/*- * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 * PCI-SCSI controllers. * * Copyright (C) 1999-2001 Gerard Roudier * * This driver also supports the following Symbios/LSI PCI-SCSI chips: * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. * * * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. * Copyright (C) 1998-1999 Gerard Roudier * * The sym53c8xx driver is derived from the ncr53c8xx driver that had been * a port of the FreeBSD ncr driver to Linux-1.2.13. * * The original ncr driver has been written for 386bsd and FreeBSD by * Wolfgang Stanglmeier * Stefan Esser * Copyright (C) 1994 Wolfgang Stanglmeier * * The initialisation code, and part of the code that addresses * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM * written by Justin T. Gibbs. * * Other major contributions: * * NVRAM detection and reading. * Copyright (C) 1997 Richard Waltham * *----------------------------------------------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #define SYM_DRIVER_NAME "sym-1.6.5-20000902" /* #define SYM_DEBUG_GENERIC_SUPPORT */ #include /* * Driver configuration options. */ #include "opt_sym.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __sparc64__ #include #include #endif #include #include #include #include #include #include #include #include /* Short and quite clear integer types */ typedef int8_t s8; typedef int16_t s16; typedef int32_t s32; typedef u_int8_t u8; typedef u_int16_t u16; typedef u_int32_t u32; /* * Driver definitions. */ #include #include /* * IA32 architecture does not reorder STORES and prevents * LOADS from passing STORES. It is called `program order' * by Intel and allows device drivers to deal with memory * ordering by only ensuring that the code is not reordered * by the compiler when ordering is required. * Other architectures implement a weaker ordering that * requires memory barriers (and also IO barriers when they * make sense) to be used. */ #if defined __i386__ || defined __amd64__ #define MEMORY_BARRIER() do { ; } while(0) #elif defined __powerpc__ #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") #elif defined __ia64__ #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") #elif defined __sparc64__ #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") #else #error "Not supported platform" #endif /* * A la VMS/CAM-3 queue management. */ typedef struct sym_quehead { struct sym_quehead *flink; /* Forward pointer */ struct sym_quehead *blink; /* Backward pointer */ } SYM_QUEHEAD; #define sym_que_init(ptr) do { \ (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ } while (0) static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) { return (head->flink == head) ? NULL : head->flink; } static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) { return (head->blink == head) ? NULL : head->blink; } static __inline void __sym_que_add(struct sym_quehead * new, struct sym_quehead * blink, struct sym_quehead * flink) { flink->blink = new; new->flink = flink; new->blink = blink; blink->flink = new; } static __inline void __sym_que_del(struct sym_quehead * blink, struct sym_quehead * flink) { flink->blink = blink; blink->flink = flink; } static __inline int sym_que_empty(struct sym_quehead *head) { return head->flink == head; } static __inline void sym_que_splice(struct sym_quehead *list, struct sym_quehead *head) { struct sym_quehead *first = list->flink; if (first != list) { struct sym_quehead *last = list->blink; struct sym_quehead *at = head->flink; first->blink = head; head->flink = first; last->flink = at; at->blink = last; } } #define sym_que_entry(ptr, type, member) \ ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) { struct sym_quehead *elem = head->flink; if (elem != head) __sym_que_del(head, elem->flink); else elem = NULL; return elem; } #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) { struct sym_quehead *elem = head->blink; if (elem != head) __sym_que_del(elem->blink, head); else elem = NULL; return elem; } /* * This one may be useful. */ #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ for (qp = (head)->flink; qp != (head); qp = qp->flink) /* * FreeBSD does not offer our kind of queue in the CAM CCB. * So, we have to cast. */ #define sym_qptr(p) ((struct sym_quehead *) (p)) /* * Simple bitmap operations. */ #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) /* * Number of tasks per device we want to handle. */ #if SYM_CONF_MAX_TAG_ORDER > 8 #error "more than 256 tags per logical unit not allowed." #endif #define SYM_CONF_MAX_TASK (1< SYM_CONF_MAX_TASK #undef SYM_CONF_MAX_TAG #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK #endif /* * This one means 'NO TAG for this job' */ #define NO_TAG (256) /* * Number of SCSI targets. */ #if SYM_CONF_MAX_TARGET > 16 #error "more than 16 targets not allowed." #endif /* * Number of logical units per target. */ #if SYM_CONF_MAX_LUN > 64 #error "more than 64 logical units per target not allowed." #endif /* * Asynchronous pre-scaler (ns). Shall be 40 for * the SCSI timings to be compliant. */ #define SYM_CONF_MIN_ASYNC (40) /* * Number of entries in the START and DONE queues. * * We limit to 1 PAGE in order to succeed allocation of * these queues. Each entry is 8 bytes long (2 DWORDS). */ #ifdef SYM_CONF_MAX_START #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) #else #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) #endif #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 #undef SYM_CONF_MAX_QUEUE #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 #undef SYM_CONF_MAX_START #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) #endif /* * For this one, we want a short name :-) */ #define MAX_QUEUE SYM_CONF_MAX_QUEUE /* * Active debugging tags and verbosity. */ #define DEBUG_ALLOC (0x0001) #define DEBUG_PHASE (0x0002) #define DEBUG_POLL (0x0004) #define DEBUG_QUEUE (0x0008) #define DEBUG_RESULT (0x0010) #define DEBUG_SCATTER (0x0020) #define DEBUG_SCRIPT (0x0040) #define DEBUG_TINY (0x0080) #define DEBUG_TIMING (0x0100) #define DEBUG_NEGO (0x0200) #define DEBUG_TAGS (0x0400) #define DEBUG_POINTER (0x0800) #if 0 static int sym_debug = 0; #define DEBUG_FLAGS sym_debug #else /* #define DEBUG_FLAGS (0x0631) */ #define DEBUG_FLAGS (0x0000) #endif #define sym_verbose (np->verbose) /* * Insert a delay in micro-seconds and milli-seconds. */ static void UDELAY(int us) { DELAY(us); } static void MDELAY(int ms) { while (ms--) UDELAY(1000); } /* * Simple power of two buddy-like allocator. * * This simple code is not intended to be fast, but to * provide power of 2 aligned memory allocations. * Since the SCRIPTS processor only supplies 8 bit arithmetic, * this allocator allows simple and fast address calculations * from the SCRIPTS code. In addition, cache line alignment * is guaranteed for power of 2 cache line size. * * This allocator has been developed for the Linux sym53c8xx * driver, since this O/S does not provide naturally aligned * allocations. * It has the advantage of allowing the driver to use private * pages of memory that will be useful if we ever need to deal * with IO MMUs for PCI. */ #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ #if 0 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ #endif #define MEMO_WARN 1 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) #define free_pages(p) free((p), M_DEVBUF) typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ typedef struct m_link { /* Link between free memory chunks */ struct m_link *next; } m_link_s; typedef struct m_vtob { /* Virtual to Bus address translation */ struct m_vtob *next; bus_dmamap_t dmamap; /* Map for this chunk */ m_addr_t vaddr; /* Virtual address */ m_addr_t baddr; /* Bus physical address */ } m_vtob_s; /* Hash this stuff a bit to speed up translations */ #define VTOB_HASH_SHIFT 5 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) #define VTOB_HASH_CODE(m) \ ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) typedef struct m_pool { /* Memory pool of a given kind */ bus_dma_tag_t dev_dmat; /* Identifies the pool */ bus_dma_tag_t dmat; /* Tag for our fixed allocations */ m_addr_t (*getp)(struct m_pool *); #ifdef MEMO_FREE_UNUSED void (*freep)(struct m_pool *, m_addr_t); #endif #define M_GETP() mp->getp(mp) #define M_FREEP(p) mp->freep(mp, p) int nump; m_vtob_s *(vtob[VTOB_HASH_SIZE]); struct m_pool *next; struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; } m_pool_s; static void *___sym_malloc(m_pool_s *mp, int size) { int i = 0; int s = (1 << MEMO_SHIFT); int j; m_addr_t a; m_link_s *h = mp->h; if (size > MEMO_CLUSTER_SIZE) return NULL; while (size > s) { s <<= 1; ++i; } j = i; while (!h[j].next) { if (s == MEMO_CLUSTER_SIZE) { h[j].next = (m_link_s *) M_GETP(); if (h[j].next) h[j].next->next = NULL; break; } ++j; s <<= 1; } a = (m_addr_t) h[j].next; if (a) { h[j].next = h[j].next->next; while (j > i) { j -= 1; s >>= 1; h[j].next = (m_link_s *) (a+s); h[j].next->next = NULL; } } #ifdef DEBUG printf("___sym_malloc(%d) = %p\n", size, (void *) a); #endif return (void *) a; } static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) { int i = 0; int s = (1 << MEMO_SHIFT); m_link_s *q; m_addr_t a, b; m_link_s *h = mp->h; #ifdef DEBUG printf("___sym_mfree(%p, %d)\n", ptr, size); #endif if (size > MEMO_CLUSTER_SIZE) return; while (size > s) { s <<= 1; ++i; } a = (m_addr_t) ptr; while (1) { #ifdef MEMO_FREE_UNUSED if (s == MEMO_CLUSTER_SIZE) { M_FREEP(a); break; } #endif b = a ^ s; q = &h[i]; while (q->next && q->next != (m_link_s *) b) { q = q->next; } if (!q->next) { ((m_link_s *) a)->next = h[i].next; h[i].next = (m_link_s *) a; break; } q->next = q->next->next; a = a & b; s <<= 1; ++i; } } static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) { void *p; p = ___sym_malloc(mp, size); if (DEBUG_FLAGS & DEBUG_ALLOC) printf ("new %-10s[%4d] @%p.\n", name, size, p); if (p) bzero(p, size); else if (uflags & MEMO_WARN) printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); return p; } #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) { if (DEBUG_FLAGS & DEBUG_ALLOC) printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); ___sym_mfree(mp, ptr, size); } /* * Default memory pool we donnot need to involve in DMA. */ /* * With the `bus dma abstraction', we use a separate pool for * memory we donnot need to involve in DMA. */ static m_addr_t ___mp0_getp(m_pool_s *mp) { m_addr_t m = (m_addr_t) get_pages(); if (m) ++mp->nump; return m; } #ifdef MEMO_FREE_UNUSED static void ___mp0_freep(m_pool_s *mp, m_addr_t m) { free_pages(m); --mp->nump; } #endif #ifdef MEMO_FREE_UNUSED static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; #else static m_pool_s mp0 = {0, 0, ___mp0_getp}; #endif /* * Actual memory allocation routine for non-DMAed memory. */ static void *sym_calloc(int size, char *name) { void *m; /* Lock */ m = __sym_calloc(&mp0, size, name); /* Unlock */ return m; } /* * Actual memory allocation routine for non-DMAed memory. */ static void sym_mfree(void *ptr, int size, char *name) { /* Lock */ __sym_mfree(&mp0, ptr, size, name); /* Unlock */ } /* * DMAable pools. */ /* * With `bus dma abstraction', we use a separate pool per parent * BUS handle. A reverse table (hashed) is maintained for virtual * to BUS address translation. */ static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *baddr; baddr = (bus_addr_t *)arg; *baddr = segs->ds_addr; } static m_addr_t ___dma_getp(m_pool_s *mp) { m_vtob_s *vbp; void *vaddr = NULL; bus_addr_t baddr = 0; vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); if (!vbp) goto out_err; if (bus_dmamem_alloc(mp->dmat, &vaddr, BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) goto out_err; bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); if (baddr) { int hc = VTOB_HASH_CODE(vaddr); vbp->vaddr = (m_addr_t) vaddr; vbp->baddr = (m_addr_t) baddr; vbp->next = mp->vtob[hc]; mp->vtob[hc] = vbp; ++mp->nump; return (m_addr_t) vaddr; } out_err: if (baddr) bus_dmamap_unload(mp->dmat, vbp->dmamap); if (vaddr) bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); if (vbp) { if (vbp->dmamap) bus_dmamap_destroy(mp->dmat, vbp->dmamap); __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); } return 0; } #ifdef MEMO_FREE_UNUSED static void ___dma_freep(m_pool_s *mp, m_addr_t m) { m_vtob_s **vbpp, *vbp; int hc = VTOB_HASH_CODE(m); vbpp = &mp->vtob[hc]; while (*vbpp && (*vbpp)->vaddr != m) vbpp = &(*vbpp)->next; if (*vbpp) { vbp = *vbpp; *vbpp = (*vbpp)->next; bus_dmamap_unload(mp->dmat, vbp->dmamap); bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); bus_dmamap_destroy(mp->dmat, vbp->dmamap); __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); --mp->nump; } } #endif static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) { m_pool_s *mp; for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); return mp; } static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) { m_pool_s *mp = NULL; mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); if (mp) { mp->dev_dmat = dev_dmat; if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MEMO_CLUSTER_SIZE, 1, MEMO_CLUSTER_SIZE, 0, NULL, NULL, &mp->dmat)) { mp->getp = ___dma_getp; #ifdef MEMO_FREE_UNUSED mp->freep = ___dma_freep; #endif mp->next = mp0.next; mp0.next = mp; return mp; } } if (mp) __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); return NULL; } #ifdef MEMO_FREE_UNUSED static void ___del_dma_pool(m_pool_s *p) { struct m_pool **pp = &mp0.next; while (*pp && *pp != p) pp = &(*pp)->next; if (*pp) { *pp = (*pp)->next; bus_dma_tag_destroy(p->dmat); __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); } } #endif static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) { struct m_pool *mp; void *m = NULL; /* Lock */ mp = ___get_dma_pool(dev_dmat); if (!mp) mp = ___cre_dma_pool(dev_dmat); if (mp) m = __sym_calloc(mp, size, name); #ifdef MEMO_FREE_UNUSED if (mp && !mp->nump) ___del_dma_pool(mp); #endif /* Unlock */ return m; } static void __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) { struct m_pool *mp; /* Lock */ mp = ___get_dma_pool(dev_dmat); if (mp) __sym_mfree(mp, m, size, name); #ifdef MEMO_FREE_UNUSED if (mp && !mp->nump) ___del_dma_pool(mp); #endif /* Unlock */ } static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) { m_pool_s *mp; int hc = VTOB_HASH_CODE(m); m_vtob_s *vp = NULL; m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; /* Lock */ mp = ___get_dma_pool(dev_dmat); if (mp) { vp = mp->vtob[hc]; while (vp && (m_addr_t) vp->vaddr != a) vp = vp->next; } /* Unlock */ if (!vp) panic("sym: VTOBUS FAILED!\n"); return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; } /* * Verbs for DMAable memory handling. * The _uvptv_ macro avoids a nasty warning about pointer to volatile * being discarded. */ #define _uvptv_(p) ((void *)((vm_offset_t)(p))) #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) #define _sym_mfree_dma(np, p, s, n) \ __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) #define vtobus(p) _vtobus(np, p) /* * Print a buffer in hexadecimal format. */ static void sym_printb_hex (u_char *p, int n) { while (n-- > 0) printf (" %x", *p++); } /* * Same with a label at beginning and .\n at end. */ static void sym_printl_hex (char *label, u_char *p, int n) { printf ("%s", label); sym_printb_hex (p, n); printf (".\n"); } /* * Return a string for SCSI BUS mode. */ static const char *sym_scsi_bus_mode(int mode) { switch(mode) { case SMODE_HVD: return "HVD"; case SMODE_SE: return "SE"; case SMODE_LVD: return "LVD"; } return "??"; } /* * Some poor and bogus sync table that refers to Tekram NVRAM layout. */ #ifdef SYM_CONF_NVRAM_SUPPORT static const u_char Tekram_sync[16] = {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; #endif /* * Union of supported NVRAM formats. */ struct sym_nvram { int type; #define SYM_SYMBIOS_NVRAM (1) #define SYM_TEKRAM_NVRAM (2) #ifdef SYM_CONF_NVRAM_SUPPORT union { Symbios_nvram Symbios; Tekram_nvram Tekram; } data; #endif }; /* * This one is hopefully useless, but actually useful. :-) */ #ifndef assert #define assert(expression) { \ if (!(expression)) { \ (void)panic( \ "assertion \"%s\" failed: file \"%s\", line %d\n", \ #expression, \ __FILE__, __LINE__); \ } \ } #endif /* * Some provision for a possible big endian mode supported by * Symbios chips (never seen, by the way). * For now, this stuff does not deserve any comments. :) */ #define sym_offb(o) (o) #define sym_offw(o) (o) /* * Some provision for support for BIG ENDIAN CPU. */ #define cpu_to_scr(dw) htole32(dw) #define scr_to_cpu(dw) le32toh(dw) /* * Access to the chip IO registers and on-chip RAM. * We use the `bus space' interface under FreeBSD-4 and * later kernel versions. */ #if defined(SYM_CONF_IOMAPPED) #define INB_OFF(o) bus_read_1(np->io_res, (o)) #define INW_OFF(o) bus_read_2(np->io_res, (o)) #define INL_OFF(o) bus_read_4(np->io_res, (o)) #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) #else /* Memory mapped IO */ #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) #endif /* SYM_CONF_IOMAPPED */ #define OUTRAM_OFF(o, a, l) \ bus_write_region_1(np->ram_res, (o), (a), (l)) /* * Common definitions for both bus space and legacy IO methods. */ #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) #define OUTONB(r, m) OUTB(r, INB(r) | (m)) #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) #define OUTONW(r, m) OUTW(r, INW(r) | (m)) #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) #define OUTONL(r, m) OUTL(r, INL(r) | (m)) #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) /* * We normally want the chip to have a consistent view * of driver internal data structures when we restart it. * Thus these macros. */ #define OUTL_DSP(v) \ do { \ MEMORY_BARRIER(); \ OUTL (nc_dsp, (v)); \ } while (0) #define OUTONB_STD() \ do { \ MEMORY_BARRIER(); \ OUTONB (nc_dcntl, (STD|NOCOM)); \ } while (0) /* * Command control block states. */ #define HS_IDLE (0) #define HS_BUSY (1) #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ #define HS_DISCONNECT (3) /* Disconnected by target */ #define HS_WAIT (4) /* waiting for resource */ #define HS_DONEMASK (0x80) #define HS_COMPLETE (4|HS_DONEMASK) #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ /* * Software Interrupt Codes */ #define SIR_BAD_SCSI_STATUS (1) #define SIR_SEL_ATN_NO_MSG_OUT (2) #define SIR_MSG_RECEIVED (3) #define SIR_MSG_WEIRD (4) #define SIR_NEGO_FAILED (5) #define SIR_NEGO_PROTO (6) #define SIR_SCRIPT_STOPPED (7) #define SIR_REJECT_TO_SEND (8) #define SIR_SWIDE_OVERRUN (9) #define SIR_SODL_UNDERRUN (10) #define SIR_RESEL_NO_MSG_IN (11) #define SIR_RESEL_NO_IDENTIFY (12) #define SIR_RESEL_BAD_LUN (13) #define SIR_TARGET_SELECTED (14) #define SIR_RESEL_BAD_I_T_L (15) #define SIR_RESEL_BAD_I_T_L_Q (16) #define SIR_ABORT_SENT (17) #define SIR_RESEL_ABORTED (18) #define SIR_MSG_OUT_DONE (19) #define SIR_COMPLETE_ERROR (20) #define SIR_DATA_OVERRUN (21) #define SIR_BAD_PHASE (22) #define SIR_MAX (22) /* * Extended error bit codes. * xerr_status field of struct sym_ccb. */ #define XE_EXTRA_DATA (1) /* unexpected data phase */ #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ /* * Negotiation status. * nego_status field of struct sym_ccb. */ #define NS_SYNC (1) #define NS_WIDE (2) #define NS_PPR (3) /* * A CCB hashed table is used to retrieve CCB address * from DSA value. */ #define CCB_HASH_SHIFT 8 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) #define CCB_HASH_MASK (CCB_HASH_SIZE-1) #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) /* * Device flags. */ #define SYM_DISC_ENABLED (1) #define SYM_TAGS_ENABLED (1<<1) #define SYM_SCAN_BOOT_DISABLED (1<<2) #define SYM_SCAN_LUNS_DISABLED (1<<3) /* * Host adapter miscellaneous flags. */ #define SYM_AVOID_BUS_RESET (1) #define SYM_SCAN_TARGETS_HILO (1<<1) /* * Device quirks. * Some devices, for example the CHEETAH 2 LVD, disconnects without * saving the DATA POINTER then reselects and terminates the IO. * On reselection, the automatic RESTORE DATA POINTER makes the * CURRENT DATA POINTER not point at the end of the IO. * This behaviour just breaks our calculation of the residual. * For now, we just force an AUTO SAVE on disconnection and will * fix that in a further driver version. */ #define SYM_QUIRK_AUTOSAVE 1 /* * Misc. */ #define SYM_LOCK() mtx_lock(&np->mtx) #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) #define SYM_UNLOCK() mtx_unlock(&np->mtx) #define SYM_SNOOP_TIMEOUT (10000000) #define SYM_PCI_IO PCIR_BAR(0) #define SYM_PCI_MMIO PCIR_BAR(1) #define SYM_PCI_RAM PCIR_BAR(2) #define SYM_PCI_RAM64 PCIR_BAR(3) /* * Back-pointer from the CAM CCB to our data structures. */ #define sym_hcb_ptr spriv_ptr0 /* #define sym_ccb_ptr spriv_ptr1 */ /* * We mostly have to deal with pointers. * Thus these typedef's. */ typedef struct sym_tcb *tcb_p; typedef struct sym_lcb *lcb_p; typedef struct sym_ccb *ccb_p; typedef struct sym_hcb *hcb_p; /* * Gather negotiable parameters value */ struct sym_trans { u8 scsi_version; u8 spi_version; u8 period; u8 offset; u8 width; u8 options; /* PPR options */ }; struct sym_tinfo { struct sym_trans current; struct sym_trans goal; struct sym_trans user; }; #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT /* * Global TCB HEADER. * * Due to lack of indirect addressing on earlier NCR chips, * this substructure is copied from the TCB to a global * address after selection. * For SYMBIOS chips that support LOAD/STORE this copy is * not needed and thus not performed. */ struct sym_tcbh { /* * Scripts bus addresses of LUN table accessed from scripts. * LUN #0 is a special case, since multi-lun devices are rare, * and we we want to speed-up the general case and not waste * resources. */ u32 luntbl_sa; /* bus address of this table */ u32 lun0_sa; /* bus address of LCB #0 */ /* * Actual SYNC/WIDE IO registers value for this target. * 'sval', 'wval' and 'uval' are read from SCRIPTS and * so have alignment constraints. */ /*0*/ u_char uval; /* -> SCNTL4 register */ /*1*/ u_char sval; /* -> SXFER io register */ /*2*/ u_char filler1; /*3*/ u_char wval; /* -> SCNTL3 io register */ }; /* * Target Control Block */ struct sym_tcb { /* * TCB header. * Assumed at offset 0. */ /*0*/ struct sym_tcbh head; /* * LUN table used by the SCRIPTS processor. * An array of bus addresses is used on reselection. */ u32 *luntbl; /* LCBs bus address table */ /* * LUN table used by the C code. */ lcb_p lun0p; /* LCB of LUN #0 (usual case) */ #if SYM_CONF_MAX_LUN > 1 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ #endif /* * Bitmap that tells about LUNs that succeeded at least * 1 IO and therefore assumed to be a real device. * Avoid useless allocation of the LCB structure. */ u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; /* * Bitmap that tells about LUNs that haven't yet an LCB * allocated (not discovered or LCB allocation failed). */ u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; /* * Transfer capabilities (SIP) */ struct sym_tinfo tinfo; /* * Keep track of the CCB used for the negotiation in order * to ensure that only 1 negotiation is queued at a time. */ ccb_p nego_cp; /* CCB used for the nego */ /* * Set when we want to reset the device. */ u_char to_reset; /* * Other user settable limits and options. * These limits are read from the NVRAM if present. */ u_char usrflags; u_short usrtags; }; /* * Global LCB HEADER. * * Due to lack of indirect addressing on earlier NCR chips, * this substructure is copied from the LCB to a global * address after selection. * For SYMBIOS chips that support LOAD/STORE this copy is * not needed and thus not performed. */ struct sym_lcbh { /* * SCRIPTS address jumped by SCRIPTS on reselection. * For not probed logical units, this address points to * SCRIPTS that deal with bad LU handling (must be at * offset zero of the LCB for that reason). */ /*0*/ u32 resel_sa; /* * Task (bus address of a CCB) read from SCRIPTS that points * to the unique ITL nexus allowed to be disconnected. */ u32 itl_task_sa; /* * Task table bus address (read from SCRIPTS). */ u32 itlq_tbl_sa; }; /* * Logical Unit Control Block */ struct sym_lcb { /* * TCB header. * Assumed at offset 0. */ /*0*/ struct sym_lcbh head; /* * Task table read from SCRIPTS that contains pointers to * ITLQ nexuses. The bus address read from SCRIPTS is * inside the header. */ u32 *itlq_tbl; /* Kernel virtual address */ /* * Busy CCBs management. */ u_short busy_itlq; /* Number of busy tagged CCBs */ u_short busy_itl; /* Number of busy untagged CCBs */ /* * Circular tag allocation buffer. */ u_short ia_tag; /* Tag allocation index */ u_short if_tag; /* Tag release index */ u_char *cb_tags; /* Circular tags buffer */ /* * Set when we want to clear all tasks. */ u_char to_clear; /* * Capabilities. */ u_char user_flags; u_char current_flags; }; /* * Action from SCRIPTS on a task. * Is part of the CCB, but is also used separately to plug * error handling action to perform from SCRIPTS. */ struct sym_actscr { u32 start; /* Jumped by SCRIPTS after selection */ u32 restart; /* Jumped by SCRIPTS on relection */ }; /* * Phase mismatch context. * * It is part of the CCB and is used as parameters for the * DATA pointer. We need two contexts to handle correctly the * SAVED DATA POINTER. */ struct sym_pmc { struct sym_tblmove sg; /* Updated interrupted SG block */ u32 ret; /* SCRIPT return address */ }; /* * LUN control block lookup. * We use a direct pointer for LUN #0, and a table of * pointers which is only allocated for devices that support * LUN(s) > 0. */ #if SYM_CONF_MAX_LUN <= 1 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 #else #define sym_lp(np, tp, lun) \ (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 #endif /* * Status are used by the host and the script processor. * * The last four bytes (status[4]) are copied to the * scratchb register (declared as scr0..scr3) just after the * select/reselect, and copied back just after disconnecting. * Inside the script the XX_REG are used. */ /* * Last four bytes (script) */ #define QU_REG scr0 #define HS_REG scr1 #define HS_PRT nc_scr1 #define SS_REG scr2 #define SS_PRT nc_scr2 #define HF_REG scr3 #define HF_PRT nc_scr3 /* * Last four bytes (host) */ #define actualquirks phys.head.status[0] #define host_status phys.head.status[1] #define ssss_status phys.head.status[2] #define host_flags phys.head.status[3] /* * Host flags */ #define HF_IN_PM0 1u #define HF_IN_PM1 (1u<<1) #define HF_ACT_PM (1u<<2) #define HF_DP_SAVED (1u<<3) #define HF_SENSE (1u<<4) #define HF_EXT_ERR (1u<<5) #define HF_DATA_IN (1u<<6) #ifdef SYM_CONF_IARB_SUPPORT #define HF_HINT_IARB (1u<<7) #endif /* * Global CCB HEADER. * * Due to lack of indirect addressing on earlier NCR chips, * this substructure is copied from the ccb to a global * address after selection (or reselection) and copied back * before disconnect. * For SYMBIOS chips that support LOAD/STORE this copy is * not needed and thus not performed. */ struct sym_ccbh { /* * Start and restart SCRIPTS addresses (must be at 0). */ /*0*/ struct sym_actscr go; /* * SCRIPTS jump address that deal with data pointers. * 'savep' points to the position in the script responsible * for the actual transfer of data. * It's written on reception of a SAVE_DATA_POINTER message. */ u32 savep; /* Jump address to saved data pointer */ u32 lastp; /* SCRIPTS address at end of data */ u32 goalp; /* Not accessed for now from SCRIPTS */ /* * Status fields. */ u8 status[4]; }; /* * Data Structure Block * * During execution of a ccb by the script processor, the * DSA (data structure address) register points to this * substructure of the ccb. */ struct sym_dsb { /* * CCB header. * Also assumed at offset 0 of the sym_ccb structure. */ /*0*/ struct sym_ccbh head; /* * Phase mismatch contexts. * We need two to handle correctly the SAVED DATA POINTER. * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic * for address calculation from SCRIPTS. */ struct sym_pmc pm0; struct sym_pmc pm1; /* * Table data for Script */ struct sym_tblsel select; struct sym_tblmove smsg; struct sym_tblmove smsg_ext; struct sym_tblmove cmd; struct sym_tblmove sense; struct sym_tblmove wresid; struct sym_tblmove data [SYM_CONF_MAX_SG]; }; /* * Our Command Control Block */ struct sym_ccb { /* * This is the data structure which is pointed by the DSA * register when it is executed by the script processor. * It must be the first entry. */ struct sym_dsb phys; /* * Pointer to CAM ccb and related stuff. */ struct callout ch; /* callout handle */ union ccb *cam_ccb; /* CAM scsiio ccb */ u8 cdb_buf[16]; /* Copy of CDB */ u8 *sns_bbuf; /* Bounce buffer for sense data */ #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) int data_len; /* Total data length */ int segments; /* Number of SG segments */ /* * Miscellaneous status'. */ u_char nego_status; /* Negotiation status */ u_char xerr_status; /* Extended error flags */ u32 extra_bytes; /* Extraneous bytes transferred */ /* * Message areas. * We prepare a message to be sent after selection. * We may use a second one if the command is rescheduled * due to CHECK_CONDITION or COMMAND TERMINATED. * Contents are IDENTIFY and SIMPLE_TAG. * While negotiating sync or wide transfer, * a SDTR or WDTR message is appended. */ u_char scsi_smsg [12]; u_char scsi_smsg2[12]; /* * Auto request sense related fields. */ u_char sensecmd[6]; /* Request Sense command */ u_char sv_scsi_status; /* Saved SCSI status */ u_char sv_xerr_status; /* Saved extended status */ int sv_resid; /* Saved residual */ /* * Map for the DMA of user data. */ void *arg; /* Argument for some callback */ bus_dmamap_t dmamap; /* DMA map for user data */ u_char dmamapped; #define SYM_DMA_NONE 0 #define SYM_DMA_READ 1 #define SYM_DMA_WRITE 2 /* * Other fields. */ u32 ccb_ba; /* BUS address of this CCB */ u_short tag; /* Tag for this transfer */ /* NO_TAG means no tag */ u_char target; u_char lun; ccb_p link_ccbh; /* Host adapter CCB hash chain */ SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */ u32 startp; /* Initial data pointer */ int ext_sg; /* Extreme data pointer, used */ int ext_ofs; /* to calculate the residual. */ u_char to_abort; /* Want this IO to be aborted */ }; #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) /* * Host Control Block */ struct sym_hcb { struct mtx mtx; /* * Global headers. * Due to poorness of addressing capabilities, earlier * chips (810, 815, 825) copy part of the data structures * (CCB, TCB and LCB) in fixed areas. */ #ifdef SYM_CONF_GENERIC_SUPPORT struct sym_ccbh ccb_head; struct sym_tcbh tcb_head; struct sym_lcbh lcb_head; #endif /* * Idle task and invalid task actions and * their bus addresses. */ struct sym_actscr idletask, notask, bad_itl, bad_itlq; vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; /* * Dummy lun table to protect us against target * returning bad lun number on reselection. */ u32 *badluntbl; /* Table physical address */ u32 badlun_sa; /* SCRIPT handler BUS address */ /* * Bus address of this host control block. */ u32 hcb_ba; /* * Bit 32-63 of the on-chip RAM bus address in LE format. * The START_RAM64 script loads the MMRS and MMWS from this * field. */ u32 scr_ram_seg; /* * Chip and controller indentification. */ device_t device; /* * Initial value of some IO register bits. * These values are assumed to have been set by BIOS, and may * be used to probe adapter implementation differences. */ u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, sv_stest1; /* * Actual initial value of IO register bits used by the * driver. They are loaded at initialisation according to * features that are to be enabled/disabled. */ u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; /* * Target data. */ #ifdef __amd64__ struct sym_tcb *target; #else struct sym_tcb target[SYM_CONF_MAX_TARGET]; #endif /* * Target control block bus address array used by the SCRIPT * on reselection. */ u32 *targtbl; u32 targtbl_ba; /* * CAM SIM information for this instance. */ struct cam_sim *sim; struct cam_path *path; /* * Allocated hardware resources. */ struct resource *irq_res; struct resource *io_res; struct resource *mmio_res; struct resource *ram_res; int ram_id; void *intr; /* * Bus stuff. * * My understanding of PCI is that all agents must share the * same addressing range and model. * But some hardware architecture guys provide complex and * brain-deaded stuff that makes shit. * This driver only support PCI compliant implementations and * deals with part of the BUS stuff complexity only to fit O/S * requirements. */ /* * DMA stuff. */ bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ bus_dma_tag_t data_dmat; /* DMA tag for user data */ /* * BUS addresses of the chip */ vm_offset_t mmio_ba; /* MMIO BUS address */ int mmio_ws; /* MMIO Window size */ vm_offset_t ram_ba; /* RAM BUS address */ int ram_ws; /* RAM window size */ /* * SCRIPTS virtual and physical bus addresses. * 'script' is loaded in the on-chip RAM if present. * 'scripth' stays in main memory for all chips except the * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. */ u_char *scripta0; /* Copies of script and scripth */ u_char *scriptb0; /* Copies of script and scripth */ vm_offset_t scripta_ba; /* Actual script and scripth */ vm_offset_t scriptb_ba; /* bus addresses. */ vm_offset_t scriptb0_ba; u_short scripta_sz; /* Actual size of script A */ u_short scriptb_sz; /* Actual size of script B */ /* * Bus addresses, setup and patch methods for * the selected firmware. */ struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ void (*fw_setup)(hcb_p np, const struct sym_fw *fw); void (*fw_patch)(hcb_p np); const char *fw_name; /* * General controller parameters and configuration. */ u_short device_id; /* PCI device id */ u_char revision_id; /* PCI device revision id */ u_int features; /* Chip features map */ u_char myaddr; /* SCSI id of the adapter */ u_char maxburst; /* log base 2 of dwords burst */ u_char maxwide; /* Maximum transfer width */ u_char minsync; /* Min sync period factor (ST) */ u_char maxsync; /* Max sync period factor (ST) */ u_char maxoffs; /* Max scsi offset (ST) */ u_char minsync_dt; /* Min sync period factor (DT) */ u_char maxsync_dt; /* Max sync period factor (DT) */ u_char maxoffs_dt; /* Max scsi offset (DT) */ u_char multiplier; /* Clock multiplier (1,2,4) */ u_char clock_divn; /* Number of clock divisors */ u32 clock_khz; /* SCSI clock frequency in KHz */ u32 pciclk_khz; /* Estimated PCI clock in KHz */ /* * Start queue management. * It is filled up by the host processor and accessed by the * SCRIPTS processor in order to start SCSI commands. */ volatile /* Prevent code optimizations */ u32 *squeue; /* Start queue virtual address */ u32 squeue_ba; /* Start queue BUS address */ u_short squeueput; /* Next free slot of the queue */ u_short actccbs; /* Number of allocated CCBs */ /* * Command completion queue. * It is the same size as the start queue to avoid overflow. */ u_short dqueueget; /* Next position to scan */ volatile /* Prevent code optimizations */ u32 *dqueue; /* Completion (done) queue */ u32 dqueue_ba; /* Done queue BUS address */ /* * Miscellaneous buffers accessed by the scripts-processor. * They shall be DWORD aligned, because they may be read or * written with a script command. */ u_char msgout[8]; /* Buffer for MESSAGE OUT */ u_char msgin [8]; /* Buffer for MESSAGE IN */ u32 lastmsg; /* Last SCSI message sent */ u_char scratch; /* Scratch for SCSI receive */ /* * Miscellaneous configuration and status parameters. */ u_char usrflags; /* Miscellaneous user flags */ u_char scsi_mode; /* Current SCSI BUS mode */ u_char verbose; /* Verbosity for this controller*/ u32 cache; /* Used for cache test at init. */ /* * CCB lists and queue. */ ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ /* * During error handling and/or recovery, * active CCBs that are to be completed with * error or requeued are moved from the busy_ccbq * to the comp_ccbq prior to completion. */ SYM_QUEHEAD comp_ccbq; /* * CAM CCB pending queue. */ SYM_QUEHEAD cam_ccbq; /* * IMMEDIATE ARBITRATION (IARB) control. * * We keep track in 'last_cp' of the last CCB that has been * queued to the SCRIPTS processor and clear 'last_cp' when * this CCB completes. If last_cp is not zero at the moment * we queue a new CCB, we set a flag in 'last_cp' that is * used by the SCRIPTS as a hint for setting IARB. * We donnot set more than 'iarb_max' consecutive hints for * IARB in order to leave devices a chance to reselect. * By the way, any non zero value of 'iarb_max' is unfair. :) */ #ifdef SYM_CONF_IARB_SUPPORT u_short iarb_max; /* Max. # consecutive IARB hints*/ u_short iarb_count; /* Actual # of these hints */ ccb_p last_cp; #endif /* * Command abort handling. * We need to synchronize tightly with the SCRIPTS * processor in order to handle things correctly. */ u_char abrt_msg[4]; /* Message to send buffer */ struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ struct sym_tblsel abrt_sel; /* Sync params for selection */ u_char istat_sem; /* Tells the chip to stop (SEM) */ }; #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) /* * Return the name of the controller. */ static __inline const char *sym_name(hcb_p np) { return device_get_nameunit(np->device); } /*--------------------------------------------------------------------------*/ /*------------------------------ FIRMWARES ---------------------------------*/ /*--------------------------------------------------------------------------*/ /* * This stuff will be moved to a separate source file when * the driver will be broken into several source modules. */ /* * Macros used for all firmwares. */ #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) #ifdef SYM_CONF_GENERIC_SUPPORT /* * Allocate firmware #1 script area. */ #define SYM_FWA_SCR sym_fw1a_scr #define SYM_FWB_SCR sym_fw1b_scr #include static const struct sym_fwa_ofs sym_fw1a_ofs = { SYM_GEN_FW_A(struct SYM_FWA_SCR) }; static const struct sym_fwb_ofs sym_fw1b_ofs = { SYM_GEN_FW_B(struct SYM_FWB_SCR) }; #undef SYM_FWA_SCR #undef SYM_FWB_SCR #endif /* SYM_CONF_GENERIC_SUPPORT */ /* * Allocate firmware #2 script area. */ #define SYM_FWA_SCR sym_fw2a_scr #define SYM_FWB_SCR sym_fw2b_scr #include static const struct sym_fwa_ofs sym_fw2a_ofs = { SYM_GEN_FW_A(struct SYM_FWA_SCR) }; static const struct sym_fwb_ofs sym_fw2b_ofs = { SYM_GEN_FW_B(struct SYM_FWB_SCR) SYM_GEN_B(struct SYM_FWB_SCR, start64) SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) }; #undef SYM_FWA_SCR #undef SYM_FWB_SCR #undef SYM_GEN_A #undef SYM_GEN_B #undef PADDR_A #undef PADDR_B #ifdef SYM_CONF_GENERIC_SUPPORT /* * Patch routine for firmware #1. */ static void sym_fw1_patch(hcb_p np) { struct sym_fw1a_scr *scripta0; struct sym_fw1b_scr *scriptb0; scripta0 = (struct sym_fw1a_scr *) np->scripta0; scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; /* * Remove LED support if not needed. */ if (!(np->features & FE_LED0)) { scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); scripta0->start[0] = cpu_to_scr(SCR_NO_OP); } #ifdef SYM_CONF_IARB_SUPPORT /* * If user does not want to use IMMEDIATE ARBITRATION * when we are reselected while attempting to arbitrate, * patch the SCRIPTS accordingly with a SCRIPT NO_OP. */ if (!SYM_CONF_SET_IARB_ON_ARB_LOST) scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); #endif /* * Patch some data in SCRIPTS. * - start and done queue initial bus address. * - target bus address table bus address. */ scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); } #endif /* SYM_CONF_GENERIC_SUPPORT */ /* * Patch routine for firmware #2. */ static void sym_fw2_patch(hcb_p np) { struct sym_fw2a_scr *scripta0; struct sym_fw2b_scr *scriptb0; scripta0 = (struct sym_fw2a_scr *) np->scripta0; scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; /* * Remove LED support if not needed. */ if (!(np->features & FE_LED0)) { scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); scripta0->start[0] = cpu_to_scr(SCR_NO_OP); } #ifdef SYM_CONF_IARB_SUPPORT /* * If user does not want to use IMMEDIATE ARBITRATION * when we are reselected while attempting to arbitrate, * patch the SCRIPTS accordingly with a SCRIPT NO_OP. */ if (!SYM_CONF_SET_IARB_ON_ARB_LOST) scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); #endif /* * Patch some variable in SCRIPTS. * - start and done queue initial bus address. * - target bus address table bus address. */ scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); /* * Remove the load of SCNTL4 on reselection if not a C10. */ if (!(np->features & FE_C10)) { scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); scripta0->resel_scntl4[1] = cpu_to_scr(0); } /* * Remove a couple of work-arounds specific to C1010 if * they are not desirable. See `sym_fw2.h' for more details. */ if (!(np->device_id == PCI_ID_LSI53C1010_2 && np->revision_id < 0x1 && np->pciclk_khz < 60000)) { scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); scripta0->datao_phase[1] = cpu_to_scr(0); } if (!(np->device_id == PCI_ID_LSI53C1010 && /* np->revision_id < 0xff */ 1)) { scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); scripta0->sel_done[1] = cpu_to_scr(0); } /* * Patch some other variables in SCRIPTS. * These ones are loaded by the SCRIPTS processor. */ scriptb0->pm0_data_addr[0] = cpu_to_scr(np->scripta_ba + offsetof(struct sym_fw2a_scr, pm0_data)); scriptb0->pm1_data_addr[0] = cpu_to_scr(np->scripta_ba + offsetof(struct sym_fw2a_scr, pm1_data)); } /* * Fill the data area in scripts. * To be done for all firmwares. */ static void sym_fw_fill_data (u32 *in, u32 *out) { int i; for (i = 0; i < SYM_CONF_MAX_SG; i++) { *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; *in++ = offsetof (struct sym_dsb, data[i]); *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; *out++ = offsetof (struct sym_dsb, data[i]); } } /* * Setup useful script bus addresses. * To be done for all firmwares. */ static void sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) { u32 *pa; const u_short *po; int i; /* * Build the bus address table for script A * from the script A offset table. */ po = (const u_short *) fw->a_ofs; pa = (u32 *) &np->fwa_bas; for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) pa[i] = np->scripta_ba + po[i]; /* * Same for script B. */ po = (const u_short *) fw->b_ofs; pa = (u32 *) &np->fwb_bas; for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) pa[i] = np->scriptb_ba + po[i]; } #ifdef SYM_CONF_GENERIC_SUPPORT /* * Setup routine for firmware #1. */ static void sym_fw1_setup(hcb_p np, const struct sym_fw *fw) { struct sym_fw1a_scr *scripta0; scripta0 = (struct sym_fw1a_scr *) np->scripta0; /* * Fill variable parts in scripts. */ sym_fw_fill_data(scripta0->data_in, scripta0->data_out); /* * Setup bus addresses used from the C code.. */ sym_fw_setup_bus_addresses(np, fw); } #endif /* SYM_CONF_GENERIC_SUPPORT */ /* * Setup routine for firmware #2. */ static void sym_fw2_setup(hcb_p np, const struct sym_fw *fw) { struct sym_fw2a_scr *scripta0; scripta0 = (struct sym_fw2a_scr *) np->scripta0; /* * Fill variable parts in scripts. */ sym_fw_fill_data(scripta0->data_in, scripta0->data_out); /* * Setup bus addresses used from the C code.. */ sym_fw_setup_bus_addresses(np, fw); } /* * Allocate firmware descriptors. */ #ifdef SYM_CONF_GENERIC_SUPPORT static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); #endif /* SYM_CONF_GENERIC_SUPPORT */ static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); /* * Find the most appropriate firmware for a chip. */ static const struct sym_fw * sym_find_firmware(const struct sym_pci_chip *chip) { if (chip->features & FE_LDSTR) return &sym_fw2; #ifdef SYM_CONF_GENERIC_SUPPORT else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) return &sym_fw1; #endif else return NULL; } /* * Bind a script to physical addresses. */ static void sym_fw_bind_script (hcb_p np, u32 *start, int len) { u32 opcode, new, old, tmp1, tmp2; u32 *end, *cur; int relocs; cur = start; end = start + len/4; while (cur < end) { opcode = *cur; /* * If we forget to change the length * in scripts, a field will be * padded with 0. This is an illegal * command. */ if (opcode == 0) { printf ("%s: ERROR0 IN SCRIPT at %d.\n", sym_name(np), (int) (cur-start)); MDELAY (10000); ++cur; continue; }; /* * We use the bogus value 0xf00ff00f ;-) * to reserve data area in SCRIPTS. */ if (opcode == SCR_DATA_ZERO) { *cur++ = 0; continue; } if (DEBUG_FLAGS & DEBUG_SCRIPT) printf ("%d: <%x>\n", (int) (cur-start), (unsigned)opcode); /* * We don't have to decode ALL commands */ switch (opcode >> 28) { case 0xf: /* * LOAD / STORE DSA relative, don't relocate. */ relocs = 0; break; case 0xe: /* * LOAD / STORE absolute. */ relocs = 1; break; case 0xc: /* * COPY has TWO arguments. */ relocs = 2; tmp1 = cur[1]; tmp2 = cur[2]; if ((tmp1 ^ tmp2) & 3) { printf ("%s: ERROR1 IN SCRIPT at %d.\n", sym_name(np), (int) (cur-start)); MDELAY (10000); } /* * If PREFETCH feature not enabled, remove * the NO FLUSH bit if present. */ if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) { opcode = (opcode & ~SCR_NO_FLUSH); } break; case 0x0: /* * MOVE/CHMOV (absolute address) */ if (!(np->features & FE_WIDE)) opcode = (opcode | OPC_MOVE); relocs = 1; break; case 0x1: /* * MOVE/CHMOV (table indirect) */ if (!(np->features & FE_WIDE)) opcode = (opcode | OPC_MOVE); relocs = 0; break; case 0x8: /* * JUMP / CALL * dont't relocate if relative :-) */ if (opcode & 0x00800000) relocs = 0; else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ relocs = 2; else relocs = 1; break; case 0x4: case 0x5: case 0x6: case 0x7: relocs = 1; break; default: relocs = 0; break; }; /* * Scriptify:) the opcode. */ *cur++ = cpu_to_scr(opcode); /* * If no relocation, assume 1 argument * and just scriptize:) it. */ if (!relocs) { *cur = cpu_to_scr(*cur); ++cur; continue; } /* * Otherwise performs all needed relocations. */ while (relocs--) { old = *cur; switch (old & RELOC_MASK) { case RELOC_REGISTER: new = (old & ~RELOC_MASK) + np->mmio_ba; break; case RELOC_LABEL_A: new = (old & ~RELOC_MASK) + np->scripta_ba; break; case RELOC_LABEL_B: new = (old & ~RELOC_MASK) + np->scriptb_ba; break; case RELOC_SOFTC: new = (old & ~RELOC_MASK) + np->hcb_ba; break; case 0: /* * Don't relocate a 0 address. * They are mostly used for patched or * script self-modified areas. */ if (old == 0) { new = old; break; } /* fall through */ default: new = 0; panic("sym_fw_bind_script: " "weird relocation %x\n", old); break; } *cur++ = cpu_to_scr(new); } }; } /*---------------------------------------------------------------------------*/ /*--------------------------- END OF FIRMWARES -----------------------------*/ /*---------------------------------------------------------------------------*/ /* * Function prototypes. */ static void sym_save_initial_setting (hcb_p np); static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); static void sym_put_start_queue (hcb_p np, ccb_p cp); static void sym_chip_reset (hcb_p np); static void sym_soft_reset (hcb_p np); static void sym_start_reset (hcb_p np); static int sym_reset_scsi_bus (hcb_p np, int enab_int); static int sym_wakeup_done (hcb_p np); static void sym_flush_busy_queue (hcb_p np, int cam_status); static void sym_flush_comp_queue (hcb_p np, int cam_status); static void sym_init (hcb_p np, int reason); static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp); static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak); static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, u_char per, u_char wide, u_char div, u_char fak); static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, u_char per, u_char wide, u_char div, u_char fak); static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); static void sym_intr (void *arg); static void sym_poll (struct cam_sim *sim); static void sym_recover_scsi_int (hcb_p np, u_char hsts); static void sym_int_sto (hcb_p np); static void sym_int_udc (hcb_p np); static void sym_int_sbmc (hcb_p np); static void sym_int_par (hcb_p np, u_short sist); static void sym_int_ma (hcb_p np); static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task); static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); static void sym_sir_task_recovery (hcb_p np, int num); static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); static int sym_compute_residual (hcb_p np, ccb_p cp); static int sym_show_msg (u_char * msg); static void sym_print_msg (ccb_p cp, char *label, u_char *msg); static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); static void sym_int_sir (hcb_p np); static void sym_free_ccb (hcb_p np, ccb_p cp); static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); static ccb_p sym_alloc_ccb (hcb_p np); static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); static int sym_snooptest (hcb_p np); static void sym_selectclock(hcb_p np, u_char scntl3); static void sym_getclock (hcb_p np, int mult); static int sym_getpciclock (hcb_p np); static void sym_complete_ok (hcb_p np, ccb_p cp); static void sym_complete_error (hcb_p np, ccb_p cp); static void sym_callout (void *arg); static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); static void sym_reset_dev (hcb_p np, union ccb *ccb); static void sym_action (struct cam_sim *sim, union ccb *ccb); static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs); static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs); static void sym_action2 (struct cam_sim *sim, union ccb *ccb); static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, struct ccb_trans_settings *cts); static void sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts); static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); static int sym_pci_probe (device_t dev); static int sym_pci_attach (device_t dev); static void sym_pci_free (hcb_p np); static int sym_cam_attach (hcb_p np); static void sym_cam_free (hcb_p np); static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); /* * Print something which allows to retrieve the controller type, * unit, target, lun concerned by a kernel message. */ static void PRINT_TARGET (hcb_p np, int target) { printf ("%s:%d:", sym_name(np), target); } static void PRINT_LUN(hcb_p np, int target, int lun) { printf ("%s:%d:%d:", sym_name(np), target, lun); } static void PRINT_ADDR (ccb_p cp) { if (cp && cp->cam_ccb) xpt_print_path(cp->cam_ccb->ccb_h.path); } /* * Take into account this ccb in the freeze count. */ static void sym_freeze_cam_ccb(union ccb *ccb) { if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { ccb->ccb_h.status |= CAM_DEV_QFRZN; xpt_freeze_devq(ccb->ccb_h.path, 1); } } } /* * Set the status field of a CAM CCB. */ static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) { ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= status; } /* * Get the status field of a CAM CCB. */ static __inline int sym_get_cam_status(union ccb *ccb) { return ccb->ccb_h.status & CAM_STATUS_MASK; } /* * Enqueue a CAM CCB. */ static void sym_enqueue_cam_ccb(ccb_p cp) { hcb_p np; union ccb *ccb; ccb = cp->cam_ccb; np = (hcb_p) cp->arg; assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); ccb->ccb_h.status = CAM_REQ_INPROG; callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout, (caddr_t) ccb); ccb->ccb_h.status |= CAM_SIM_QUEUED; ccb->ccb_h.sym_hcb_ptr = np; sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); } /* * Complete a pending CAM CCB. */ static void _sym_xpt_done(hcb_p np, union ccb *ccb) { SYM_LOCK_ASSERT(MA_OWNED); KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0, ("%s: status=CAM_SIM_QUEUED", __func__)); if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) sym_freeze_cam_ccb(ccb); xpt_done(ccb); } static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) { SYM_LOCK_ASSERT(MA_OWNED); if (ccb->ccb_h.status & CAM_SIM_QUEUED) { callout_stop(&cp->ch); sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ccb->ccb_h.sym_hcb_ptr = NULL; } _sym_xpt_done(np, ccb); } static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) { SYM_LOCK_ASSERT(MA_OWNED); sym_set_cam_status(ccb, cam_status); _sym_xpt_done(np, ccb); } /* * SYMBIOS chip clock divisor table. * * Divisors are multiplied by 10,000,000 in order to make * calculations more simple. */ #define _5M 5000000 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; /* * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, * 128 transfers. All chips support at least 16 transfers * bursts. The 825A, 875 and 895 chips support bursts of up * to 128 transfers and the 895A and 896 support bursts of up * to 64 transfers. All other chips support up to 16 * transfers bursts. * * For PCI 32 bit data transfers each transfer is a DWORD. * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. * * We use log base 2 (burst length) as internal code, with * value 0 meaning "burst disabled". */ /* * Burst length from burst code. */ #define burst_length(bc) (!(bc))? 0 : 1 << (bc) /* * Burst code from io register bits. */ #define burst_code(dmode, ctest4, ctest5) \ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 /* * Set initial io register bits from burst code. */ static __inline void sym_init_burst(hcb_p np, u_char bc) { np->rv_ctest4 &= ~0x80; np->rv_dmode &= ~(0x3 << 6); np->rv_ctest5 &= ~0x4; if (!bc) { np->rv_ctest4 |= 0x80; } else { --bc; np->rv_dmode |= ((bc & 0x3) << 6); np->rv_ctest5 |= (bc & 0x4); } } /* * Print out the list of targets that have some flag disabled by user. */ static void sym_print_targets_flag(hcb_p np, int mask, char *msg) { int cnt; int i; for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { if (i == np->myaddr) continue; if (np->target[i].usrflags & mask) { if (!cnt++) printf("%s: %s disabled for targets", sym_name(np), msg); printf(" %d", i); } } if (cnt) printf(".\n"); } /* * Save initial settings of some IO registers. * Assumed to have been set by BIOS. * We cannot reset the chip prior to reading the * IO registers, since informations will be lost. * Since the SCRIPTS processor may be running, this * is not safe on paper, but it seems to work quite * well. :) */ static void sym_save_initial_setting (hcb_p np) { np->sv_scntl0 = INB(nc_scntl0) & 0x0a; np->sv_scntl3 = INB(nc_scntl3) & 0x07; np->sv_dmode = INB(nc_dmode) & 0xce; np->sv_dcntl = INB(nc_dcntl) & 0xa8; np->sv_ctest3 = INB(nc_ctest3) & 0x01; np->sv_ctest4 = INB(nc_ctest4) & 0x80; np->sv_gpcntl = INB(nc_gpcntl); np->sv_stest1 = INB(nc_stest1); np->sv_stest2 = INB(nc_stest2) & 0x20; np->sv_stest4 = INB(nc_stest4); if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ np->sv_scntl4 = INB(nc_scntl4); np->sv_ctest5 = INB(nc_ctest5) & 0x04; } else np->sv_ctest5 = INB(nc_ctest5) & 0x24; } /* * Prepare io register values used by sym_init() according * to selected and supported features. */ static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) { u_char burst_max; u32 period; int i; /* * Wide ? */ np->maxwide = (np->features & FE_WIDE)? 1 : 0; /* * Get the frequency of the chip's clock. */ if (np->features & FE_QUAD) np->multiplier = 4; else if (np->features & FE_DBLR) np->multiplier = 2; else np->multiplier = 1; np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; np->clock_khz *= np->multiplier; if (np->clock_khz != 40000) sym_getclock(np, np->multiplier); /* * Divisor to be used for async (timer pre-scaler). */ i = np->clock_divn - 1; while (--i >= 0) { if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { ++i; break; } } np->rv_scntl3 = i+1; /* * The C1010 uses hardwired divisors for async. * So, we just throw away, the async. divisor.:-) */ if (np->features & FE_C10) np->rv_scntl3 = 0; /* * Minimum synchronous period factor supported by the chip. * Btw, 'period' is in tenths of nanoseconds. */ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; if (period <= 250) np->minsync = 10; else if (period <= 303) np->minsync = 11; else if (period <= 500) np->minsync = 12; else np->minsync = (period + 40 - 1) / 40; /* * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). */ if (np->minsync < 25 && !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) np->minsync = 25; else if (np->minsync < 12 && !(np->features & (FE_ULTRA2|FE_ULTRA3))) np->minsync = 12; /* * Maximum synchronous period factor supported by the chip. */ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); np->maxsync = period > 2540 ? 254 : period / 10; /* * If chip is a C1010, guess the sync limits in DT mode. */ if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { if (np->clock_khz == 160000) { np->minsync_dt = 9; np->maxsync_dt = 50; np->maxoffs_dt = 62; } } /* * 64 bit addressing (895A/896/1010) ? */ if (np->features & FE_DAC) #ifdef __LP64__ np->rv_ccntl1 |= (XTIMOD | EXTIBMV); #else np->rv_ccntl1 |= (DDAC); #endif /* * Phase mismatch handled by SCRIPTS (895A/896/1010) ? */ if (np->features & FE_NOPM) np->rv_ccntl0 |= (ENPMJ); /* * C1010 Errata. * In dual channel mode, contention occurs if internal cycles * are used. Disable internal cycles. */ if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x2) np->rv_ccntl0 |= DILS; /* * Select burst length (dwords) */ burst_max = SYM_SETUP_BURST_ORDER; if (burst_max == 255) burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5); if (burst_max > 7) burst_max = 7; if (burst_max > np->maxburst) burst_max = np->maxburst; /* * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. * This chip and the 860 Rev 1 may wrongly use PCI cache line * based transactions on LOAD/STORE instructions. So we have * to prevent these chips from using such PCI transactions in * this driver. The generic ncr driver that does not use * LOAD/STORE instructions does not need this work-around. */ if ((np->device_id == PCI_ID_SYM53C810 && np->revision_id >= 0x10 && np->revision_id <= 0x11) || (np->device_id == PCI_ID_SYM53C860 && np->revision_id <= 0x1)) np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); /* * Select all supported special features. * If we are using on-board RAM for scripts, prefetch (PFEN) * does not help, but burst op fetch (BOF) does. * Disabling PFEN makes sure BOF will be used. */ if (np->features & FE_ERL) np->rv_dmode |= ERL; /* Enable Read Line */ if (np->features & FE_BOF) np->rv_dmode |= BOF; /* Burst Opcode Fetch */ if (np->features & FE_ERMP) np->rv_dmode |= ERMP; /* Enable Read Multiple */ #if 1 if ((np->features & FE_PFEN) && !np->ram_ba) #else if (np->features & FE_PFEN) #endif np->rv_dcntl |= PFEN; /* Prefetch Enable */ if (np->features & FE_CLSE) np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ if (np->features & FE_WRIE) np->rv_ctest3 |= WRIE; /* Write and Invalidate */ if (np->features & FE_DFS) np->rv_ctest5 |= DFS; /* Dma Fifo Size */ /* * Select some other */ if (SYM_SETUP_PCI_PARITY) np->rv_ctest4 |= MPEE; /* Master parity checking */ if (SYM_SETUP_SCSI_PARITY) np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ /* * Get parity checking, host ID and verbose mode from NVRAM */ np->myaddr = 255; sym_nvram_setup_host (np, nvram); #ifdef __sparc64__ np->myaddr = OF_getscsinitid(np->device); #endif /* * Get SCSI addr of host adapter (set by bios?). */ if (np->myaddr == 255) { np->myaddr = INB(nc_scid) & 0x07; if (!np->myaddr) np->myaddr = SYM_SETUP_HOST_ID; } /* * Prepare initial io register bits for burst length */ sym_init_burst(np, burst_max); /* * Set SCSI BUS mode. * - LVD capable chips (895/895A/896/1010) report the * current BUS mode through the STEST4 IO register. * - For previous generation chips (825/825A/875), * user has to tell us how to check against HVD, * since a 100% safe algorithm is not possible. */ np->scsi_mode = SMODE_SE; if (np->features & (FE_ULTRA2|FE_ULTRA3)) np->scsi_mode = (np->sv_stest4 & SMODE); else if (np->features & FE_DIFF) { if (SYM_SETUP_SCSI_DIFF == 1) { if (np->sv_scntl3) { if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; } else if (nvram->type == SYM_SYMBIOS_NVRAM) { if (!(INB(nc_gpreg) & 0x08)) np->scsi_mode = SMODE_HVD; } } else if (SYM_SETUP_SCSI_DIFF == 2) np->scsi_mode = SMODE_HVD; } if (np->scsi_mode == SMODE_HVD) np->rv_stest2 |= 0x20; /* * Set LED support from SCRIPTS. * Ignore this feature for boards known to use a * specific GPIO wiring and for the 895A, 896 * and 1010 that drive the LED directly. */ if ((SYM_SETUP_SCSI_LED || (nvram->type == SYM_SYMBIOS_NVRAM || (nvram->type == SYM_TEKRAM_NVRAM && np->device_id == PCI_ID_SYM53C895))) && !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) np->features |= FE_LED0; /* * Set irq mode. */ switch(SYM_SETUP_IRQ_MODE & 3) { case 2: np->rv_dcntl |= IRQM; break; case 1: np->rv_dcntl |= (np->sv_dcntl & IRQM); break; default: break; } /* * Configure targets according to driver setup. * If NVRAM present get targets setup from NVRAM. */ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { tcb_p tp = &np->target[i]; tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; tp->tinfo.user.period = np->minsync; if (np->features & FE_ULTRA3) tp->tinfo.user.period = np->minsync_dt; tp->tinfo.user.offset = np->maxoffs; tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); tp->usrtags = SYM_SETUP_MAX_TAG; sym_nvram_setup_target (np, i, nvram); /* * For now, guess PPR/DT support from the period * and BUS width. */ if (np->features & FE_ULTRA3) { if (tp->tinfo.user.period <= 9 && tp->tinfo.user.width == BUS_16_BIT) { tp->tinfo.user.options |= PPR_OPT_DT; tp->tinfo.user.offset = np->maxoffs_dt; tp->tinfo.user.spi_version = 3; } } if (!tp->usrtags) tp->usrflags &= ~SYM_TAGS_ENABLED; } /* * Let user know about the settings. */ i = nvram->type; printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), i == SYM_SYMBIOS_NVRAM ? "Symbios" : (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), np->myaddr, (np->features & FE_ULTRA3) ? 80 : (np->features & FE_ULTRA2) ? 40 : (np->features & FE_ULTRA) ? 20 : 10, sym_scsi_bus_mode(np->scsi_mode), (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); /* * Tell him more on demand. */ if (sym_verbose) { printf("%s: %s IRQ line driver%s\n", sym_name(np), np->rv_dcntl & IRQM ? "totem pole" : "open drain", np->ram_ba ? ", using on-chip SRAM" : ""); printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); if (np->features & FE_NOPM) printf("%s: handling phase mismatch from SCRIPTS.\n", sym_name(np)); } /* * And still more. */ if (sym_verbose > 1) { printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); } /* * Let user be aware of targets that have some disable flags set. */ sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); if (sym_verbose) sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, "SCAN FOR LUNS"); return 0; } /* * Prepare the next negotiation message if needed. * * Fill in the part of message buffer that contains the * negotiation and the nego_status field of the CCB. * Returns the size of the message in bytes. */ static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) { tcb_p tp = &np->target[cp->target]; int msglen = 0; /* * Early C1010 chips need a work-around for DT * data transfer to work. */ if (!(np->features & FE_U3EN)) tp->tinfo.goal.options = 0; /* * negotiate using PPR ? */ if (tp->tinfo.goal.options & PPR_OPT_MASK) nego = NS_PPR; /* * negotiate wide transfers ? */ else if (tp->tinfo.current.width != tp->tinfo.goal.width) nego = NS_WIDE; /* * negotiate synchronous transfers? */ else if (tp->tinfo.current.period != tp->tinfo.goal.period || tp->tinfo.current.offset != tp->tinfo.goal.offset) nego = NS_SYNC; switch (nego) { case NS_SYNC: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 3; msgptr[msglen++] = M_X_SYNC_REQ; msgptr[msglen++] = tp->tinfo.goal.period; msgptr[msglen++] = tp->tinfo.goal.offset; break; case NS_WIDE: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 2; msgptr[msglen++] = M_X_WIDE_REQ; msgptr[msglen++] = tp->tinfo.goal.width; break; case NS_PPR: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 6; msgptr[msglen++] = M_X_PPR_REQ; msgptr[msglen++] = tp->tinfo.goal.period; msgptr[msglen++] = 0; msgptr[msglen++] = tp->tinfo.goal.offset; msgptr[msglen++] = tp->tinfo.goal.width; msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; break; }; cp->nego_status = nego; if (nego) { tp->nego_cp = cp; /* Keep track a nego will be performed */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : nego == NS_WIDE ? "wide msgout" : "ppr msgout", msgptr); }; }; return msglen; } /* * Insert a job into the start queue. */ static void sym_put_start_queue(hcb_p np, ccb_p cp) { u_short qidx; #ifdef SYM_CONF_IARB_SUPPORT /* * If the previously queued CCB is not yet done, * set the IARB hint. The SCRIPTS will go with IARB * for this job when starting the previous one. * We leave devices a chance to win arbitration by * not using more than 'iarb_max' consecutive * immediate arbitrations. */ if (np->last_cp && np->iarb_count < np->iarb_max) { np->last_cp->host_flags |= HF_HINT_IARB; ++np->iarb_count; } else np->iarb_count = 0; np->last_cp = cp; #endif /* * Insert first the idle task and then our job. * The MB should ensure proper ordering. */ qidx = np->squeueput + 2; if (qidx >= MAX_QUEUE*2) qidx = 0; np->squeue [qidx] = cpu_to_scr(np->idletask_ba); MEMORY_BARRIER(); np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); np->squeueput = qidx; if (DEBUG_FLAGS & DEBUG_QUEUE) printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); /* * Script processor may be waiting for reselect. * Wake it up. */ MEMORY_BARRIER(); OUTB (nc_istat, SIGP|np->istat_sem); } /* * Soft reset the chip. * * Raising SRST when the chip is running may cause * problems on dual function chips (see below). * On the other hand, LVD devices need some delay * to settle and report actual BUS mode in STEST4. */ static void sym_chip_reset (hcb_p np) { OUTB (nc_istat, SRST); UDELAY (10); OUTB (nc_istat, 0); UDELAY(2000); /* For BUS MODE to settle */ } /* * Soft reset the chip. * * Some 896 and 876 chip revisions may hang-up if we set * the SRST (soft reset) bit at the wrong time when SCRIPTS * are running. * So, we need to abort the current operation prior to * soft resetting the chip. */ static void sym_soft_reset (hcb_p np) { u_char istat; int i; OUTB (nc_istat, CABRT); for (i = 1000000 ; i ; --i) { istat = INB (nc_istat); if (istat & SIP) { INW (nc_sist); continue; } if (istat & DIP) { OUTB (nc_istat, 0); INB (nc_dstat); break; } } if (!i) printf("%s: unable to abort current chip operation.\n", sym_name(np)); sym_chip_reset (np); } /* * Start reset process. * * The interrupt handler will reinitialize the chip. */ static void sym_start_reset(hcb_p np) { (void) sym_reset_scsi_bus(np, 1); } static int sym_reset_scsi_bus(hcb_p np, int enab_int) { u32 term; int retv = 0; sym_soft_reset(np); /* Soft reset the chip */ if (enab_int) OUTW (nc_sien, RST); /* * Enable Tolerant, reset IRQD if present and * properly set IRQ mode, prior to resetting the bus. */ OUTB (nc_stest3, TE); OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); OUTB (nc_scntl1, CRST); UDELAY (200); if (!SYM_SETUP_SCSI_BUS_CHECK) goto out; /* * Check for no terminators or SCSI bus shorts to ground. * Read SCSI data bus, data parity bits and control signals. * We are expecting RESET to be TRUE and other signals to be * FALSE. */ term = INB(nc_sstat0); term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ if (!(np->features & FE_WIDE)) term &= 0x3ffff; if (term != (2<<7)) { printf("%s: suspicious SCSI data while resetting the BUS.\n", sym_name(np)); printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " "0x%lx, expecting 0x%lx\n", sym_name(np), (np->features & FE_WIDE) ? "dp1,d15-8," : "", (u_long)term, (u_long)(2<<7)); if (SYM_SETUP_SCSI_BUS_CHECK == 1) retv = 1; } out: OUTB (nc_scntl1, 0); /* MDELAY(100); */ return retv; } /* * The chip may have completed jobs. Look at the DONE QUEUE. * * On architectures that may reorder LOAD/STORE operations, * a memory barrier may be needed after the reading of the * so-called `flag' and prior to dealing with the data. */ static int sym_wakeup_done (hcb_p np) { ccb_p cp; int i, n; u32 dsa; SYM_LOCK_ASSERT(MA_OWNED); n = 0; i = np->dqueueget; while (1) { dsa = scr_to_cpu(np->dqueue[i]); if (!dsa) break; np->dqueue[i] = 0; if ((i = i+2) >= MAX_QUEUE*2) i = 0; cp = sym_ccb_from_dsa(np, dsa); if (cp) { MEMORY_BARRIER(); sym_complete_ok (np, cp); ++n; } else printf ("%s: bad DSA (%x) in done queue.\n", sym_name(np), (u_int) dsa); } np->dqueueget = i; return n; } /* * Complete all active CCBs with error. * Used on CHIP/SCSI RESET. */ static void sym_flush_busy_queue (hcb_p np, int cam_status) { /* * Move all active CCBs to the COMP queue * and flush this queue. */ sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); sym_que_init(&np->busy_ccbq); sym_flush_comp_queue(np, cam_status); } /* * Start chip. * * 'reason' means: * 0: initialisation. * 1: SCSI BUS RESET delivered or received. * 2: SCSI BUS MODE changed. */ static void sym_init (hcb_p np, int reason) { int i; u32 phys; SYM_LOCK_ASSERT(MA_OWNED); /* * Reset chip if asked, otherwise just clear fifos. */ if (reason == 1) sym_soft_reset(np); else { OUTB (nc_stest3, TE|CSF); OUTONB (nc_ctest3, CLF); } /* * Clear Start Queue */ phys = np->squeue_ba; for (i = 0; i < MAX_QUEUE*2; i += 2) { np->squeue[i] = cpu_to_scr(np->idletask_ba); np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); } np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); /* * Start at first entry. */ np->squeueput = 0; /* * Clear Done Queue */ phys = np->dqueue_ba; for (i = 0; i < MAX_QUEUE*2; i += 2) { np->dqueue[i] = 0; np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); } np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); /* * Start at first entry. */ np->dqueueget = 0; /* * Install patches in scripts. * This also let point to first position the start * and done queue pointers used from SCRIPTS. */ np->fw_patch(np); /* * Wakeup all pending jobs. */ sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); /* * Init chip. */ OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ UDELAY (2000); /* The 895 needs time for the bus mode to settle */ OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); /* full arb., ena parity, par->ATN */ OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ OUTW (nc_respid, 1ul<myaddr); /* Id to respond to */ OUTB (nc_istat , SIGP ); /* Signal Process */ OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ /* Extended Sreq/Sack filtering not supported on the C10 */ if (np->features & FE_C10) OUTB (nc_stest2, np->rv_stest2); else OUTB (nc_stest2, EXT|np->rv_stest2); OUTB (nc_stest3, TE); /* TolerANT enable */ OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ /* * For now, disable AIP generation on C1010-66. */ if (np->device_id == PCI_ID_LSI53C1010_2) OUTB (nc_aipcntl1, DISAIP); /* * C10101 Errata. * Errant SGE's when in narrow. Write bits 4 & 5 of * STEST1 register to disable SGE. We probably should do * that from SCRIPTS for each selection/reselection, but * I just don't want. :) */ if (np->device_id == PCI_ID_LSI53C1010 && /* np->revision_id < 0xff */ 1) OUTB (nc_stest1, INB(nc_stest1) | 0x30); /* * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. * Disable overlapped arbitration for some dual function devices, * regardless revision id (kind of post-chip-design feature. ;-)) */ if (np->device_id == PCI_ID_SYM53C875) OUTB (nc_ctest0, (1<<5)); else if (np->device_id == PCI_ID_SYM53C896) np->rv_ccntl0 |= DPR; /* * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing * and/or hardware phase mismatch, since only such chips * seem to support those IO registers. */ if (np->features & (FE_DAC|FE_NOPM)) { OUTB (nc_ccntl0, np->rv_ccntl0); OUTB (nc_ccntl1, np->rv_ccntl1); } /* * If phase mismatch handled by scripts (895A/896/1010), * set PM jump addresses. */ if (np->features & FE_NOPM) { OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); } /* * Enable GPIO0 pin for writing if LED support from SCRIPTS. * Also set GPIO5 and clear GPIO6 if hardware LED control. */ if (np->features & FE_LED0) OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); else if (np->features & FE_LEDC) OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); /* * enable ints */ OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); /* * For 895/6 enable SBMC interrupt and save current SCSI bus mode. * Try to eat the spurious SBMC interrupt that may occur when * we reset the chip but not the SCSI BUS (at initialization). */ if (np->features & (FE_ULTRA2|FE_ULTRA3)) { OUTONW (nc_sien, SBMC); if (reason == 0) { MDELAY(100); INW (nc_sist); } np->scsi_mode = INB (nc_stest4) & SMODE; } /* * Fill in target structure. * Reinitialize usrsync. * Reinitialize usrwide. * Prepare sync negotiation according to actual SCSI bus mode. */ for (i=0;itarget[i]; tp->to_reset = 0; tp->head.sval = 0; tp->head.wval = np->rv_scntl3; tp->head.uval = 0; tp->tinfo.current.period = 0; tp->tinfo.current.offset = 0; tp->tinfo.current.width = BUS_8_BIT; tp->tinfo.current.options = 0; } /* * Download SCSI SCRIPTS to on-chip RAM if present, * and start script processor. */ if (np->ram_ba) { if (sym_verbose > 1) printf ("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); if (np->ram_ws == 8192) { OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); OUTL (nc_mmws, np->scr_ram_seg); OUTL (nc_mmrs, np->scr_ram_seg); OUTL (nc_sfs, np->scr_ram_seg); phys = SCRIPTB_BA (np, start64); } else phys = SCRIPTA_BA (np, init); OUTRAM_OFF(0, np->scripta0, np->scripta_sz); } else phys = SCRIPTA_BA (np, init); np->istat_sem = 0; OUTL (nc_dsa, np->hcb_ba); OUTL_DSP (phys); /* * Notify the XPT about the RESET condition. */ if (reason != 0) xpt_async(AC_BUS_RESET, np->path, NULL); } /* * Get clock factor and sync divisor for a given * synchronous factor period. */ static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) { u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ int div = np->clock_divn; /* Number of divisors supported */ u32 fak; /* Sync factor in sxfer */ u32 per; /* Period in tenths of ns */ u32 kpc; /* (per * clk) */ int ret; /* * Compute the synchronous period in tenths of nano-seconds */ if (dt && sfac <= 9) per = 125; else if (sfac <= 10) per = 250; else if (sfac == 11) per = 303; else if (sfac == 12) per = 500; else per = 40 * sfac; ret = per; kpc = per * clk; if (dt) kpc <<= 1; /* * For earliest C10 revision 0, we cannot use extra * clocks for the setting of the SCSI clocking. * Note that this limits the lowest sync data transfer * to 5 Mega-transfers per second and may result in * using higher clock divisors. */ #if 1 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { /* * Look for the lowest clock divisor that allows an * output speed not faster than the period. */ while (div > 0) { --div; if (kpc > (div_10M[div] << 2)) { ++div; break; } } fak = 0; /* No extra clocks */ if (div == np->clock_divn) { /* Are we too fast ? */ ret = -1; } *divp = div; *fakp = fak; return ret; } #endif /* * Look for the greatest clock divisor that allows an * input speed faster than the period. */ while (div-- > 0) if (kpc >= (div_10M[div] << 2)) break; /* * Calculate the lowest clock factor that allows an output * speed not faster than the period, and the max output speed. * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. */ if (dt) { fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ } else { fak = (kpc - 1) / div_10M[div] + 1 - 4; /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ } /* * Check against our hardware limits, or bugs :). */ if (fak < 0) {fak = 0; ret = -1;} if (fak > 2) {fak = 2; ret = -1;} /* * Compute and return sync parameters. */ *divp = div; *fakp = fak; return ret; } /* * Tell the SCSI layer about the new transfer parameters. */ static void sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) { struct ccb_trans_settings cts; struct cam_path *path; int sts; tcb_p tp = &np->target[target]; sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, CAM_LUN_WILDCARD); if (sts != CAM_REQ_CMP) return; bzero(&cts, sizeof(cts)); #define cts__scsi (cts.proto_specific.scsi) #define cts__spi (cts.xport_specific.spi) cts.type = CTS_TYPE_CURRENT_SETTINGS; cts.protocol = PROTO_SCSI; cts.transport = XPORT_SPI; cts.protocol_version = tp->tinfo.current.scsi_version; cts.transport_version = tp->tinfo.current.spi_version; cts__spi.valid = spi_valid; if (spi_valid & CTS_SPI_VALID_SYNC_RATE) cts__spi.sync_period = tp->tinfo.current.period; if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) cts__spi.sync_offset = tp->tinfo.current.offset; if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) cts__spi.bus_width = tp->tinfo.current.width; if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) cts__spi.ppr_options = tp->tinfo.current.options; #undef cts__spi #undef cts__scsi xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); xpt_async(AC_TRANSFER_NEG, path, &cts); xpt_free_path(path); } #define SYM_SPI_VALID_WDTR \ CTS_SPI_VALID_BUS_WIDTH | \ CTS_SPI_VALID_SYNC_RATE | \ CTS_SPI_VALID_SYNC_OFFSET #define SYM_SPI_VALID_SDTR \ CTS_SPI_VALID_SYNC_RATE | \ CTS_SPI_VALID_SYNC_OFFSET #define SYM_SPI_VALID_PPR \ CTS_SPI_VALID_PPR_OPTIONS | \ CTS_SPI_VALID_BUS_WIDTH | \ CTS_SPI_VALID_SYNC_RATE | \ CTS_SPI_VALID_SYNC_OFFSET /* * We received a WDTR. * Let everything be aware of the changes. */ static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) { tcb_p tp = &np->target[cp->target]; sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); /* * Tell the SCSI layer about the new transfer parameters. */ tp->tinfo.goal.width = tp->tinfo.current.width = wide; tp->tinfo.current.offset = 0; tp->tinfo.current.period = 0; tp->tinfo.current.options = 0; sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); } /* * We received a SDTR. * Let everything be aware of the changes. */ static void sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) { tcb_p tp = &np->target[cp->target]; u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; sym_settrans(np, cp, 0, ofs, per, wide, div, fak); /* * Tell the SCSI layer about the new transfer parameters. */ tp->tinfo.goal.period = tp->tinfo.current.period = per; tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; tp->tinfo.goal.options = tp->tinfo.current.options = 0; sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); } /* * We received a PPR. * Let everything be aware of the changes. */ static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, u_char per, u_char wide, u_char div, u_char fak) { tcb_p tp = &np->target[cp->target]; sym_settrans(np, cp, dt, ofs, per, wide, div, fak); /* * Tell the SCSI layer about the new transfer parameters. */ tp->tinfo.goal.width = tp->tinfo.current.width = wide; tp->tinfo.goal.period = tp->tinfo.current.period = per; tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; tp->tinfo.goal.options = tp->tinfo.current.options = dt; sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); } /* * Switch trans mode for current job and it's target. */ static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, u_char per, u_char wide, u_char div, u_char fak) { SYM_QUEHEAD *qp; union ccb *ccb; tcb_p tp; u_char target = INB (nc_sdid) & 0x0f; u_char sval, wval, uval; assert (cp); if (!cp) return; ccb = cp->cam_ccb; assert (ccb); if (!ccb) return; assert (target == (cp->target & 0xf)); tp = &np->target[target]; sval = tp->head.sval; wval = tp->head.wval; uval = tp->head.uval; #if 0 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", sval, wval, uval, np->rv_scntl3); #endif /* * Set the offset. */ if (!(np->features & FE_C10)) sval = (sval & ~0x1f) | ofs; else sval = (sval & ~0x3f) | ofs; /* * Set the sync divisor and extra clock factor. */ if (ofs != 0) { wval = (wval & ~0x70) | ((div+1) << 4); if (!(np->features & FE_C10)) sval = (sval & ~0xe0) | (fak << 5); else { uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); } } /* * Set the bus width. */ wval = wval & ~EWS; if (wide != 0) wval |= EWS; /* * Set misc. ultra enable bits. */ if (np->features & FE_C10) { uval = uval & ~(U3EN|AIPCKEN); if (dt) { assert(np->features & FE_U3EN); uval |= U3EN; } } else { wval = wval & ~ULTRA; if (per <= 12) wval |= ULTRA; } /* * Stop there if sync parameters are unchanged. */ if (tp->head.sval == sval && tp->head.wval == wval && tp->head.uval == uval) return; tp->head.sval = sval; tp->head.wval = wval; tp->head.uval = uval; /* * Disable extended Sreq/Sack filtering if per < 50. * Not supported on the C1010. */ if (per < 50 && !(np->features & FE_C10)) OUTOFFB (nc_stest2, EXT); /* * set actual value and sync_status */ OUTB (nc_sxfer, tp->head.sval); OUTB (nc_scntl3, tp->head.wval); if (np->features & FE_C10) { OUTB (nc_scntl4, tp->head.uval); } /* * patch ALL busy ccbs of this target. */ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->target != target) continue; cp->phys.select.sel_scntl3 = tp->head.wval; cp->phys.select.sel_sxfer = tp->head.sval; if (np->features & FE_C10) { cp->phys.select.sel_scntl4 = tp->head.uval; } } } /* * log message for real hard errors * * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. * * exception register: * ds: dstat * si: sist * * SCSI bus lines: * so: control lines as driven by chip. * si: control lines as seen by chip. * sd: scsi data lines as seen by chip. * * wide/fastmode: * sxfer: (see the manual) * scntl3: (see the manual) * * current script command: * dsp: script address (relative to start of script). * dbc: first word of script command. * * First 24 register of the chip: * r0..rf */ static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) { u32 dsp; int script_ofs; int script_size; char *script_name; u_char *script_base; int i; dsp = INL (nc_dsp); if (dsp > np->scripta_ba && dsp <= np->scripta_ba + np->scripta_sz) { script_ofs = dsp - np->scripta_ba; script_size = np->scripta_sz; script_base = (u_char *) np->scripta0; script_name = "scripta"; } else if (np->scriptb_ba < dsp && dsp <= np->scriptb_ba + np->scriptb_sz) { script_ofs = dsp - np->scriptb_ba; script_size = np->scriptb_sz; script_base = (u_char *) np->scriptb0; script_name = "scriptb"; } else { script_ofs = dsp; script_size = 0; script_base = 0; script_name = "mem"; } printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), (unsigned)INB (nc_scntl3), script_name, script_ofs, (unsigned)INL (nc_dbc)); if (((script_ofs & 3) == 0) && (unsigned)script_ofs < script_size) { printf ("%s: script cmd = %08x\n", sym_name(np), scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); } printf ("%s: regdump:", sym_name(np)); for (i=0; i<24;i++) printf (" %02x", (unsigned)INB_OFF(i)); printf (".\n"); /* * PCI BUS error, read the PCI ststus register. */ if (dstat & (MDPE|BF)) { u_short pci_sts; pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); if (pci_sts & 0xf900) { pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); printf("%s: PCI STATUS = 0x%04x\n", sym_name(np), pci_sts & 0xf900); } } } /* * chip interrupt handler * * In normal situations, interrupt conditions occur one at * a time. But when something bad happens on the SCSI BUS, * the chip may raise several interrupt flags before * stopping and interrupting the CPU. The additionnal * interrupt flags are stacked in some extra registers * after the SIP and/or DIP flag has been raised in the * ISTAT. After the CPU has read the interrupt condition * flag from SIST or DSTAT, the chip unstacks the other * interrupt flags and sets the corresponding bits in * SIST or DSTAT. Since the chip starts stacking once the * SIP or DIP flag is set, there is a small window of time * where the stacking does not occur. * * Typically, multiple interrupt conditions may happen in * the following situations: * * - SCSI parity error + Phase mismatch (PAR|MA) * When a parity error is detected in input phase * and the device switches to msg-in phase inside a * block MOV. * - SCSI parity error + Unexpected disconnect (PAR|UDC) * When a stupid device does not want to handle the * recovery of an SCSI parity error. * - Some combinations of STO, PAR, UDC, ... * When using non compliant SCSI stuff, when user is * doing non compliant hot tampering on the BUS, when * something really bad happens to a device, etc ... * * The heuristic suggested by SYMBIOS to handle * multiple interrupts is to try unstacking all * interrupts conditions and to handle them on some * priority based on error severity. * This will work when the unstacking has been * successful, but we cannot be 100 % sure of that, * since the CPU may have been faster to unstack than * the chip is able to stack. Hmmm ... But it seems that * such a situation is very unlikely to happen. * * If this happen, for example STO caught by the CPU * then UDC happenning before the CPU have restarted * the SCRIPTS, the driver may wrongly complete the * same command on UDC, since the SCRIPTS didn't restart * and the DSA still points to the same command. * We avoid this situation by setting the DSA to an * invalid value when the CCB is completed and before * restarting the SCRIPTS. * * Another issue is that we need some section of our * recovery procedures to be somehow uninterruptible but * the SCRIPTS processor does not provides such a * feature. For this reason, we handle recovery preferently * from the C code and check against some SCRIPTS critical * sections from the C code. * * Hopefully, the interrupt handling of the driver is now * able to resist to weird BUS error conditions, but donnot * ask me for any guarantee that it will never fail. :-) * Use at your own decision and risk. */ static void sym_intr1 (hcb_p np) { u_char istat, istatc; u_char dstat; u_short sist; SYM_LOCK_ASSERT(MA_OWNED); /* * interrupt on the fly ? * * A `dummy read' is needed to ensure that the * clear of the INTF flag reaches the device * before the scanning of the DONE queue. */ istat = INB (nc_istat); if (istat & INTF) { OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); istat = INB (nc_istat); /* DUMMY READ */ if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); (void)sym_wakeup_done (np); }; if (!(istat & (SIP|DIP))) return; #if 0 /* We should never get this one */ if (istat & CABRT) OUTB (nc_istat, CABRT); #endif /* * PAR and MA interrupts may occur at the same time, * and we need to know of both in order to handle * this situation properly. We try to unstack SCSI * interrupts for that reason. BTW, I dislike a LOT * such a loop inside the interrupt routine. * Even if DMA interrupt stacking is very unlikely to * happen, we also try unstacking these ones, since * this has no performance impact. */ sist = 0; dstat = 0; istatc = istat; do { if (istatc & SIP) sist |= INW (nc_sist); if (istatc & DIP) dstat |= INB (nc_dstat); istatc = INB (nc_istat); istat |= istatc; } while (istatc & (SIP|DIP)); if (DEBUG_FLAGS & DEBUG_TINY) printf ("<%d|%x:%x|%x:%x>", (int)INB(nc_scr0), dstat,sist, (unsigned)INL(nc_dsp), (unsigned)INL(nc_dbc)); /* * On paper, a memory barrier may be needed here. * And since we are paranoid ... :) */ MEMORY_BARRIER(); /* * First, interrupts we want to service cleanly. * * Phase mismatch (MA) is the most frequent interrupt * for chip earlier than the 896 and so we have to service * it as quickly as possible. * A SCSI parity error (PAR) may be combined with a phase * mismatch condition (MA). * Programmed interrupts (SIR) are used to call the C code * from SCRIPTS. * The single step interrupt (SSI) is not used in this * driver. */ if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && !(dstat & (MDPE|BF|ABRT|IID))) { if (sist & PAR) sym_int_par (np, sist); else if (sist & MA) sym_int_ma (np); else if (dstat & SIR) sym_int_sir (np); else if (dstat & SSI) OUTONB_STD (); else goto unknown_int; return; }; /* * Now, interrupts that donnot happen in normal * situations and that we may need to recover from. * * On SCSI RESET (RST), we reset everything. * On SCSI BUS MODE CHANGE (SBMC), we complete all * active CCBs with RESET status, prepare all devices * for negotiating again and restart the SCRIPTS. * On STO and UDC, we complete the CCB with the corres- * ponding status and restart the SCRIPTS. */ if (sist & RST) { xpt_print_path(np->path); printf("SCSI BUS reset detected.\n"); sym_init (np, 1); return; }; OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ if (!(sist & (GEN|HTH|SGE)) && !(dstat & (MDPE|BF|ABRT|IID))) { if (sist & SBMC) sym_int_sbmc (np); else if (sist & STO) sym_int_sto (np); else if (sist & UDC) sym_int_udc (np); else goto unknown_int; return; }; /* * Now, interrupts we are not able to recover cleanly. * * Log message for hard errors. * Reset everything. */ sym_log_hard_error(np, sist, dstat); if ((sist & (GEN|HTH|SGE)) || (dstat & (MDPE|BF|ABRT|IID))) { sym_start_reset(np); return; }; unknown_int: /* * We just miss the cause of the interrupt. :( * Print a message. The timeout will do the real work. */ printf( "%s: unknown interrupt(s) ignored, " "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", sym_name(np), istat, dstat, sist); } static void sym_intr(void *arg) { hcb_p np = arg; SYM_LOCK(); if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); sym_intr1((hcb_p) arg); if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); SYM_UNLOCK(); } static void sym_poll(struct cam_sim *sim) { sym_intr1(cam_sim_softc(sim)); } /* * generic recovery from scsi interrupt * * The doc says that when the chip gets an SCSI interrupt, * it tries to stop in an orderly fashion, by completing * an instruction fetch that had started or by flushing * the DMA fifo for a write to memory that was executing. * Such a fashion is not enough to know if the instruction * that was just before the current DSP value has been * executed or not. * * There are some small SCRIPTS sections that deal with * the start queue and the done queue that may break any * assomption from the C code if we are interrupted * inside, so we reset if this happens. Btw, since these * SCRIPTS sections are executed while the SCRIPTS hasn't * started SCSI operations, it is very unlikely to happen. * * All the driver data structures are supposed to be * allocated from the same 4 GB memory window, so there * is a 1 to 1 relationship between DSA and driver data * structures. Since we are careful :) to invalidate the * DSA when we complete a command or when the SCRIPTS * pushes a DSA into a queue, we can trust it when it * points to a CCB. */ static void sym_recover_scsi_int (hcb_p np, u_char hsts) { u32 dsp = INL (nc_dsp); u32 dsa = INL (nc_dsa); ccb_p cp = sym_ccb_from_dsa(np, dsa); /* * If we haven't been interrupted inside the SCRIPTS * critical pathes, we can safely restart the SCRIPTS * and trust the DSA value if it matches a CCB. */ if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && dsp < SCRIPTA_BA (np, getjob_end) + 1)) && (!(dsp > SCRIPTA_BA (np, ungetjob) && dsp < SCRIPTA_BA (np, reselect) + 1)) && (!(dsp > SCRIPTB_BA (np, sel_for_abort) && dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && (!(dsp > SCRIPTA_BA (np, done) && dsp < SCRIPTA_BA (np, done_end) + 1))) { OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ /* * If we have a CCB, let the SCRIPTS call us back for * the handling of the error with SCRATCHA filled with * STARTPOS. This way, we will be able to freeze the * device queue and requeue awaiting IOs. */ if (cp) { cp->host_status = hsts; OUTL_DSP (SCRIPTA_BA (np, complete_error)); } /* * Otherwise just restart the SCRIPTS. */ else { OUTL (nc_dsa, 0xffffff); OUTL_DSP (SCRIPTA_BA (np, start)); } } else goto reset_all; return; reset_all: sym_start_reset(np); } /* * chip exception handler for selection timeout */ static void sym_int_sto (hcb_p np) { u32 dsp = INL (nc_dsp); if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) sym_recover_scsi_int(np, HS_SEL_TIMEOUT); else sym_start_reset(np); } /* * chip exception handler for unexpected disconnect */ static void sym_int_udc (hcb_p np) { printf ("%s: unexpected disconnect\n", sym_name(np)); sym_recover_scsi_int(np, HS_UNEXPECTED); } /* * chip exception handler for SCSI bus mode change * * spi2-r12 11.2.3 says a transceiver mode change must * generate a reset event and a device that detects a reset * event shall initiate a hard reset. It says also that a * device that detects a mode change shall set data transfer * mode to eight bit asynchronous, etc... * So, just reinitializing all except chip should be enough. */ static void sym_int_sbmc (hcb_p np) { u_char scsi_mode = INB (nc_stest4) & SMODE; /* * Notify user. */ xpt_print_path(np->path); printf("SCSI BUS mode change from %s to %s.\n", sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); /* * Should suspend command processing for a few seconds and * reinitialize all except the chip. */ sym_init (np, 2); } /* * chip exception handler for SCSI parity error. * * When the chip detects a SCSI parity error and is * currently executing a (CH)MOV instruction, it does * not interrupt immediately, but tries to finish the * transfer of the current scatter entry before * interrupting. The following situations may occur: * * - The complete scatter entry has been transferred * without the device having changed phase. * The chip will then interrupt with the DSP pointing * to the instruction that follows the MOV. * * - A phase mismatch occurs before the MOV finished * and phase errors are to be handled by the C code. * The chip will then interrupt with both PAR and MA * conditions set. * * - A phase mismatch occurs before the MOV finished and * phase errors are to be handled by SCRIPTS. * The chip will load the DSP with the phase mismatch * JUMP address and interrupt the host processor. */ static void sym_int_par (hcb_p np, u_short sist) { u_char hsts = INB (HS_PRT); u32 dsp = INL (nc_dsp); u32 dbc = INL (nc_dbc); u32 dsa = INL (nc_dsa); u_char sbcl = INB (nc_sbcl); u_char cmd = dbc >> 24; int phase = cmd & 7; ccb_p cp = sym_ccb_from_dsa(np, dsa); printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", sym_name(np), hsts, dbc, sbcl); /* * Check that the chip is connected to the SCSI BUS. */ if (!(INB (nc_scntl1) & ISCON)) { sym_recover_scsi_int(np, HS_UNEXPECTED); return; } /* * If the nexus is not clearly identified, reset the bus. * We will try to do better later. */ if (!cp) goto reset_all; /* * Check instruction was a MOV, direction was INPUT and * ATN is asserted. */ if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) goto reset_all; /* * Keep track of the parity error. */ OUTONB (HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_PARITY_ERR; /* * Prepare the message to send to the device. */ np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; /* * If the old phase was DATA IN phase, we have to deal with * the 3 situations described above. * For other input phases (MSG IN and STATUS), the device * must resend the whole thing that failed parity checking * or signal error. So, jumping to dispatcher should be OK. */ if (phase == 1 || phase == 5) { /* Phase mismatch handled by SCRIPTS */ if (dsp == SCRIPTB_BA (np, pm_handle)) OUTL_DSP (dsp); /* Phase mismatch handled by the C code */ else if (sist & MA) sym_int_ma (np); /* No phase mismatch occurred */ else { OUTL (nc_temp, dsp); OUTL_DSP (SCRIPTA_BA (np, dispatch)); } } else OUTL_DSP (SCRIPTA_BA (np, clrack)); return; reset_all: sym_start_reset(np); } /* * chip exception handler for phase errors. * * We have to construct a new transfer descriptor, * to transfer the rest of the current block. */ static void sym_int_ma (hcb_p np) { u32 dbc; u32 rest; u32 dsp; u32 dsa; u32 nxtdsp; u32 *vdsp; u32 oadr, olen; u32 *tblp; u32 newcmd; u_int delta; u_char cmd; u_char hflags, hflags0; struct sym_pmc *pm; ccb_p cp; dsp = INL (nc_dsp); dbc = INL (nc_dbc); dsa = INL (nc_dsa); cmd = dbc >> 24; rest = dbc & 0xffffff; delta = 0; /* * locate matching cp if any. */ cp = sym_ccb_from_dsa(np, dsa); /* * Donnot take into account dma fifo and various buffers in * INPUT phase since the chip flushes everything before * raising the MA interrupt for interrupted INPUT phases. * For DATA IN phase, we will check for the SWIDE later. */ if ((cmd & 7) != 1 && (cmd & 7) != 5) { u_char ss0, ss2; if (np->features & FE_DFBC) delta = INW (nc_dfbc); else { u32 dfifo; /* * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. */ dfifo = INL(nc_dfifo); /* * Calculate remaining bytes in DMA fifo. * (CTEST5 = dfifo >> 16) */ if (dfifo & (DFS << 16)) delta = ((((dfifo >> 8) & 0x300) | (dfifo & 0xff)) - rest) & 0x3ff; else delta = ((dfifo & 0xff) - rest) & 0x7f; } /* * The data in the dma fifo has not been transferred to * the target -> add the amount to the rest * and clear the data. * Check the sstat2 register in case of wide transfer. */ rest += delta; ss0 = INB (nc_sstat0); if (ss0 & OLF) rest++; if (!(np->features & FE_C10)) if (ss0 & ORF) rest++; if (cp && (cp->phys.select.sel_scntl3 & EWS)) { ss2 = INB (nc_sstat2); if (ss2 & OLF1) rest++; if (!(np->features & FE_C10)) if (ss2 & ORF1) rest++; }; /* * Clear fifos. */ OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ OUTB (nc_stest3, TE|CSF); /* scsi fifo */ } /* * log the information */ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, (unsigned) rest, (unsigned) delta); /* * try to find the interrupted script command, * and the address at which to continue. */ vdsp = 0; nxtdsp = 0; if (dsp > np->scripta_ba && dsp <= np->scripta_ba + np->scripta_sz) { vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); nxtdsp = dsp; } else if (dsp > np->scriptb_ba && dsp <= np->scriptb_ba + np->scriptb_sz) { vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); nxtdsp = dsp; } /* * log the information */ if (DEBUG_FLAGS & DEBUG_PHASE) { printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); }; if (!vdsp) { printf ("%s: interrupted SCRIPT address not found.\n", sym_name (np)); goto reset_all; } if (!cp) { printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", sym_name (np)); goto reset_all; } /* * get old startaddress and old length. */ oadr = scr_to_cpu(vdsp[1]); if (cmd & 0x10) { /* Table indirect */ tblp = (u32 *) ((char*) &cp->phys + oadr); olen = scr_to_cpu(tblp[0]); oadr = scr_to_cpu(tblp[1]); } else { tblp = (u32 *) 0; olen = scr_to_cpu(vdsp[0]) & 0xffffff; }; if (DEBUG_FLAGS & DEBUG_PHASE) { printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", (unsigned) (scr_to_cpu(vdsp[0]) >> 24), tblp, (unsigned) olen, (unsigned) oadr); }; /* * check cmd against assumed interrupted script command. * If dt data phase, the MOVE instruction hasn't bit 4 of * the phase. */ if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { PRINT_ADDR(cp); printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); goto reset_all; }; /* * if old phase not dataphase, leave here. */ if (cmd & 2) { PRINT_ADDR(cp); printf ("phase change %x-%x %d@%08x resid=%d.\n", cmd&7, INB(nc_sbcl)&7, (unsigned)olen, (unsigned)oadr, (unsigned)rest); goto unexpected_phase; }; /* * Choose the correct PM save area. * * Look at the PM_SAVE SCRIPT if you want to understand * this stuff. The equivalent code is implemented in * SCRIPTS for the 895A, 896 and 1010 that are able to * handle PM from the SCRIPTS processor. */ hflags0 = INB (HF_PRT); hflags = hflags0; if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { if (hflags & HF_IN_PM0) nxtdsp = scr_to_cpu(cp->phys.pm0.ret); else if (hflags & HF_IN_PM1) nxtdsp = scr_to_cpu(cp->phys.pm1.ret); if (hflags & HF_DP_SAVED) hflags ^= HF_ACT_PM; } if (!(hflags & HF_ACT_PM)) { pm = &cp->phys.pm0; newcmd = SCRIPTA_BA (np, pm0_data); } else { pm = &cp->phys.pm1; newcmd = SCRIPTA_BA (np, pm1_data); } hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); if (hflags != hflags0) OUTB (HF_PRT, hflags); /* * fillin the phase mismatch context */ pm->sg.addr = cpu_to_scr(oadr + olen - rest); pm->sg.size = cpu_to_scr(rest); pm->ret = cpu_to_scr(nxtdsp); /* * If we have a SWIDE, * - prepare the address to write the SWIDE from SCRIPTS, * - compute the SCRIPTS address to restart from, * - move current data pointer context by one byte. */ nxtdsp = SCRIPTA_BA (np, dispatch); if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && (INB (nc_scntl2) & WSR)) { u32 tmp; /* * Set up the table indirect for the MOVE * of the residual byte and adjust the data * pointer context. */ tmp = scr_to_cpu(pm->sg.addr); cp->phys.wresid.addr = cpu_to_scr(tmp); pm->sg.addr = cpu_to_scr(tmp + 1); tmp = scr_to_cpu(pm->sg.size); cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); pm->sg.size = cpu_to_scr(tmp - 1); /* * If only the residual byte is to be moved, * no PM context is needed. */ if ((tmp&0xffffff) == 1) newcmd = pm->ret; /* * Prepare the address of SCRIPTS that will * move the residual byte to memory. */ nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); } if (DEBUG_FLAGS & DEBUG_PHASE) { PRINT_ADDR(cp); printf ("PM %x %x %x / %x %x %x.\n", hflags0, hflags, newcmd, (unsigned)scr_to_cpu(pm->sg.addr), (unsigned)scr_to_cpu(pm->sg.size), (unsigned)scr_to_cpu(pm->ret)); } /* * Restart the SCRIPTS processor. */ OUTL (nc_temp, newcmd); OUTL_DSP (nxtdsp); return; /* * Unexpected phase changes that occurs when the current phase * is not a DATA IN or DATA OUT phase are due to error conditions. * Such event may only happen when the SCRIPTS is using a * multibyte SCSI MOVE. * * Phase change Some possible cause * * COMMAND --> MSG IN SCSI parity error detected by target. * COMMAND --> STATUS Bad command or refused by target. * MSG OUT --> MSG IN Message rejected by target. * MSG OUT --> COMMAND Bogus target that discards extended * negotiation messages. * * The code below does not care of the new phase and so * trusts the target. Why to annoy it ? * If the interrupted phase is COMMAND phase, we restart at * dispatcher. * If a target does not get all the messages after selection, * the code assumes blindly that the target discards extended * messages and clears the negotiation status. * If the target does not want all our response to negotiation, * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids * bloat for such a should_not_happen situation). * In all other situation, we reset the BUS. * Are these assumptions reasonnable ? (Wait and see ...) */ unexpected_phase: dsp -= 8; nxtdsp = 0; switch (cmd & 7) { case 2: /* COMMAND phase */ nxtdsp = SCRIPTA_BA (np, dispatch); break; #if 0 case 3: /* STATUS phase */ nxtdsp = SCRIPTA_BA (np, dispatch); break; #endif case 6: /* MSG OUT phase */ /* * If the device may want to use untagged when we want * tagged, we prepare an IDENTIFY without disc. granted, * since we will not be able to handle reselect. * Otherwise, we just don't care. */ if (dsp == SCRIPTA_BA (np, send_ident)) { if (cp->tag != NO_TAG && olen - rest <= 3) { cp->host_status = HS_BUSY; np->msgout[0] = M_IDENTIFY | cp->lun; nxtdsp = SCRIPTB_BA (np, ident_break_atn); } else nxtdsp = SCRIPTB_BA (np, ident_break); } else if (dsp == SCRIPTB_BA (np, send_wdtr) || dsp == SCRIPTB_BA (np, send_sdtr) || dsp == SCRIPTB_BA (np, send_ppr)) { nxtdsp = SCRIPTB_BA (np, nego_bad_phase); } break; #if 0 case 7: /* MSG IN phase */ nxtdsp = SCRIPTA_BA (np, clrack); break; #endif } if (nxtdsp) { OUTL_DSP (nxtdsp); return; } reset_all: sym_start_reset(np); } /* * Dequeue from the START queue all CCBs that match * a given target/lun/task condition (-1 means all), * and move them from the BUSY queue to the COMP queue * with CAM_REQUEUE_REQ status condition. * This function is used during error handling/recovery. * It is called with SCRIPTS not running. */ static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) { int j; ccb_p cp; /* * Make sure the starting index is within range. */ assert((i >= 0) && (i < 2*MAX_QUEUE)); /* * Walk until end of START queue and dequeue every job * that matches the target/lun/task condition. */ j = i; while (i != np->squeueput) { cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); assert(cp); #ifdef SYM_CONF_IARB_SUPPORT /* Forget hints for IARB, they may be no longer relevant */ cp->host_flags &= ~HF_HINT_IARB; #endif if ((target == -1 || cp->target == target) && (lun == -1 || cp->lun == lun) && (task == -1 || cp->tag == task)) { sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); sym_remque(&cp->link_ccbq); sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); } else { if (i != j) np->squeue[j] = np->squeue[i]; if ((j += 2) >= MAX_QUEUE*2) j = 0; } if ((i += 2) >= MAX_QUEUE*2) i = 0; } if (i != j) /* Copy back the idle task if needed */ np->squeue[j] = np->squeue[i]; np->squeueput = j; /* Update our current start queue pointer */ return (i - j) / 2; } /* * Complete all CCBs queued to the COMP queue. * * These CCBs are assumed: * - Not to be referenced either by devices or * SCRIPTS-related queues and datas. * - To have to be completed with an error condition * or requeued. * * The device queue freeze count is incremented * for each CCB that does not prevent this. * This function is called when all CCBs involved * in error handling/recovery have been reaped. */ static void sym_flush_comp_queue(hcb_p np, int cam_status) { SYM_QUEHEAD *qp; ccb_p cp; while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { union ccb *ccb; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); /* Leave quiet CCBs waiting for resources */ if (cp->host_status == HS_WAIT) continue; ccb = cp->cam_ccb; if (cam_status) sym_set_cam_status(ccb, cam_status); sym_freeze_cam_ccb(ccb); sym_xpt_done(np, ccb, cp); sym_free_ccb(np, cp); } } /* * chip handler for bad SCSI status condition * * In case of bad SCSI status, we unqueue all the tasks * currently queued to the controller but not yet started * and then restart the SCRIPTS processor immediately. * * QUEUE FULL and BUSY conditions are handled the same way. * Basically all the not yet started tasks are requeued in * device queue and the queue is frozen until a completion. * * For CHECK CONDITION and COMMAND TERMINATED status, we use * the CCB of the failed command to prepare a REQUEST SENSE * SCSI command and queue it to the controller queue. * * SCRATCHA is assumed to have been loaded with STARTPOS * before the SCRIPTS called the C code. */ static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) { tcb_p tp = &np->target[cp->target]; u32 startp; u_char s_status = cp->ssss_status; u_char h_flags = cp->host_flags; int msglen; int nego; int i; SYM_LOCK_ASSERT(MA_OWNED); /* * Compute the index of the next job to start from SCRIPTS. */ i = (INL (nc_scratcha) - np->squeue_ba) / 4; /* * The last CCB queued used for IARB hint may be * no longer relevant. Forget it. */ #ifdef SYM_CONF_IARB_SUPPORT if (np->last_cp) np->last_cp = NULL; #endif /* * Now deal with the SCSI status. */ switch(s_status) { case S_BUSY: case S_QUEUE_FULL: if (sym_verbose >= 2) { PRINT_ADDR(cp); printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); } default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ sym_complete_error (np, cp); break; case S_TERMINATED: case S_CHECK_COND: /* * If we get an SCSI error when requesting sense, give up. */ if (h_flags & HF_SENSE) { sym_complete_error (np, cp); break; } /* * Dequeue all queued CCBs for that device not yet started, * and restart the SCRIPTS processor immediately. */ (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); OUTL_DSP (SCRIPTA_BA (np, start)); /* * Save some info of the actual IO. * Compute the data residual. */ cp->sv_scsi_status = cp->ssss_status; cp->sv_xerr_status = cp->xerr_status; cp->sv_resid = sym_compute_residual(np, cp); /* * Prepare all needed data structures for * requesting sense data. */ /* * identify message */ cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; msglen = 1; /* * If we are currently using anything different from * async. 8 bit data transfers with that target, * start a negotiation, since the device may want * to report us a UNIT ATTENTION condition due to * a cause we currently ignore, and we donnot want * to be stuck with WIDE and/or SYNC data transfer. * * cp->nego_status is filled by sym_prepare_nego(). */ cp->nego_status = 0; nego = 0; if (tp->tinfo.current.options & PPR_OPT_MASK) nego = NS_PPR; else if (tp->tinfo.current.width != BUS_8_BIT) nego = NS_WIDE; else if (tp->tinfo.current.offset != 0) nego = NS_SYNC; if (nego) msglen += sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); /* * Message table indirect structure. */ cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); cp->phys.smsg.size = cpu_to_scr(msglen); /* * sense command */ cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); cp->phys.cmd.size = cpu_to_scr(6); /* * patch requested size into sense command */ cp->sensecmd[0] = 0x03; cp->sensecmd[1] = cp->lun << 5; if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) cp->sensecmd[1] = 0; cp->sensecmd[4] = SYM_SNS_BBUF_LEN; cp->data_len = SYM_SNS_BBUF_LEN; /* * sense data */ bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); /* * requeue the command. */ startp = SCRIPTB_BA (np, sdata_in); cp->phys.head.savep = cpu_to_scr(startp); cp->phys.head.goalp = cpu_to_scr(startp + 16); cp->phys.head.lastp = cpu_to_scr(startp); cp->startp = cpu_to_scr(startp); cp->actualquirks = SYM_QUIRK_AUTOSAVE; cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->ssss_status = S_ILLEGAL; cp->host_flags = (HF_SENSE|HF_DATA_IN); cp->xerr_status = 0; cp->extra_bytes = 0; cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); /* * Requeue the command. */ sym_put_start_queue(np, cp); /* * Give back to upper layer everything we have dequeued. */ sym_flush_comp_queue(np, 0); break; } } /* * After a device has accepted some management message * as BUS DEVICE RESET, ABORT TASK, etc ..., or when * a device signals a UNIT ATTENTION condition, some * tasks are thrown away by the device. We are required * to reflect that on our tasks list since the device * will never complete these tasks. * * This function move from the BUSY queue to the COMP * queue all disconnected CCBs for a given target that * match the following criteria: * - lun=-1 means any logical UNIT otherwise a given one. * - task=-1 means any task, otherwise a given one. */ static int sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) { SYM_QUEHEAD qtmp, *qp; int i = 0; ccb_p cp; /* * Move the entire BUSY queue to our temporary queue. */ sym_que_init(&qtmp); sym_que_splice(&np->busy_ccbq, &qtmp); sym_que_init(&np->busy_ccbq); /* * Put all CCBs that matches our criteria into * the COMP queue and put back other ones into * the BUSY queue. */ while ((qp = sym_remque_head(&qtmp)) != NULL) { union ccb *ccb; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); ccb = cp->cam_ccb; if (cp->host_status != HS_DISCONNECT || cp->target != target || (lun != -1 && cp->lun != lun) || (task != -1 && (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); continue; } sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); /* Preserve the software timeout condition */ if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) sym_set_cam_status(ccb, cam_status); ++i; #if 0 printf("XXXX TASK @%p CLEARED\n", cp); #endif } return i; } /* * chip handler for TASKS recovery * * We cannot safely abort a command, while the SCRIPTS * processor is running, since we just would be in race * with it. * * As long as we have tasks to abort, we keep the SEM * bit set in the ISTAT. When this bit is set, the * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) * each time it enters the scheduler. * * If we have to reset a target, clear tasks of a unit, * or to perform the abort of a disconnected job, we * restart the SCRIPTS for selecting the target. Once * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). * If it loses arbitration, the SCRIPTS will interrupt again * the next time it will enter its scheduler, and so on ... * * On SIR_TARGET_SELECTED, we scan for the more * appropriate thing to do: * * - If nothing, we just sent a M_ABORT message to the * target to get rid of the useless SCSI bus ownership. * According to the specs, no tasks shall be affected. * - If the target is to be reset, we send it a M_RESET * message. * - If a logical UNIT is to be cleared , we send the * IDENTIFY(lun) + M_ABORT. * - If an untagged task is to be aborted, we send the * IDENTIFY(lun) + M_ABORT. * - If a tagged task is to be aborted, we send the * IDENTIFY(lun) + task attributes + M_ABORT_TAG. * * Once our 'kiss of death' :) message has been accepted * by the target, the SCRIPTS interrupts again * (SIR_ABORT_SENT). On this interrupt, we complete * all the CCBs that should have been aborted by the * target according to our message. */ static void sym_sir_task_recovery(hcb_p np, int num) { SYM_QUEHEAD *qp; ccb_p cp; tcb_p tp; int target=-1, lun=-1, task; int i, k; switch(num) { /* * The SCRIPTS processor stopped before starting * the next command in order to allow us to perform * some task recovery. */ case SIR_SCRIPT_STOPPED: /* * Do we have any target to reset or unit to clear ? */ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { tp = &np->target[i]; if (tp->to_reset || (tp->lun0p && tp->lun0p->to_clear)) { target = i; break; } if (!tp->lunmp) continue; for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { target = i; break; } } if (target != -1) break; } /* * If not, walk the busy queue for any * disconnected CCB to be aborted. */ if (target == -1) { FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); if (cp->host_status != HS_DISCONNECT) continue; if (cp->to_abort) { target = cp->target; break; } } } /* * If some target is to be selected, * prepare and start the selection. */ if (target != -1) { tp = &np->target[target]; np->abrt_sel.sel_id = target; np->abrt_sel.sel_scntl3 = tp->head.wval; np->abrt_sel.sel_sxfer = tp->head.sval; OUTL(nc_dsa, np->hcb_ba); OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); return; } /* * Now look for a CCB to abort that haven't started yet. * Btw, the SCRIPTS processor is still stopped, so * we are not in race. */ i = 0; cp = NULL; FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->host_status != HS_BUSY && cp->host_status != HS_NEGOTIATE) continue; if (!cp->to_abort) continue; #ifdef SYM_CONF_IARB_SUPPORT /* * If we are using IMMEDIATE ARBITRATION, we donnot * want to cancel the last queued CCB, since the * SCRIPTS may have anticipated the selection. */ if (cp == np->last_cp) { cp->to_abort = 0; continue; } #endif i = 1; /* Means we have found some */ break; } if (!i) { /* * We are done, so we donnot need * to synchronize with the SCRIPTS anylonger. * Remove the SEM flag from the ISTAT. */ np->istat_sem = 0; OUTB (nc_istat, SIGP); break; } /* * Compute index of next position in the start * queue the SCRIPTS intends to start and dequeue * all CCBs for that device that haven't been started. */ i = (INL (nc_scratcha) - np->squeue_ba) / 4; i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); /* * Make sure at least our IO to abort has been dequeued. */ assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); /* * Keep track in cam status of the reason of the abort. */ if (cp->to_abort == 2) sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); else sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); /* * Complete with error everything that we have dequeued. */ sym_flush_comp_queue(np, 0); break; /* * The SCRIPTS processor has selected a target * we may have some manual recovery to perform for. */ case SIR_TARGET_SELECTED: target = (INB (nc_sdid) & 0xf); tp = &np->target[target]; np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); /* * If the target is to be reset, prepare a * M_RESET message and clear the to_reset flag * since we donnot expect this operation to fail. */ if (tp->to_reset) { np->abrt_msg[0] = M_RESET; np->abrt_tbl.size = 1; tp->to_reset = 0; break; } /* * Otherwise, look for some logical unit to be cleared. */ if (tp->lun0p && tp->lun0p->to_clear) lun = 0; else if (tp->lunmp) { for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { lun = k; break; } } } /* * If a logical unit is to be cleared, prepare * an IDENTIFY(lun) + ABORT MESSAGE. */ if (lun != -1) { lcb_p lp = sym_lp(np, tp, lun); lp->to_clear = 0; /* We donnot expect to fail here */ np->abrt_msg[0] = M_IDENTIFY | lun; np->abrt_msg[1] = M_ABORT; np->abrt_tbl.size = 2; break; } /* * Otherwise, look for some disconnected job to * abort for this target. */ i = 0; cp = NULL; FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->host_status != HS_DISCONNECT) continue; if (cp->target != target) continue; if (!cp->to_abort) continue; i = 1; /* Means we have some */ break; } /* * If we have none, probably since the device has * completed the command before we won abitration, * send a M_ABORT message without IDENTIFY. * According to the specs, the device must just * disconnect the BUS and not abort any task. */ if (!i) { np->abrt_msg[0] = M_ABORT; np->abrt_tbl.size = 1; break; } /* * We have some task to abort. * Set the IDENTIFY(lun) */ np->abrt_msg[0] = M_IDENTIFY | cp->lun; /* * If we want to abort an untagged command, we * will send an IDENTIFY + M_ABORT. * Otherwise (tagged command), we will send * an IDENTIFY + task attributes + ABORT TAG. */ if (cp->tag == NO_TAG) { np->abrt_msg[1] = M_ABORT; np->abrt_tbl.size = 2; } else { np->abrt_msg[1] = cp->scsi_smsg[1]; np->abrt_msg[2] = cp->scsi_smsg[2]; np->abrt_msg[3] = M_ABORT_TAG; np->abrt_tbl.size = 4; } /* * Keep track of software timeout condition, since the * peripheral driver may not count retries on abort * conditions not due to timeout. */ if (cp->to_abort == 2) sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); cp->to_abort = 0; /* We donnot expect to fail here */ break; /* * The target has accepted our message and switched * to BUS FREE phase as we expected. */ case SIR_ABORT_SENT: target = (INB (nc_sdid) & 0xf); tp = &np->target[target]; /* ** If we didn't abort anything, leave here. */ if (np->abrt_msg[0] == M_ABORT) break; /* * If we sent a M_RESET, then a hardware reset has * been performed by the target. * - Reset everything to async 8 bit * - Tell ourself to negotiate next time :-) * - Prepare to clear all disconnected CCBs for * this target from our task list (lun=task=-1) */ lun = -1; task = -1; if (np->abrt_msg[0] == M_RESET) { tp->head.sval = 0; tp->head.wval = np->rv_scntl3; tp->head.uval = 0; tp->tinfo.current.period = 0; tp->tinfo.current.offset = 0; tp->tinfo.current.width = BUS_8_BIT; tp->tinfo.current.options = 0; } /* * Otherwise, check for the LUN and TASK(s) * concerned by the cancelation. * If it is not ABORT_TAG then it is CLEAR_QUEUE * or an ABORT message :-) */ else { lun = np->abrt_msg[0] & 0x3f; if (np->abrt_msg[1] == M_ABORT_TAG) task = np->abrt_msg[2]; } /* * Complete all the CCBs the device should have * aborted due to our 'kiss of death' message. */ i = (INL (nc_scratcha) - np->squeue_ba) / 4; (void) sym_dequeue_from_squeue(np, i, target, lun, -1); (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); sym_flush_comp_queue(np, 0); /* * If we sent a BDR, make uper layer aware of that. */ if (np->abrt_msg[0] == M_RESET) xpt_async(AC_SENT_BDR, np->path, NULL); break; } /* * Print to the log the message we intend to send. */ if (num == SIR_TARGET_SELECTED) { PRINT_TARGET(np, target); sym_printl_hex("control msgout:", np->abrt_msg, np->abrt_tbl.size); np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); } /* * Let the SCRIPTS processor continue. */ OUTONB_STD (); } /* * Gerard's alchemy:) that deals with with the data * pointer for both MDP and the residual calculation. * * I didn't want to bloat the code by more than 200 * lignes for the handling of both MDP and the residual. * This has been achieved by using a data pointer * representation consisting in an index in the data * array (dp_sg) and a negative offset (dp_ofs) that * have the following meaning: * * - dp_sg = SYM_CONF_MAX_SG * we are at the end of the data script. * - dp_sg < SYM_CONF_MAX_SG * dp_sg points to the next entry of the scatter array * we want to transfer. * - dp_ofs < 0 * dp_ofs represents the residual of bytes of the * previous entry scatter entry we will send first. * - dp_ofs = 0 * no residual to send first. * * The function sym_evaluate_dp() accepts an arbitray * offset (basically from the MDP message) and returns * the corresponding values of dp_sg and dp_ofs. */ static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) { u32 dp_scr; int dp_ofs, dp_sg, dp_sgmin; int tmp; struct sym_pmc *pm; /* * Compute the resulted data pointer in term of a script * address within some DATA script and a signed byte offset. */ dp_scr = scr; dp_ofs = *ofs; if (dp_scr == SCRIPTA_BA (np, pm0_data)) pm = &cp->phys.pm0; else if (dp_scr == SCRIPTA_BA (np, pm1_data)) pm = &cp->phys.pm1; else pm = NULL; if (pm) { dp_scr = scr_to_cpu(pm->ret); dp_ofs -= scr_to_cpu(pm->sg.size); } /* * If we are auto-sensing, then we are done. */ if (cp->host_flags & HF_SENSE) { *ofs = dp_ofs; return 0; } /* * Deduce the index of the sg entry. * Keep track of the index of the first valid entry. * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the * end of the data. */ tmp = scr_to_cpu(cp->phys.head.goalp); dp_sg = SYM_CONF_MAX_SG; if (dp_scr != tmp) dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); dp_sgmin = SYM_CONF_MAX_SG - cp->segments; /* * Move to the sg entry the data pointer belongs to. * * If we are inside the data area, we expect result to be: * * Either, * dp_ofs = 0 and dp_sg is the index of the sg entry * the data pointer belongs to (or the end of the data) * Or, * dp_ofs < 0 and dp_sg is the index of the sg entry * the data pointer belongs to + 1. */ if (dp_ofs < 0) { int n; while (dp_sg > dp_sgmin) { --dp_sg; tmp = scr_to_cpu(cp->phys.data[dp_sg].size); n = dp_ofs + (tmp & 0xffffff); if (n > 0) { ++dp_sg; break; } dp_ofs = n; } } else if (dp_ofs > 0) { while (dp_sg < SYM_CONF_MAX_SG) { tmp = scr_to_cpu(cp->phys.data[dp_sg].size); dp_ofs -= (tmp & 0xffffff); ++dp_sg; if (dp_ofs <= 0) break; } } /* * Make sure the data pointer is inside the data area. * If not, return some error. */ if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) goto out_err; else if (dp_sg > SYM_CONF_MAX_SG || (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) goto out_err; /* * Save the extreme pointer if needed. */ if (dp_sg > cp->ext_sg || (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { cp->ext_sg = dp_sg; cp->ext_ofs = dp_ofs; } /* * Return data. */ *ofs = dp_ofs; return dp_sg; out_err: return -1; } /* * chip handler for MODIFY DATA POINTER MESSAGE * * We also call this function on IGNORE WIDE RESIDUE * messages that do not match a SWIDE full condition. * Btw, we assume in that situation that such a message * is equivalent to a MODIFY DATA POINTER (offset=-1). */ static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) { int dp_ofs = ofs; u32 dp_scr = INL (nc_temp); u32 dp_ret; u32 tmp; u_char hflags; int dp_sg; struct sym_pmc *pm; /* * Not supported for auto-sense. */ if (cp->host_flags & HF_SENSE) goto out_reject; /* * Apply our alchemy:) (see comments in sym_evaluate_dp()), * to the resulted data pointer. */ dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); if (dp_sg < 0) goto out_reject; /* * And our alchemy:) allows to easily calculate the data * script address we want to return for the next data phase. */ dp_ret = cpu_to_scr(cp->phys.head.goalp); dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); /* * If offset / scatter entry is zero we donnot need * a context for the new current data pointer. */ if (dp_ofs == 0) { dp_scr = dp_ret; goto out_ok; } /* * Get a context for the new current data pointer. */ hflags = INB (HF_PRT); if (hflags & HF_DP_SAVED) hflags ^= HF_ACT_PM; if (!(hflags & HF_ACT_PM)) { pm = &cp->phys.pm0; dp_scr = SCRIPTA_BA (np, pm0_data); } else { pm = &cp->phys.pm1; dp_scr = SCRIPTA_BA (np, pm1_data); } hflags &= ~(HF_DP_SAVED); OUTB (HF_PRT, hflags); /* * Set up the new current data pointer. * ofs < 0 there, and for the next data phase, we * want to transfer part of the data of the sg entry * corresponding to index dp_sg-1 prior to returning * to the main data script. */ pm->ret = cpu_to_scr(dp_ret); tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; pm->sg.addr = cpu_to_scr(tmp); pm->sg.size = cpu_to_scr(-dp_ofs); out_ok: OUTL (nc_temp, dp_scr); OUTL_DSP (SCRIPTA_BA (np, clrack)); return; out_reject: OUTL_DSP (SCRIPTB_BA (np, msg_bad)); } /* * chip calculation of the data residual. * * As I used to say, the requirement of data residual * in SCSI is broken, useless and cannot be achieved * without huge complexity. * But most OSes and even the official CAM require it. * When stupidity happens to be so widely spread inside * a community, it gets hard to convince. * * Anyway, I don't care, since I am not going to use * any software that considers this data residual as * a relevant information. :) */ static int sym_compute_residual(hcb_p np, ccb_p cp) { int dp_sg, dp_sgmin, resid = 0; int dp_ofs = 0; /* * Check for some data lost or just thrown away. * We are not required to be quite accurate in this * situation. Btw, if we are odd for output and the * device claims some more data, it may well happen * than our residual be zero. :-) */ if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { if (cp->xerr_status & XE_EXTRA_DATA) resid -= cp->extra_bytes; if (cp->xerr_status & XE_SODL_UNRUN) ++resid; if (cp->xerr_status & XE_SWIDE_OVRUN) --resid; } /* * If all data has been transferred, * there is no residual. */ if (cp->phys.head.lastp == cp->phys.head.goalp) return resid; /* * If no data transfer occurs, or if the data * pointer is weird, return full residual. */ if (cp->startp == cp->phys.head.lastp || sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), &dp_ofs) < 0) { return cp->data_len; } /* * If we were auto-sensing, then we are done. */ if (cp->host_flags & HF_SENSE) { return -dp_ofs; } /* * We are now full comfortable in the computation * of the data residual (2's complement). */ dp_sgmin = SYM_CONF_MAX_SG - cp->segments; resid = -cp->ext_ofs; for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); resid += (tmp & 0xffffff); } /* * Hopefully, the result is not too wrong. */ return resid; } /* * Print out the content of a SCSI message. */ static int sym_show_msg (u_char * msg) { u_char i; printf ("%x",*msg); if (*msg==M_EXTENDED) { for (i=1;i<8;i++) { if (i-1>msg[1]) break; printf ("-%x",msg[i]); }; return (i+1); } else if ((*msg & 0xf0) == 0x20) { printf ("-%x",msg[1]); return (2); }; return (1); } static void sym_print_msg (ccb_p cp, char *label, u_char *msg) { PRINT_ADDR(cp); if (label) printf ("%s: ", label); (void) sym_show_msg (msg); printf (".\n"); } /* * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. * * When we try to negotiate, we append the negotiation message * to the identify and (maybe) simple tag message. * The host status field is set to HS_NEGOTIATE to mark this * situation. * * If the target doesn't answer this message immediately * (as required by the standard), the SIR_NEGO_FAILED interrupt * will be raised eventually. * The handler removes the HS_NEGOTIATE status, and sets the * negotiated value to the default (async / nowide). * * If we receive a matching answer immediately, we check it * for validity, and set the values. * * If we receive a Reject message immediately, we assume the * negotiation has failed, and fall back to standard values. * * If we receive a negotiation message while not in HS_NEGOTIATE * state, it's a target initiated negotiation. We prepare a * (hopefully) valid answer, set our parameters, and send back * this answer to the target. * * If the target doesn't fetch the answer (no message out phase), * we assume the negotiation has failed, and fall back to default * settings (SIR_NEGO_PROTO interrupt). * * When we set the values, we adjust them in all ccbs belonging * to this target, in the controller's register, and in the "phys" * field of the controller's struct sym_hcb. */ /* * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. */ static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) { u_char chg, ofs, per, fak, div; int req = 1; /* * Synchronous request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "sync msgin", np->msgin); }; /* * request or answer ? */ if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_SYNC) goto reject_it; req = 0; } /* * get requested values. */ chg = 0; per = np->msgin[3]; ofs = np->msgin[4]; /* * check values against our limits. */ if (ofs) { if (ofs > np->maxoffs) {chg = 1; ofs = np->maxoffs;} if (req) { if (ofs > tp->tinfo.user.offset) {chg = 1; ofs = tp->tinfo.user.offset;} } } if (ofs) { if (per < np->minsync) {chg = 1; per = np->minsync;} if (req) { if (per < tp->tinfo.user.period) {chg = 1; per = tp->tinfo.user.period;} } } div = fak = 0; if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) goto reject_it; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp); printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", ofs, per, div, fak, chg); } /* * This was an answer message */ if (req == 0) { if (chg) /* Answer wasn't acceptable. */ goto reject_it; sym_setsync (np, cp, ofs, per, div, fak); OUTL_DSP (SCRIPTA_BA (np, clrack)); return; } /* * It was a request. Set value and * prepare an answer message */ sym_setsync (np, cp, ofs, per, div, fak); np->msgout[0] = M_EXTENDED; np->msgout[1] = 3; np->msgout[2] = M_X_SYNC_REQ; np->msgout[3] = per; np->msgout[4] = ofs; cp->nego_status = NS_SYNC; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "sync msgout", np->msgout); } np->msgin [0] = M_NOOP; OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); return; reject_it: sym_setsync (np, cp, 0, 0, 0, 0); OUTL_DSP (SCRIPTB_BA (np, msg_bad)); } /* * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. */ static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) { u_char chg, ofs, per, fak, dt, div, wide; int req = 1; /* * Synchronous request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "ppr msgin", np->msgin); }; /* * get requested values. */ chg = 0; per = np->msgin[3]; ofs = np->msgin[5]; wide = np->msgin[6]; dt = np->msgin[7] & PPR_OPT_DT; /* * request or answer ? */ if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_PPR) goto reject_it; req = 0; } /* * check values against our limits. */ if (wide > np->maxwide) {chg = 1; wide = np->maxwide;} if (!wide || !(np->features & FE_ULTRA3)) dt &= ~PPR_OPT_DT; if (req) { if (wide > tp->tinfo.user.width) {chg = 1; wide = tp->tinfo.user.width;} } if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ dt &= ~PPR_OPT_DT; if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; if (ofs) { if (dt) { if (ofs > np->maxoffs_dt) {chg = 1; ofs = np->maxoffs_dt;} } else if (ofs > np->maxoffs) {chg = 1; ofs = np->maxoffs;} if (req) { if (ofs > tp->tinfo.user.offset) {chg = 1; ofs = tp->tinfo.user.offset;} } } if (ofs) { if (dt) { if (per < np->minsync_dt) {chg = 1; per = np->minsync_dt;} } else if (per < np->minsync) {chg = 1; per = np->minsync;} if (req) { if (per < tp->tinfo.user.period) {chg = 1; per = tp->tinfo.user.period;} } } div = fak = 0; if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) goto reject_it; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp); printf ("ppr: " "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", dt, ofs, per, wide, div, fak, chg); } /* * It was an answer. */ if (req == 0) { if (chg) /* Answer wasn't acceptable */ goto reject_it; sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); OUTL_DSP (SCRIPTA_BA (np, clrack)); return; } /* * It was a request. Set value and * prepare an answer message */ sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); np->msgout[0] = M_EXTENDED; np->msgout[1] = 6; np->msgout[2] = M_X_PPR_REQ; np->msgout[3] = per; np->msgout[4] = 0; np->msgout[5] = ofs; np->msgout[6] = wide; np->msgout[7] = dt; cp->nego_status = NS_PPR; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "ppr msgout", np->msgout); } np->msgin [0] = M_NOOP; OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); return; reject_it: sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); OUTL_DSP (SCRIPTB_BA (np, msg_bad)); /* * If it was a device response that should result in * ST, we may want to try a legacy negotiation later. */ if (!req && !dt) { tp->tinfo.goal.options = 0; tp->tinfo.goal.width = wide; tp->tinfo.goal.period = per; tp->tinfo.goal.offset = ofs; } } /* * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. */ static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) { u_char chg, wide; int req = 1; /* * Wide request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "wide msgin", np->msgin); }; /* * Is it a request from the device? */ if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_WIDE) goto reject_it; req = 0; } /* * get requested values. */ chg = 0; wide = np->msgin[3]; /* * check values against driver limits. */ if (wide > np->maxwide) {chg = 1; wide = np->maxwide;} if (req) { if (wide > tp->tinfo.user.width) {chg = 1; wide = tp->tinfo.user.width;} } if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp); printf ("wdtr: wide=%d chg=%d.\n", wide, chg); } /* * This was an answer message */ if (req == 0) { if (chg) /* Answer wasn't acceptable. */ goto reject_it; sym_setwide (np, cp, wide); /* * Negotiate for SYNC immediately after WIDE response. * This allows to negotiate for both WIDE and SYNC on * a single SCSI command (Suggested by Justin Gibbs). */ if (tp->tinfo.goal.offset) { np->msgout[0] = M_EXTENDED; np->msgout[1] = 3; np->msgout[2] = M_X_SYNC_REQ; np->msgout[3] = tp->tinfo.goal.period; np->msgout[4] = tp->tinfo.goal.offset; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "sync msgout", np->msgout); } cp->nego_status = NS_SYNC; OUTB (HS_PRT, HS_NEGOTIATE); OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); return; } OUTL_DSP (SCRIPTA_BA (np, clrack)); return; }; /* * It was a request, set value and * prepare an answer message */ sym_setwide (np, cp, wide); np->msgout[0] = M_EXTENDED; np->msgout[1] = 2; np->msgout[2] = M_X_WIDE_REQ; np->msgout[3] = wide; np->msgin [0] = M_NOOP; cp->nego_status = NS_WIDE; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_msg(cp, "wide msgout", np->msgout); } OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); return; reject_it: OUTL_DSP (SCRIPTB_BA (np, msg_bad)); } /* * Reset SYNC or WIDE to default settings. * * Called when a negotiation does not succeed either * on rejection or on protocol error. * * If it was a PPR that made problems, we may want to * try a legacy negotiation later. */ static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) { /* * any error in negotiation: * fall back to default mode. */ switch (cp->nego_status) { case NS_PPR: #if 0 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); #else tp->tinfo.goal.options = 0; if (tp->tinfo.goal.period < np->minsync) tp->tinfo.goal.period = np->minsync; if (tp->tinfo.goal.offset > np->maxoffs) tp->tinfo.goal.offset = np->maxoffs; #endif break; case NS_SYNC: sym_setsync (np, cp, 0, 0, 0, 0); break; case NS_WIDE: sym_setwide (np, cp, 0); break; }; np->msgin [0] = M_NOOP; np->msgout[0] = M_NOOP; cp->nego_status = 0; } /* * chip handler for MESSAGE REJECT received in response to * a WIDE or SYNCHRONOUS negotiation. */ static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) { sym_nego_default(np, tp, cp); OUTB (HS_PRT, HS_BUSY); } /* * chip exception handler for programmed interrupts. */ static void sym_int_sir (hcb_p np) { u_char num = INB (nc_dsps); u32 dsa = INL (nc_dsa); ccb_p cp = sym_ccb_from_dsa(np, dsa); u_char target = INB (nc_sdid) & 0x0f; tcb_p tp = &np->target[target]; int tmp; SYM_LOCK_ASSERT(MA_OWNED); if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); switch (num) { /* * Command has been completed with error condition * or has been auto-sensed. */ case SIR_COMPLETE_ERROR: sym_complete_error(np, cp); return; /* * The C code is currently trying to recover from something. * Typically, user want to abort some command. */ case SIR_SCRIPT_STOPPED: case SIR_TARGET_SELECTED: case SIR_ABORT_SENT: sym_sir_task_recovery(np, num); return; /* * The device didn't go to MSG OUT phase after having * been selected with ATN. We donnot want to handle * that. */ case SIR_SEL_ATN_NO_MSG_OUT: printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", sym_name (np), target); goto out_stuck; /* * The device didn't switch to MSG IN phase after * having reseleted the initiator. */ case SIR_RESEL_NO_MSG_IN: printf ("%s:%d: No MSG IN phase after reselection.\n", sym_name (np), target); goto out_stuck; /* * After reselection, the device sent a message that wasn't * an IDENTIFY. */ case SIR_RESEL_NO_IDENTIFY: printf ("%s:%d: No IDENTIFY after reselection.\n", sym_name (np), target); goto out_stuck; /* * The device reselected a LUN we donnot know about. */ case SIR_RESEL_BAD_LUN: np->msgout[0] = M_RESET; goto out; /* * The device reselected for an untagged nexus and we * haven't any. */ case SIR_RESEL_BAD_I_T_L: np->msgout[0] = M_ABORT; goto out; /* * The device reselected for a tagged nexus that we donnot * have. */ case SIR_RESEL_BAD_I_T_L_Q: np->msgout[0] = M_ABORT_TAG; goto out; /* * The SCRIPTS let us know that the device has grabbed * our message and will abort the job. */ case SIR_RESEL_ABORTED: np->lastmsg = np->msgout[0]; np->msgout[0] = M_NOOP; printf ("%s:%d: message %x sent on bad reselection.\n", sym_name (np), target, np->lastmsg); goto out; /* * The SCRIPTS let us know that a message has been * successfully sent to the device. */ case SIR_MSG_OUT_DONE: np->lastmsg = np->msgout[0]; np->msgout[0] = M_NOOP; /* Should we really care of that */ if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { if (cp) { cp->xerr_status &= ~XE_PARITY_ERR; if (!cp->xerr_status) OUTOFFB (HF_PRT, HF_EXT_ERR); } } goto out; /* * The device didn't send a GOOD SCSI status. * We may have some work to do prior to allow * the SCRIPTS processor to continue. */ case SIR_BAD_SCSI_STATUS: if (!cp) goto out; sym_sir_bad_scsi_status(np, num, cp); return; /* * We are asked by the SCRIPTS to prepare a * REJECT message. */ case SIR_REJECT_TO_SEND: sym_print_msg(cp, "M_REJECT to send for ", np->msgin); np->msgout[0] = M_REJECT; goto out; /* * We have been ODD at the end of a DATA IN * transfer and the device didn't send a * IGNORE WIDE RESIDUE message. * It is a data overrun condition. */ case SIR_SWIDE_OVERRUN: if (cp) { OUTONB (HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_SWIDE_OVRUN; } goto out; /* * We have been ODD at the end of a DATA OUT * transfer. * It is a data underrun condition. */ case SIR_SODL_UNDERRUN: if (cp) { OUTONB (HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_SODL_UNRUN; } goto out; /* * The device wants us to tranfer more data than * expected or in the wrong direction. * The number of extra bytes is in scratcha. * It is a data overrun condition. */ case SIR_DATA_OVERRUN: if (cp) { OUTONB (HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_EXTRA_DATA; cp->extra_bytes += INL (nc_scratcha); } goto out; /* * The device switched to an illegal phase (4/5). */ case SIR_BAD_PHASE: if (cp) { OUTONB (HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_BAD_PHASE; } goto out; /* * We received a message. */ case SIR_MSG_RECEIVED: if (!cp) goto out_stuck; switch (np->msgin [0]) { /* * We received an extended message. * We handle MODIFY DATA POINTER, SDTR, WDTR * and reject all other extended messages. */ case M_EXTENDED: switch (np->msgin [2]) { case M_X_MODIFY_DP: if (DEBUG_FLAGS & DEBUG_POINTER) sym_print_msg(cp,"modify DP",np->msgin); tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + (np->msgin[5]<<8) + (np->msgin[6]); sym_modify_dp(np, tp, cp, tmp); return; case M_X_SYNC_REQ: sym_sync_nego(np, tp, cp); return; case M_X_PPR_REQ: sym_ppr_nego(np, tp, cp); return; case M_X_WIDE_REQ: sym_wide_nego(np, tp, cp); return; default: goto out_reject; } break; /* * We received a 1/2 byte message not handled from SCRIPTS. * We are only expecting MESSAGE REJECT and IGNORE WIDE * RESIDUE messages that haven't been anticipated by * SCRIPTS on SWIDE full condition. Unanticipated IGNORE * WIDE RESIDUE messages are aliased as MODIFY DP (-1). */ case M_IGN_RESIDUE: if (DEBUG_FLAGS & DEBUG_POINTER) sym_print_msg(cp,"ign wide residue", np->msgin); sym_modify_dp(np, tp, cp, -1); return; case M_REJECT: if (INB (HS_PRT) == HS_NEGOTIATE) sym_nego_rejected(np, tp, cp); else { PRINT_ADDR(cp); printf ("M_REJECT received (%x:%x).\n", scr_to_cpu(np->lastmsg), np->msgout[0]); } goto out_clrack; break; default: goto out_reject; } break; /* * We received an unknown message. * Ignore all MSG IN phases and reject it. */ case SIR_MSG_WEIRD: sym_print_msg(cp, "WEIRD message received", np->msgin); OUTL_DSP (SCRIPTB_BA (np, msg_weird)); return; /* * Negotiation failed. * Target does not send us the reply. * Remove the HS_NEGOTIATE status. */ case SIR_NEGO_FAILED: OUTB (HS_PRT, HS_BUSY); /* * Negotiation failed. * Target does not want answer message. */ case SIR_NEGO_PROTO: sym_nego_default(np, tp, cp); goto out; }; out: OUTONB_STD (); return; out_reject: OUTL_DSP (SCRIPTB_BA (np, msg_bad)); return; out_clrack: OUTL_DSP (SCRIPTA_BA (np, clrack)); return; out_stuck: return; } /* * Acquire a control block */ static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) { tcb_p tp = &np->target[tn]; lcb_p lp = sym_lp(np, tp, ln); u_short tag = NO_TAG; SYM_QUEHEAD *qp; ccb_p cp = (ccb_p) NULL; /* * Look for a free CCB */ if (sym_que_empty(&np->free_ccbq)) goto out; qp = sym_remque_head(&np->free_ccbq); if (!qp) goto out; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); /* * If the LCB is not yet available and the LUN * has been probed ok, try to allocate the LCB. */ if (!lp && sym_is_bit(tp->lun_map, ln)) { lp = sym_alloc_lcb(np, tn, ln); if (!lp) goto out_free; } /* * If the LCB is not available here, then the * logical unit is not yet discovered. For those * ones only accept 1 SCSI IO per logical unit, * since we cannot allow disconnections. */ if (!lp) { if (!sym_is_bit(tp->busy0_map, ln)) sym_set_bit(tp->busy0_map, ln); else goto out_free; } else { /* * If we have been asked for a tagged command. */ if (tag_order) { /* * Debugging purpose. */ assert(lp->busy_itl == 0); /* * Allocate resources for tags if not yet. */ if (!lp->cb_tags) { sym_alloc_lcb_tags(np, tn, ln); if (!lp->cb_tags) goto out_free; } /* * Get a tag for this SCSI IO and set up * the CCB bus address for reselection, * and count it for this LUN. * Toggle reselect path to tagged. */ if (lp->busy_itlq < SYM_CONF_MAX_TASK) { tag = lp->cb_tags[lp->ia_tag]; if (++lp->ia_tag == SYM_CONF_MAX_TASK) lp->ia_tag = 0; lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); ++lp->busy_itlq; lp->head.resel_sa = cpu_to_scr(SCRIPTA_BA (np, resel_tag)); } else goto out_free; } /* * This command will not be tagged. * If we already have either a tagged or untagged * one, refuse to overlap this untagged one. */ else { /* * Debugging purpose. */ assert(lp->busy_itl == 0 && lp->busy_itlq == 0); /* * Count this nexus for this LUN. * Set up the CCB bus address for reselection. * Toggle reselect path to untagged. */ if (++lp->busy_itl == 1) { lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); lp->head.resel_sa = cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); } else goto out_free; } } /* * Put the CCB into the busy queue. */ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); /* * Remember all informations needed to free this CCB. */ cp->to_abort = 0; cp->tag = tag; cp->target = tn; cp->lun = ln; if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_LUN(np, tn, ln); printf ("ccb @%p using tag %d.\n", cp, tag); } out: return cp; out_free: sym_insque_head(&cp->link_ccbq, &np->free_ccbq); return NULL; } /* * Release one control block */ static void sym_free_ccb (hcb_p np, ccb_p cp) { tcb_p tp = &np->target[cp->target]; lcb_p lp = sym_lp(np, tp, cp->lun); if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_LUN(np, cp->target, cp->lun); printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); } /* * If LCB available, */ if (lp) { /* * If tagged, release the tag, set the relect path */ if (cp->tag != NO_TAG) { /* * Free the tag value. */ lp->cb_tags[lp->if_tag] = cp->tag; if (++lp->if_tag == SYM_CONF_MAX_TASK) lp->if_tag = 0; /* * Make the reselect path invalid, * and uncount this CCB. */ lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); --lp->busy_itlq; } else { /* Untagged */ /* * Make the reselect path invalid, * and uncount this CCB. */ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); --lp->busy_itl; } /* * If no JOB active, make the LUN reselect path invalid. */ if (lp->busy_itlq == 0 && lp->busy_itl == 0) lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); } /* * Otherwise, we only accept 1 IO per LUN. * Clear the bit that keeps track of this IO. */ else sym_clr_bit(tp->busy0_map, cp->lun); /* * We donnot queue more than 1 ccb per target * with negotiation at any time. If this ccb was * used for negotiation, clear this info in the tcb. */ if (cp == tp->nego_cp) tp->nego_cp = NULL; #ifdef SYM_CONF_IARB_SUPPORT /* * If we just complete the last queued CCB, * clear this info that is no longer relevant. */ if (cp == np->last_cp) np->last_cp = NULL; #endif /* * Unmap user data from DMA map if needed. */ if (cp->dmamapped) { bus_dmamap_unload(np->data_dmat, cp->dmamap); cp->dmamapped = 0; } /* * Make this CCB available. */ cp->cam_ccb = NULL; cp->host_status = HS_IDLE; sym_remque(&cp->link_ccbq); sym_insque_head(&cp->link_ccbq, &np->free_ccbq); } /* * Allocate a CCB from memory and initialize its fixed part. */ static ccb_p sym_alloc_ccb(hcb_p np) { ccb_p cp = NULL; int hcode; SYM_LOCK_ASSERT(MA_NOTOWNED); /* * Prevent from allocating more CCBs than we can * queue to the controller. */ if (np->actccbs >= SYM_CONF_MAX_START) return NULL; /* * Allocate memory for this CCB. */ cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); if (!cp) return NULL; /* * Allocate a bounce buffer for sense data. */ cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); if (!cp->sns_bbuf) goto out_free; /* * Allocate a map for the DMA of user data. */ if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) goto out_free; /* * Count it. */ np->actccbs++; /* * Initialize the callout. */ callout_init(&cp->ch, 1); /* * Compute the bus address of this ccb. */ cp->ccb_ba = vtobus(cp); /* * Insert this ccb into the hashed list. */ hcode = CCB_HASH_CODE(cp->ccb_ba); cp->link_ccbh = np->ccbh[hcode]; np->ccbh[hcode] = cp; /* * Initialize the start and restart actions. */ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); /* * Initilialyze some other fields. */ cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); /* * Chain into free ccb queue. */ sym_insque_head(&cp->link_ccbq, &np->free_ccbq); return cp; out_free: if (cp->sns_bbuf) sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); sym_mfree_dma(cp, sizeof(*cp), "CCB"); return NULL; } /* * Look up a CCB from a DSA value. */ static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) { int hcode; ccb_p cp; hcode = CCB_HASH_CODE(dsa); cp = np->ccbh[hcode]; while (cp) { if (cp->ccb_ba == dsa) break; cp = cp->link_ccbh; } return cp; } /* * Target control block initialisation. * Nothing important to do at the moment. */ static void sym_init_tcb (hcb_p np, u_char tn) { /* * Check some alignments required by the chip. */ assert (((offsetof(struct sym_reg, nc_sxfer) ^ offsetof(struct sym_tcb, head.sval)) &3) == 0); assert (((offsetof(struct sym_reg, nc_scntl3) ^ offsetof(struct sym_tcb, head.wval)) &3) == 0); } /* * Lun control block allocation and initialization. */ static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = sym_lp(np, tp, ln); /* * Already done, just return. */ if (lp) return lp; /* * Check against some race. */ assert(!sym_is_bit(tp->busy0_map, ln)); /* * Initialize the target control block if not yet. */ sym_init_tcb (np, tn); /* * Allocate the LCB bus address array. * Compute the bus address of this table. */ if (ln && !tp->luntbl) { int i; tp->luntbl = sym_calloc_dma(256, "LUNTBL"); if (!tp->luntbl) goto fail; for (i = 0 ; i < 64 ; i++) tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); } /* * Allocate the table of pointers for LUN(s) > 0, if needed. */ if (ln && !tp->lunmp) { tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), "LUNMP"); if (!tp->lunmp) goto fail; } /* * Allocate the lcb. * Make it available to the chip. */ lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); if (!lp) goto fail; if (ln) { tp->lunmp[ln] = lp; tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); } else { tp->lun0p = lp; tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); } /* * Let the itl task point to error handling. */ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); /* * Set the reselect pattern to our default. :) */ lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); /* * Set user capabilities. */ lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); fail: return lp; } /* * Allocate LCB resources for tagged command queuing. */ static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = sym_lp(np, tp, ln); int i; /* * If LCB not available, try to allocate it. */ if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) return; /* * Allocate the task table and and the tag allocation * circular buffer. We want both or none. */ lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); if (!lp->itlq_tbl) return; lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); if (!lp->cb_tags) { sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); lp->itlq_tbl = 0; return; } /* * Initialize the task table with invalid entries. */ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); /* * Fill up the tag buffer with tag numbers. */ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) lp->cb_tags[i] = i; /* * Make the task table available to SCRIPTS, * And accept tagged commands now. */ lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); } /* * Test the pci bus snoop logic :-( * * Has to be called with interrupts disabled. */ #ifndef SYM_CONF_IOMAPPED static int sym_regtest (hcb_p np) { register volatile u32 data; /* * chip registers may NOT be cached. * write 0xffffffff to a read only register area, * and try to read it back. */ data = 0xffffffff; OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); #if 1 if (data == 0xffffffff) { #else if ((data & 0xe2f0fffd) != 0x02000080) { #endif printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", (unsigned) data); return (0x10); }; return (0); } #endif static int sym_snooptest (hcb_p np) { u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; int i, err=0; #ifndef SYM_CONF_IOMAPPED err |= sym_regtest (np); if (err) return (err); #endif restart_test: /* * Enable Master Parity Checking as we intend * to enable it for normal operations. */ OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); /* * init */ pc = SCRIPTB0_BA (np, snooptest); host_wr = 1; sym_wr = 2; /* * Set memory and register. */ np->cache = cpu_to_scr(host_wr); OUTL (nc_temp, sym_wr); /* * Start script (exchange values) */ OUTL (nc_dsa, np->hcb_ba); OUTL_DSP (pc); /* * Wait 'til done (with timeout) */ for (i=0; i=SYM_SNOOP_TIMEOUT) { printf ("CACHE TEST FAILED: timeout.\n"); return (0x20); }; /* * Check for fatal DMA errors. */ dstat = INB (nc_dstat); #if 1 /* Band aiding for broken hardwares that fail PCI parity */ if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { printf ("%s: PCI DATA PARITY ERROR DETECTED - " "DISABLING MASTER DATA PARITY CHECKING.\n", sym_name(np)); np->rv_ctest4 &= ~MPEE; goto restart_test; } #endif if (dstat & (MDPE|BF|IID)) { printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); return (0x80); } /* * Save termination position. */ pc = INL (nc_dsp); /* * Read memory and register. */ host_rd = scr_to_cpu(np->cache); sym_rd = INL (nc_scratcha); sym_bk = INL (nc_temp); /* * Check termination position. */ if (pc != SCRIPTB0_BA (np, snoopend)+8) { printf ("CACHE TEST FAILED: script execution failed.\n"); printf ("start=%08lx, pc=%08lx, end=%08lx\n", (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, (u_long) SCRIPTB0_BA (np, snoopend) +8); return (0x40); }; /* * Show results. */ if (host_wr != sym_rd) { printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", (int) host_wr, (int) sym_rd); err |= 1; }; if (host_rd != sym_wr) { printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", (int) sym_wr, (int) host_rd); err |= 2; }; if (sym_bk != sym_wr) { printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", (int) sym_wr, (int) sym_bk); err |= 4; }; return (err); } /* * Determine the chip's clock frequency. * * This is essential for the negotiation of the synchronous * transfer rate. * * Note: we have to return the correct value. * THERE IS NO SAFE DEFAULT VALUE. * * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. * 53C860 and 53C875 rev. 1 support fast20 transfers but * do not have a clock doubler and so are provided with a * 80 MHz clock. All other fast20 boards incorporate a doubler * and so should be delivered with a 40 MHz clock. * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base * clock and provide a clock quadrupler (160 Mhz). */ /* * Select SCSI clock frequency */ static void sym_selectclock(hcb_p np, u_char scntl3) { /* * If multiplier not present or not selected, leave here. */ if (np->multiplier <= 1) { OUTB(nc_scntl3, scntl3); return; } if (sym_verbose >= 2) printf ("%s: enabling clock multiplier\n", sym_name(np)); OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ /* * Wait for the LCKFRQ bit to be set if supported by the chip. * Otherwise wait 20 micro-seconds. */ if (np->features & FE_LCKFRQ) { int i = 20; while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) UDELAY (20); if (!i) printf("%s: the chip cannot lock the frequency\n", sym_name(np)); } else UDELAY (20); OUTB(nc_stest3, HSC); /* Halt the scsi clock */ OUTB(nc_scntl3, scntl3); OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ OUTB(nc_stest3, 0x00); /* Restart scsi clock */ } /* * calculate SCSI clock frequency (in KHz) */ static unsigned getfreq (hcb_p np, int gen) { unsigned int ms = 0; unsigned int f; /* * Measure GEN timer delay in order * to calculate SCSI clock frequency * * This code will never execute too * many loop iterations (if DELAY is * reasonably correct). It could get * too low a delay (too high a freq.) * if the CPU is slow executing the * loop for some reason (an NMI, for * example). For this reason we will * if multiple measurements are to be * performed trust the higher delay * (lower frequency returned). */ OUTW (nc_sien , 0); /* mask all scsi interrupts */ (void) INW (nc_sist); /* clear pending scsi interrupt */ OUTB (nc_dien , 0); /* mask all dma interrupts */ (void) INW (nc_sist); /* another one, just to be sure :) */ OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ OUTB (nc_stime1, 0); /* disable general purpose timer */ OUTB (nc_stime1, gen); /* set to nominal delay of 1<= 2) printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", sym_name(np), gen, ms, f); return f; } static unsigned sym_getfreq (hcb_p np) { u_int f1, f2; int gen = 11; (void) getfreq (np, gen); /* throw away first result */ f1 = getfreq (np, gen); f2 = getfreq (np, gen); if (f1 > f2) f1 = f2; /* trust lower result */ return f1; } /* * Get/probe chip SCSI clock frequency */ static void sym_getclock (hcb_p np, int mult) { unsigned char scntl3 = np->sv_scntl3; unsigned char stest1 = np->sv_stest1; unsigned f1; /* * For the C10 core, assume 40 MHz. */ if (np->features & FE_C10) { np->multiplier = mult; np->clock_khz = 40000 * mult; return; } np->multiplier = 1; f1 = 40000; /* * True with 875/895/896/895A with clock multiplier selected */ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { if (sym_verbose >= 2) printf ("%s: clock multiplier found\n", sym_name(np)); np->multiplier = mult; } /* * If multiplier not found or scntl3 not 7,5,3, * reset chip and get frequency from general purpose timer. * Otherwise trust scntl3 BIOS setting. */ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { OUTB (nc_stest1, 0); /* make sure doubler is OFF */ f1 = sym_getfreq (np); if (sym_verbose) printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); if (f1 < 45000) f1 = 40000; else if (f1 < 55000) f1 = 50000; else f1 = 80000; if (f1 < 80000 && mult > 1) { if (sym_verbose >= 2) printf ("%s: clock multiplier assumed\n", sym_name(np)); np->multiplier = mult; } } else { if ((scntl3 & 7) == 3) f1 = 40000; else if ((scntl3 & 7) == 5) f1 = 80000; else f1 = 160000; f1 /= np->multiplier; } /* * Compute controller synchronous parameters. */ f1 *= np->multiplier; np->clock_khz = f1; } /* * Get/probe PCI clock frequency */ static int sym_getpciclock (hcb_p np) { int f = 0; /* * For the C1010-33, this doesn't work. * For the C1010-66, this will be tested when I'll have * such a beast to play with. */ if (!(np->features & FE_C10)) { OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ f = (int) sym_getfreq (np); OUTB (nc_stest1, 0); } np->pciclk_khz = f; return f; } /*============= DRIVER ACTION/COMPLETION ====================*/ /* * Print something that tells about extended errors. */ static void sym_print_xerr(ccb_p cp, int x_status) { if (x_status & XE_PARITY_ERR) { PRINT_ADDR(cp); printf ("unrecovered SCSI parity error.\n"); } if (x_status & XE_EXTRA_DATA) { PRINT_ADDR(cp); printf ("extraneous data discarded.\n"); } if (x_status & XE_BAD_PHASE) { PRINT_ADDR(cp); printf ("illegal scsi phase (4/5).\n"); } if (x_status & XE_SODL_UNRUN) { PRINT_ADDR(cp); printf ("ODD transfer in DATA OUT phase.\n"); } if (x_status & XE_SWIDE_OVRUN) { PRINT_ADDR(cp); printf ("ODD transfer in DATA IN phase.\n"); } } /* * Choose the more appropriate CAM status if * the IO encountered an extended error. */ static int sym_xerr_cam_status(int cam_status, int x_status) { if (x_status) { if (x_status & XE_PARITY_ERR) cam_status = CAM_UNCOR_PARITY; else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) cam_status = CAM_DATA_RUN_ERR; else if (x_status & XE_BAD_PHASE) cam_status = CAM_REQ_CMP_ERR; else cam_status = CAM_REQ_CMP_ERR; } return cam_status; } /* * Complete execution of a SCSI command with extented * error, SCSI status error, or having been auto-sensed. * * The SCRIPTS processor is not running there, so we * can safely access IO registers and remove JOBs from * the START queue. * SCRATCHA is assumed to have been loaded with STARTPOS * before the SCRIPTS called the C code. */ static void sym_complete_error (hcb_p np, ccb_p cp) { struct ccb_scsiio *csio; u_int cam_status; int i; SYM_LOCK_ASSERT(MA_OWNED); /* * Paranoid check. :) */ if (!cp || !cp->cam_ccb) return; if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, cp->host_status, cp->ssss_status, cp->host_flags, cp->target, cp->lun); MDELAY(100); } /* * Get CAM command pointer. */ csio = &cp->cam_ccb->csio; /* * Check for extended errors. */ if (cp->xerr_status) { if (sym_verbose) sym_print_xerr(cp, cp->xerr_status); if (cp->host_status == HS_COMPLETE) cp->host_status = HS_COMP_ERR; } /* * Calculate the residual. */ csio->sense_resid = 0; csio->resid = sym_compute_residual(np, cp); if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ csio->resid = 0; /* throw them away. :) */ cp->sv_resid = 0; } if (cp->host_flags & HF_SENSE) { /* Auto sense */ csio->scsi_status = cp->sv_scsi_status; /* Restore status */ csio->sense_resid = csio->resid; /* Swap residuals */ csio->resid = cp->sv_resid; cp->sv_resid = 0; if (sym_verbose && cp->sv_xerr_status) sym_print_xerr(cp, cp->sv_xerr_status); if (cp->host_status == HS_COMPLETE && cp->ssss_status == S_GOOD && cp->xerr_status == 0) { cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, cp->sv_xerr_status); cam_status |= CAM_AUTOSNS_VALID; /* * Bounce back the sense data to user and * fix the residual. */ bzero(&csio->sense_data, csio->sense_len); bcopy(cp->sns_bbuf, &csio->sense_data, MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); csio->sense_resid += csio->sense_len; csio->sense_resid -= SYM_SNS_BBUF_LEN; #if 0 /* * If the device reports a UNIT ATTENTION condition * due to a RESET condition, we should consider all * disconnect CCBs for this unit as aborted. */ if (1) { u_char *p; p = (u_char *) csio->sense_data; if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) sym_clear_tasks(np, CAM_REQ_ABORTED, cp->target,cp->lun, -1); } #endif } else cam_status = CAM_AUTOSENSE_FAIL; } else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ csio->scsi_status = cp->ssss_status; cam_status = CAM_SCSI_STATUS_ERROR; } else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ cam_status = CAM_SEL_TIMEOUT; else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ cam_status = CAM_UNEXP_BUSFREE; else { /* Extended error */ if (sym_verbose) { PRINT_ADDR(cp); printf ("COMMAND FAILED (%x %x %x).\n", cp->host_status, cp->ssss_status, cp->xerr_status); } csio->scsi_status = cp->ssss_status; /* * Set the most appropriate value for CAM status. */ cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, cp->xerr_status); } /* * Dequeue all queued CCBs for that device * not yet started by SCRIPTS. */ i = (INL (nc_scratcha) - np->squeue_ba) / 4; (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); /* * Restart the SCRIPTS processor. */ OUTL_DSP (SCRIPTA_BA (np, start)); /* * Synchronize DMA map if needed. */ if (cp->dmamapped) { bus_dmamap_sync(np->data_dmat, cp->dmamap, (cp->dmamapped == SYM_DMA_READ ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); } /* * Add this one to the COMP queue. * Complete all those commands with either error * or requeue condition. */ sym_set_cam_status((union ccb *) csio, cam_status); sym_remque(&cp->link_ccbq); sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); sym_flush_comp_queue(np, 0); } /* * Complete execution of a successful SCSI command. * * Only successful commands go to the DONE queue, * since we need to have the SCRIPTS processor * stopped on any error condition. * The SCRIPTS processor is running while we are * completing successful commands. */ static void sym_complete_ok (hcb_p np, ccb_p cp) { struct ccb_scsiio *csio; tcb_p tp; lcb_p lp; SYM_LOCK_ASSERT(MA_OWNED); /* * Paranoid check. :) */ if (!cp || !cp->cam_ccb) return; assert (cp->host_status == HS_COMPLETE); /* * Get command, target and lun pointers. */ csio = &cp->cam_ccb->csio; tp = &np->target[cp->target]; lp = sym_lp(np, tp, cp->lun); /* * Assume device discovered on first success. */ if (!lp) sym_set_bit(tp->lun_map, cp->lun); /* * If all data have been transferred, given than no * extended error did occur, there is no residual. */ csio->resid = 0; if (cp->phys.head.lastp != cp->phys.head.goalp) csio->resid = sym_compute_residual(np, cp); /* * Wrong transfer residuals may be worse than just always * returning zero. User can disable this feature from * sym_conf.h. Residual support is enabled by default. */ if (!SYM_CONF_RESIDUAL_SUPPORT) csio->resid = 0; /* * Synchronize DMA map if needed. */ if (cp->dmamapped) { bus_dmamap_sync(np->data_dmat, cp->dmamap, (cp->dmamapped == SYM_DMA_READ ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); } /* * Set status and complete the command. */ csio->scsi_status = cp->ssss_status; sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); sym_xpt_done(np, (union ccb *) csio, cp); sym_free_ccb(np, cp); } /* * Our callout handler */ static void sym_callout(void *arg) { union ccb *ccb = (union ccb *) arg; hcb_p np = ccb->ccb_h.sym_hcb_ptr; /* * Check that the CAM CCB is still queued. */ if (!np) return; SYM_LOCK(); switch(ccb->ccb_h.func_code) { case XPT_SCSI_IO: (void) sym_abort_scsiio(np, ccb, 1); break; default: break; } SYM_UNLOCK(); } /* * Abort an SCSI IO. */ static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) { ccb_p cp; SYM_QUEHEAD *qp; SYM_LOCK_ASSERT(MA_OWNED); /* * Look up our CCB control block. */ cp = NULL; FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp2->cam_ccb == ccb) { cp = cp2; break; } } if (!cp || cp->host_status == HS_WAIT) return -1; /* * If a previous abort didn't succeed in time, * perform a BUS reset. */ if (cp->to_abort) { sym_reset_scsi_bus(np, 1); return 0; } /* * Mark the CCB for abort and allow time for. */ cp->to_abort = timed_out ? 2 : 1; callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); /* * Tell the SCRIPTS processor to stop and synchronize with us. */ np->istat_sem = SEM; OUTB (nc_istat, SIGP|SEM); return 0; } /* * Reset a SCSI device (all LUNs of a target). */ static void sym_reset_dev(hcb_p np, union ccb *ccb) { tcb_p tp; struct ccb_hdr *ccb_h = &ccb->ccb_h; SYM_LOCK_ASSERT(MA_OWNED); if (ccb_h->target_id == np->myaddr || ccb_h->target_id >= SYM_CONF_MAX_TARGET || ccb_h->target_lun >= SYM_CONF_MAX_LUN) { sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); return; } tp = &np->target[ccb_h->target_id]; tp->to_reset = 1; sym_xpt_done2(np, ccb, CAM_REQ_CMP); np->istat_sem = SEM; OUTB (nc_istat, SIGP|SEM); } /* * SIM action entry point. */ static void sym_action(struct cam_sim *sim, union ccb *ccb) { hcb_p np; tcb_p tp; lcb_p lp; ccb_p cp; int tmp; u_char idmsg, *msgptr; u_int msglen; struct ccb_scsiio *csio; struct ccb_hdr *ccb_h; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); /* * Retrieve our controller data structure. */ np = (hcb_p) cam_sim_softc(sim); SYM_LOCK_ASSERT(MA_OWNED); /* * The common case is SCSI IO. * We deal with other ones elsewhere. */ if (ccb->ccb_h.func_code != XPT_SCSI_IO) { sym_action2(sim, ccb); return; } csio = &ccb->csio; ccb_h = &csio->ccb_h; /* * Work around races. */ if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { xpt_done(ccb); return; } /* * Minimal checkings, so that we will not * go outside our tables. */ if (ccb_h->target_id == np->myaddr || ccb_h->target_id >= SYM_CONF_MAX_TARGET || ccb_h->target_lun >= SYM_CONF_MAX_LUN) { sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); return; } /* * Retrieve the target and lun descriptors. */ tp = &np->target[ccb_h->target_id]; lp = sym_lp(np, tp, ccb_h->target_lun); /* * Complete the 1st INQUIRY command with error * condition if the device is flagged NOSCAN * at BOOT in the NVRAM. This may speed up * the boot and maintain coherency with BIOS * device numbering. Clearing the flag allows * user to rescan skipped devices later. * We also return error for devices not flagged * for SCAN LUNS in the NVRAM since some mono-lun * devices behave badly when asked for some non * zero LUN. Btw, this is an absolute hack.:-) */ if (!(ccb_h->flags & CAM_CDB_PHYS) && (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && ccb_h->target_lun != 0)) { tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); return; } } /* * Get a control block for this IO. */ tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); if (!cp) { sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); return; } /* * Keep track of the IO in our CCB. */ cp->cam_ccb = ccb; /* * Build the IDENTIFY message. */ idmsg = M_IDENTIFY | cp->lun; if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) idmsg |= 0x40; msgptr = cp->scsi_smsg; msglen = 0; msgptr[msglen++] = idmsg; /* * Build the tag message if present. */ if (cp->tag != NO_TAG) { u_char order = csio->tag_action; switch(order) { case M_ORDERED_TAG: break; case M_HEAD_TAG: break; default: order = M_SIMPLE_TAG; } msgptr[msglen++] = order; /* * For less than 128 tags, actual tags are numbered * 1,3,5,..2*MAXTAGS+1,since we may have to deal * with devices that have problems with #TAG 0 or too * great #TAG numbers. For more tags (up to 256), * we use directly our tag number. */ #if SYM_CONF_MAX_TASK > (512/4) msgptr[msglen++] = cp->tag; #else msgptr[msglen++] = (cp->tag << 1) + 1; #endif } /* * Build a negotiation message if needed. * (nego_status is filled by sym_prepare_nego()) */ cp->nego_status = 0; if (tp->tinfo.current.width != tp->tinfo.goal.width || tp->tinfo.current.period != tp->tinfo.goal.period || tp->tinfo.current.offset != tp->tinfo.goal.offset || tp->tinfo.current.options != tp->tinfo.goal.options) { if (!tp->nego_cp && lp) msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); } /* * Fill in our ccb */ /* * Startqueue */ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); /* * select */ cp->phys.select.sel_id = cp->target; cp->phys.select.sel_scntl3 = tp->head.wval; cp->phys.select.sel_sxfer = tp->head.sval; cp->phys.select.sel_scntl4 = tp->head.uval; /* * message */ cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); cp->phys.smsg.size = cpu_to_scr(msglen); /* * command */ if (sym_setup_cdb(np, csio, cp) < 0) { sym_xpt_done(np, ccb, cp); sym_free_ccb(np, cp); return; } /* * status */ #if 0 /* Provision */ cp->actualquirks = tp->quirks; #endif cp->actualquirks = SYM_QUIRK_AUTOSAVE; cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->ssss_status = S_ILLEGAL; cp->xerr_status = 0; cp->host_flags = 0; cp->extra_bytes = 0; /* * extreme data pointer. * shall be positive, so -1 is lower than lowest.:) */ cp->ext_sg = -1; cp->ext_ofs = 0; /* * Build the data descriptor block * and start the IO. */ sym_setup_data_and_start(np, csio, cp); } /* * Setup buffers and pointers that address the CDB. * I bet, physical CDBs will never be used on the planet, * since they can be bounced without significant overhead. */ static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) { struct ccb_hdr *ccb_h; u32 cmd_ba; int cmd_len; SYM_LOCK_ASSERT(MA_OWNED); ccb_h = &csio->ccb_h; /* * CDB is 16 bytes max. */ if (csio->cdb_len > sizeof(cp->cdb_buf)) { sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); return -1; } cmd_len = csio->cdb_len; if (ccb_h->flags & CAM_CDB_POINTER) { /* CDB is a pointer */ if (!(ccb_h->flags & CAM_CDB_PHYS)) { /* CDB pointer is virtual */ bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); cmd_ba = CCB_BA (cp, cdb_buf[0]); } else { /* CDB pointer is physical */ #if 0 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; #else sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); return -1; #endif } } else { /* CDB is in the CAM ccb (buffer) */ bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); cmd_ba = CCB_BA (cp, cdb_buf[0]); } cp->phys.cmd.addr = cpu_to_scr(cmd_ba); cp->phys.cmd.size = cpu_to_scr(cmd_len); return 0; } /* * Set up data pointers used by SCRIPTS. */ static void __inline sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) { u32 lastp, goalp; SYM_LOCK_ASSERT(MA_OWNED); /* * No segments means no data. */ if (!cp->segments) dir = CAM_DIR_NONE; /* * Set the data pointer. */ switch(dir) { case CAM_DIR_OUT: goalp = SCRIPTA_BA (np, data_out2) + 8; lastp = goalp - 8 - (cp->segments * (2*4)); break; case CAM_DIR_IN: cp->host_flags |= HF_DATA_IN; goalp = SCRIPTA_BA (np, data_in2) + 8; lastp = goalp - 8 - (cp->segments * (2*4)); break; case CAM_DIR_NONE: default: lastp = goalp = SCRIPTB_BA (np, no_data); break; } cp->phys.head.lastp = cpu_to_scr(lastp); cp->phys.head.goalp = cpu_to_scr(goalp); cp->phys.head.savep = cpu_to_scr(lastp); cp->startp = cp->phys.head.savep; } /* * Call back routine for the DMA map service. * If bounce buffers are used (why ?), we may sleep and then * be called there in another context. */ static void sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) { ccb_p cp; hcb_p np; union ccb *ccb; cp = (ccb_p) arg; ccb = cp->cam_ccb; np = (hcb_p) cp->arg; SYM_LOCK_ASSERT(MA_OWNED); /* * Deal with weird races. */ if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) goto out_abort; /* * Deal with weird errors. */ if (error) { cp->dmamapped = 0; sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); goto out_abort; } /* * Build the data descriptor for the chip. */ if (nsegs) { int retv; /* 896 rev 1 requires to be careful about boundaries */ if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); else retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); if (retv < 0) { sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); goto out_abort; } } /* * Synchronize the DMA map only if we have * actually mapped the data. */ if (cp->dmamapped) { bus_dmamap_sync(np->data_dmat, cp->dmamap, (cp->dmamapped == SYM_DMA_READ ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); } /* * Set host status to busy state. * May have been set back to HS_WAIT to avoid a race. */ cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; /* * Set data pointers. */ sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); /* * Enqueue this IO in our pending queue. */ sym_enqueue_cam_ccb(cp); /* * When `#ifed 1', the code below makes the driver * panic on the first attempt to write to a SCSI device. * It is the first test we want to do after a driver * change that does not seem obviously safe. :) */ #if 0 switch (cp->cdb_buf[0]) { case 0x0A: case 0x2A: case 0xAA: panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); MDELAY(10000); break; default: break; } #endif /* * Activate this job. */ sym_put_start_queue(np, cp); return; out_abort: sym_xpt_done(np, ccb, cp); sym_free_ccb(np, cp); } /* * How complex it gets to deal with the data in CAM. * The Bus Dma stuff makes things still more complex. */ static void sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) { struct ccb_hdr *ccb_h; int dir, retv; SYM_LOCK_ASSERT(MA_OWNED); ccb_h = &csio->ccb_h; /* * Now deal with the data. */ cp->data_len = csio->dxfer_len; cp->arg = np; /* * No direction means no data. */ dir = (ccb_h->flags & CAM_DIR_MASK); if (dir == CAM_DIR_NONE) { sym_execute_ccb(cp, NULL, 0, 0); return; } if (!(ccb_h->flags & CAM_SCATTER_VALID)) { /* Single buffer */ if (!(ccb_h->flags & CAM_DATA_PHYS)) { /* Buffer is virtual */ cp->dmamapped = (dir == CAM_DIR_IN) ? SYM_DMA_READ : SYM_DMA_WRITE; retv = bus_dmamap_load(np->data_dmat, cp->dmamap, csio->data_ptr, csio->dxfer_len, sym_execute_ccb, cp, 0); if (retv == EINPROGRESS) { cp->host_status = HS_WAIT; xpt_freeze_simq(np->sim, 1); csio->ccb_h.status |= CAM_RELEASE_SIMQ; } } else { /* Buffer is physical */ struct bus_dma_segment seg; seg.ds_addr = (bus_addr_t) csio->data_ptr; sym_execute_ccb(cp, &seg, 1, 0); } } else { /* Scatter/gather list */ struct bus_dma_segment *segs; if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { /* The SG list pointer is physical */ sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); goto out_abort; } if (!(ccb_h->flags & CAM_DATA_PHYS)) { /* SG buffer pointers are virtual */ sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); goto out_abort; } /* SG buffer pointers are physical */ segs = (struct bus_dma_segment *)csio->data_ptr; sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); } return; out_abort: sym_xpt_done(np, (union ccb *) csio, cp); sym_free_ccb(np, cp); } /* * Move the scatter list to our data block. */ static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) { struct sym_tblmove *data; bus_dma_segment_t *psegs2; SYM_LOCK_ASSERT(MA_OWNED); if (nsegs > SYM_CONF_MAX_SG) return -1; data = &cp->phys.data[SYM_CONF_MAX_SG-1]; psegs2 = &psegs[nsegs-1]; cp->segments = nsegs; while (1) { data->addr = cpu_to_scr(psegs2->ds_addr); data->size = cpu_to_scr(psegs2->ds_len); if (DEBUG_FLAGS & DEBUG_SCATTER) { printf ("%s scatter: paddr=%lx len=%ld\n", sym_name(np), (long) psegs2->ds_addr, (long) psegs2->ds_len); } if (psegs2 != psegs) { --data; --psegs2; continue; } break; } return 0; } /* * Scatter a SG list with physical addresses into bus addressable chunks. * We need to ensure 16MB boundaries not to be crossed during DMA of * each segment, due to some chips being flawed. */ #define BOUND_MASK ((1UL<<24)-1) static int sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) { u_long ps, pe, pn; u_long k; int s, t; SYM_LOCK_ASSERT(MA_OWNED); s = SYM_CONF_MAX_SG - 1; t = nsegs - 1; ps = psegs[t].ds_addr; pe = ps + psegs[t].ds_len; while (s >= 0) { pn = (pe - 1) & ~BOUND_MASK; if (pn <= ps) pn = ps; k = pe - pn; if (DEBUG_FLAGS & DEBUG_SCATTER) { printf ("%s scatter: paddr=%lx len=%ld\n", sym_name(np), pn, k); } cp->phys.data[s].addr = cpu_to_scr(pn); cp->phys.data[s].size = cpu_to_scr(k); --s; if (pn == ps) { if (--t < 0) break; ps = psegs[t].ds_addr; pe = ps + psegs[t].ds_len; } else pe = pn; } cp->segments = SYM_CONF_MAX_SG - 1 - s; return t >= 0 ? -1 : 0; } #undef BOUND_MASK /* * SIM action for non performance critical stuff. */ static void sym_action2(struct cam_sim *sim, union ccb *ccb) { hcb_p np; tcb_p tp; lcb_p lp; struct ccb_hdr *ccb_h; /* * Retrieve our controller data structure. */ np = (hcb_p) cam_sim_softc(sim); SYM_LOCK_ASSERT(MA_OWNED); ccb_h = &ccb->ccb_h; switch (ccb_h->func_code) { case XPT_SET_TRAN_SETTINGS: { struct ccb_trans_settings *cts; cts = &ccb->cts; tp = &np->target[ccb_h->target_id]; /* * Update SPI transport settings in TARGET control block. * Update SCSI device settings in LUN control block. */ lp = sym_lp(np, tp, ccb_h->target_lun); if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { sym_update_trans(np, tp, &tp->tinfo.goal, cts); if (lp) sym_update_dflags(np, &lp->current_flags, cts); } if (cts->type == CTS_TYPE_USER_SETTINGS) { sym_update_trans(np, tp, &tp->tinfo.user, cts); if (lp) sym_update_dflags(np, &lp->user_flags, cts); } sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *cts; struct sym_trans *tip; u_char dflags; cts = &ccb->cts; tp = &np->target[ccb_h->target_id]; lp = sym_lp(np, tp, ccb_h->target_lun); #define cts__scsi (&cts->proto_specific.scsi) #define cts__spi (&cts->xport_specific.spi) if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { tip = &tp->tinfo.current; dflags = lp ? lp->current_flags : 0; } else { tip = &tp->tinfo.user; dflags = lp ? lp->user_flags : tp->usrflags; } cts->protocol = PROTO_SCSI; cts->transport = XPORT_SPI; cts->protocol_version = tip->scsi_version; cts->transport_version = tip->spi_version; cts__spi->sync_period = tip->period; cts__spi->sync_offset = tip->offset; cts__spi->bus_width = tip->width; cts__spi->ppr_options = tip->options; cts__spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET | CTS_SPI_VALID_BUS_WIDTH | CTS_SPI_VALID_PPR_OPTIONS; cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; if (dflags & SYM_DISC_ENABLED) cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; cts__spi->valid |= CTS_SPI_VALID_DISC; cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; if (dflags & SYM_TAGS_ENABLED) cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; cts__scsi->valid |= CTS_SCSI_VALID_TQ; #undef cts__spi #undef cts__scsi sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_CALC_GEOMETRY: { cam_calc_geometry(&ccb->ccg, /*extended*/1); sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_PATH_INQ: { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; if ((np->features & FE_WIDE) != 0) cpi->hba_inquiry |= PI_WIDE_16; cpi->target_sprt = 0; cpi->hba_misc = 0; if (np->usrflags & SYM_SCAN_TARGETS_HILO) cpi->hba_misc |= PIM_SCANHILO; if (np->usrflags & SYM_AVOID_BUS_RESET) cpi->hba_misc |= PIM_NOBUSRESET; cpi->hba_eng_cnt = 0; cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; /* Semantic problem:)LUN number max = max number of LUNs - 1 */ cpi->max_lun = SYM_CONF_MAX_LUN-1; if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) cpi->max_lun = SYM_SETUP_MAX_LUN-1; cpi->bus_id = cam_sim_bus(sim); cpi->initiator_id = np->myaddr; cpi->base_transfer_speed = 3300; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_2; cpi->transport = XPORT_SPI; cpi->transport_version = 2; cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; if (np->features & FE_ULTRA3) { cpi->transport_version = 3; cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_DT_ST; } sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_ABORT: { union ccb *abort_ccb = ccb->cab.abort_ccb; switch(abort_ccb->ccb_h.func_code) { case XPT_SCSI_IO: if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } default: sym_xpt_done2(np, ccb, CAM_UA_ABORT); break; } break; } case XPT_RESET_DEV: { sym_reset_dev(np, ccb); break; } case XPT_RESET_BUS: { sym_reset_scsi_bus(np, 0); if (sym_verbose) { xpt_print_path(np->path); printf("SCSI BUS reset delivered.\n"); } sym_init (np, 1); sym_xpt_done2(np, ccb, CAM_REQ_CMP); break; } case XPT_ACCEPT_TARGET_IO: case XPT_CONT_TARGET_IO: case XPT_EN_LUN: case XPT_NOTIFY_ACK: case XPT_IMMED_NOTIFY: case XPT_TERM_IO: default: sym_xpt_done2(np, ccb, CAM_REQ_INVALID); break; } } /* * Asynchronous notification handler. */ static void sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) { hcb_p np; struct cam_sim *sim; u_int tn; tcb_p tp; sim = (struct cam_sim *) cb_arg; np = (hcb_p) cam_sim_softc(sim); SYM_LOCK_ASSERT(MA_OWNED); switch (code) { case AC_LOST_DEVICE: tn = xpt_path_target_id(path); if (tn >= SYM_CONF_MAX_TARGET) break; tp = &np->target[tn]; tp->to_reset = 0; tp->head.sval = 0; tp->head.wval = np->rv_scntl3; tp->head.uval = 0; tp->tinfo.current.period = tp->tinfo.goal.period = 0; tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; tp->tinfo.current.options = tp->tinfo.goal.options = 0; break; default: break; } } /* * Update transfer settings of a target. */ static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, struct ccb_trans_settings *cts) { SYM_LOCK_ASSERT(MA_OWNED); /* * Update the infos. */ #define cts__spi (&cts->xport_specific.spi) if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) tip->width = cts__spi->bus_width; if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) tip->offset = cts__spi->sync_offset; if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) tip->period = cts__spi->sync_period; if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) tip->options = (cts__spi->ppr_options & PPR_OPT_DT); if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && cts->protocol_version != PROTO_VERSION_UNKNOWN) tip->scsi_version = cts->protocol_version; if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && cts->transport_version != XPORT_VERSION_UNKNOWN) tip->spi_version = cts->transport_version; #undef cts__spi /* * Scale against driver configuration limits. */ if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; /* * Scale against actual controller BUS width. */ if (tip->width > np->maxwide) tip->width = np->maxwide; /* * Only accept DT if controller supports and SYNC/WIDE asked. */ if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || !(tip->width == BUS_16_BIT && tip->offset)) { tip->options &= ~PPR_OPT_DT; } /* * Scale period factor and offset against controller limits. */ if (tip->options & PPR_OPT_DT) { if (tip->period < np->minsync_dt) tip->period = np->minsync_dt; if (tip->period > np->maxsync_dt) tip->period = np->maxsync_dt; if (tip->offset > np->maxoffs_dt) tip->offset = np->maxoffs_dt; } else { if (tip->period < np->minsync) tip->period = np->minsync; if (tip->period > np->maxsync) tip->period = np->maxsync; if (tip->offset > np->maxoffs) tip->offset = np->maxoffs; } } /* * Update flags for a device (logical unit). */ static void sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) { SYM_LOCK_ASSERT(MA_OWNED); #define cts__scsi (&cts->proto_specific.scsi) #define cts__spi (&cts->xport_specific.spi) if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) *flags |= SYM_DISC_ENABLED; else *flags &= ~SYM_DISC_ENABLED; } if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) *flags |= SYM_TAGS_ENABLED; else *flags &= ~SYM_TAGS_ENABLED; } #undef cts__spi #undef cts__scsi } /*============= DRIVER INITIALISATION ==================*/ static device_method_t sym_pci_methods[] = { DEVMETHOD(device_probe, sym_pci_probe), DEVMETHOD(device_attach, sym_pci_attach), { 0, 0 } }; static driver_t sym_pci_driver = { "sym", sym_pci_methods, 1 /* no softc */ }; static devclass_t sym_devclass; DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); MODULE_DEPEND(sym, cam, 1, 1, 1); MODULE_DEPEND(sym, pci, 1, 1, 1); static const struct sym_pci_chip sym_pci_dev_table[] = { {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, FE_ERL} , #ifdef SYM_DEBUG_GENERIC_SUPPORT {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, FE_BOF} , #else {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} , #endif {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, FE_BOF|FE_ERL} , {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} , {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} , {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} , {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF} , {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF} , {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF} , {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF} , #ifdef SYM_DEBUG_GENERIC_SUPPORT {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| FE_RAM|FE_LCKFRQ} , #else {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_LCKFRQ} , #endif {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} , {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} , {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| FE_C10} , {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| FE_C10|FE_U3EN} , {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| FE_C10|FE_U3EN} , {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_IO256|FE_LEDC} }; #define sym_pci_num_devs \ (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) /* * Look up the chip table. * * Return a pointer to the chip entry if found, * zero otherwise. */ static const struct sym_pci_chip * sym_find_pci_chip(device_t dev) { const struct sym_pci_chip *chip; int i; u_short device_id; u_char revision; if (pci_get_vendor(dev) != PCI_VENDOR_NCR) return NULL; device_id = pci_get_device(dev); revision = pci_get_revid(dev); for (i = 0; i < sym_pci_num_devs; i++) { chip = &sym_pci_dev_table[i]; if (device_id != chip->device_id) continue; if (revision > chip->revision_id) continue; return chip; } return NULL; } /* * Tell upper layer if the chip is supported. */ static int sym_pci_probe(device_t dev) { const struct sym_pci_chip *chip; chip = sym_find_pci_chip(dev); if (chip && sym_find_firmware(chip)) { device_set_desc(dev, chip->name); return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; } return ENXIO; } /* * Attach a sym53c8xx device. */ static int sym_pci_attach(device_t dev) { const struct sym_pci_chip *chip; u_short command; u_char cachelnsz; struct sym_hcb *np = NULL; struct sym_nvram nvram; const struct sym_fw *fw = NULL; int i; bus_dma_tag_t bus_dmat; bus_dmat = bus_get_dma_tag(dev); /* * Only probed devices should be attached. * We just enjoy being paranoid. :) */ chip = sym_find_pci_chip(dev); if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) return (ENXIO); /* * Allocate immediately the host control block, * since we are only expecting to succeed. :) * We keep track in the HCB of all the resources that * are to be released on error. */ np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); if (np) np->bus_dmat = bus_dmat; else return (ENXIO); device_set_softc(dev, np); SYM_LOCK_INIT(); /* * Copy some useful infos to the HCB. */ np->hcb_ba = vtobus(np); np->verbose = bootverbose; np->device = dev; np->device_id = pci_get_device(dev); np->revision_id = pci_get_revid(dev); np->features = chip->features; np->clock_divn = chip->nr_divisor; np->maxoffs = chip->offset_max; np->maxburst = chip->burst_max; np->scripta_sz = fw->a_size; np->scriptb_sz = fw->b_size; np->fw_setup = fw->setup; np->fw_patch = fw->patch; np->fw_name = fw->name; #ifdef __amd64__ np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); if (!np->target) goto attach_failed; #endif /* * Initialize the CCB free and busy queues. */ sym_que_init(&np->free_ccbq); sym_que_init(&np->busy_ccbq); sym_que_init(&np->comp_ccbq); sym_que_init(&np->cam_ccbq); /* * Allocate a tag for the DMA of user data. */ if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, (1<<24), 0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { device_printf(dev, "failed to create DMA tag.\n"); goto attach_failed; } /* * Read and apply some fix-ups to the PCI COMMAND * register. We want the chip to be enabled for: * - BUS mastering * - PCI parity checking (reporting would also be fine) * - Write And Invalidate. */ command = pci_read_config(dev, PCIR_COMMAND, 2); command |= PCIM_CMD_BUSMASTEREN; command |= PCIM_CMD_PERRESPEN; command |= /* PCIM_CMD_MWIEN */ 0x0010; pci_write_config(dev, PCIR_COMMAND, command, 2); /* * Let the device know about the cache line size, * if it doesn't yet. */ cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); if (!cachelnsz) { cachelnsz = 8; pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); } /* * Alloc/get/map/retrieve everything that deals with MMIO. */ if ((command & PCIM_CMD_MEMEN) != 0) { int regs_id = SYM_PCI_MMIO; np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, ®s_id, RF_ACTIVE); } if (!np->mmio_res) { device_printf(dev, "failed to allocate MMIO resources\n"); goto attach_failed; } np->mmio_ba = rman_get_start(np->mmio_res); /* * Allocate the IRQ. */ i = 0; np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, RF_ACTIVE | RF_SHAREABLE); if (!np->irq_res) { device_printf(dev, "failed to allocate IRQ resource\n"); goto attach_failed; } #ifdef SYM_CONF_IOMAPPED /* * User want us to use normal IO with PCI. * Alloc/get/map/retrieve everything that deals with IO. */ if ((command & PCI_COMMAND_IO_ENABLE) != 0) { int regs_id = SYM_PCI_IO; np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, ®s_id, RF_ACTIVE); } if (!np->io_res) { device_printf(dev, "failed to allocate IO resources\n"); goto attach_failed; } #endif /* SYM_CONF_IOMAPPED */ /* * If the chip has RAM. * Alloc/get/map/retrieve the corresponding resources. */ if ((np->features & (FE_RAM|FE_RAM8K)) && (command & PCIM_CMD_MEMEN) != 0) { int regs_id = SYM_PCI_RAM; if (np->features & FE_64BIT) regs_id = SYM_PCI_RAM64; np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, ®s_id, RF_ACTIVE); if (!np->ram_res) { device_printf(dev,"failed to allocate RAM resources\n"); goto attach_failed; } np->ram_id = regs_id; np->ram_ba = rman_get_start(np->ram_res); } /* * Save setting of some IO registers, so we will * be able to probe specific implementations. */ sym_save_initial_setting (np); /* * Reset the chip now, since it has been reported * that SCSI clock calibration may not work properly * if the chip is currently active. */ sym_chip_reset (np); /* * Try to read the user set-up. */ (void) sym_read_nvram(np, &nvram); /* * Prepare controller and devices settings, according * to chip features, user set-up and driver set-up. */ (void) sym_prepare_setting(np, &nvram); /* * Check the PCI clock frequency. * Must be performed after prepare_setting since it destroys * STEST1 that is used to probe for the clock doubler. */ i = sym_getpciclock(np); if (i > 37000) device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); /* * Allocate the start queue. */ np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); if (!np->squeue) goto attach_failed; np->squeue_ba = vtobus(np->squeue); /* * Allocate the done queue. */ np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); if (!np->dqueue) goto attach_failed; np->dqueue_ba = vtobus(np->dqueue); /* * Allocate the target bus address array. */ np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); if (!np->targtbl) goto attach_failed; np->targtbl_ba = vtobus(np->targtbl); /* * Allocate SCRIPTS areas. */ np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); if (!np->scripta0 || !np->scriptb0) goto attach_failed; /* * Allocate the CCBs. We need at least ONE. */ for (i = 0; sym_alloc_ccb(np) != NULL; i++) ; if (i < 1) goto attach_failed; /* * Calculate BUS addresses where we are going * to load the SCRIPTS. */ np->scripta_ba = vtobus(np->scripta0); np->scriptb_ba = vtobus(np->scriptb0); np->scriptb0_ba = np->scriptb_ba; if (np->ram_ba) { np->scripta_ba = np->ram_ba; if (np->features & FE_RAM8K) { np->ram_ws = 8192; np->scriptb_ba = np->scripta_ba + 4096; #ifdef __LP64__ np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); #endif } else np->ram_ws = 4096; } /* * Copy scripts to controller instance. */ bcopy(fw->a_base, np->scripta0, np->scripta_sz); bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); /* * Setup variable parts in scripts and compute * scripts bus addresses used from the C code. */ np->fw_setup(np, fw); /* * Bind SCRIPTS with physical addresses usable by the * SCRIPTS processor (as seen from the BUS = BUS addresses). */ sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); #ifdef SYM_CONF_IARB_SUPPORT /* * If user wants IARB to be set when we win arbitration * and have other jobs, compute the max number of consecutive * settings of IARB hints before we leave devices a chance to * arbitrate for reselection. */ #ifdef SYM_SETUP_IARB_MAX np->iarb_max = SYM_SETUP_IARB_MAX; #else np->iarb_max = 4; #endif #endif /* * Prepare the idle and invalid task actions. */ np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); np->idletask_ba = vtobus(&np->idletask); np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); np->notask_ba = vtobus(&np->notask); np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); np->bad_itl_ba = vtobus(&np->bad_itl); np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); np->bad_itlq_ba = vtobus(&np->bad_itlq); /* * Allocate and prepare the lun JUMP table that is used * for a target prior the probing of devices (bad lun table). * A private table will be allocated for the target on the * first INQUIRY response received. */ np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); if (!np->badluntbl) goto attach_failed; np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); /* * Prepare the bus address array that contains the bus * address of each target control block. * For now, assume all logical units are wrong. :) */ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); np->target[i].head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); np->target[i].head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); } /* * Now check the cache handling of the pci chipset. */ if (sym_snooptest (np)) { device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); goto attach_failed; }; /* * Now deal with CAM. * Hopefully, we will succeed with that one.:) */ if (!sym_cam_attach(np)) goto attach_failed; /* * Sigh! we are done. */ return 0; /* * We have failed. * We will try to free all the resources we have * allocated, but if we are a boot device, this * will not help that much.;) */ attach_failed: if (np) sym_pci_free(np); return ENXIO; } /* * Free everything that have been allocated for this device. */ static void sym_pci_free(hcb_p np) { SYM_QUEHEAD *qp; ccb_p cp; tcb_p tp; lcb_p lp; int target, lun; /* * First free CAM resources. */ sym_cam_free(np); /* * Now every should be quiet for us to * free other resources. */ if (np->ram_res) bus_release_resource(np->device, SYS_RES_MEMORY, np->ram_id, np->ram_res); if (np->mmio_res) bus_release_resource(np->device, SYS_RES_MEMORY, SYM_PCI_MMIO, np->mmio_res); if (np->io_res) bus_release_resource(np->device, SYS_RES_IOPORT, SYM_PCI_IO, np->io_res); if (np->irq_res) bus_release_resource(np->device, SYS_RES_IRQ, 0, np->irq_res); if (np->scriptb0) sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); if (np->scripta0) sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); if (np->squeue) sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); if (np->dqueue) sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); bus_dmamap_destroy(np->data_dmat, cp->dmamap); sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); sym_mfree_dma(cp, sizeof(*cp), "CCB"); } if (np->badluntbl) sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { tp = &np->target[target]; for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { lp = sym_lp(np, tp, lun); if (!lp) continue; if (lp->itlq_tbl) sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); if (lp->cb_tags) sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, "CB_TAGS"); sym_mfree_dma(lp, sizeof(*lp), "LCB"); } #if SYM_CONF_MAX_LUN > 1 if (tp->lunmp) sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), "LUNMP"); #endif } #ifdef __amd64__ if (np->target) sym_mfree_dma(np->target, SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); #endif if (np->targtbl) sym_mfree_dma(np->targtbl, 256, "TARGTBL"); if (np->data_dmat) bus_dma_tag_destroy(np->data_dmat); if (SYM_LOCK_INITIALIZED() != 0) SYM_LOCK_DESTROY(); device_set_softc(np->device, NULL); sym_mfree_dma(np, sizeof(*np), "HCB"); } /* * Allocate CAM resources and register a bus to CAM. */ static int sym_cam_attach(hcb_p np) { struct cam_devq *devq = NULL; struct cam_sim *sim = NULL; struct cam_path *path = NULL; int err; /* * Establish our interrupt handler. */ err = bus_setup_intr(np->device, np->irq_res, INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, NULL, sym_intr, np, &np->intr); if (err) { device_printf(np->device, "bus_setup_intr() failed: %d\n", err); goto fail; } /* * Create the device queue for our sym SIM. */ devq = cam_simq_alloc(SYM_CONF_MAX_START); if (!devq) goto fail; /* * Construct our SIM entry. */ sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, device_get_unit(np->device), &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); if (!sim) goto fail; SYM_LOCK(); if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) goto fail; np->sim = sim; if (xpt_create_path(&path, 0, cam_sim_path(np->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { goto fail; } np->path = path; /* * Establish our async notification handler. */ if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) != CAM_REQ_CMP) goto fail; /* * Start the chip now, without resetting the BUS, since * it seems that this must stay under control of CAM. * With LVD/SE capable chips and BUS in SE mode, we may * get a spurious SMBC interrupt. */ sym_init (np, 0); SYM_UNLOCK(); return 1; fail: if (sim) cam_sim_free(sim, FALSE); if (devq) cam_simq_free(devq); SYM_UNLOCK(); sym_cam_free(np); return 0; } /* * Free everything that deals with CAM. */ static void sym_cam_free(hcb_p np) { SYM_LOCK_ASSERT(MA_NOTOWNED); if (np->intr) { bus_teardown_intr(np->device, np->irq_res, np->intr); np->intr = NULL; } SYM_LOCK(); if (np->sim) { xpt_bus_deregister(cam_sim_path(np->sim)); cam_sim_free(np->sim, /*free_devq*/ TRUE); np->sim = NULL; } if (np->path) { xpt_free_path(np->path); np->path = NULL; } SYM_UNLOCK(); } /*============ OPTIONNAL NVRAM SUPPORT =================*/ /* * Get host setup from NVRAM. */ static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) { #ifdef SYM_CONF_NVRAM_SUPPORT /* * Get parity checking, host ID, verbose mode * and miscellaneous host flags from NVRAM. */ switch(nvram->type) { case SYM_SYMBIOS_NVRAM: if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) np->rv_scntl0 &= ~0x0a; np->myaddr = nvram->data.Symbios.host_id & 0x0f; if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) np->verbose += 1; if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) np->usrflags |= SYM_SCAN_TARGETS_HILO; if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) np->usrflags |= SYM_AVOID_BUS_RESET; break; case SYM_TEKRAM_NVRAM: np->myaddr = nvram->data.Tekram.host_id & 0x0f; break; default: break; } #endif } /* * Get target setup from NVRAM. */ #ifdef SYM_CONF_NVRAM_SUPPORT static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); #endif static void sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) { #ifdef SYM_CONF_NVRAM_SUPPORT switch(nvp->type) { case SYM_SYMBIOS_NVRAM: sym_Symbios_setup_target (np, target, &nvp->data.Symbios); break; case SYM_TEKRAM_NVRAM: sym_Tekram_setup_target (np, target, &nvp->data.Tekram); break; default: break; } #endif } #ifdef SYM_CONF_NVRAM_SUPPORT /* * Get target set-up from Symbios format NVRAM. */ static void sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) { tcb_p tp = &np->target[target]; Symbios_target *tn = &nvram->target[target]; tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; tp->usrtags = (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) tp->usrflags &= ~SYM_DISC_ENABLED; if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) tp->usrflags |= SYM_SCAN_BOOT_DISABLED; if (!(tn->flags & SYMBIOS_SCAN_LUNS)) tp->usrflags |= SYM_SCAN_LUNS_DISABLED; } /* * Get target set-up from Tekram format NVRAM. */ static void sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) { tcb_p tp = &np->target[target]; struct Tekram_target *tn = &nvram->target[target]; int i; if (tn->flags & TEKRAM_SYNC_NEGO) { i = tn->sync_index & 0xf; tp->tinfo.user.period = Tekram_sync[i]; } tp->tinfo.user.width = (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; if (tn->flags & TEKRAM_TAGGED_COMMANDS) { tp->usrtags = 2 << nvram->max_tags_index; } if (tn->flags & TEKRAM_DISCONNECT_ENABLE) tp->usrflags |= SYM_DISC_ENABLED; /* If any device does not support parity, we will not use this option */ if (!(tn->flags & TEKRAM_PARITY_CHECK)) np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ } #ifdef SYM_CONF_DEBUG_NVRAM /* * Dump Symbios format NVRAM for debugging purpose. */ static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) { int i; /* display Symbios nvram host data */ printf("%s: HOST ID=%d%s%s%s%s%s%s\n", sym_name(np), nvram->host_id & 0x0f, (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); /* display Symbios nvram drive data */ for (i = 0 ; i < 15 ; i++) { struct Symbios_target *tn = &nvram->target[i]; printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", sym_name(np), i, (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", tn->bus_width, tn->sync_period / 4, tn->timeout); } } /* * Dump TEKRAM format NVRAM for debugging purpose. */ static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) { int i, tags, boot_delay; char *rem; /* display Tekram nvram host data */ tags = 2 << nvram->max_tags_index; boot_delay = 0; if (nvram->boot_delay_index < 6) boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { default: case 0: rem = ""; break; case 1: rem = " REMOVABLE=boot device"; break; case 2: rem = " REMOVABLE=all"; break; } printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", sym_name(np), nvram->host_id & 0x0f, (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", rem, boot_delay, tags); /* display Tekram nvram drive data */ for (i = 0; i <= 15; i++) { int sync, j; struct Tekram_target *tn = &nvram->target[i]; j = tn->sync_index & 0xf; sync = Tekram_sync[j]; printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", sym_name(np), i, (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", (tn->flags & TEKRAM_START_CMD) ? " START" : "", (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", sync); } } #endif /* SYM_CONF_DEBUG_NVRAM */ #endif /* SYM_CONF_NVRAM_SUPPORT */ /* * Try reading Symbios or Tekram NVRAM */ #ifdef SYM_CONF_NVRAM_SUPPORT static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); #endif static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) { #ifdef SYM_CONF_NVRAM_SUPPORT /* * Try to read SYMBIOS nvram. * Try to read TEKRAM nvram if Symbios nvram not found. */ if (SYM_SETUP_SYMBIOS_NVRAM && !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { nvp->type = SYM_SYMBIOS_NVRAM; #ifdef SYM_CONF_DEBUG_NVRAM sym_display_Symbios_nvram(np, &nvp->data.Symbios); #endif } else if (SYM_SETUP_TEKRAM_NVRAM && !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { nvp->type = SYM_TEKRAM_NVRAM; #ifdef SYM_CONF_DEBUG_NVRAM sym_display_Tekram_nvram(np, &nvp->data.Tekram); #endif } else nvp->type = 0; #else nvp->type = 0; #endif return nvp->type; } #ifdef SYM_CONF_NVRAM_SUPPORT /* * 24C16 EEPROM reading. * * GPOI0 - data in/data out * GPIO1 - clock * Symbios NVRAM wiring now also used by Tekram. */ #define SET_BIT 0 #define CLR_BIT 1 #define SET_CLK 2 #define CLR_CLK 3 /* * Set/clear data/clock bit in GPIO0 */ static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, int bit_mode) { UDELAY (5); switch (bit_mode){ case SET_BIT: *gpreg |= write_bit; break; case CLR_BIT: *gpreg &= 0xfe; break; case SET_CLK: *gpreg |= 0x02; break; case CLR_CLK: *gpreg &= 0xfd; break; } OUTB (nc_gpreg, *gpreg); UDELAY (5); } /* * Send START condition to NVRAM to wake it up. */ static void S24C16_start(hcb_p np, u_char *gpreg) { S24C16_set_bit(np, 1, gpreg, SET_BIT); S24C16_set_bit(np, 0, gpreg, SET_CLK); S24C16_set_bit(np, 0, gpreg, CLR_BIT); S24C16_set_bit(np, 0, gpreg, CLR_CLK); } /* * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! */ static void S24C16_stop(hcb_p np, u_char *gpreg) { S24C16_set_bit(np, 0, gpreg, SET_CLK); S24C16_set_bit(np, 1, gpreg, SET_BIT); } /* * Read or write a bit to the NVRAM, * read if GPIO0 input else write if GPIO0 output */ static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, u_char *gpreg) { S24C16_set_bit(np, write_bit, gpreg, SET_BIT); S24C16_set_bit(np, 0, gpreg, SET_CLK); if (read_bit) *read_bit = INB (nc_gpreg); S24C16_set_bit(np, 0, gpreg, CLR_CLK); S24C16_set_bit(np, 0, gpreg, CLR_BIT); } /* * Output an ACK to the NVRAM after reading, * change GPIO0 to output and when done back to an input */ static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, u_char *gpcntl) { OUTB (nc_gpcntl, *gpcntl & 0xfe); S24C16_do_bit(np, 0, write_bit, gpreg); OUTB (nc_gpcntl, *gpcntl); } /* * Input an ACK from NVRAM after writing, * change GPIO0 to input and when done back to an output */ static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, u_char *gpcntl) { OUTB (nc_gpcntl, *gpcntl | 0x01); S24C16_do_bit(np, read_bit, 1, gpreg); OUTB (nc_gpcntl, *gpcntl); } /* * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, * GPIO0 must already be set as an output */ static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, u_char *gpreg, u_char *gpcntl) { int x; for (x = 0; x < 8; x++) S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); S24C16_read_ack(np, ack_data, gpreg, gpcntl); } /* * READ a byte from the NVRAM and then send an ACK to say we have got it, * GPIO0 must already be set as an input */ static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, u_char *gpreg, u_char *gpcntl) { int x; u_char read_bit; *read_data = 0; for (x = 0; x < 8; x++) { S24C16_do_bit(np, &read_bit, 1, gpreg); *read_data |= ((read_bit & 0x01) << (7 - x)); } S24C16_write_ack(np, ack_data, gpreg, gpcntl); } /* * Read 'len' bytes starting at 'offset'. */ static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) { u_char gpcntl, gpreg; u_char old_gpcntl, old_gpreg; u_char ack_data; int retv = 1; int x; /* save current state of GPCNTL and GPREG */ old_gpreg = INB (nc_gpreg); old_gpcntl = INB (nc_gpcntl); gpcntl = old_gpcntl & 0x1c; /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ OUTB (nc_gpreg, old_gpreg); OUTB (nc_gpcntl, gpcntl); /* this is to set NVRAM into a known state with GPIO0/1 both low */ gpreg = old_gpreg; S24C16_set_bit(np, 0, &gpreg, CLR_CLK); S24C16_set_bit(np, 0, &gpreg, CLR_BIT); /* now set NVRAM inactive with GPIO0/1 both high */ S24C16_stop(np, &gpreg); /* activate NVRAM */ S24C16_start(np, &gpreg); /* write device code and random address MSB */ S24C16_write_byte(np, &ack_data, 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* write random address LSB */ S24C16_write_byte(np, &ack_data, offset & 0xff, &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* regenerate START state to set up for reading */ S24C16_start(np, &gpreg); /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ S24C16_write_byte(np, &ack_data, 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* now set up GPIO0 for inputting data */ gpcntl |= 0x01; OUTB (nc_gpcntl, gpcntl); /* input all requested data - only part of total NVRAM */ for (x = 0; x < len; x++) S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); /* finally put NVRAM back in inactive mode */ gpcntl &= 0xfe; OUTB (nc_gpcntl, gpcntl); S24C16_stop(np, &gpreg); retv = 0; out: /* return GPIO0/1 to original states after having accessed NVRAM */ OUTB (nc_gpcntl, old_gpcntl); OUTB (nc_gpreg, old_gpreg); return retv; } #undef SET_BIT /* 0 */ #undef CLR_BIT /* 1 */ #undef SET_CLK /* 2 */ #undef CLR_CLK /* 3 */ /* * Try reading Symbios NVRAM. * Return 0 if OK. */ static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) { static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; u_char *data = (u_char *) nvram; int len = sizeof(*nvram); u_short csum; int x; /* probe the 24c16 and read the SYMBIOS 24c16 area */ if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) return 1; /* check valid NVRAM signature, verify byte count and checksum */ if (nvram->type != 0 || bcmp(nvram->trailer, Symbios_trailer, 6) || nvram->byte_count != len - 12) return 1; /* verify checksum */ for (x = 6, csum = 0; x < len - 6; x++) csum += data[x]; if (csum != nvram->checksum) return 1; return 0; } /* * 93C46 EEPROM reading. * * GPOI0 - data in * GPIO1 - data out * GPIO2 - clock * GPIO4 - chip select * * Used by Tekram. */ /* * Pulse clock bit in GPIO0 */ static void T93C46_Clk(hcb_p np, u_char *gpreg) { OUTB (nc_gpreg, *gpreg | 0x04); UDELAY (2); OUTB (nc_gpreg, *gpreg); } /* * Read bit from NVRAM */ static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) { UDELAY (2); T93C46_Clk(np, gpreg); *read_bit = INB (nc_gpreg); } /* * Write bit to GPIO0 */ static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) { if (write_bit & 0x01) *gpreg |= 0x02; else *gpreg &= 0xfd; *gpreg |= 0x10; OUTB (nc_gpreg, *gpreg); UDELAY (2); T93C46_Clk(np, gpreg); } /* * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! */ static void T93C46_Stop(hcb_p np, u_char *gpreg) { *gpreg &= 0xef; OUTB (nc_gpreg, *gpreg); UDELAY (2); T93C46_Clk(np, gpreg); } /* * Send read command and address to NVRAM */ static void T93C46_Send_Command(hcb_p np, u_short write_data, u_char *read_bit, u_char *gpreg) { int x; /* send 9 bits, start bit (1), command (2), address (6) */ for (x = 0; x < 9; x++) T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); *read_bit = INB (nc_gpreg); } /* * READ 2 bytes from the NVRAM */ static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) { int x; u_char read_bit; *nvram_data = 0; for (x = 0; x < 16; x++) { T93C46_Read_Bit(np, &read_bit, gpreg); if (read_bit & 0x01) *nvram_data |= (0x01 << (15 - x)); else *nvram_data &= ~(0x01 << (15 - x)); } } /* * Read Tekram NvRAM data. */ static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) { u_char read_bit; int x; for (x = 0; x < len; x++) { /* output read command and address */ T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); if (read_bit & 0x01) return 1; /* Bad */ T93C46_Read_Word(np, &data[x], gpreg); T93C46_Stop(np, gpreg); } return 0; } /* * Try reading 93C46 Tekram NVRAM. */ static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) { u_char gpcntl, gpreg; u_char old_gpcntl, old_gpreg; int retv = 1; /* save current state of GPCNTL and GPREG */ old_gpreg = INB (nc_gpreg); old_gpcntl = INB (nc_gpcntl); /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 1/2/4 out */ gpreg = old_gpreg & 0xe9; OUTB (nc_gpreg, gpreg); gpcntl = (old_gpcntl & 0xe9) | 0x09; OUTB (nc_gpcntl, gpcntl); /* input all of NVRAM, 64 words */ retv = T93C46_Read_Data(np, (u_short *) nvram, sizeof(*nvram) / sizeof(short), &gpreg); /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ OUTB (nc_gpcntl, old_gpcntl); OUTB (nc_gpreg, old_gpreg); return retv; } /* * Try reading Tekram NVRAM. * Return 0 if OK. */ static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) { u_char *data = (u_char *) nvram; int len = sizeof(*nvram); u_short csum; int x; switch (np->device_id) { case PCI_ID_SYM53C885: case PCI_ID_SYM53C895: case PCI_ID_SYM53C896: x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, data, len); break; case PCI_ID_SYM53C875: x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, data, len); if (!x) break; default: x = sym_read_T93C46_nvram(np, nvram); break; } if (x) return 1; /* verify checksum */ for (x = 0, csum = 0; x < len - 1; x += 2) csum += data[x] + (data[x+1] << 8); if (csum != 0x1234) return 1; return 0; } #endif /* SYM_CONF_NVRAM_SUPPORT */