT0_EXCESSCOLL)) if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); return; default: /* Error */ if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static void aue_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct aue_softc *sc = usbd_xfer_softc(xfer); struct usb_ether *ue = &sc->sc_ue; struct ifnet *ifp = uether_getifp(ue); struct aue_rxpkt stat; struct usb_page_cache *pc; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); pc = usbd_xfer_get_frame(xfer, 0); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "received %d bytes\n", actlen); if (sc->sc_flags & AUE_FLAG_VER_2) { if (actlen == 0) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto tr_setup; } } else { if (actlen <= (int)(sizeof(stat) + ETHER_CRC_LEN)) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto tr_setup; } usbd_copy_out(pc, actlen - sizeof(stat), &stat, sizeof(stat)); /* * turn off all the non-error bits in the rx status * word: */ stat.aue_rxstat &= AUE_RXSTAT_MASK; if (stat.aue_rxstat) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto tr_setup; } /* No errors; receive the packet. */ actlen -= (sizeof(stat) + ETHER_CRC_LEN); } uether_rxbuf(ue, pc, 0, actlen); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); uether_rxflush(ue); return; default: /* Error */ DPRINTF("bulk read error, %s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static void aue_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct aue_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = uether_getifp(&sc->sc_ue); struct usb_page_cache *pc; struct mbuf *m; uint8_t buf[2]; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); pc = usbd_xfer_get_frame(xfer, 0); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer of %d bytes complete\n", actlen); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: if ((sc->sc_flags & AUE_FLAG_LINK) == 0) { /* * don't send anything if there is no link ! */ return; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) return; if (m->m_pkthdr.len > MCLBYTES) m->m_pkthdr.len = MCLBYTES; if (sc->sc_flags & AUE_FLAG_VER_2) { usbd_xfer_set_frame_len(xfer, 0, m->m_pkthdr.len); usbd_m_copy_in(pc, 0, m, 0, m->m_pkthdr.len); } else { usbd_xfer_set_frame_len(xfer, 0, (m->m_pkthdr.len + 2)); /* * The ADMtek documentation says that the * packet length is supposed to be specified * in the first two bytes of the transfer, * however it actually seems to ignore this * info and base the frame size on the bulk * transfer length. */ buf[0] = (uint8_t)(m->m_pkthdr.len); buf[1] = (uint8_t)(m->m_pkthdr.len >> 8); usbd_copy_in(pc, 0, buf, 2); usbd_m_copy_in(pc, 2, m, 0, m->m_pkthdr.len); } /* * if there's a BPF listener, bounce a copy * of this frame to him: */ BPF_MTAP(ifp, m); m_freem(m); usbd_transfer_submit(xfer); return; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usbd_errstr(error)); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static void aue_tick(struct usb_ether *ue) { struct aue_softc *sc = uether_getsc(ue); struct mii_data *mii = GET_MII(sc); AUE_LOCK_ASSERT(sc, MA_OWNED); mii_tick(mii); if ((sc->sc_flags & AUE_FLAG_LINK) == 0 && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->sc_flags |= AUE_FLAG_LINK; aue_start(ue); } } static void aue_start(struct usb_ether *ue) { struct aue_softc *sc = uether_getsc(ue); /* * start the USB transfers, if not already started: */ usbd_transfer_start(sc->sc_xfer[AUE_INTR_DT_RD]); usbd_transfer_start(sc->sc_xfer[AUE_BULK_DT_RD]); usbd_transfer_start(sc->sc_xfer[AUE_BULK_DT_WR]); } static void aue_init(struct usb_ether *ue) { struct aue_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); int i; AUE_LOCK_ASSERT(sc, MA_OWNED); /* * Cancel pending I/O */ aue_reset(sc); /* Set MAC address */ for (i = 0; i != ETHER_ADDR_LEN; i++) aue_csr_write_1(sc, AUE_PAR0 + i, IF_LLADDR(ifp)[i]); /* update promiscuous setting */ aue_setpromisc(ue); /* Load the multicast filter. */ aue_setmulti(ue); /* Enable RX and TX */ aue_csr_write_1(sc, AUE_CTL0, AUE_CTL0_RXSTAT_APPEND | AUE_CTL0_RX_ENB); AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_TX_ENB); AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_EP3_CLR); usbd_xfer_set_stall(sc->sc_xfer[AUE_BULK_DT_WR]); ifp->if_drv_flags |= IFF_DRV_RUNNING; aue_start(ue); } static void aue_setpromisc(struct usb_ether *ue) { struct aue_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); AUE_LOCK_ASSERT(sc, MA_OWNED); /* if we want promiscuous mode, set the allframes bit: */ if (ifp->if_flags & IFF_PROMISC) AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); else AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } /* * Set media options. */ static int aue_ifmedia_upd(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); struct mii_softc *miisc; int error; AUE_LOCK_ASSERT(sc, MA_OWNED); sc->sc_flags &= ~AUE_FLAG_LINK; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); return (error); } /* * Report current media status. */ static void aue_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct aue_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); AUE_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; AUE_UNLOCK(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void aue_stop(struct usb_ether *ue) { struct aue_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); AUE_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sc->sc_flags &= ~AUE_FLAG_LINK; /* * stop all the transfers, if not already stopped: */ usbd_transfer_stop(sc->sc_xfer[AUE_BULK_DT_WR]); usbd_transfer_stop(sc->sc_xfer[AUE_BULK_DT_RD]); usbd_transfer_stop(sc->sc_xfer[AUE_INTR_DT_RD]); aue_csr_write_1(sc, AUE_CTL0, 0); aue_csr_write_1(sc, AUE_CTL1, 0); aue_reset(sc); }