/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012 Semihalf. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_acpi.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #ifdef FDT #include #include #endif #include #include "uart_if.h" #ifdef DEV_ACPI #include #include #include #include #endif #include #ifdef __aarch64__ #define IS_FDT (arm64_bus_method == ARM64_BUS_FDT) #elif defined(FDT) #define IS_FDT 1 #else #error Unsupported configuration #endif /* PL011 UART registers and masks*/ #define UART_DR 0x00 /* Data register */ #define DR_FE (1 << 8) /* Framing error */ #define DR_PE (1 << 9) /* Parity error */ #define DR_BE (1 << 10) /* Break error */ #define DR_OE (1 << 11) /* Overrun error */ #define UART_FR 0x06 /* Flag register */ #define FR_RXFE (1 << 4) /* Receive FIFO/reg empty */ #define FR_TXFF (1 << 5) /* Transmit FIFO/reg full */ #define FR_RXFF (1 << 6) /* Receive FIFO/reg full */ #define FR_TXFE (1 << 7) /* Transmit FIFO/reg empty */ #define UART_IBRD 0x09 /* Integer baud rate register */ #define IBRD_BDIVINT 0xffff /* Significant part of int. divisor value */ #define UART_FBRD 0x0a /* Fractional baud rate register */ #define FBRD_BDIVFRAC 0x3f /* Significant part of frac. divisor value */ #define UART_LCR_H 0x0b /* Line control register */ #define LCR_H_WLEN8 (0x3 << 5) #define LCR_H_WLEN7 (0x2 << 5) #define LCR_H_WLEN6 (0x1 << 5) #define LCR_H_FEN (1 << 4) /* FIFO mode enable */ #define LCR_H_STP2 (1 << 3) /* 2 stop frames at the end */ #define LCR_H_EPS (1 << 2) /* Even parity select */ #define LCR_H_PEN (1 << 1) /* Parity enable */ #define UART_CR 0x0c /* Control register */ #define CR_RXE (1 << 9) /* Receive enable */ #define CR_TXE (1 << 8) /* Transmit enable */ #define CR_UARTEN (1 << 0) /* UART enable */ #define UART_IFLS 0x0d /* FIFO level select register */ #define IFLS_RX_SHIFT 3 /* RX level in bits [5:3] */ #define IFLS_TX_SHIFT 0 /* TX level in bits [2:0] */ #define IFLS_MASK 0x07 /* RX/TX level is 3 bits */ #define IFLS_LVL_1_8th 0 /* Interrupt at 1/8 full */ #define IFLS_LVL_2_8th 1 /* Interrupt at 1/4 full */ #define IFLS_LVL_4_8th 2 /* Interrupt at 1/2 full */ #define IFLS_LVL_6_8th 3 /* Interrupt at 3/4 full */ #define IFLS_LVL_7_8th 4 /* Interrupt at 7/8 full */ #define UART_IMSC 0x0e /* Interrupt mask set/clear register */ #define IMSC_MASK_ALL 0x7ff /* Mask all interrupts */ #define UART_RIS 0x0f /* Raw interrupt status register */ #define UART_RXREADY (1 << 4) /* RX buffer full */ #define UART_TXEMPTY (1 << 5) /* TX buffer empty */ #define RIS_RTIM (1 << 6) /* Receive timeout */ #define RIS_FE (1 << 7) /* Framing error interrupt status */ #define RIS_PE (1 << 8) /* Parity error interrupt status */ #define RIS_BE (1 << 9) /* Break error interrupt status */ #define RIS_OE (1 << 10) /* Overrun interrupt status */ #define UART_MIS 0x10 /* Masked interrupt status register */ #define UART_ICR 0x11 /* Interrupt clear register */ #define UART_PIDREG_0 0x3f8 /* Peripheral ID register 0 */ #define UART_PIDREG_1 0x3f9 /* Peripheral ID register 1 */ #define UART_PIDREG_2 0x3fa /* Peripheral ID register 2 */ #define UART_PIDREG_3 0x3fb /* Peripheral ID register 3 */ /* * The hardware FIFOs are 16 bytes each on rev 2 and earlier hardware, 32 bytes * on rev 3 and later. We configure them to interrupt when 3/4 full/empty. For * RX we set the size to the full hardware capacity so that the uart core * allocates enough buffer space to hold a complete fifo full of incoming data. * For TX, we need to limit the size to the capacity we know will be available * when the interrupt occurs; uart_core will feed exactly that many bytes to * uart_pl011_bus_transmit() which must consume them all. */ #define FIFO_RX_SIZE_R2 16 #define FIFO_TX_SIZE_R2 12 #define FIFO_RX_SIZE_R3 32 #define FIFO_TX_SIZE_R3 24 #define FIFO_IFLS_BITS ((IFLS_LVL_6_8th << IFLS_RX_SHIFT) | (IFLS_LVL_2_8th)) /* * FIXME: actual register size is SoC-dependent, we need to handle it */ #define __uart_getreg(bas, reg) \ bus_space_read_4((bas)->bst, (bas)->bsh, uart_regofs(bas, reg)) #define __uart_setreg(bas, reg, value) \ bus_space_write_4((bas)->bst, (bas)->bsh, uart_regofs(bas, reg), value) /* * Low-level UART interface. */ static int uart_pl011_probe(struct uart_bas *bas); static void uart_pl011_init(struct uart_bas *bas, int, int, int, int); static void uart_pl011_term(struct uart_bas *bas); static void uart_pl011_putc(struct uart_bas *bas, int); static int uart_pl011_rxready(struct uart_bas *bas); static int uart_pl011_getc(struct uart_bas *bas, struct mtx *); static struct uart_ops uart_pl011_ops = { .probe = uart_pl011_probe, .init = uart_pl011_init, .term = uart_pl011_term, .putc = uart_pl011_putc, .rxready = uart_pl011_rxready, .getc = uart_pl011_getc, }; static int uart_pl011_probe(struct uart_bas *bas) { return (0); } static void uart_pl011_param(struct uart_bas *bas, int baudrate, int databits, int stopbits, int parity) { uint32_t ctrl, line; uint32_t baud; /* * Zero all settings to make sure * UART is disabled and not configured */ ctrl = line = 0x0; __uart_setreg(bas, UART_CR, ctrl); /* As we know UART is disabled we may setup the line */ switch (databits) { case 7: line |= LCR_H_WLEN7; break; case 6: line |= LCR_H_WLEN6; break; case 8: default: line |= LCR_H_WLEN8; break; } if (stopbits == 2) line |= LCR_H_STP2; else line &= ~LCR_H_STP2; if (parity) line |= LCR_H_PEN; else line &= ~LCR_H_PEN; line |= LCR_H_FEN; /* Configure the rest */ ctrl |= (CR_RXE | CR_TXE | CR_UARTEN); if (bas->rclk != 0 && baudrate != 0) { baud = bas->rclk * 4 / baudrate; __uart_setreg(bas, UART_IBRD, ((uint32_t)(baud >> 6)) & IBRD_BDIVINT); __uart_setreg(bas, UART_FBRD, (uint32_t)(baud & 0x3F) & FBRD_BDIVFRAC); } /* Add config. to line before reenabling UART */ __uart_setreg(bas, UART_LCR_H, (__uart_getreg(bas, UART_LCR_H) & ~0xff) | line); /* Set rx and tx fifo levels. */ __uart_setreg(bas, UART_IFLS, FIFO_IFLS_BITS); __uart_setreg(bas, UART_CR, ctrl); } static void uart_pl011_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, int parity) { /* Mask all interrupts */ __uart_setreg(bas, UART_IMSC, __uart_getreg(bas, UART_IMSC) & ~IMSC_MASK_ALL); uart_pl011_param(bas, baudrate, databits, stopbits, parity); } static void uart_pl011_term(struct uart_bas *bas) { } #if CHECK_EARLY_PRINTF(pl011) static void uart_pl011_early_putc(int c) { volatile uint32_t *fr = (uint32_t *)(socdev_va + UART_FR * 4); volatile uint32_t *dr = (uint32_t *)(socdev_va + UART_DR * 4); while ((*fr & FR_TXFF) != 0) ; *dr = c & 0xff; } early_putc_t *early_putc = uart_pl011_early_putc; #endif /* CHECK_EARLY_PRINTF */ static void uart_pl011_putc(struct uart_bas *bas, int c) { /* Wait when TX FIFO full. Push character otherwise. */ while (__uart_getreg(bas, UART_FR) & FR_TXFF) ; __uart_setreg(bas, UART_DR, c & 0xff); } static int uart_pl011_rxready(struct uart_bas *bas) { return !(__uart_getreg(bas, UART_FR) & FR_RXFE); } static int uart_pl011_getc(struct uart_bas *bas, struct mtx *hwmtx) { int c; while (!uart_pl011_rxready(bas)) ; c = __uart_getreg(bas, UART_DR) & 0xff; return (c); } /* * High-level UART interface. */ struct uart_pl011_softc { struct uart_softc base; uint16_t imsc; /* Interrupt mask */ }; static int uart_pl011_bus_attach(struct uart_softc *); static int uart_pl011_bus_detach(struct uart_softc *); static int uart_pl011_bus_flush(struct uart_softc *, int); static int uart_pl011_bus_getsig(struct uart_softc *); static int uart_pl011_bus_ioctl(struct uart_softc *, int, intptr_t); static int uart_pl011_bus_ipend(struct uart_softc *); static int uart_pl011_bus_param(struct uart_softc *, int, int, int, int); static int uart_pl011_bus_probe(struct uart_softc *); static int uart_pl011_bus_receive(struct uart_softc *); static int uart_pl011_bus_setsig(struct uart_softc *, int); static int uart_pl011_bus_transmit(struct uart_softc *); static void uart_pl011_bus_grab(struct uart_softc *); static void uart_pl011_bus_ungrab(struct uart_softc *); static kobj_method_t uart_pl011_methods[] = { KOBJMETHOD(uart_attach, uart_pl011_bus_attach), KOBJMETHOD(uart_detach, uart_pl011_bus_detach), KOBJMETHOD(uart_flush, uart_pl011_bus_flush), KOBJMETHOD(uart_getsig, uart_pl011_bus_getsig), KOBJMETHOD(uart_ioctl, uart_pl011_bus_ioctl), KOBJMETHOD(uart_ipend, uart_pl011_bus_ipend), KOBJMETHOD(uart_param, uart_pl011_bus_param), KOBJMETHOD(uart_probe, uart_pl011_bus_probe), KOBJMETHOD(uart_receive, uart_pl011_bus_receive), KOBJMETHOD(uart_setsig, uart_pl011_bus_setsig), KOBJMETHOD(uart_transmit, uart_pl011_bus_transmit), KOBJMETHOD(uart_grab, uart_pl011_bus_grab), KOBJMETHOD(uart_ungrab, uart_pl011_bus_ungrab), { 0, 0 } }; static struct uart_class uart_pl011_class = { "pl011", uart_pl011_methods, sizeof(struct uart_pl011_softc), .uc_ops = &uart_pl011_ops, .uc_range = 0x48, .uc_rclk = 0, .uc_rshift = 2 }; UART_CLASS(uart_pl011_class); #ifdef FDT static struct ofw_compat_data fdt_compat_data[] = { {"arm,pl011", (uintptr_t)&uart_pl011_class}, {NULL, (uintptr_t)NULL}, }; UART_FDT_CLASS_AND_DEVICE(fdt_compat_data); #endif #ifdef DEV_ACPI static struct acpi_uart_compat_data acpi_compat_data[] = { {"ARMH0011", &uart_pl011_class, ACPI_DBG2_ARM_PL011, 2, 0, 0, UART_F_IGNORE_SPCR_REGSHFT, "uart pl011"}, {"ARMHB000", &uart_pl011_class, ACPI_DBG2_ARM_SBSA_GENERIC, 2, 0, 0, UART_F_IGNORE_SPCR_REGSHFT, "uart pl011"}, {"ARMHB000", &uart_pl011_class, ACPI_DBG2_ARM_SBSA_32BIT, 2, 0, 0, UART_F_IGNORE_SPCR_REGSHFT, "uart pl011"}, {NULL, NULL, 0, 0, 0, 0, 0, NULL}, }; UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data); #endif static int uart_pl011_bus_attach(struct uart_softc *sc) { struct uart_pl011_softc *psc; struct uart_bas *bas; psc = (struct uart_pl011_softc *)sc; bas = &sc->sc_bas; /* Enable interrupts */ psc->imsc = (UART_RXREADY | RIS_RTIM | UART_TXEMPTY); __uart_setreg(bas, UART_IMSC, psc->imsc); /* Clear interrupts */ __uart_setreg(bas, UART_ICR, IMSC_MASK_ALL); return (0); } static int uart_pl011_bus_detach(struct uart_softc *sc) { return (0); } static int uart_pl011_bus_flush(struct uart_softc *sc, int what) { return (0); } static int uart_pl011_bus_getsig(struct uart_softc *sc) { return (0); } static int uart_pl011_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) { int error; error = 0; uart_lock(sc->sc_hwmtx); switch (request) { case UART_IOCTL_BREAK: break; case UART_IOCTL_BAUD: *(int*)data = 115200; break; default: error = EINVAL; break; } uart_unlock(sc->sc_hwmtx); return (error); } static int uart_pl011_bus_ipend(struct uart_softc *sc) { struct uart_pl011_softc *psc; struct uart_bas *bas; uint32_t ints; int ipend; psc = (struct uart_pl011_softc *)sc; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); ints = __uart_getreg(bas, UART_MIS); ipend = 0; if (ints & (UART_RXREADY | RIS_RTIM)) ipend |= SER_INT_RXREADY; if (ints & RIS_BE) ipend |= SER_INT_BREAK; if (ints & RIS_OE) ipend |= SER_INT_OVERRUN; if (ints & UART_TXEMPTY) { if (sc->sc_txbusy) ipend |= SER_INT_TXIDLE; /* Disable TX interrupt */ __uart_setreg(bas, UART_IMSC, psc->imsc & ~UART_TXEMPTY); } uart_unlock(sc->sc_hwmtx); return (ipend); } static int uart_pl011_bus_param(struct uart_softc *sc, int baudrate, int databits, int stopbits, int parity) { uart_lock(sc->sc_hwmtx); uart_pl011_param(&sc->sc_bas, baudrate, databits, stopbits, parity); uart_unlock(sc->sc_hwmtx); return (0); } #ifdef FDT static int uart_pl011_bus_hwrev_fdt(struct uart_softc *sc) { pcell_t node; uint32_t periphid; /* * The FIFO sizes vary depending on hardware; rev 2 and below have 16 * byte FIFOs, rev 3 and up are 32 byte. The hardware rev is in the * primecell periphid register, but we get a bit of drama, as always, * with the bcm2835 (rpi), which claims to be rev 3, but has 16 byte * FIFOs. We check for both the old freebsd-historic and the proper * bindings-defined compatible strings for bcm2835, and also check the * workaround the linux drivers use for rpi3, which is to override the * primecell periphid register value with a property. */ if (ofw_bus_is_compatible(sc->sc_dev, "brcm,bcm2835-pl011") || ofw_bus_is_compatible(sc->sc_dev, "broadcom,bcm2835-uart")) { return (2); } else { node = ofw_bus_get_node(sc->sc_dev); if (OF_getencprop(node, "arm,primecell-periphid", &periphid, sizeof(periphid)) > 0) { return ((periphid >> 20) & 0x0f); } } return (-1); } #endif static int uart_pl011_bus_probe(struct uart_softc *sc) { int hwrev; hwrev = -1; #ifdef FDT if (IS_FDT) hwrev = uart_pl011_bus_hwrev_fdt(sc); #endif if (hwrev < 0) hwrev = __uart_getreg(&sc->sc_bas, UART_PIDREG_2) >> 4; if (hwrev <= 2) { sc->sc_rxfifosz = FIFO_RX_SIZE_R2; sc->sc_txfifosz = FIFO_TX_SIZE_R2; } else { sc->sc_rxfifosz = FIFO_RX_SIZE_R3; sc->sc_txfifosz = FIFO_TX_SIZE_R3; } device_set_desc(sc->sc_dev, "PrimeCell UART (PL011)"); return (0); } static int uart_pl011_bus_receive(struct uart_softc *sc) { struct uart_bas *bas; uint32_t ints, xc; int rx; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); for (;;) { ints = __uart_getreg(bas, UART_FR); if (ints & FR_RXFE) break; if (uart_rx_full(sc)) { sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; break; } xc = __uart_getreg(bas, UART_DR); rx = xc & 0xff; if (xc & DR_FE) rx |= UART_STAT_FRAMERR; if (xc & DR_PE) rx |= UART_STAT_PARERR; uart_rx_put(sc, rx); } uart_unlock(sc->sc_hwmtx); return (0); } static int uart_pl011_bus_setsig(struct uart_softc *sc, int sig) { return (0); } static int uart_pl011_bus_transmit(struct uart_softc *sc) { struct uart_pl011_softc *psc; struct uart_bas *bas; int i; psc = (struct uart_pl011_softc *)sc; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); for (i = 0; i < sc->sc_txdatasz; i++) { __uart_setreg(bas, UART_DR, sc->sc_txbuf[i]); uart_barrier(bas); } /* Mark busy and enable TX interrupt */ sc->sc_txbusy = 1; __uart_setreg(bas, UART_IMSC, psc->imsc); uart_unlock(sc->sc_hwmtx); return (0); } static void uart_pl011_bus_grab(struct uart_softc *sc) { struct uart_pl011_softc *psc; struct uart_bas *bas; psc = (struct uart_pl011_softc *)sc; bas = &sc->sc_bas; /* Disable interrupts on switch to polling */ uart_lock(sc->sc_hwmtx); __uart_setreg(bas, UART_IMSC, psc->imsc & ~IMSC_MASK_ALL); uart_unlock(sc->sc_hwmtx); } static void uart_pl011_bus_ungrab(struct uart_softc *sc) { struct uart_pl011_softc *psc; struct uart_bas *bas; psc = (struct uart_pl011_softc *)sc; bas = &sc->sc_bas; /* Switch to using interrupts while not grabbed */ uart_lock(sc->sc_hwmtx); __uart_setreg(bas, UART_IMSC, psc->imsc); uart_unlock(sc->sc_hwmtx); }