/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012 The FreeBSD Foundation * * This software was developed by Oleksandr Rybalko under sponsorship * from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(__aarch64__) #define IMX_ENABLE_CLOCKS #endif #ifdef IMX_ENABLE_CLOCKS #include #endif #include "uart_if.h" #include /* * The hardare FIFOs are 32 bytes. We want an interrupt when there are 24 bytes * available to read or space for 24 more bytes to write. While 8 bytes of * slack before over/underrun might seem excessive, the hardware can run at * 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS * to get into the interrupt handler and service the fifo. */ #define IMX_FIFOSZ 32 #define IMX_RXFIFO_LEVEL 24 #define IMX_TXFIFO_LEVEL 24 /* * Low-level UART interface. */ static int imx_uart_probe(struct uart_bas *bas); static void imx_uart_init(struct uart_bas *bas, int, int, int, int); static void imx_uart_term(struct uart_bas *bas); static void imx_uart_putc(struct uart_bas *bas, int); static int imx_uart_rxready(struct uart_bas *bas); static int imx_uart_getc(struct uart_bas *bas, struct mtx *); static struct uart_ops uart_imx_uart_ops = { .probe = imx_uart_probe, .init = imx_uart_init, .term = imx_uart_term, .putc = imx_uart_putc, .rxready = imx_uart_rxready, .getc = imx_uart_getc, }; #if 0 /* Handy when debugging. */ static void dumpregs(struct uart_bas *bas, const char * msg) { if (!bootverbose) return; printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x " "UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n", msg, bas->bsh, GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)), GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)), GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2))); } #endif static int imx_uart_probe(struct uart_bas *bas) { return (0); } static u_int imx_uart_getbaud(struct uart_bas *bas) { uint32_t rate, ubir, ubmr; u_int baud, blo, bhi, i; static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1}; static const u_int std_rates[] = { 9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600 }; /* * Get the baud rate the hardware is programmed for, then search the * table of standard baud rates for a number that's within 3% of the * actual rate the hardware is programmed for. It's more comforting to * see that your console is running at 115200 than 114942. Note that * here we cannot make a simplifying assumption that the predivider and * numerator are 1 (like we do when setting the baud rate), because we * don't know what u-boot might have set up. */ i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >> IMXUART_UFCR_RFDIV_SHIFT; rate = bas->rclk / predivs[i]; ubir = GETREG(bas, REG(UBIR)) + 1; ubmr = GETREG(bas, REG(UBMR)) + 1; baud = ((rate / 16 ) * ubir) / ubmr; blo = (baud * 100) / 103; bhi = (baud * 100) / 97; for (i = 0; i < nitems(std_rates); i++) { rate = std_rates[i]; if (rate >= blo && rate <= bhi) { baud = rate; break; } } return (baud); } static void imx_uart_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, int parity) { uint32_t baseclk, reg; /* Enable the device and the RX/TX channels. */ SET(bas, REG(UCR1), FLD(UCR1, UARTEN)); SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN)); if (databits == 7) DIS(bas, UCR2, WS); else ENA(bas, UCR2, WS); if (stopbits == 2) ENA(bas, UCR2, STPB); else DIS(bas, UCR2, STPB); switch (parity) { case UART_PARITY_ODD: DIS(bas, UCR2, PROE); ENA(bas, UCR2, PREN); break; case UART_PARITY_EVEN: ENA(bas, UCR2, PROE); ENA(bas, UCR2, PREN); break; case UART_PARITY_MARK: case UART_PARITY_SPACE: /* FALLTHROUGH: Hardware doesn't support mark/space. */ case UART_PARITY_NONE: default: DIS(bas, UCR2, PREN); break; } /* * The hardware has an extremely flexible baud clock: it allows setting * both the numerator and denominator of the divider, as well as a * separate pre-divider. We simplify the problem of coming up with a * workable pair of numbers by assuming a pre-divider and numerator of * one because our base clock is so fast we can reach virtually any * reasonable speed with a simple divisor. The numerator value actually * includes the 16x over-sampling (so a value of 16 means divide by 1); * the register value is the numerator-1, so we have a hard-coded 15. * Note that a quirk of the hardware requires that both UBIR and UBMR be * set back to back in order for the change to take effect. */ if ((baudrate > 0) && (bas->rclk != 0)) { baseclk = bas->rclk; reg = GETREG(bas, REG(UFCR)); reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1; SETREG(bas, REG(UFCR), reg); SETREG(bas, REG(UBIR), 15); SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1); } /* * Program the tx lowater and rx hiwater levels at which fifo-service * interrupts are signaled. The tx value is interpetted as "when there * are only this many bytes remaining" (not "this many free"). */ reg = GETREG(bas, REG(UFCR)); reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK); reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT; reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT; SETREG(bas, REG(UFCR), reg); } static void imx_uart_term(struct uart_bas *bas) { } static void imx_uart_putc(struct uart_bas *bas, int c) { while (!(IS(bas, USR1, TRDY))) ; SETREG(bas, REG(UTXD), c); } static int imx_uart_rxready(struct uart_bas *bas) { return ((IS(bas, USR2, RDR)) ? 1 : 0); } static int imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx) { int c; uart_lock(hwmtx); while (!(IS(bas, USR2, RDR))) ; c = GETREG(bas, REG(URXD)); uart_unlock(hwmtx); #if defined(KDB) if (c & FLD(URXD, BRK)) { if (kdb_break()) return (0); } #endif return (c & 0xff); } /* * High-level UART interface. */ struct imx_uart_softc { struct uart_softc base; }; static int imx_uart_bus_attach(struct uart_softc *); static int imx_uart_bus_detach(struct uart_softc *); static int imx_uart_bus_flush(struct uart_softc *, int); static int imx_uart_bus_getsig(struct uart_softc *); static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t); static int imx_uart_bus_ipend(struct uart_softc *); static int imx_uart_bus_param(struct uart_softc *, int, int, int, int); static int imx_uart_bus_probe(struct uart_softc *); static int imx_uart_bus_receive(struct uart_softc *); static int imx_uart_bus_setsig(struct uart_softc *, int); static int imx_uart_bus_transmit(struct uart_softc *); static void imx_uart_bus_grab(struct uart_softc *); static void imx_uart_bus_ungrab(struct uart_softc *); static kobj_method_t imx_uart_methods[] = { KOBJMETHOD(uart_attach, imx_uart_bus_attach), KOBJMETHOD(uart_detach, imx_uart_bus_detach), KOBJMETHOD(uart_flush, imx_uart_bus_flush), KOBJMETHOD(uart_getsig, imx_uart_bus_getsig), KOBJMETHOD(uart_ioctl, imx_uart_bus_ioctl), KOBJMETHOD(uart_ipend, imx_uart_bus_ipend), KOBJMETHOD(uart_param, imx_uart_bus_param), KOBJMETHOD(uart_probe, imx_uart_bus_probe), KOBJMETHOD(uart_receive, imx_uart_bus_receive), KOBJMETHOD(uart_setsig, imx_uart_bus_setsig), KOBJMETHOD(uart_transmit, imx_uart_bus_transmit), KOBJMETHOD(uart_grab, imx_uart_bus_grab), KOBJMETHOD(uart_ungrab, imx_uart_bus_ungrab), { 0, 0 } }; static struct uart_class uart_imx_class = { "imx", imx_uart_methods, sizeof(struct imx_uart_softc), .uc_ops = &uart_imx_uart_ops, .uc_range = 0x100, .uc_rclk = 24000000, /* TODO: get value from CCM */ .uc_rshift = 0 }; static struct ofw_compat_data compat_data[] = { {"fsl,imx6q-uart", (uintptr_t)&uart_imx_class}, {"fsl,imx53-uart", (uintptr_t)&uart_imx_class}, {"fsl,imx51-uart", (uintptr_t)&uart_imx_class}, {"fsl,imx31-uart", (uintptr_t)&uart_imx_class}, {"fsl,imx27-uart", (uintptr_t)&uart_imx_class}, {"fsl,imx25-uart", (uintptr_t)&uart_imx_class}, {"fsl,imx21-uart", (uintptr_t)&uart_imx_class}, {NULL, (uintptr_t)NULL}, }; UART_FDT_CLASS_AND_DEVICE(compat_data); #define SIGCHG(c, i, s, d) \ if (c) { \ i |= (i & s) ? s : s | d; \ } else { \ i = (i & s) ? (i & ~s) | d : i; \ } #ifdef IMX_ENABLE_CLOCKS static int imx_uart_setup_clocks(struct uart_softc *sc) { struct uart_bas *bas; clk_t ipgclk, perclk; uint64_t freq; int error; bas = &sc->sc_bas; if (clk_get_by_ofw_name(sc->sc_dev, 0, "ipg", &ipgclk) != 0) return (ENOENT); if (clk_get_by_ofw_name(sc->sc_dev, 0, "per", &perclk) != 0) { return (ENOENT); } error = clk_enable(ipgclk); if (error != 0) { device_printf(sc->sc_dev, "cannot enable ipg clock\n"); return (error); } error = clk_get_freq(perclk, &freq); if (error != 0) { device_printf(sc->sc_dev, "cannot get frequency\n"); return (error); } bas->rclk = (uint32_t)freq; return (0); } #endif static int imx_uart_bus_attach(struct uart_softc *sc) { struct uart_bas *bas; struct uart_devinfo *di; bas = &sc->sc_bas; #ifdef IMX_ENABLE_CLOCKS int error = imx_uart_setup_clocks(sc); if (error) return (error); #else bas->rclk = imx_ccm_uart_hz(); #endif if (sc->sc_sysdev != NULL) { di = sc->sc_sysdev; imx_uart_init(bas, di->baudrate, di->databits, di->stopbits, di->parity); } else { imx_uart_init(bas, 115200, 8, 1, 0); } (void)imx_uart_bus_getsig(sc); /* Clear all pending interrupts. */ SETREG(bas, REG(USR1), 0xffff); SETREG(bas, REG(USR2), 0xffff); DIS(bas, UCR4, DREN); ENA(bas, UCR1, RRDYEN); DIS(bas, UCR1, IDEN); DIS(bas, UCR3, RXDSEN); ENA(bas, UCR2, ATEN); DIS(bas, UCR1, TXMPTYEN); DIS(bas, UCR1, TRDYEN); DIS(bas, UCR4, TCEN); DIS(bas, UCR4, OREN); ENA(bas, UCR4, BKEN); DIS(bas, UCR4, WKEN); DIS(bas, UCR1, ADEN); DIS(bas, UCR3, ACIEN); DIS(bas, UCR2, ESCI); DIS(bas, UCR4, ENIRI); DIS(bas, UCR3, AIRINTEN); DIS(bas, UCR3, AWAKEN); DIS(bas, UCR3, FRAERREN); DIS(bas, UCR3, PARERREN); DIS(bas, UCR1, RTSDEN); DIS(bas, UCR2, RTSEN); DIS(bas, UCR3, DTREN); DIS(bas, UCR3, RI); DIS(bas, UCR3, DCD); DIS(bas, UCR3, DTRDEN); ENA(bas, UCR2, IRTS); ENA(bas, UCR3, RXDMUXSEL); return (0); } static int imx_uart_bus_detach(struct uart_softc *sc) { SETREG(&sc->sc_bas, REG(UCR4), 0); return (0); } static int imx_uart_bus_flush(struct uart_softc *sc, int what) { /* TODO */ return (0); } static int imx_uart_bus_getsig(struct uart_softc *sc) { uint32_t new, old, sig; uint8_t bes; do { old = sc->sc_hwsig; sig = old; uart_lock(sc->sc_hwmtx); bes = GETREG(&sc->sc_bas, REG(USR2)); uart_unlock(sc->sc_hwmtx); /* XXX: chip can show delta */ SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD); new = sig & ~SER_MASK_DELTA; } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); return (sig); } static int imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) { struct uart_bas *bas; int error; bas = &sc->sc_bas; error = 0; uart_lock(sc->sc_hwmtx); switch (request) { case UART_IOCTL_BREAK: /* TODO */ break; case UART_IOCTL_BAUD: *(u_int*)data = imx_uart_getbaud(bas); break; default: error = EINVAL; break; } uart_unlock(sc->sc_hwmtx); return (error); } static int imx_uart_bus_ipend(struct uart_softc *sc) { struct uart_bas *bas; int ipend; uint32_t usr1, usr2; uint32_t ucr1, ucr2, ucr4; bas = &sc->sc_bas; ipend = 0; uart_lock(sc->sc_hwmtx); /* Read pending interrupts */ usr1 = GETREG(bas, REG(USR1)); usr2 = GETREG(bas, REG(USR2)); /* ACK interrupts */ SETREG(bas, REG(USR1), usr1); SETREG(bas, REG(USR2), usr2); ucr1 = GETREG(bas, REG(UCR1)); ucr2 = GETREG(bas, REG(UCR2)); ucr4 = GETREG(bas, REG(UCR4)); /* If we have reached tx low-water, we can tx some more now. */ if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) { DIS(bas, UCR1, TRDYEN); ipend |= SER_INT_TXIDLE; } /* * If we have reached the rx high-water, or if there are bytes in the rx * fifo and no new data has arrived for 8 character periods (aging * timer), we have input data to process. */ if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) || ((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) { DIS(bas, UCR1, RRDYEN); DIS(bas, UCR2, ATEN); ipend |= SER_INT_RXREADY; } /* A break can come in at any time, it never gets disabled. */ if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN))) ipend |= SER_INT_BREAK; uart_unlock(sc->sc_hwmtx); return (ipend); } static int imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits, int stopbits, int parity) { uart_lock(sc->sc_hwmtx); imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity); uart_unlock(sc->sc_hwmtx); return (0); } static int imx_uart_bus_probe(struct uart_softc *sc) { int error; error = imx_uart_probe(&sc->sc_bas); if (error) return (error); /* * On input we can read up to the full fifo size at once. On output, we * want to write only as much as the programmed tx low water level, * because that's all we can be certain we have room for in the fifo * when we get a tx-ready interrupt. */ sc->sc_rxfifosz = IMX_FIFOSZ; sc->sc_txfifosz = IMX_TXFIFO_LEVEL; device_set_desc(sc->sc_dev, "Freescale i.MX UART"); return (0); } static int imx_uart_bus_receive(struct uart_softc *sc) { struct uart_bas *bas; int xc, out; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); /* * Empty the rx fifo. We get the RRDY interrupt when IMX_RXFIFO_LEVEL * (the rx high-water level) is reached, but we set sc_rxfifosz to the * full hardware fifo size, so we can safely process however much is * there, not just the highwater size. */ while (IS(bas, USR2, RDR)) { if (uart_rx_full(sc)) { /* No space left in input buffer */ sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; break; } xc = GETREG(bas, REG(URXD)); out = xc & 0x000000ff; if (xc & FLD(URXD, FRMERR)) out |= UART_STAT_FRAMERR; if (xc & FLD(URXD, PRERR)) out |= UART_STAT_PARERR; if (xc & FLD(URXD, OVRRUN)) out |= UART_STAT_OVERRUN; if (xc & FLD(URXD, BRK)) out |= UART_STAT_BREAK; uart_rx_put(sc, out); } ENA(bas, UCR1, RRDYEN); ENA(bas, UCR2, ATEN); uart_unlock(sc->sc_hwmtx); return (0); } static int imx_uart_bus_setsig(struct uart_softc *sc, int sig) { return (0); } static int imx_uart_bus_transmit(struct uart_softc *sc) { struct uart_bas *bas = &sc->sc_bas; int i; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); /* * Fill the tx fifo. The uart core puts at most IMX_TXFIFO_LEVEL bytes * into the txbuf (because that's what sc_txfifosz is set to), and * because we got the TRDY (low-water reached) interrupt we know at * least that much space is available in the fifo. */ for (i = 0; i < sc->sc_txdatasz; i++) { SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff); } sc->sc_txbusy = 1; ENA(bas, UCR1, TRDYEN); uart_unlock(sc->sc_hwmtx); return (0); } static void imx_uart_bus_grab(struct uart_softc *sc) { struct uart_bas *bas = &sc->sc_bas; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); DIS(bas, UCR1, RRDYEN); DIS(bas, UCR2, ATEN); uart_unlock(sc->sc_hwmtx); } static void imx_uart_bus_ungrab(struct uart_softc *sc) { struct uart_bas *bas = &sc->sc_bas; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); ENA(bas, UCR1, RRDYEN); ENA(bas, UCR2, ATEN); uart_unlock(sc->sc_hwmtx); }