/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005-2009 Ariff Abdullah * Portions Copyright (c) Ryan Beasley - GSoC 2006 * Copyright (c) 1999 Cameron Grant * Portions Copyright (c) Luigi Rizzo - 1997-99 * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_isa.h" #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include "feeder_if.h" SND_DECLARE_FILE("$FreeBSD$"); int report_soft_formats = 1; SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW, &report_soft_formats, 0, "report software-emulated formats"); int report_soft_matrix = 1; SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW, &report_soft_matrix, 0, "report software-emulated channel matrixing"); int chn_latency = CHN_LATENCY_DEFAULT; static int sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS) { int err, val; val = chn_latency; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return err; if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX) err = EINVAL; else chn_latency = val; return err; } SYSCTL_PROC(_hw_snd, OID_AUTO, latency, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_hw_snd_latency, "I", "buffering latency (0=low ... 10=high)"); int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT; static int sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS) { int err, val; val = chn_latency_profile; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return err; if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX) err = EINVAL; else chn_latency_profile = val; return err; } SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_hw_snd_latency_profile, "I", "buffering latency profile (0=aggressive 1=safe)"); static int chn_timeout = CHN_TIMEOUT; static int sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS) { int err, val; val = chn_timeout; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return err; if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX) err = EINVAL; else chn_timeout = val; return err; } SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_hw_snd_timeout, "I", "interrupt timeout (1 - 10) seconds"); static int chn_vpc_autoreset = 1; SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RWTUN, &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db"); static int chn_vol_0db_pcm = SND_VOL_0DB_PCM; static void chn_vpc_proc(int reset, int db) { struct snddev_info *d; struct pcm_channel *c; int i; for (i = 0; pcm_devclass != NULL && i < devclass_get_maxunit(pcm_devclass); i++) { d = devclass_get_softc(pcm_devclass, i); if (!PCM_REGISTERED(d)) continue; PCM_LOCK(d); PCM_WAIT(d); PCM_ACQUIRE(d); CHN_FOREACH(c, d, channels.pcm) { CHN_LOCK(c); CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db); if (reset != 0) chn_vpc_reset(c, SND_VOL_C_PCM, 1); CHN_UNLOCK(c); } PCM_RELEASE(d); PCM_UNLOCK(d); } } static int sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS) { int err, val; val = chn_vol_0db_pcm; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX) return (EINVAL); chn_vol_0db_pcm = val; chn_vpc_proc(0, val); return (0); } SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), sysctl_hw_snd_vpc_0db, "I", "0db relative level"); static int sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS) { int err, val; val = 0; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL || val == 0) return (err); chn_vol_0db_pcm = SND_VOL_0DB_PCM; chn_vpc_proc(1, SND_VOL_0DB_PCM); return (0); } SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), sysctl_hw_snd_vpc_reset, "I", "reset volume on all channels"); static int chn_usefrags = 0; static int chn_syncdelay = -1; SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RWTUN, &chn_usefrags, 0, "prefer setfragments() over setblocksize()"); SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RWTUN, &chn_syncdelay, 0, "append (0-1000) millisecond trailing buffer delay on each sync"); /** * @brief Channel sync group lock * * Clients should acquire this lock @b without holding any channel locks * before touching syncgroups or the main syncgroup list. */ struct mtx snd_pcm_syncgroups_mtx; MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF); /** * @brief syncgroups' master list * * Each time a channel syncgroup is created, it's added to this list. This * list should only be accessed with @sa snd_pcm_syncgroups_mtx held. * * See SNDCTL_DSP_SYNCGROUP for more information. */ struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups); static void chn_lockinit(struct pcm_channel *c, int dir) { switch (dir) { case PCMDIR_PLAY: c->lock = snd_mtxcreate(c->name, "pcm play channel"); cv_init(&c->intr_cv, "pcmwr"); break; case PCMDIR_PLAY_VIRTUAL: c->lock = snd_mtxcreate(c->name, "pcm virtual play channel"); cv_init(&c->intr_cv, "pcmwrv"); break; case PCMDIR_REC: c->lock = snd_mtxcreate(c->name, "pcm record channel"); cv_init(&c->intr_cv, "pcmrd"); break; case PCMDIR_REC_VIRTUAL: c->lock = snd_mtxcreate(c->name, "pcm virtual record channel"); cv_init(&c->intr_cv, "pcmrdv"); break; default: panic("%s(): Invalid direction=%d", __func__, dir); break; } cv_init(&c->cv, "pcmchn"); } static void chn_lockdestroy(struct pcm_channel *c) { CHN_LOCKASSERT(c); CHN_BROADCAST(&c->cv); CHN_BROADCAST(&c->intr_cv); cv_destroy(&c->cv); cv_destroy(&c->intr_cv); snd_mtxfree(c->lock); } /** * @brief Determine channel is ready for I/O * * @retval 1 = ready for I/O * @retval 0 = not ready for I/O */ static int chn_polltrigger(struct pcm_channel *c) { struct snd_dbuf *bs = c->bufsoft; u_int delta; CHN_LOCKASSERT(c); if (c->flags & CHN_F_MMAP) { if (sndbuf_getprevtotal(bs) < c->lw) delta = c->lw; else delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs); } else { if (c->direction == PCMDIR_PLAY) delta = sndbuf_getfree(bs); else delta = sndbuf_getready(bs); } return ((delta < c->lw) ? 0 : 1); } static void chn_pollreset(struct pcm_channel *c) { CHN_LOCKASSERT(c); sndbuf_updateprevtotal(c->bufsoft); } static void chn_wakeup(struct pcm_channel *c) { struct snd_dbuf *bs; struct pcm_channel *ch; CHN_LOCKASSERT(c); bs = c->bufsoft; if (CHN_EMPTY(c, children.busy)) { if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c)) selwakeuppri(sndbuf_getsel(bs), PRIBIO); if (c->flags & CHN_F_SLEEPING) { /* * Ok, I can just panic it right here since it is * quite obvious that we never allow multiple waiters * from userland. I'm too generous... */ CHN_BROADCAST(&c->intr_cv); } } else { CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); chn_wakeup(ch); CHN_UNLOCK(ch); } } } static int chn_sleep(struct pcm_channel *c, int timeout) { int ret; CHN_LOCKASSERT(c); if (c->flags & CHN_F_DEAD) return (EINVAL); c->flags |= CHN_F_SLEEPING; ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout); c->flags &= ~CHN_F_SLEEPING; return ((c->flags & CHN_F_DEAD) ? EINVAL : ret); } /* * chn_dmaupdate() tracks the status of a dma transfer, * updating pointers. */ static unsigned int chn_dmaupdate(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; unsigned int delta, old, hwptr, amt; KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0")); CHN_LOCKASSERT(c); old = sndbuf_gethwptr(b); hwptr = chn_getptr(c); delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b); sndbuf_sethwptr(b, hwptr); if (c->direction == PCMDIR_PLAY) { amt = min(delta, sndbuf_getready(b)); amt -= amt % sndbuf_getalign(b); if (amt > 0) sndbuf_dispose(b, NULL, amt); } else { amt = min(delta, sndbuf_getfree(b)); amt -= amt % sndbuf_getalign(b); if (amt > 0) sndbuf_acquire(b, NULL, amt); } if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) { device_printf(c->dev, "WARNING: %s DMA completion " "too fast/slow ! hwptr=%u, old=%u " "delta=%u amt=%u ready=%u free=%u\n", CHN_DIRSTR(c), hwptr, old, delta, amt, sndbuf_getready(b), sndbuf_getfree(b)); } return delta; } static void chn_wrfeed(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; unsigned int amt, want, wasfree; CHN_LOCKASSERT(c); if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING)) sndbuf_acquire(bs, NULL, sndbuf_getfree(bs)); wasfree = sndbuf_getfree(b); want = min(sndbuf_getsize(b), imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) - sndbuf_getready(b))); amt = min(wasfree, want); if (amt > 0) sndbuf_feed(bs, b, c, c->feeder, amt); /* * Possible xruns. There should be no empty space left in buffer. */ if (sndbuf_getready(b) < want) c->xruns++; if (sndbuf_getfree(b) < wasfree) chn_wakeup(c); } #if 0 static void chn_wrupdate(struct pcm_channel *c) { CHN_LOCKASSERT(c); KASSERT(c->direction == PCMDIR_PLAY, ("%s(): bad channel", __func__)); if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) return; chn_dmaupdate(c); chn_wrfeed(c); /* tell the driver we've updated the primary buffer */ chn_trigger(c, PCMTRIG_EMLDMAWR); } #endif static void chn_wrintr(struct pcm_channel *c) { CHN_LOCKASSERT(c); /* update pointers in primary buffer */ chn_dmaupdate(c); /* ...and feed from secondary to primary */ chn_wrfeed(c); /* tell the driver we've updated the primary buffer */ chn_trigger(c, PCMTRIG_EMLDMAWR); } /* * user write routine - uiomove data into secondary buffer, trigger if necessary * if blocking, sleep, rinse and repeat. * * called externally, so must handle locking */ int chn_write(struct pcm_channel *c, struct uio *buf) { struct snd_dbuf *bs = c->bufsoft; void *off; int ret, timeout, sz, t, p; CHN_LOCKASSERT(c); ret = 0; timeout = chn_timeout * hz; while (ret == 0 && buf->uio_resid > 0) { sz = min(buf->uio_resid, sndbuf_getfree(bs)); if (sz > 0) { /* * The following assumes that the free space in * the buffer can never be less around the * unlock-uiomove-lock sequence. */ while (ret == 0 && sz > 0) { p = sndbuf_getfreeptr(bs); t = min(sz, sndbuf_getsize(bs) - p); off = sndbuf_getbufofs(bs, p); CHN_UNLOCK(c); ret = uiomove(off, t, buf); CHN_LOCK(c); sz -= t; sndbuf_acquire(bs, NULL, t); } ret = 0; if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { ret = chn_start(c, 0); if (ret != 0) c->flags |= CHN_F_DEAD; } } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) { /** * @todo Evaluate whether EAGAIN is truly desirable. * 4Front drivers behave like this, but I'm * not sure if it at all violates the "write * should be allowed to block" model. * * The idea is that, while set with CHN_F_NOTRIGGER, * a channel isn't playing, *but* without this we * end up with "interrupt timeout / channel dead". */ ret = EAGAIN; } else { ret = chn_sleep(c, timeout); if (ret == EAGAIN) { ret = EINVAL; c->flags |= CHN_F_DEAD; device_printf(c->dev, "%s(): %s: " "play interrupt timeout, channel dead\n", __func__, c->name); } else if (ret == ERESTART || ret == EINTR) c->flags |= CHN_F_ABORTING; } } return (ret); } /* * Feed new data from the read buffer. Can be called in the bottom half. */ static void chn_rdfeed(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; unsigned int amt; CHN_LOCKASSERT(c); if (c->flags & CHN_F_MMAP) sndbuf_dispose(bs, NULL, sndbuf_getready(bs)); amt = sndbuf_getfree(bs); if (amt > 0) sndbuf_feed(b, bs, c, c->feeder, amt); amt = sndbuf_getready(b); if (amt > 0) { c->xruns++; sndbuf_dispose(b, NULL, amt); } if (sndbuf_getready(bs) > 0) chn_wakeup(c); } #if 0 static void chn_rdupdate(struct pcm_channel *c) { CHN_LOCKASSERT(c); KASSERT(c->direction == PCMDIR_REC, ("chn_rdupdate on bad channel")); if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) return; chn_trigger(c, PCMTRIG_EMLDMARD); chn_dmaupdate(c); chn_rdfeed(c); } #endif /* read interrupt routine. Must be called with interrupts blocked. */ static void chn_rdintr(struct pcm_channel *c) { CHN_LOCKASSERT(c); /* tell the driver to update the primary buffer if non-dma */ chn_trigger(c, PCMTRIG_EMLDMARD); /* update pointers in primary buffer */ chn_dmaupdate(c); /* ...and feed from primary to secondary */ chn_rdfeed(c); } /* * user read routine - trigger if necessary, uiomove data from secondary buffer * if blocking, sleep, rinse and repeat. * * called externally, so must handle locking */ int chn_read(struct pcm_channel *c, struct uio *buf) { struct snd_dbuf *bs = c->bufsoft; void *off; int ret, timeout, sz, t, p; CHN_LOCKASSERT(c); if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { ret = chn_start(c, 0); if (ret != 0) { c->flags |= CHN_F_DEAD; return (ret); } } ret = 0; timeout = chn_timeout * hz; while (ret == 0 && buf->uio_resid > 0) { sz = min(buf->uio_resid, sndbuf_getready(bs)); if (sz > 0) { /* * The following assumes that the free space in * the buffer can never be less around the * unlock-uiomove-lock sequence. */ while (ret == 0 && sz > 0) { p = sndbuf_getreadyptr(bs); t = min(sz, sndbuf_getsize(bs) - p); off = sndbuf_getbufofs(bs, p); CHN_UNLOCK(c); ret = uiomove(off, t, buf); CHN_LOCK(c); sz -= t; sndbuf_dispose(bs, NULL, t); } ret = 0; } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) ret = EAGAIN; else { ret = chn_sleep(c, timeout); if (ret == EAGAIN) { ret = EINVAL; c->flags |= CHN_F_DEAD; device_printf(c->dev, "%s(): %s: " "record interrupt timeout, channel dead\n", __func__, c->name); } else if (ret == ERESTART || ret == EINTR) c->flags |= CHN_F_ABORTING; } } return (ret); } void chn_intr_locked(struct pcm_channel *c) { CHN_LOCKASSERT(c); c->interrupts++; if (c->direction == PCMDIR_PLAY) chn_wrintr(c); else chn_rdintr(c); } void chn_intr(struct pcm_channel *c) { if (CHN_LOCKOWNED(c)) { chn_intr_locked(c); return; } CHN_LOCK(c); chn_intr_locked(c); CHN_UNLOCK(c); } u_int32_t chn_start(struct pcm_channel *c, int force) { u_int32_t i, j; struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; int err; CHN_LOCKASSERT(c); /* if we're running, or if we're prevented from triggering, bail */ if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force)) return (EINVAL); err = 0; if (force) { i = 1; j = 0; } else { if (c->direction == PCMDIR_REC) { i = sndbuf_getfree(bs); j = (i > 0) ? 1 : sndbuf_getready(b); } else { if (sndbuf_getfree(bs) == 0) { i = 1; j = 0; } else { struct snd_dbuf *pb; pb = CHN_BUF_PARENT(c, b); i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb); j = sndbuf_getalign(pb); } } if (snd_verbose > 3 && CHN_EMPTY(c, children)) device_printf(c->dev, "%s(): %s (%s) threshold " "i=%d j=%d\n", __func__, CHN_DIRSTR(c), (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", i, j); } if (i >= j) { c->flags |= CHN_F_TRIGGERED; sndbuf_setrun(b, 1); if (c->flags & CHN_F_CLOSING) c->feedcount = 2; else { c->feedcount = 0; c->interrupts = 0; c->xruns = 0; } if (c->parentchannel == NULL) { if (c->direction == PCMDIR_PLAY) sndbuf_fillsilence_rl(b, sndbuf_xbytes(sndbuf_getsize(bs), bs, b)); if (snd_verbose > 3) device_printf(c->dev, "%s(): %s starting! (%s/%s) " "(ready=%d force=%d i=%d j=%d " "intrtimeout=%u latency=%dms)\n", __func__, (c->flags & CHN_F_HAS_VCHAN) ? "VCHAN PARENT" : "HW", CHN_DIRSTR(c), (c->flags & CHN_F_CLOSING) ? "closing" : "running", sndbuf_getready(b), force, i, j, c->timeout, (sndbuf_getsize(b) * 1000) / (sndbuf_getalign(b) * sndbuf_getspd(b))); } err = chn_trigger(c, PCMTRIG_START); } return (err); } void chn_resetbuf(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; c->blocks = 0; sndbuf_reset(b); sndbuf_reset(bs); } /* * chn_sync waits until the space in the given channel goes above * a threshold. The threshold is checked against fl or rl respectively. * Assume that the condition can become true, do not check here... */ int chn_sync(struct pcm_channel *c, int threshold) { struct snd_dbuf *b, *bs; int ret, count, hcount, minflush, resid, residp, syncdelay, blksz; u_int32_t cflag; CHN_LOCKASSERT(c); if (c->direction != PCMDIR_PLAY) return (EINVAL); bs = c->bufsoft; if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) || (threshold < 1 && sndbuf_getready(bs) < 1)) return (0); /* if we haven't yet started and nothing is buffered, else start*/ if (CHN_STOPPED(c)) { if (threshold > 0 || sndbuf_getready(bs) > 0) { ret = chn_start(c, 1); if (ret != 0) return (ret); } else return (0); } b = CHN_BUF_PARENT(c, c->bufhard); minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs); syncdelay = chn_syncdelay; if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0)) minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs); /* * Append (0-1000) millisecond trailing buffer (if needed) * for slower / high latency hardwares (notably USB audio) * to avoid audible truncation. */ if (syncdelay > 0) minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) * ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000; minflush -= minflush % sndbuf_getalign(bs); if (minflush > 0) { threshold = min(minflush, sndbuf_getfree(bs)); sndbuf_clear(bs, threshold); sndbuf_acquire(bs, NULL, threshold); minflush -= threshold; } resid = sndbuf_getready(bs); residp = resid; blksz = sndbuf_getblksz(b); if (blksz < 1) { device_printf(c->dev, "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n", __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b), sndbuf_getblksz(b), sndbuf_getblkcnt(b)); if (sndbuf_getblkcnt(b) > 0) blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b); if (blksz < 1) blksz = 1; } count = sndbuf_xbytes(minflush + resid, bs, b) / blksz; hcount = count; ret = 0; if (snd_verbose > 3) device_printf(c->dev, "%s(): [begin] timeout=%d count=%d " "minflush=%d resid=%d\n", __func__, c->timeout, count, minflush, resid); cflag = c->flags & CHN_F_CLOSING; c->flags |= CHN_F_CLOSING; while (count > 0 && (resid > 0 || minflush > 0)) { ret = chn_sleep(c, c->timeout); if (ret == ERESTART || ret == EINTR) { c->flags |= CHN_F_ABORTING; break; } else if (ret == 0 || ret == EAGAIN) { resid = sndbuf_getready(bs); if (resid == residp) { --count; if (snd_verbose > 3) device_printf(c->dev, "%s(): [stalled] timeout=%d " "count=%d hcount=%d " "resid=%d minflush=%d\n", __func__, c->timeout, count, hcount, resid, minflush); } else if (resid < residp && count < hcount) { ++count; if (snd_verbose > 3) device_printf(c->dev, "%s((): [resume] timeout=%d " "count=%d hcount=%d " "resid=%d minflush=%d\n", __func__, c->timeout, count, hcount, resid, minflush); } if (minflush > 0 && sndbuf_getfree(bs) > 0) { threshold = min(minflush, sndbuf_getfree(bs)); sndbuf_clear(bs, threshold); sndbuf_acquire(bs, NULL, threshold); resid = sndbuf_getready(bs); minflush -= threshold; } residp = resid; } else break; } c->flags &= ~CHN_F_CLOSING; c->flags |= cflag; if (snd_verbose > 3) device_printf(c->dev, "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d " "minflush=%d ret=%d\n", __func__, c->timeout, count, hcount, resid, residp, minflush, ret); return (0); } /* called externally, handle locking */ int chn_poll(struct pcm_channel *c, int ev, struct thread *td) { struct snd_dbuf *bs = c->bufsoft; int ret; CHN_LOCKASSERT(c); if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) { ret = chn_start(c, 1); if (ret != 0) return (0); } ret = 0; if (chn_polltrigger(c)) { chn_pollreset(c); ret = ev; } else selrecord(td, sndbuf_getsel(bs)); return (ret); } /* * chn_abort terminates a running dma transfer. it may sleep up to 200ms. * it returns the number of bytes that have not been transferred. * * called from: dsp_close, dsp_ioctl, with channel locked */ int chn_abort(struct pcm_channel *c) { int missing = 0; struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; CHN_LOCKASSERT(c); if (CHN_STOPPED(c)) return 0; c->flags |= CHN_F_ABORTING; c->flags &= ~CHN_F_TRIGGERED; /* kill the channel */ chn_trigger(c, PCMTRIG_ABORT); sndbuf_setrun(b, 0); if (!(c->flags & CHN_F_VIRTUAL)) chn_dmaupdate(c); missing = sndbuf_getready(bs); c->flags &= ~CHN_F_ABORTING; return missing; } /* * this routine tries to flush the dma transfer. It is called * on a close of a playback channel. * first, if there is data in the buffer, but the dma has not yet * begun, we need to start it. * next, we wait for the play buffer to drain * finally, we stop the dma. * * called from: dsp_close, not valid for record channels. */ int chn_flush(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; CHN_LOCKASSERT(c); KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel")); DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags)); c->flags |= CHN_F_CLOSING; chn_sync(c, 0); c->flags &= ~CHN_F_TRIGGERED; /* kill the channel */ chn_trigger(c, PCMTRIG_ABORT); sndbuf_setrun(b, 0); c->flags &= ~CHN_F_CLOSING; return 0; } int snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist) { int i; for (i = 0; fmtlist[i] != 0; i++) { if (fmt == fmtlist[i] || ((fmt & AFMT_PASSTHROUGH) && (AFMT_ENCODING(fmt) & fmtlist[i]))) return (1); } return (0); } static const struct { char *name, *alias1, *alias2; uint32_t afmt; } afmt_tab[] = { { "alaw", NULL, NULL, AFMT_A_LAW }, { "mulaw", NULL, NULL, AFMT_MU_LAW }, { "u8", "8", NULL, AFMT_U8 }, { "s8", NULL, NULL, AFMT_S8 }, #if BYTE_ORDER == LITTLE_ENDIAN { "s16le", "s16", "16", AFMT_S16_LE }, { "s16be", NULL, NULL, AFMT_S16_BE }, #else { "s16le", NULL, NULL, AFMT_S16_LE }, { "s16be", "s16", "16", AFMT_S16_BE }, #endif { "u16le", NULL, NULL, AFMT_U16_LE }, { "u16be", NULL, NULL, AFMT_U16_BE }, { "s24le", NULL, NULL, AFMT_S24_LE }, { "s24be", NULL, NULL, AFMT_S24_BE }, { "u24le", NULL, NULL, AFMT_U24_LE }, { "u24be", NULL, NULL, AFMT_U24_BE }, #if BYTE_ORDER == LITTLE_ENDIAN { "s32le", "s32", "32", AFMT_S32_LE }, { "s32be", NULL, NULL, AFMT_S32_BE }, #else { "s32le", NULL, NULL, AFMT_S32_LE }, { "s32be", "s32", "32", AFMT_S32_BE }, #endif { "u32le", NULL, NULL, AFMT_U32_LE }, { "u32be", NULL, NULL, AFMT_U32_BE }, { "ac3", NULL, NULL, AFMT_AC3 }, { NULL, NULL, NULL, 0 } }; uint32_t snd_str2afmt(const char *req) { int ext; int ch; int i; char b1[8]; char b2[8]; memset(b1, 0, sizeof(b1)); memset(b2, 0, sizeof(b2)); i = sscanf(req, "%5[^:]:%6s", b1, b2); if (i == 1) { if (strlen(req) != strlen(b1)) return (0); strlcpy(b2, "2.0", sizeof(b2)); } else if (i == 2) { if (strlen(req) != (strlen(b1) + 1 + strlen(b2))) return (0); } else return (0); i = sscanf(b2, "%d.%d", &ch, &ext); if (i == 0) { if (strcasecmp(b2, "mono") == 0) { ch = 1; ext = 0; } else if (strcasecmp(b2, "stereo") == 0) { ch = 2; ext = 0; } else if (strcasecmp(b2, "quad") == 0) { ch = 4; ext = 0; } else return (0); } else if (i == 1) { if (ch < 1 || ch > AFMT_CHANNEL_MAX) return (0); ext = 0; } else if (i == 2) { if (ext < 0 || ext > AFMT_EXTCHANNEL_MAX) return (0); if (ch < 1 || (ch + ext) > AFMT_CHANNEL_MAX) return (0); } else return (0); for (i = 0; afmt_tab[i].name != NULL; i++) { if (strcasecmp(afmt_tab[i].name, b1) != 0) { if (afmt_tab[i].alias1 == NULL) continue; if (strcasecmp(afmt_tab[i].alias1, b1) != 0) { if (afmt_tab[i].alias2 == NULL) continue; if (strcasecmp(afmt_tab[i].alias2, b1) != 0) continue; } } /* found a match */ return (SND_FORMAT(afmt_tab[i].afmt, ch + ext, ext)); } /* not a valid format */ return (0); } uint32_t snd_afmt2str(uint32_t afmt, char *buf, size_t len) { uint32_t enc; uint32_t ext; uint32_t ch; int i; if (buf == NULL || len < AFMTSTR_LEN) return (0); memset(buf, 0, len); enc = AFMT_ENCODING(afmt); ch = AFMT_CHANNEL(afmt); ext = AFMT_EXTCHANNEL(afmt); /* check there is at least one channel */ if (ch <= ext) return (0); for (i = 0; afmt_tab[i].name != NULL; i++) { if (enc != afmt_tab[i].afmt) continue; /* found a match */ snprintf(buf, len, "%s:%d.%d", afmt_tab[i].name, ch - ext, ext); return (SND_FORMAT(enc, ch, ext)); } return (0); } int chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd) { int r; CHN_LOCKASSERT(c); c->feedcount = 0; c->flags &= CHN_F_RESET; c->interrupts = 0; c->timeout = 1; c->xruns = 0; c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ? CHN_F_BITPERFECT : 0; r = CHANNEL_RESET(c->methods, c->devinfo); if (r == 0 && fmt != 0 && spd != 0) { r = chn_setparam(c, fmt, spd); fmt = 0; spd = 0; } if (r == 0 && fmt != 0) r = chn_setformat(c, fmt); if (r == 0 && spd != 0) r = chn_setspeed(c, spd); if (r == 0) r = chn_setlatency(c, chn_latency); if (r == 0) { chn_resetbuf(c); r = CHANNEL_RESETDONE(c->methods, c->devinfo); } return r; } int chn_init(struct pcm_channel *c, void *devinfo, int dir, int direction) { struct feeder_class *fc; struct snd_dbuf *b, *bs; int i, ret; if (chn_timeout < CHN_TIMEOUT_MIN || chn_timeout > CHN_TIMEOUT_MAX) chn_timeout = CHN_TIMEOUT; chn_lockinit(c, dir); b = NULL; bs = NULL; CHN_INIT(c, children); CHN_INIT(c, children.busy); c->devinfo = NULL; c->feeder = NULL; c->latency = -1; c->timeout = 1; ret = ENOMEM; b = sndbuf_create(c->dev, c->name, "primary", c); if (b == NULL) goto out; bs = sndbuf_create(c->dev, c->name, "secondary", c); if (bs == NULL) goto out; CHN_LOCK(c); ret = EINVAL; fc = feeder_getclass(NULL); if (fc == NULL) goto out; if (chn_addfeeder(c, fc, NULL)) goto out; /* * XXX - sndbuf_setup() & sndbuf_resize() expect to be called * with the channel unlocked because they are also called * from driver methods that don't know about locking */ CHN_UNLOCK(c); sndbuf_setup(bs, NULL, 0); CHN_LOCK(c); c->bufhard = b; c->bufsoft = bs; c->flags = 0; c->feederflags = 0; c->sm = NULL; c->format = SND_FORMAT(AFMT_U8, 1, 0); c->speed = DSP_DEFAULT_SPEED; c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0); c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; for (i = 0; i < SND_CHN_T_MAX; i++) { c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER; } c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER; c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm; memset(c->muted, 0, sizeof(c->muted)); chn_vpc_reset(c, SND_VOL_C_PCM, 1); ret = ENODEV; CHN_UNLOCK(c); /* XXX - Unlock for CHANNEL_INIT() malloc() call */ c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction); CHN_LOCK(c); if (c->devinfo == NULL) goto out; ret = ENOMEM; if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0)) goto out; ret = 0; c->direction = direction; sndbuf_setfmt(b, c->format); sndbuf_setspd(b, c->speed); sndbuf_setfmt(bs, c->format); sndbuf_setspd(bs, c->speed); /** * @todo Should this be moved somewhere else? The primary buffer * is allocated by the driver or via DMA map setup, and tmpbuf * seems to only come into existence in sndbuf_resize(). */ if (c->direction == PCMDIR_PLAY) { bs->sl = sndbuf_getmaxsize(bs); bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_NOWAIT); if (bs->shadbuf == NULL) { ret = ENOMEM; goto out; } } out: CHN_UNLOCK(c); if (ret) { if (c->devinfo) { if (CHANNEL_FREE(c->methods, c->devinfo)) sndbuf_free(b); } if (bs) sndbuf_destroy(bs); if (b) sndbuf_destroy(b); CHN_LOCK(c); c->flags |= CHN_F_DEAD; chn_lockdestroy(c); return ret; } return 0; } int chn_kill(struct pcm_channel *c) { struct snd_dbuf *b = c->bufhard; struct snd_dbuf *bs = c->bufsoft; if (CHN_STARTED(c)) { CHN_LOCK(c); chn_trigger(c, PCMTRIG_ABORT); CHN_UNLOCK(c); } while (chn_removefeeder(c) == 0) ; if (CHANNEL_FREE(c->methods, c->devinfo)) sndbuf_free(b); sndbuf_destroy(bs); sndbuf_destroy(b); CHN_LOCK(c); c->flags |= CHN_F_DEAD; chn_lockdestroy(c); return (0); } /* XXX Obsolete. Use *_matrix() variant instead. */ int chn_setvolume(struct pcm_channel *c, int left, int right) { int ret; ret = chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FL, left); ret |= chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FR, right) << 8; return (ret); } int chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right, int center) { int i, ret; ret = 0; for (i = 0; i < SND_CHN_T_MAX; i++) { if ((1 << i) & SND_CHN_LEFT_MASK) ret |= chn_setvolume_matrix(c, vc, i, left); else if ((1 << i) & SND_CHN_RIGHT_MASK) ret |= chn_setvolume_matrix(c, vc, i, right) << 8; else ret |= chn_setvolume_matrix(c, vc, i, center) << 16; } return (ret); } int chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val) { int i; KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && (vc == SND_VOL_C_MASTER || (vc & 1)) && (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB || (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)), ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d", __func__, c, vc, vt, val)); CHN_LOCKASSERT(c); if (val < 0) val = 0; if (val > 100) val = 100; c->volume[vc][vt] = val; /* * Do relative calculation here and store it into class + 1 * to ease the job of feeder_volume. */ if (vc == SND_VOL_C_MASTER) { for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; vc += SND_VOL_C_STEP) c->volume[SND_VOL_C_VAL(vc)][vt] = SND_VOL_CALC_VAL(c->volume, vc, vt); } else if (vc & 1) { if (vt == SND_CHN_T_VOL_0DB) for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) { c->volume[SND_VOL_C_VAL(vc)][i] = SND_VOL_CALC_VAL(c->volume, vc, i); } else c->volume[SND_VOL_C_VAL(vc)][vt] = SND_VOL_CALC_VAL(c->volume, vc, vt); } return (val); } int chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt) { KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), ("%s(): invalid volume matrix c=%p vc=%d vt=%d", __func__, c, vc, vt)); CHN_LOCKASSERT(c); return (c->volume[vc][vt]); } int chn_setmute_multi(struct pcm_channel *c, int vc, int mute) { int i, ret; ret = 0; for (i = 0; i < SND_CHN_T_MAX; i++) { if ((1 << i) & SND_CHN_LEFT_MASK) ret |= chn_setmute_matrix(c, vc, i, mute); else if ((1 << i) & SND_CHN_RIGHT_MASK) ret |= chn_setmute_matrix(c, vc, i, mute) << 8; else ret |= chn_setmute_matrix(c, vc, i, mute) << 16; } return (ret); } int chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute) { int i; KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && (vc == SND_VOL_C_MASTER || (vc & 1)) && (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), ("%s(): invalid mute matrix c=%p vc=%d vt=%d mute=%d", __func__, c, vc, vt, mute)); CHN_LOCKASSERT(c); mute = (mute != 0); c->muted[vc][vt] = mute; /* * Do relative calculation here and store it into class + 1 * to ease the job of feeder_volume. */ if (vc == SND_VOL_C_MASTER) { for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; vc += SND_VOL_C_STEP) c->muted[SND_VOL_C_VAL(vc)][vt] = mute; } else if (vc & 1) { if (vt == SND_CHN_T_VOL_0DB) { for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) { c->muted[SND_VOL_C_VAL(vc)][i] = mute; } } else { c->muted[SND_VOL_C_VAL(vc)][vt] = mute; } } return (mute); } int chn_getmute_matrix(struct pcm_channel *c, int vc, int vt) { KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), ("%s(): invalid mute matrix c=%p vc=%d vt=%d", __func__, c, vc, vt)); CHN_LOCKASSERT(c); return (c->muted[vc][vt]); } struct pcmchan_matrix * chn_getmatrix(struct pcm_channel *c) { KASSERT(c != NULL, ("%s(): NULL channel", __func__)); CHN_LOCKASSERT(c); if (!(c->format & AFMT_CONVERTIBLE)) return (NULL); return (&c->matrix); } int chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m) { KASSERT(c != NULL && m != NULL, ("%s(): NULL channel or matrix", __func__)); CHN_LOCKASSERT(c); if (!(c->format & AFMT_CONVERTIBLE)) return (EINVAL); c->matrix = *m; c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext))); } /* * XXX chn_oss_* exists for the sake of compatibility. */ int chn_oss_getorder(struct pcm_channel *c, unsigned long long *map) { KASSERT(c != NULL && map != NULL, ("%s(): NULL channel or map", __func__)); CHN_LOCKASSERT(c); if (!(c->format & AFMT_CONVERTIBLE)) return (EINVAL); return (feeder_matrix_oss_get_channel_order(&c->matrix, map)); } int chn_oss_setorder(struct pcm_channel *c, unsigned long long *map) { struct pcmchan_matrix m; int ret; KASSERT(c != NULL && map != NULL, ("%s(): NULL channel or map", __func__)); CHN_LOCKASSERT(c); if (!(c->format & AFMT_CONVERTIBLE)) return (EINVAL); m = c->matrix; ret = feeder_matrix_oss_set_channel_order(&m, map); if (ret != 0) return (ret); return (chn_setmatrix(c, &m)); } #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR) #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR) #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF) #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) int chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask) { struct pcmchan_matrix *m; struct pcmchan_caps *caps; uint32_t i, format; KASSERT(c != NULL && retmask != NULL, ("%s(): NULL channel or retmask", __func__)); CHN_LOCKASSERT(c); caps = chn_getcaps(c); if (caps == NULL || caps->fmtlist == NULL) return (ENODEV); for (i = 0; caps->fmtlist[i] != 0; i++) { format = caps->fmtlist[i]; if (!(format & AFMT_CONVERTIBLE)) { *retmask |= DSP_BIND_SPDIF; continue; } m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format); if (m == NULL) continue; if (m->mask & SND_CHN_OSS_FRONT) *retmask |= DSP_BIND_FRONT; if (m->mask & SND_CHN_OSS_SURR) *retmask |= DSP_BIND_SURR; if (m->mask & SND_CHN_OSS_CENTER_LFE) *retmask |= DSP_BIND_CENTER_LFE; if (m->mask & SND_CHN_OSS_REAR) *retmask |= DSP_BIND_REAR; } /* report software-supported binding mask */ if (!CHN_BITPERFECT(c) && report_soft_matrix) *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR | DSP_BIND_CENTER_LFE | DSP_BIND_REAR; return (0); } void chn_vpc_reset(struct pcm_channel *c, int vc, int force) { int i; KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END, ("%s(): invalid reset c=%p vc=%d", __func__, c, vc)); CHN_LOCKASSERT(c); if (force == 0 && chn_vpc_autoreset == 0) return; for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]); } static u_int32_t round_pow2(u_int32_t v) { u_int32_t ret; if (v < 2) v = 2; ret = 0; while (v >> ret) ret++; ret = 1 << (ret - 1); while (ret < v) ret <<= 1; return ret; } static u_int32_t round_blksz(u_int32_t v, int round) { u_int32_t ret, tmp; if (round < 1) round = 1; ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1); if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2)) ret >>= 1; tmp = ret - (ret % round); while (tmp < 16 || tmp < round) { ret <<= 1; tmp = ret - (ret % round); } return ret; } /* * 4Front call it DSP Policy, while we call it "Latency Profile". The idea * is to keep 2nd buffer short so that it doesn't cause long queue during * buffer transfer. * * Latency reference table for 48khz stereo 16bit: (PLAY) * * +---------+------------+-----------+------------+ * | Latency | Blockcount | Blocksize | Buffersize | * +---------+------------+-----------+------------+ * | 0 | 2 | 64 | 128 | * +---------+------------+-----------+------------+ * | 1 | 4 | 128 | 512 | * +---------+------------+-----------+------------+ * | 2 | 8 | 512 | 4096 | * +---------+------------+-----------+------------+ * | 3 | 16 | 512 | 8192 | * +---------+------------+-----------+------------+ * | 4 | 32 | 512 | 16384 | * +---------+------------+-----------+------------+ * | 5 | 32 | 1024 | 32768 | * +---------+------------+-----------+------------+ * | 6 | 16 | 2048 | 32768 | * +---------+------------+-----------+------------+ * | 7 | 8 | 4096 | 32768 | * +---------+------------+-----------+------------+ * | 8 | 4 | 8192 | 32768 | * +---------+------------+-----------+------------+ * | 9 | 2 | 16384 | 32768 | * +---------+------------+-----------+------------+ * | 10 | 2 | 32768 | 65536 | * +---------+------------+-----------+------------+ * * Recording need a different reference table. All we care is * gobbling up everything within reasonable buffering threshold. * * Latency reference table for 48khz stereo 16bit: (REC) * * +---------+------------+-----------+------------+ * | Latency | Blockcount | Blocksize | Buffersize | * +---------+------------+-----------+------------+ * | 0 | 512 | 32 | 16384 | * +---------+------------+-----------+------------+ * | 1 | 256 | 64 | 16384 | * +---------+------------+-----------+------------+ * | 2 | 128 | 128 | 16384 | * +---------+------------+-----------+------------+ * | 3 | 64 | 256 | 16384 | * +---------+------------+-----------+------------+ * | 4 | 32 | 512 | 16384 | * +---------+------------+-----------+------------+ * | 5 | 32 | 1024 | 32768 | * +---------+------------+-----------+------------+ * | 6 | 16 | 2048 | 32768 | * +---------+------------+-----------+------------+ * | 7 | 8 | 4096 | 32768 | * +---------+------------+-----------+------------+ * | 8 | 4 | 8192 | 32768 | * +---------+------------+-----------+------------+ * | 9 | 2 | 16384 | 32768 | * +---------+------------+-----------+------------+ * | 10 | 2 | 32768 | 65536 | * +---------+------------+-----------+------------+ * * Calculations for other data rate are entirely based on these reference * tables. For normal operation, Latency 5 seems give the best, well * balanced performance for typical workload. Anything below 5 will * eat up CPU to keep up with increasing context switches because of * shorter buffer space and usually require the application to handle it * aggressively through possibly real time programming technique. * */ #define CHN_LATENCY_PBLKCNT_REF \ {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \ {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}} #define CHN_LATENCY_PBUFSZ_REF \ {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \ {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}} #define CHN_LATENCY_RBLKCNT_REF \ {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \ {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}} #define CHN_LATENCY_RBUFSZ_REF \ {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \ {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}} #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */ static int chn_calclatency(int dir, int latency, int bps, u_int32_t datarate, u_int32_t max, int *rblksz, int *rblkcnt) { static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = CHN_LATENCY_PBLKCNT_REF; static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = CHN_LATENCY_PBUFSZ_REF; static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = CHN_LATENCY_RBLKCNT_REF; static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = CHN_LATENCY_RBUFSZ_REF; u_int32_t bufsz; int lprofile, blksz, blkcnt; if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX || bps < 1 || datarate < 1 || !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) { if (rblksz != NULL) *rblksz = CHN_2NDBUFMAXSIZE >> 1; if (rblkcnt != NULL) *rblkcnt = 2; printf("%s(): FAILED dir=%d latency=%d bps=%d " "datarate=%u max=%u\n", __func__, dir, latency, bps, datarate, max); return CHN_2NDBUFMAXSIZE; } lprofile = chn_latency_profile; if (dir == PCMDIR_PLAY) { blkcnt = pblkcnts[lprofile][latency]; bufsz = pbufszs[lprofile][latency]; } else { blkcnt = rblkcnts[lprofile][latency]; bufsz = rbufszs[lprofile][latency]; } bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF, datarate)); if (bufsz > max) bufsz = max; blksz = round_blksz(bufsz >> blkcnt, bps); if (rblksz != NULL) *rblksz = blksz; if (rblkcnt != NULL) *rblkcnt = 1 << blkcnt; return blksz << blkcnt; } static int chn_resizebuf(struct pcm_channel *c, int latency, int blkcnt, int blksz) { struct snd_dbuf *b, *bs, *pb; int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt; int ret; CHN_LOCKASSERT(c); if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) || !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC)) return EINVAL; if (latency == -1) { c->latency = -1; latency = chn_latency; } else if (latency == -2) { latency = c->latency; if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) latency = chn_latency; } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) return EINVAL; else { c->latency = latency; } bs = c->bufsoft; b = c->bufhard; if (!(blksz == 0 || blkcnt == -1) && (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 || (blksz * blkcnt) > CHN_2NDBUFMAXSIZE)) return EINVAL; chn_calclatency(c->direction, latency, sndbuf_getalign(bs), sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE, &sblksz, &sblkcnt); if (blksz == 0 || blkcnt == -1) { if (blkcnt == -1) c->flags &= ~CHN_F_HAS_SIZE; if (c->flags & CHN_F_HAS_SIZE) { blksz = sndbuf_getblksz(bs); blkcnt = sndbuf_getblkcnt(bs); } } else c->flags |= CHN_F_HAS_SIZE; if (c->flags & CHN_F_HAS_SIZE) { /* * The application has requested their own blksz/blkcnt. * Just obey with it, and let them toast alone. We can * clamp it to the nearest latency profile, but that would * defeat the purpose of having custom control. The least * we can do is round it to the nearest ^2 and align it. */ sblksz = round_blksz(blksz, sndbuf_getalign(bs)); sblkcnt = round_pow2(blkcnt); } if (c->parentchannel != NULL) { pb = c->parentchannel->bufsoft; CHN_UNLOCK(c); CHN_LOCK(c->parentchannel); chn_notify(c->parentchannel, CHN_N_BLOCKSIZE); CHN_UNLOCK(c->parentchannel); CHN_LOCK(c); if (c->direction == PCMDIR_PLAY) { limit = (pb != NULL) ? sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0; } else { limit = (pb != NULL) ? sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0; } } else { hblkcnt = 2; if (c->flags & CHN_F_HAS_SIZE) { hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b), sndbuf_getalign(b)); hblkcnt = round_pow2(sndbuf_getblkcnt(bs)); } else chn_calclatency(c->direction, latency, sndbuf_getalign(b), sndbuf_getalign(b) * sndbuf_getspd(b), CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt); if ((hblksz << 1) > sndbuf_getmaxsize(b)) hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1, sndbuf_getalign(b)); while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) { if (hblkcnt < 4) hblksz >>= 1; else hblkcnt >>= 1; } hblksz -= hblksz % sndbuf_getalign(b); #if 0 hblksz = sndbuf_getmaxsize(b) >> 1; hblksz -= hblksz % sndbuf_getalign(b); hblkcnt = 2; #endif CHN_UNLOCK(c); if (chn_usefrags == 0 || CHANNEL_SETFRAGMENTS(c->methods, c->devinfo, hblksz, hblkcnt) != 0) sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods, c->devinfo, hblksz)); CHN_LOCK(c); if (!CHN_EMPTY(c, children)) { nsblksz = round_blksz( sndbuf_xbytes(sndbuf_getblksz(b), b, bs), sndbuf_getalign(bs)); nsblkcnt = sndbuf_getblkcnt(b); if (c->direction == PCMDIR_PLAY) { do { nsblkcnt--; } while (nsblkcnt >= 2 && nsblksz * nsblkcnt >= sblksz * sblkcnt); nsblkcnt++; } sblksz = nsblksz; sblkcnt = nsblkcnt; limit = 0; } else limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2; } if (limit > CHN_2NDBUFMAXSIZE) limit = CHN_2NDBUFMAXSIZE; #if 0 while (limit > 0 && (sblksz * sblkcnt) > limit) { if (sblkcnt < 4) break; sblkcnt >>= 1; } #endif while ((sblksz * sblkcnt) < limit) sblkcnt <<= 1; while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) { if (sblkcnt < 4) sblksz >>= 1; else sblkcnt >>= 1; } sblksz -= sblksz % sndbuf_getalign(bs); if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz || sndbuf_getsize(bs) != (sblkcnt * sblksz)) { ret = sndbuf_remalloc(bs, sblkcnt, sblksz); if (ret != 0) { device_printf(c->dev, "%s(): Failed: %d %d\n", __func__, sblkcnt, sblksz); return ret; } } /* * Interrupt timeout */ c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) / ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs)); if (c->parentchannel != NULL) c->timeout = min(c->timeout, c->parentchannel->timeout); if (c->timeout < 1) c->timeout = 1; /* * OSSv4 docs: "By default OSS will set the low water level equal * to the fragment size which is optimal in most cases." */ c->lw = sndbuf_getblksz(bs); chn_resetbuf(c); if (snd_verbose > 3) device_printf(c->dev, "%s(): %s (%s) timeout=%u " "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n", __func__, CHN_DIRSTR(c), (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", c->timeout, sndbuf_getsize(b), sndbuf_getblksz(b), sndbuf_getblkcnt(b), sndbuf_getsize(bs), sndbuf_getblksz(bs), sndbuf_getblkcnt(bs), limit); return 0; } int chn_setlatency(struct pcm_channel *c, int latency) { CHN_LOCKASSERT(c); /* Destroy blksz/blkcnt, enforce latency profile. */ return chn_resizebuf(c, latency, -1, 0); } int chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz) { CHN_LOCKASSERT(c); /* Destroy latency profile, enforce blksz/blkcnt */ return chn_resizebuf(c, -1, blkcnt, blksz); } int chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed) { struct pcmchan_caps *caps; uint32_t hwspeed, delta; int ret; CHN_LOCKASSERT(c); if (speed < 1 || format == 0 || CHN_STARTED(c)) return (EINVAL); c->format = format; c->speed = speed; caps = chn_getcaps(c); hwspeed = speed; RANGE(hwspeed, caps->minspeed, caps->maxspeed); sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo, hwspeed)); hwspeed = sndbuf_getspd(c->bufhard); delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed); if (delta <= feeder_rate_round) c->speed = hwspeed; ret = feeder_chain(c); if (ret == 0) ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, sndbuf_getfmt(c->bufhard)); if (ret == 0) ret = chn_resizebuf(c, -2, 0, 0); return (ret); } int chn_setspeed(struct pcm_channel *c, uint32_t speed) { uint32_t oldformat, oldspeed, format; int ret; #if 0 /* XXX force 48k */ if (c->format & AFMT_PASSTHROUGH) speed = AFMT_PASSTHROUGH_RATE; #endif oldformat = c->format; oldspeed = c->speed; format = oldformat; ret = chn_setparam(c, format, speed); if (ret != 0) { if (snd_verbose > 3) device_printf(c->dev, "%s(): Setting speed %d failed, " "falling back to %d\n", __func__, speed, oldspeed); chn_setparam(c, c->format, oldspeed); } return (ret); } int chn_setformat(struct pcm_channel *c, uint32_t format) { uint32_t oldformat, oldspeed, speed; int ret; /* XXX force stereo */ if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) { format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL, AFMT_PASSTHROUGH_EXTCHANNEL); } oldformat = c->format; oldspeed = c->speed; speed = oldspeed; ret = chn_setparam(c, format, speed); if (ret != 0) { if (snd_verbose > 3) device_printf(c->dev, "%s(): Format change 0x%08x failed, " "falling back to 0x%08x\n", __func__, format, oldformat); chn_setparam(c, oldformat, oldspeed); } return (ret); } void chn_syncstate(struct pcm_channel *c) { struct snddev_info *d; struct snd_mixer *m; d = (c != NULL) ? c->parentsnddev : NULL; m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 : NULL; if (d == NULL || m == NULL) return; CHN_LOCKASSERT(c); if (c->feederflags & (1 << FEEDER_VOLUME)) { uint32_t parent; int vol, pvol, left, right, center; if (c->direction == PCMDIR_PLAY && (d->flags & SD_F_SOFTPCMVOL)) { /* CHN_UNLOCK(c); */ vol = mix_get(m, SOUND_MIXER_PCM); parent = mix_getparent(m, SOUND_MIXER_PCM); if (parent != SOUND_MIXER_NONE) pvol = mix_get(m, parent); else pvol = 100 | (100 << 8); /* CHN_LOCK(c); */ } else { vol = 100 | (100 << 8); pvol = vol; } if (vol == -1) { device_printf(c->dev, "Soft PCM Volume: Failed to read pcm " "default value\n"); vol = 100 | (100 << 8); } if (pvol == -1) { device_printf(c->dev, "Soft PCM Volume: Failed to read parent " "default value\n"); pvol = 100 | (100 << 8); } left = ((vol & 0x7f) * (pvol & 0x7f)) / 100; right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100; center = (left + right) >> 1; chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center); } if (c->feederflags & (1 << FEEDER_EQ)) { struct pcm_feeder *f; int treble, bass, state; /* CHN_UNLOCK(c); */ treble = mix_get(m, SOUND_MIXER_TREBLE); bass = mix_get(m, SOUND_MIXER_BASS); /* CHN_LOCK(c); */ if (treble == -1) treble = 50; else treble = ((treble & 0x7f) + ((treble >> 8) & 0x7f)) >> 1; if (bass == -1) bass = 50; else bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1; f = chn_findfeeder(c, FEEDER_EQ); if (f != NULL) { if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0) device_printf(c->dev, "EQ: Failed to set treble -- %d\n", treble); if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0) device_printf(c->dev, "EQ: Failed to set bass -- %d\n", bass); if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0) device_printf(c->dev, "EQ: Failed to set preamp -- %d\n", d->eqpreamp); if (d->flags & SD_F_EQ_BYPASSED) state = FEEDEQ_BYPASS; else if (d->flags & SD_F_EQ_ENABLED) state = FEEDEQ_ENABLE; else state = FEEDEQ_DISABLE; if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0) device_printf(c->dev, "EQ: Failed to set state -- %d\n", state); } } } int chn_trigger(struct pcm_channel *c, int go) { #ifdef DEV_ISA struct snd_dbuf *b = c->bufhard; #endif struct snddev_info *d = c->parentsnddev; int ret; CHN_LOCKASSERT(c); #ifdef DEV_ISA if (SND_DMA(b) && (go == PCMTRIG_EMLDMAWR || go == PCMTRIG_EMLDMARD)) sndbuf_dmabounce(b); #endif if (!PCMTRIG_COMMON(go)) return (CHANNEL_TRIGGER(c->methods, c->devinfo, go)); if (go == c->trigger) return (0); ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go); if (ret != 0) return (ret); switch (go) { case PCMTRIG_START: if (snd_verbose > 3) device_printf(c->dev, "%s() %s: calling go=0x%08x , " "prev=0x%08x\n", __func__, c->name, go, c->trigger); if (c->trigger != PCMTRIG_START) { c->trigger = go; CHN_UNLOCK(c); PCM_LOCK(d); CHN_INSERT_HEAD(d, c, channels.pcm.busy); PCM_UNLOCK(d); CHN_LOCK(c); chn_syncstate(c); } break; case PCMTRIG_STOP: case PCMTRIG_ABORT: if (snd_verbose > 3) device_printf(c->dev, "%s() %s: calling go=0x%08x , " "prev=0x%08x\n", __func__, c->name, go, c->trigger); if (c->trigger == PCMTRIG_START) { c->trigger = go; CHN_UNLOCK(c); PCM_LOCK(d); CHN_REMOVE(d, c, channels.pcm.busy); PCM_UNLOCK(d); CHN_LOCK(c); } break; default: break; } return (0); } /** * @brief Queries sound driver for sample-aligned hardware buffer pointer index * * This function obtains the hardware pointer location, then aligns it to * the current bytes-per-sample value before returning. (E.g., a channel * running in 16 bit stereo mode would require 4 bytes per sample, so a * hwptr value ranging from 32-35 would be returned as 32.) * * @param c PCM channel context * @returns sample-aligned hardware buffer pointer index */ int chn_getptr(struct pcm_channel *c) { int hwptr; CHN_LOCKASSERT(c); hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0; return (hwptr - (hwptr % sndbuf_getalign(c->bufhard))); } struct pcmchan_caps * chn_getcaps(struct pcm_channel *c) { CHN_LOCKASSERT(c); return CHANNEL_GETCAPS(c->methods, c->devinfo); } u_int32_t chn_getformats(struct pcm_channel *c) { u_int32_t *fmtlist, fmts; int i; fmtlist = chn_getcaps(c)->fmtlist; fmts = 0; for (i = 0; fmtlist[i]; i++) fmts |= fmtlist[i]; /* report software-supported formats */ if (!CHN_BITPERFECT(c) && report_soft_formats) fmts |= AFMT_CONVERTIBLE; return (AFMT_ENCODING(fmts)); } int chn_notify(struct pcm_channel *c, u_int32_t flags) { struct pcm_channel *ch; struct pcmchan_caps *caps; uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate; uint32_t vpflags; int dirty, err, run, nrun; CHN_LOCKASSERT(c); if (CHN_EMPTY(c, children)) return (ENODEV); err = 0; /* * If the hwchan is running, we can't change its rate, format or * blocksize */ run = (CHN_STARTED(c)) ? 1 : 0; if (run) flags &= CHN_N_VOLUME | CHN_N_TRIGGER; if (flags & CHN_N_RATE) { /* * XXX I'll make good use of this someday. * However this is currently being superseded by * the availability of CHN_F_VCHAN_DYNAMIC. */ } if (flags & CHN_N_FORMAT) { /* * XXX I'll make good use of this someday. * However this is currently being superseded by * the availability of CHN_F_VCHAN_DYNAMIC. */ } if (flags & CHN_N_VOLUME) { /* * XXX I'll make good use of this someday, though * soft volume control is currently pretty much * integrated. */ } if (flags & CHN_N_BLOCKSIZE) { /* * Set to default latency profile */ chn_setlatency(c, chn_latency); } if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) { nrun = CHN_EMPTY(c, children.busy) ? 0 : 1; if (nrun && !run) err = chn_start(c, 1); if (!nrun && run) chn_abort(c); flags &= ~CHN_N_TRIGGER; } if (flags & CHN_N_TRIGGER) { if (c->direction == PCMDIR_PLAY) { vchanformat = &c->parentsnddev->pvchanformat; vchanrate = &c->parentsnddev->pvchanrate; } else { vchanformat = &c->parentsnddev->rvchanformat; vchanrate = &c->parentsnddev->rvchanrate; } /* Dynamic Virtual Channel */ if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) { bestformat = *vchanformat; bestspeed = *vchanrate; } else { bestformat = 0; bestspeed = 0; } besthwformat = 0; nrun = 0; caps = chn_getcaps(c); dirty = 0; vpflags = 0; CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); if ((ch->format & AFMT_PASSTHROUGH) && snd_fmtvalid(ch->format, caps->fmtlist)) { bestformat = ch->format; bestspeed = ch->speed; CHN_UNLOCK(ch); vpflags = CHN_F_PASSTHROUGH; nrun++; break; } if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) { if (c->flags & CHN_F_VCHAN_ADAPTIVE) { bestspeed = ch->speed; RANGE(bestspeed, caps->minspeed, caps->maxspeed); besthwformat = snd_fmtbest(ch->format, caps->fmtlist); if (besthwformat != 0) bestformat = besthwformat; } CHN_UNLOCK(ch); vpflags = CHN_F_EXCLUSIVE; nrun++; continue; } if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) || vpflags != 0) { CHN_UNLOCK(ch); nrun++; continue; } if (ch->speed > bestspeed) { bestspeed = ch->speed; RANGE(bestspeed, caps->minspeed, caps->maxspeed); } besthwformat = snd_fmtbest(ch->format, caps->fmtlist); if (!(besthwformat & AFMT_VCHAN)) { CHN_UNLOCK(ch); nrun++; continue; } if (AFMT_CHANNEL(besthwformat) > AFMT_CHANNEL(bestformat)) bestformat = besthwformat; else if (AFMT_CHANNEL(besthwformat) == AFMT_CHANNEL(bestformat) && AFMT_BIT(besthwformat) > AFMT_BIT(bestformat)) bestformat = besthwformat; CHN_UNLOCK(ch); nrun++; } if (bestformat == 0) bestformat = c->format; if (bestspeed == 0) bestspeed = c->speed; if (bestformat != c->format || bestspeed != c->speed) dirty = 1; c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); c->flags |= vpflags; if (nrun && !run) { if (dirty) { bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, bestspeed); err = chn_reset(c, bestformat, bestspeed); } if (err == 0 && dirty) { CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); if (VCHAN_SYNC_REQUIRED(ch)) vchan_sync(ch); CHN_UNLOCK(ch); } } if (err == 0) { if (dirty) c->flags |= CHN_F_DIRTY; err = chn_start(c, 1); } } if (nrun && run && dirty) { chn_abort(c); bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, bestspeed); err = chn_reset(c, bestformat, bestspeed); if (err == 0) { CHN_FOREACH(ch, c, children.busy) { CHN_LOCK(ch); if (VCHAN_SYNC_REQUIRED(ch)) vchan_sync(ch); CHN_UNLOCK(ch); } } if (err == 0) { c->flags |= CHN_F_DIRTY; err = chn_start(c, 1); } } if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) && (bestformat & AFMT_VCHAN)) { *vchanformat = bestformat; *vchanrate = bestspeed; } if (!nrun && run) { c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); bestformat = *vchanformat; bestspeed = *vchanrate; chn_abort(c); if (c->format != bestformat || c->speed != bestspeed) chn_reset(c, bestformat, bestspeed); } } return (err); } /** * @brief Fetch array of supported discrete sample rates * * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for * detailed information. * * @note If the operation isn't supported, this function will just return 0 * (no rates in the array), and *rates will be set to NULL. Callers * should examine rates @b only if this function returns non-zero. * * @param c pcm channel to examine * @param rates pointer to array of integers; rate table will be recorded here * * @return number of rates in the array pointed to be @c rates */ int chn_getrates(struct pcm_channel *c, int **rates) { KASSERT(rates != NULL, ("rates is null")); CHN_LOCKASSERT(c); return CHANNEL_GETRATES(c->methods, c->devinfo, rates); } /** * @brief Remove channel from a sync group, if there is one. * * This function is initially intended for the following conditions: * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl) * - Closing a device. (A channel can't be destroyed if it's still in use.) * * @note Before calling this function, the syncgroup list mutex must be * held. (Consider pcm_channel::sm protected by the SG list mutex * whether @c c is locked or not.) * * @param c channel device to be started or closed * @returns If this channel was the only member of a group, the group ID * is returned to the caller so that the caller can release it * via free_unr() after giving up the syncgroup lock. Else it * returns 0. */ int chn_syncdestroy(struct pcm_channel *c) { struct pcmchan_syncmember *sm; struct pcmchan_syncgroup *sg; int sg_id; sg_id = 0; PCM_SG_LOCKASSERT(MA_OWNED); if (c->sm != NULL) { sm = c->sm; sg = sm->parent; c->sm = NULL; KASSERT(sg != NULL, ("syncmember has null parent")); SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link); free(sm, M_DEVBUF); if (SLIST_EMPTY(&sg->members)) { SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); sg_id = sg->id; free(sg, M_DEVBUF); } } return sg_id; } #ifdef OSSV4_EXPERIMENT int chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak) { CHN_LOCKASSERT(c); return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak); } #endif