/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2008-2009 Ariff Abdullah * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * feeder_matrix: Generic any-to-any channel matrixing. Probably not the * accurate way of doing things, but it should be fast and * transparent enough, not to mention capable of handling * possible non-standard way of multichannel interleaving * order. In other words, it is tough to break. * * The Good: * + very generic and compact, provided that the supplied matrix map is in a * sane form. * + should be fast enough. * * The Bad: * + somebody might disagree with it. * + 'matrix' is kind of 0x7a69, due to prolong mental block. */ #ifdef _KERNEL #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include "feeder_if.h" #define SND_USE_FXDIV #include "snd_fxdiv_gen.h" SND_DECLARE_FILE("$FreeBSD$"); #endif #define FEEDMATRIX_RESERVOIR (SND_CHN_MAX * PCM_32_BPS) #define SND_CHN_T_EOF 0x00e0fe0f #define SND_CHN_T_NULL 0x0e0e0e0e struct feed_matrix_info; typedef void (*feed_matrix_t)(struct feed_matrix_info *, uint8_t *, uint8_t *, uint32_t); struct feed_matrix_info { uint32_t bps; uint32_t ialign, oalign; uint32_t in, out; feed_matrix_t apply; #ifdef FEEDMATRIX_GENERIC intpcm_read_t *rd; intpcm_write_t *wr; #endif struct { int chn[SND_CHN_T_MAX + 1]; int mul, shift; } matrix[SND_CHN_T_MAX + 1]; uint8_t reservoir[FEEDMATRIX_RESERVOIR]; }; static struct pcmchan_matrix feeder_matrix_maps[SND_CHN_MATRIX_MAX] = { [SND_CHN_MATRIX_1_0] = SND_CHN_MATRIX_MAP_1_0, [SND_CHN_MATRIX_2_0] = SND_CHN_MATRIX_MAP_2_0, [SND_CHN_MATRIX_2_1] = SND_CHN_MATRIX_MAP_2_1, [SND_CHN_MATRIX_3_0] = SND_CHN_MATRIX_MAP_3_0, [SND_CHN_MATRIX_3_1] = SND_CHN_MATRIX_MAP_3_1, [SND_CHN_MATRIX_4_0] = SND_CHN_MATRIX_MAP_4_0, [SND_CHN_MATRIX_4_1] = SND_CHN_MATRIX_MAP_4_1, [SND_CHN_MATRIX_5_0] = SND_CHN_MATRIX_MAP_5_0, [SND_CHN_MATRIX_5_1] = SND_CHN_MATRIX_MAP_5_1, [SND_CHN_MATRIX_6_0] = SND_CHN_MATRIX_MAP_6_0, [SND_CHN_MATRIX_6_1] = SND_CHN_MATRIX_MAP_6_1, [SND_CHN_MATRIX_7_0] = SND_CHN_MATRIX_MAP_7_0, [SND_CHN_MATRIX_7_1] = SND_CHN_MATRIX_MAP_7_1 }; static int feeder_matrix_default_ids[9] = { [0] = SND_CHN_MATRIX_UNKNOWN, [1] = SND_CHN_MATRIX_1, [2] = SND_CHN_MATRIX_2, [3] = SND_CHN_MATRIX_3, [4] = SND_CHN_MATRIX_4, [5] = SND_CHN_MATRIX_5, [6] = SND_CHN_MATRIX_6, [7] = SND_CHN_MATRIX_7, [8] = SND_CHN_MATRIX_8 }; #ifdef _KERNEL #define FEEDMATRIX_CLIP_CHECK(...) #else #define FEEDMATRIX_CLIP_CHECK(v, BIT) do { \ if ((v) < PCM_S##BIT##_MIN || (v) > PCM_S##BIT##_MAX) \ errx(1, "\n\n%s(): Sample clipping: %jd\n", \ __func__, (intmax_t)(v)); \ } while (0) #endif #define FEEDMATRIX_DECLARE(SIGN, BIT, ENDIAN) \ static void \ feed_matrix_##SIGN##BIT##ENDIAN(struct feed_matrix_info *info, \ uint8_t *src, uint8_t *dst, uint32_t count) \ { \ intpcm64_t accum; \ intpcm_t v; \ int i, j; \ \ do { \ for (i = 0; info->matrix[i].chn[0] != SND_CHN_T_EOF; \ i++) { \ if (info->matrix[i].chn[0] == SND_CHN_T_NULL) { \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, \ 0); \ dst += PCM_##BIT##_BPS; \ continue; \ } else if (info->matrix[i].chn[1] == \ SND_CHN_T_EOF) { \ v = _PCM_READ_##SIGN##BIT##_##ENDIAN( \ src + info->matrix[i].chn[0]); \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, \ v); \ dst += PCM_##BIT##_BPS; \ continue; \ } \ \ accum = 0; \ for (j = 0; \ info->matrix[i].chn[j] != SND_CHN_T_EOF; \ j++) { \ v = _PCM_READ_##SIGN##BIT##_##ENDIAN( \ src + info->matrix[i].chn[j]); \ accum += v; \ } \ \ accum = (accum * info->matrix[i].mul) >> \ info->matrix[i].shift; \ \ FEEDMATRIX_CLIP_CHECK(accum, BIT); \ \ v = (accum > PCM_S##BIT##_MAX) ? \ PCM_S##BIT##_MAX : \ ((accum < PCM_S##BIT##_MIN) ? \ PCM_S##BIT##_MIN : \ accum); \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, v); \ dst += PCM_##BIT##_BPS; \ } \ src += info->ialign; \ } while (--count != 0); \ } #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) FEEDMATRIX_DECLARE(S, 16, LE) FEEDMATRIX_DECLARE(S, 32, LE) #endif #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) FEEDMATRIX_DECLARE(S, 16, BE) FEEDMATRIX_DECLARE(S, 32, BE) #endif #ifdef SND_FEEDER_MULTIFORMAT FEEDMATRIX_DECLARE(S, 8, NE) FEEDMATRIX_DECLARE(S, 24, LE) FEEDMATRIX_DECLARE(S, 24, BE) FEEDMATRIX_DECLARE(U, 8, NE) FEEDMATRIX_DECLARE(U, 16, LE) FEEDMATRIX_DECLARE(U, 24, LE) FEEDMATRIX_DECLARE(U, 32, LE) FEEDMATRIX_DECLARE(U, 16, BE) FEEDMATRIX_DECLARE(U, 24, BE) FEEDMATRIX_DECLARE(U, 32, BE) #endif #define FEEDMATRIX_ENTRY(SIGN, BIT, ENDIAN) \ { \ AFMT_##SIGN##BIT##_##ENDIAN, \ feed_matrix_##SIGN##BIT##ENDIAN \ } static const struct { uint32_t format; feed_matrix_t apply; } feed_matrix_tab[] = { #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) FEEDMATRIX_ENTRY(S, 16, LE), FEEDMATRIX_ENTRY(S, 32, LE), #endif #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) FEEDMATRIX_ENTRY(S, 16, BE), FEEDMATRIX_ENTRY(S, 32, BE), #endif #ifdef SND_FEEDER_MULTIFORMAT FEEDMATRIX_ENTRY(S, 8, NE), FEEDMATRIX_ENTRY(S, 24, LE), FEEDMATRIX_ENTRY(S, 24, BE), FEEDMATRIX_ENTRY(U, 8, NE), FEEDMATRIX_ENTRY(U, 16, LE), FEEDMATRIX_ENTRY(U, 24, LE), FEEDMATRIX_ENTRY(U, 32, LE), FEEDMATRIX_ENTRY(U, 16, BE), FEEDMATRIX_ENTRY(U, 24, BE), FEEDMATRIX_ENTRY(U, 32, BE) #endif }; static void feed_matrix_reset(struct feed_matrix_info *info) { uint32_t i, j; for (i = 0; i < (sizeof(info->matrix) / sizeof(info->matrix[0])); i++) { for (j = 0; j < (sizeof(info->matrix[i].chn) / sizeof(info->matrix[i].chn[0])); j++) { info->matrix[i].chn[j] = SND_CHN_T_EOF; } info->matrix[i].mul = 1; info->matrix[i].shift = 0; } } #ifdef FEEDMATRIX_GENERIC static void feed_matrix_apply_generic(struct feed_matrix_info *info, uint8_t *src, uint8_t *dst, uint32_t count) { intpcm64_t accum; intpcm_t v; int i, j; do { for (i = 0; info->matrix[i].chn[0] != SND_CHN_T_EOF; i++) { if (info->matrix[i].chn[0] == SND_CHN_T_NULL) { info->wr(dst, 0); dst += info->bps; continue; } else if (info->matrix[i].chn[1] == SND_CHN_T_EOF) { v = info->rd(src + info->matrix[i].chn[0]); info->wr(dst, v); dst += info->bps; continue; } accum = 0; for (j = 0; info->matrix[i].chn[j] != SND_CHN_T_EOF; j++) { v = info->rd(src + info->matrix[i].chn[j]); accum += v; } accum = (accum * info->matrix[i].mul) >> info->matrix[i].shift; FEEDMATRIX_CLIP_CHECK(accum, 32); v = (accum > PCM_S32_MAX) ? PCM_S32_MAX : ((accum < PCM_S32_MIN) ? PCM_S32_MIN : accum); info->wr(dst, v); dst += info->bps; } src += info->ialign; } while (--count != 0); } #endif static int feed_matrix_setup(struct feed_matrix_info *info, struct pcmchan_matrix *m_in, struct pcmchan_matrix *m_out) { uint32_t i, j, ch, in_mask, merge_mask; int mul, shift; if (info == NULL || m_in == NULL || m_out == NULL || AFMT_CHANNEL(info->in) != m_in->channels || AFMT_CHANNEL(info->out) != m_out->channels || m_in->channels < SND_CHN_MIN || m_in->channels > SND_CHN_MAX || m_out->channels < SND_CHN_MIN || m_out->channels > SND_CHN_MAX) return (EINVAL); feed_matrix_reset(info); /* * If both in and out are part of standard matrix and identical, skip * everything altogether. */ if (m_in->id == m_out->id && !(m_in->id < SND_CHN_MATRIX_BEGIN || m_in->id > SND_CHN_MATRIX_END)) return (0); /* * Special case for mono input matrix. If the output supports * possible 'center' channel, route it there. Otherwise, let it be * matrixed to left/right. */ if (m_in->id == SND_CHN_MATRIX_1_0) { if (m_out->id == SND_CHN_MATRIX_1_0) in_mask = SND_CHN_T_MASK_FL; else if (m_out->mask & SND_CHN_T_MASK_FC) in_mask = SND_CHN_T_MASK_FC; else in_mask = SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR; } else in_mask = m_in->mask; /* Merge, reduce, expand all possibilites. */ for (ch = SND_CHN_T_BEGIN; ch <= SND_CHN_T_END && m_out->map[ch].type != SND_CHN_T_MAX; ch += SND_CHN_T_STEP) { merge_mask = m_out->map[ch].members & in_mask; if (merge_mask == 0) { info->matrix[ch].chn[0] = SND_CHN_T_NULL; continue; } j = 0; for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) { if (merge_mask & (1 << i)) { if (m_in->offset[i] >= 0 && m_in->offset[i] < (int)m_in->channels) info->matrix[ch].chn[j++] = m_in->offset[i] * info->bps; else { info->matrix[ch].chn[j++] = SND_CHN_T_EOF; break; } } } #define FEEDMATRIX_ATTN_SHIFT 16 if (j > 1) { /* * XXX For channel that require accumulation from * multiple channels, apply a slight attenuation to * avoid clipping. */ mul = (1 << (FEEDMATRIX_ATTN_SHIFT - 1)) + 143 - j; shift = FEEDMATRIX_ATTN_SHIFT; while ((mul & 1) == 0 && shift > 0) { mul >>= 1; shift--; } info->matrix[ch].mul = mul; info->matrix[ch].shift = shift; } } #ifndef _KERNEL fprintf(stderr, "Total: %d\n", ch); for (i = 0; info->matrix[i].chn[0] != SND_CHN_T_EOF; i++) { fprintf(stderr, "%d: [", i); for (j = 0; info->matrix[i].chn[j] != SND_CHN_T_EOF; j++) { if (j != 0) fprintf(stderr, ", "); fprintf(stderr, "%d", (info->matrix[i].chn[j] == SND_CHN_T_NULL) ? 0xffffffff : info->matrix[i].chn[j] / info->bps); } fprintf(stderr, "] attn: (x * %d) >> %d\n", info->matrix[i].mul, info->matrix[i].shift); } #endif return (0); } static int feed_matrix_init(struct pcm_feeder *f) { struct feed_matrix_info *info; struct pcmchan_matrix *m_in, *m_out; uint32_t i; int ret; if (AFMT_ENCODING(f->desc->in) != AFMT_ENCODING(f->desc->out)) return (EINVAL); info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO); if (info == NULL) return (ENOMEM); info->in = f->desc->in; info->out = f->desc->out; info->bps = AFMT_BPS(info->in); info->ialign = AFMT_ALIGN(info->in); info->oalign = AFMT_ALIGN(info->out); info->apply = NULL; for (i = 0; info->apply == NULL && i < (sizeof(feed_matrix_tab) / sizeof(feed_matrix_tab[0])); i++) { if (AFMT_ENCODING(info->in) == feed_matrix_tab[i].format) info->apply = feed_matrix_tab[i].apply; } if (info->apply == NULL) { #ifdef FEEDMATRIX_GENERIC info->rd = feeder_format_read_op(info->in); info->wr = feeder_format_write_op(info->out); if (info->rd == NULL || info->wr == NULL) { free(info, M_DEVBUF); return (EINVAL); } info->apply = feed_matrix_apply_generic; #else free(info, M_DEVBUF); return (EINVAL); #endif } m_in = feeder_matrix_format_map(info->in); m_out = feeder_matrix_format_map(info->out); ret = feed_matrix_setup(info, m_in, m_out); if (ret != 0) { free(info, M_DEVBUF); return (ret); } f->data = info; return (0); } static int feed_matrix_free(struct pcm_feeder *f) { struct feed_matrix_info *info; info = f->data; if (info != NULL) free(info, M_DEVBUF); f->data = NULL; return (0); } static int feed_matrix_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, uint32_t count, void *source) { struct feed_matrix_info *info; uint32_t j, inmax; uint8_t *src, *dst; info = f->data; if (info->matrix[0].chn[0] == SND_CHN_T_EOF) return (FEEDER_FEED(f->source, c, b, count, source)); dst = b; count = SND_FXROUND(count, info->oalign); inmax = info->ialign + info->oalign; /* * This loop might look simmilar to other feeder_* loops, but be * advised: matrixing might involve overlapping (think about * swapping end to front or something like that). In this regard it * might be simmilar to feeder_format, but feeder_format works on * 'sample' domain where it can be fitted into single 32bit integer * while matrixing works on 'sample frame' domain. */ do { if (count < info->oalign) break; if (count < inmax) { src = info->reservoir; j = info->ialign; } else { if (info->ialign == info->oalign) j = count - info->oalign; else if (info->ialign > info->oalign) j = SND_FXROUND(count - info->oalign, info->ialign); else j = (SND_FXDIV(count, info->oalign) - 1) * info->ialign; src = dst + count - j; } j = SND_FXDIV(FEEDER_FEED(f->source, c, src, j, source), info->ialign); if (j == 0) break; info->apply(info, src, dst, j); j *= info->oalign; dst += j; count -= j; } while (count != 0); return (dst - b); } static struct pcm_feederdesc feeder_matrix_desc[] = { { FEEDER_MATRIX, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 } }; static kobj_method_t feeder_matrix_methods[] = { KOBJMETHOD(feeder_init, feed_matrix_init), KOBJMETHOD(feeder_free, feed_matrix_free), KOBJMETHOD(feeder_feed, feed_matrix_feed), KOBJMETHOD_END }; FEEDER_DECLARE(feeder_matrix, NULL); /* External */ int feeder_matrix_setup(struct pcm_feeder *f, struct pcmchan_matrix *m_in, struct pcmchan_matrix *m_out) { if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_MATRIX || f->data == NULL) return (EINVAL); return (feed_matrix_setup(f->data, m_in, m_out)); } /* * feeder_matrix_default_id(): For a given number of channels, return * default preferred id (example: both 5.1 and * 6.0 are simply 6 channels, but 5.1 is more * preferable). */ int feeder_matrix_default_id(uint32_t ch) { if (ch < feeder_matrix_maps[SND_CHN_MATRIX_BEGIN].channels || ch > feeder_matrix_maps[SND_CHN_MATRIX_END].channels) return (SND_CHN_MATRIX_UNKNOWN); return (feeder_matrix_maps[feeder_matrix_default_ids[ch]].id); } /* * feeder_matrix_default_channel_map(): Ditto, but return matrix map * instead. */ struct pcmchan_matrix * feeder_matrix_default_channel_map(uint32_t ch) { if (ch < feeder_matrix_maps[SND_CHN_MATRIX_BEGIN].channels || ch > feeder_matrix_maps[SND_CHN_MATRIX_END].channels) return (NULL); return (&feeder_matrix_maps[feeder_matrix_default_ids[ch]]); } /* * feeder_matrix_default_format(): For a given audio format, return the * proper audio format based on preferable * matrix. */ uint32_t feeder_matrix_default_format(uint32_t format) { struct pcmchan_matrix *m; uint32_t i, ch, ext; ch = AFMT_CHANNEL(format); ext = AFMT_EXTCHANNEL(format); if (ext != 0) { for (i = SND_CHN_MATRIX_BEGIN; i <= SND_CHN_MATRIX_END; i++) { if (feeder_matrix_maps[i].channels == ch && feeder_matrix_maps[i].ext == ext) return (SND_FORMAT(format, ch, ext)); } } m = feeder_matrix_default_channel_map(ch); if (m == NULL) return (0x00000000); return (SND_FORMAT(format, ch, m->ext)); } /* * feeder_matrix_format_id(): For a given audio format, return its matrix * id. */ int feeder_matrix_format_id(uint32_t format) { uint32_t i, ch, ext; ch = AFMT_CHANNEL(format); ext = AFMT_EXTCHANNEL(format); for (i = SND_CHN_MATRIX_BEGIN; i <= SND_CHN_MATRIX_END; i++) { if (feeder_matrix_maps[i].channels == ch && feeder_matrix_maps[i].ext == ext) return (feeder_matrix_maps[i].id); } return (SND_CHN_MATRIX_UNKNOWN); } /* * feeder_matrix_format_map(): For a given audio format, return its matrix * map. */ struct pcmchan_matrix * feeder_matrix_format_map(uint32_t format) { uint32_t i, ch, ext; ch = AFMT_CHANNEL(format); ext = AFMT_EXTCHANNEL(format); for (i = SND_CHN_MATRIX_BEGIN; i <= SND_CHN_MATRIX_END; i++) { if (feeder_matrix_maps[i].channels == ch && feeder_matrix_maps[i].ext == ext) return (&feeder_matrix_maps[i]); } return (NULL); } /* * feeder_matrix_id_map(): For a given matrix id, return its matrix map. */ struct pcmchan_matrix * feeder_matrix_id_map(int id) { if (id < SND_CHN_MATRIX_BEGIN || id > SND_CHN_MATRIX_END) return (NULL); return (&feeder_matrix_maps[id]); } /* * feeder_matrix_compare(): Compare the simmilarities of matrices. */ int feeder_matrix_compare(struct pcmchan_matrix *m_in, struct pcmchan_matrix *m_out) { uint32_t i; if (m_in == m_out) return (0); if (m_in->channels != m_out->channels || m_in->ext != m_out->ext || m_in->mask != m_out->mask) return (1); for (i = 0; i < (sizeof(m_in->map) / sizeof(m_in->map[0])); i++) { if (m_in->map[i].type != m_out->map[i].type) return (1); if (m_in->map[i].type == SND_CHN_T_MAX) break; if (m_in->map[i].members != m_out->map[i].members) return (1); if (i <= SND_CHN_T_END) { if (m_in->offset[m_in->map[i].type] != m_out->offset[m_out->map[i].type]) return (1); } } return (0); } /* * XXX 4front interpretation of "surround" is ambigous and sort of * conflicting with "rear"/"back". Map it to "side". Well.. * who cares? */ static int snd_chn_to_oss[SND_CHN_T_MAX] = { [SND_CHN_T_FL] = CHID_L, [SND_CHN_T_FR] = CHID_R, [SND_CHN_T_FC] = CHID_C, [SND_CHN_T_LF] = CHID_LFE, [SND_CHN_T_SL] = CHID_LS, [SND_CHN_T_SR] = CHID_RS, [SND_CHN_T_BL] = CHID_LR, [SND_CHN_T_BR] = CHID_RR }; #define SND_CHN_OSS_VALIDMASK \ (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR | \ SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF | \ SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR | \ SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) #define SND_CHN_OSS_MAX 8 #define SND_CHN_OSS_BEGIN CHID_L #define SND_CHN_OSS_END CHID_RR static int oss_to_snd_chn[SND_CHN_OSS_END + 1] = { [CHID_L] = SND_CHN_T_FL, [CHID_R] = SND_CHN_T_FR, [CHID_C] = SND_CHN_T_FC, [CHID_LFE] = SND_CHN_T_LF, [CHID_LS] = SND_CHN_T_SL, [CHID_RS] = SND_CHN_T_SR, [CHID_LR] = SND_CHN_T_BL, [CHID_RR] = SND_CHN_T_BR }; /* * Used by SNDCTL_DSP_GET_CHNORDER. */ int feeder_matrix_oss_get_channel_order(struct pcmchan_matrix *m, unsigned long long *map) { unsigned long long tmpmap; uint32_t i; if (m == NULL || map == NULL || (m->mask & ~SND_CHN_OSS_VALIDMASK) || m->channels > SND_CHN_OSS_MAX) return (EINVAL); tmpmap = 0x0000000000000000ULL; for (i = 0; i < SND_CHN_OSS_MAX && m->map[i].type != SND_CHN_T_MAX; i++) { if ((1 << m->map[i].type) & ~SND_CHN_OSS_VALIDMASK) return (EINVAL); tmpmap |= (unsigned long long)snd_chn_to_oss[m->map[i].type] << (i * 4); } *map = tmpmap; return (0); } /* * Used by SNDCTL_DSP_SET_CHNORDER. */ int feeder_matrix_oss_set_channel_order(struct pcmchan_matrix *m, unsigned long long *map) { struct pcmchan_matrix tmp; uint32_t chmask, i; int ch, cheof; if (m == NULL || map == NULL || (m->mask & ~SND_CHN_OSS_VALIDMASK) || m->channels > SND_CHN_OSS_MAX || (*map & 0xffffffff00000000ULL)) return (EINVAL); tmp = *m; tmp.channels = 0; tmp.ext = 0; tmp.mask = 0; memset(tmp.offset, -1, sizeof(tmp.offset)); cheof = 0; for (i = 0; i < SND_CHN_OSS_MAX; i++) { ch = (*map >> (i * 4)) & 0xf; if (ch < SND_CHN_OSS_BEGIN) { if (cheof == 0 && m->map[i].type != SND_CHN_T_MAX) return (EINVAL); cheof++; tmp.map[i] = m->map[i]; continue; } else if (ch > SND_CHN_OSS_END) return (EINVAL); else if (cheof != 0) return (EINVAL); ch = oss_to_snd_chn[ch]; chmask = 1 << ch; /* channel not exist in matrix */ if (!(chmask & m->mask)) return (EINVAL); /* duplicated channel */ if (chmask & tmp.mask) return (EINVAL); tmp.map[i] = m->map[m->offset[ch]]; if (tmp.map[i].type != ch) return (EINVAL); tmp.offset[ch] = i; tmp.mask |= chmask; tmp.channels++; if (chmask & SND_CHN_T_MASK_LF) tmp.ext++; } if (tmp.channels != m->channels || tmp.ext != m->ext || tmp.mask != m->mask || tmp.map[m->channels].type != SND_CHN_T_MAX) return (EINVAL); *m = tmp; return (0); }